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Abstract When dealing with computationally expensive simt Introduction

ulation codes or process measurement data, surrogate mod-

eling methods are firmly established as facilitators foigies Regardless of the rapid advances in High Performance Com-
space exploration, sensitivity analysis, visualizatiprgto-  puting and multi-core architectures, it is rarely feasitde
typing and optimization. Typically the model parametenf=h explore a design space using high fidelity computer simula-
perparameter) optimization problem as part of global surrotions [94]. As a result, data based surrogate models (other-
gate modeling is formulated in a single objective way. Mod-wise known as metamodels, emulators, or response surface
els are generated according to a single objective (accuracynodels) have become a standard technique to reduce this
However, this requires an engineer to determine a single acomputational burden and enable routine tasks such as visu-
curacy target and measure upfront, which is hard to do ilization, design space exploration, prototyping, seitsit

the behavior of the response is unknown. Likewise, the difanalysis, and of course, optimization [99, 88].

ferent outputs of a multi-output system are typically mod- It is important to first comment on the difference be-
eled separately by independent models. Again, a multiobtween local and global surrogate models since motivation
jective approach would benefit the domain expert by giv-and philosophy are distinct. Local surrogate modeling in-
ing information about output correlation and enabling auvolves building small, relatively low fidelity surrogatesr f
tomatic model type selection for each output dynamicallyuse in optimization. Local surrogates are used as rough ap-
With this paper the authors attempt to increase awarenepgoximators of the (costly) optimization surface and guide
of the subtleties involved and discuss a number of solutionghe optimization algorithm towards good extrema while min-
and applications. In particular we present a multiobjectiv imizing the number of simulations [6]. Once the optimum is
framework for automatic global surrogate model generatiofiound, the surrogate is discarded. Many advanced methods
to help tackle both problems and that is applicable in bothor constructing and managing these local surrogates have
the static and sequential design (adaptive sampling) case. been designed, including trust region methods [100, 2] var
ous ensemble techniques [33], space mapping methods [19],
and hierarchical surrogates [104]. In general the theamr-is
ferred to as Surrogate Based Optimization (SBO) or Meta-
model Assisted Optimization (MAO). A good overview ref-
erence is given by [18], [79], and the work by Y. S. Ong
[74].

In contrast, with global surrogate modeling the surro-
gate model itself is usually the goal. The objective is to-con
struct a high fidelity approximation model that is as acarat
D. Gorissen, 1. Couckuyt, E. Laermans, T. Dhasne as possiple ovgrthe F:omplete de.sign space of interest using
Ghent Univéréity i IBBi bepanmen{ of Information Techogy 25 few simulation points as possible. Once constructed, the
(INTEC), Gaston Crommenlaan 8, 9050 Gent, Belgium global surrogate model (also referred to as a replacement
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accurate and scalable replacement model in standard desigigns [29]. Some examples of global modeling approaches
software packages (e.g., [11]). Thus optimization is Ugual can be foundin [72,31,7,89].

not the main goal (though it still can be), but rather a useful The mathematical formulation of the problem is as fol-
post-processing step. lows: approximate an unknown multivariate functionQ —

Of course the dichotomy is not strict; ideas and approacti& defined on some domaia  R%, whose function values
between the two types can, and should, be exchanged, alloi{X) = {f(x1), ..., f(x)} € C" are known at a fixed set of
ing for different hybrids to emerge that borrow ideas frompairwise distinct sample poin$ = {x,...,X} C Q. Con-
both types. A good example in this respect is the popular Efstructing an approximation requires finding a suitable func
ficient Global Optimization (EGO) approach first describedtion s from an approximation spac@ such thats: R9
by Jones et. al. in [50] and elaborated by many others (e.g;" € Sandsclosely resemblet as measured by some crite-
[84)). rion . The task is then to find the best approximator S

The current paper attempts to increase the value and utiguch thats® satisfies mig-sé = s*. This minimization is
ity of global surrogate methods for practitioners by explor an optimization problem over the model parameters, com-
ing a multiobjective approach to surrogate model generanonly referred to as the hyperparameter optimization prob-
tion. This gives an engineer or domain expert more flexibildem. This may be solved manually, through trial and error, or
ity in specifying a priori constraints on the surrogate modeusing readily available optimization algorithms. Additéd
generation process (cffhe 5 percent problerhin section ~ assumptions are thdt is expensive to compute. Thus the
3). In addition, a multiobjective approach allows multigout  number of function evaluationgX) needs to be minimized
problems to be modeled directly, giving more informationand data points must be selected iteratively, at points evher
than modeling each output independently. At the same tim#he information gain will be the greatest [96]. Mathemati-
we do not assume a fixed sample distribution but select anéglly this means defining a sampling function
perform simulations iteratively (adaptive sampling) asio  (X;_1) = X;,i=1,..,N (1)

be the case in any real application. that constructs a data hierarchy

XoCXiCXoC...CXyCX (2

of nested subsets &f = {Xy, ..., X}, whereN is the number
of levels.Xg is referred to as thimitial experimental design
yand is constructed using one of the many algorithms avail-

generate accuratgobal surrogates (valid over the complete 2P!€ from the theory of Design and Analysis of Computer

design space) using a minimal number of computationally-XPeriments (see the work by Kleijnen et al. [55]). Once
expensive simulations. Optimization of the simulation-out te initial designX, is available it can be used to seed the

put is not the main goal, rather we are concerned with opS@MPIing functionp. An important requirement o is to
timization of the model parameters (hyperparameter Optim|n|m|ze the nqmberof s.ample PO | — [Xi—| sglegted
mization). each iteration { is expensive to compute), yet maximize the
Global surrogate models are particularly useful for dejnformation gain of eaph succes_sive data Ieyel. This proces
sign space exploration, sensitivity analysis, prototgpiri- is referred to as adaptive sampling [15], but is also known as

sualization, anavhat-if analysis. They are also widely used actiye learning [_16]' reflective explorgtion [1_1]’ Optinz-
to build model libraries for use in controllers or engineer-Ioerlmental Design [80] and sequential design [53]. The ad-

ing design software packages. In addition, they can Copgantage of adaptive sampling is that the number of required

with varying boundary conditions. This enables them to pdiata pointsgeed notllbe szeci;ied up fro_nt, avgﬂdjng I?oﬂenria
chained together in a model cascade in order to approximaf’eger' or undersampling. At the same time, by intelligently

large scale systems [5]. A classic example is the full-wavé oosing the Iocation-of gach datq point the accuracy of the
simulation of an electronic circuit board. Electromagoeti surrogate may be maintained. An important consequence of

modeling of the whole board in one runis almost intractable'ghe adaptive sampling procedure is that the task of finding

Instead the board is modeled as a collection of small, comt-he best appro>_<|mat|o§ .becomes a Qynamlc problem in-
pact, accurate surrogates that represent the differeit funSt_ead of a static one. Since the qumaI_modeI paramgters
tional components (capacitors, transmission lines, tasis will change as the amount and distribution of data points
etc.) on the board. Finally, if optimization is the goal, Onechanges.

could argue that a global model is less useful since signifi-

cant time savings could be achieved if more effort were di3 “The 5 percent problem”

rected at finding the optimum rather than modeling regions

of poor designs. However, this is the logic of purely local The basic algorithm for generating a global surrogate model

models, but they forgo any wider exploration of radical de-through adaptive sampling is as follows: a small number of

2 Global surrogate modeling

We stress again that the context of this work is to efficientl



simulations are performed according to some Design of Exeverlooked, but equally important [60, 25]. Selecting an er
periment plan. Given these sample points the space of camr functione and required target accuratys difficult since
didate modelsSis searched for the besting fitting mod&l it requires knowledge of the structure of the response and a
according to€. If s* is acceptable (i.e., the model meets thefull understanding of what the generalization estimator
target requirement set out by the user) the algorithm teractually measures. Failure to do so leads to misinterpreta-
minates. Else the sampling functignis used to generate tion, inappropriate application, ultimately resultingaitrial

a new set of sampling points (adaptive sampling) and thand error model generating procedure.

model search is resumed. This whole process continues until This brings us to, what we have termédhe 5 per-

the user-defined accuracy has been reached or the computent problem”.The phrase stems from an application where

tional budget is exhausted. an engineer needed a replacement metamodel. When asked
A crucial aspect of this algorithm is identifying a suit- what model accuracy was required the answer was simply
able criterioné, whereé constitutes three parts: 5 percent. While this may seem like a straightforward, ob-
jective requirement, enforcing it in practice turned oubé&o
{=NeT) (3) difficult. The reason is twofold and is detailed below.

with A the generalization estimatog, the error (or loss)
function used, and the target value required by the user.
This means that the global surrogate model generation pro
lem (namely finding") for a given set of datB = (X;, f (X))
can be formally defined as

i:1 Choice of error function

First, there is the choice of the error functien Roughly
speaking there are two categories of error functions: abso-

. i inA D 4 lute and relative.
s' = argminarg mir (€,5,0,D) 4)
such that 3.1.1 Absolute errors
N(e,59,D)<T (5)

Absolute errors (e.g., Average Absolute Error (AAE), Mean

wheres g is the parametrizatio (from a parameter space Squared Error (MSE), etc.) are often undesirable in an appli

©) of sands g is of model type (from a set of model types cation context since they are not unit-free and depend on the

). specific prediction value of the response. On the other hand
The outer minimization overc T is the task of selecting  they are very popular in machine learning settings but not al

a suitable approximation model type, i.e., a rational funcways rightly used. A good example is the Root Mean Square

tion, a neural network, a spline, etc. This is the model typeError (RMSE), by far the most popular error function:

selgctmn problem. In practice, one typ|cally consuder’tyon_ 1

a singlet € T though thers may be_lnclgded for compari- RMSEHY,¥) = /= Z\(yi — )2 (8)

son. Then given a particular approximation typéhe task nic

is to find the hyperparameter assignmérthat minimizes Wherey;, Vi are the real and predicted response values re-

the generalization gstimatei\" (e.g.,.d(.atermine the optimal spectively. The main advantage of the RMSE is that it is
ord.er.of a polynomial model). This is the hyp.er-pa-rameteEhe best finite-sample approximation of the standard error
optlmlzatlon problem, though generally b‘?‘h minimizagon +/E]y— ] and standard deviation (in the case of an unbiased
are simply referred to as the model selection problem. model) [60]. However, its use is not recommended since it

h I(;\/Ianty E)mp:etmentatmns OT'\d h?ve peeknkdiscﬁ);?;q the penalizes large errors too severely while virtually igngri
old-out, boolstrap, cross validation, jack-knite, " small errors. Such an error function is called pessimistic.

for_mzitiﬁn _Crlterlor: (AIC), ?}C' In tgle S|m_ple I(_:ff_isetwhére Also it is unintuitive to interpret. The RMSE is often inter-
IS Justthe in-sample error, the problem simpines 1o preted as the true arithmetic average euclidean distance be

s = minmine(s.6(%), f (X)) (6) tween the predictioy and the true valug. This is however
teT 6e0 not the case, the RMSE is really op@-th of this value and
such that thus has no simple geometrical interpretation whatsoéver.
. better solution would be to use the Average Euclidean Error
£(ge:(X), T(X)) < T (7 (AEE) as proposed by [60]
The crucial problem is identifying suitable implementa- 10N
tions for/A, & and a target value for. The three are closely AEE(Y.Y) = _Zl\/ (yi —¥i)? 9)
=

linked but only theA-selection problem has been exten-
sively studied theoretically [52,101] and empirically [90 However, while the AEE enjoys many desirable proper-
68]. The selection of andT is less appreciated and often ties, it still suffers from outliers (i.e., it is also pessatic,



though less than the RMSE). In cases where this is a prolierror (HRE) respectively) instead of the simple average can
lem alternative functions like the Geometric Average Erroralso be interpreted as a global percentage error. But since
(GAE) and the Harmonic Average Error (HAE) [60] can be ARE, GRE, and HRE treat different types of errors differ-

more useful. ently (e.g., ARE is more sensitive to large errors than GRE)
. 1 care should be taken when interpreting a figure like 5%. In
GAE(y,§) = <|_| /(yi _ Vi)2> (10) addition, the “%” suffix is sometimes also used when using,
= for example, RRSE (see below). This, however, should be
avoided since it is confusing.
1N 1 -1 The problem with the ARE is that care must be taken in
HAE(y,§) = <— 27%> its interpretation when the true function valugsare small
NS Vi —%) or, in the extreme but not unlikely case, zero. Since then the
= T n R (11)  error tends to infinity, giving a biased result. What is some-
VAL +ot V(=AY times done to combat this is add onel() to the denomina-

| he RMSE and AEE. the HAE | tor to prevent division by zero. While this solves the numer-
- n-contrast to t, e Rl an ’ the IS aN OP-jcq) issue, the resulting error is an absolute-relativerisyb
timistic error function since it is domlpateg by the small and becomes impossible to interpret. A different solut®n i
error terms. The HA_E can be appro_pnate if the error fluc'to scale or translate the response to eliminate small atesolu
tuaf[es greatly over different runs. Th's prope_rty may.be USQalues (e.g., as proposed in [41]). However, the best scale
ful in the context ofk-fold cross validation Wlth relatively factor is not always obvious and shifting the response can
few samples. The GAE, on the other hand, is a balanced ®htroduce its own problems. For example, figure 1 illustsate

ror function that suffers much less from extremes (Iargg %how a simple shifting of the response (+1000) can drasti-
small). The GAE, however, has as a disadvantage that if th@ally improve the ARE value (3 orders of magnitude) for

error is zero in a single point, thg overall error is also Zeroexactly the same model parameters (error measured in the
This is of course may not be desirable. samples)

_Many more absolute error variants exist and we do not  »qiionally, there is the well known issue of averag-
intend to give an exhaustive overview. Rather we wish to il-

lustrate that h function bri i iradeoffs anerint ing the errors (relative or absolute). This means that a inode
ustrate that each IUNClion brings 1ts own fradeotls anetnt iy, 5 o average error can still have areas where the pre-
pretation depending on how the absolute differemgesyi|

tod. | L thouah. absolut e diction is very poor (i.e., the mean is not robust). Figure 2
are aggregated. In generalthough, absolute error Craegla o, g example using relative errors. The data in the fig-

not !deallygulltgd for pherformancedesnmz(ijtmn of an app:;om ure are the result of a NIST study involving semiconduc-
mation model due to their context dependence (i.& har tor electron mobility. The response variable is a measure of

to specify up front and depends on the units used). electron mobility, and the predictor variable is the ndtura
log of the density. The fit is a rational function with a pole.

Thus, since an engineer usually requires strict boundsen th
maximum error it seems better to minimize the maximum
error instead of the average (note that ARBMRE).

3.1.2 Relative errors

Thus engineers typically prefer relative or percentagarsyr

e.g., 5%. A figure of 5% implies some kind of global aver- ) . : .
However, in the relative case, using a maximum aggre-

aged relative error, but there are different ways to cateula . . . N

. . ation function has its own counter-intuitive propertiesr
relative errors (depending on what reference and aggrega- . . .

. L ) . example, figure 3 illustrates how the zero function has a
tion function is used): Average Relative Error (ARE), Max- lower MRE than a model which overshoots the data, but else
imum Relative Error (MRE), Relative Squared Error (RSE), '

. 1 . . . .
Root Relative Square Error (RRSE), Relative Absolute Error o> like a reasonable-fifThis property is particularly

| (RAEI), Relative Absolute Error Il (RAEIl), Root Mean problematic if the model parameter space is searched au
) tomatically (hyperparameter optimization). In this case t
Square Relative Error (RMSRE), etc. [31,60]. L . ) . T
o o optimization algorithm is easily deceived into generafiat
A natural solution is to take the most intuitive error func-

. models.

tion, the ARE: . .

‘on. the N One would be tempted to resort to using the Maximum

ARE(Y,§) = 1 = |yi — Vil (12) Absolute_ Error (_MAE) instead. Since while i_t may be _diffi-
&Gyl cult to give a priori average error targets, giving maximum

By taking the true value as a reference the ARE reSLII,[gtbsolute error bounds is often easier since it can be related

in an intuitively understandable number. Multiplied by 100MOre directly to the application. However, the MAE is nota

it results in a natural percentage. However, taking the ges_,atisfactory solution either. First of all, like any abgeler-

ometric or harmonic mean (resulting in the Geometric av- 1 |, this case the samples are noisy but the same phenomenon can
erage Relative Error (GRE) and Harmonic average Relativeccur with noise free data and a validation set.
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ror, it requires knowledge of the full range of the response.
Also, it is not relative, meaning a deviation of 5 on a re-
sponse value 1000 is considered worse than a deviation of 3
on a value of 0.5. Furthermore, enforcing a MAE is equiva-
lent to restricting all fitted response valuet® Tie inside the

tube defined byy— MAE,y+ MAE]. This requirement can much better a flt_ is over the most simple mod_el possible:
. : . the mean. Also it does not become problematic for small
be too strict if the response contains regions that are ve

rg .

' . oo . . . bsolute values of;. Unfortunately, the problem with the
hard to ﬂt. (e.g., discontinuities), information that is bt RRSE is that it gi\(/)éls a pessimisticyestimgte of the erroif th
ways available.

) i response that needs to be fitted is very smooth (i.e., the mean
Another approach then, is to use the RRSE function, re-.

lated to th aR2 criterion. In thi the deviati Is already quite a good fit). Thus an understanding of the
ated to the popu criterion. 1n this case the devialion i, ctyre of the response is needed to properly interpeet th
from the mean is used as the reference value.

RRSE value. The RRSE is also less intuitive for an engineer
since it measures the improvement over the average model
rather than the quality of fit directly (making a good choice
of T harder).

The RRSE is intuitively attractive since it measures how

RRSEY,Y) = (13)




An improved function that is less sensitive to large errors

. . . . . ;Iowest trair‘1ing error
and has some other attractive properties is given in [66], th 1+ lowest validation errorf|
. . . . . *  Training points
Bayesian Estimation Error Quotient (BEEQ): o valdation points
1 08F |
n n . n
o Sia lyi — Vil

BEEQy.Y) = [ [1&:t2 — (14)

Listalyi—y o6 ,
However, like the GAE it will predict an error of zero overall >
if just a single point has an error of 0. 0a4f .

One could continue discussing different error functions
(e.g., those based on the medain or mode) but it should &t ,| ]
clear now that each error function has its own characteris
tics and that relative errors are not always as context fsee ¢
one might assume at first. While the examples given here ai
quite simple, they are illustrative of the greater comglexi - -4 -2 0 2 4 6
that arise when combining an error function with a model
selection metric. Also note that these subtleties are less 49 4 A misleading validation set
problem in classification (where most research on model se-

lectionis conducted). The concept of a good classifier is ty.perror can give extremely biased results (thus deceiving the

ically much more intuitive to grasp and define by a domai yperparameter optimization) if chosen poorly or if only a

expertthan in the case of regression. . ;ew points are available. For example, figure 4 gives a sim-
Remark that the error function also influences choice o

) . . le example were minimizing the validation error can lead to
sampling strategy. For example if the error measure dﬂ~:tat(~.p b g

A . sub-optimal model. This is of course an extreme example
that it is important that the optima of the model are capture(g -op . P
ut similar problems are often encountered with real data.

accurately, one should make sure the sampling strategy em- h lidati qi , h
ployed will sample at those locations. Actually it turns out € cross vall atlon_ error (and its extrem(_a version, the
heave-One-Out error), is a popular compromise, but it too

that in most cases a sampling algorithm can be formulate ST ) )
as a model selection critera and vica versa. fjepends on the datq dlstrlbutpn [17,71], can give mislead-
ing results [62], and is expensive to compute (the bootstrap
even more so). Also there is the question on how to select
3.2 Choice of model selection metric the folds (randomly, evenly spread, etc.). Additionallyeon
could argue the different cross validation variants should
Assuming the choice of error function (and target value) carpe interpreted as measuring sensitivity to loss of informa-
be decided upon there is still the problem of selecting a medion rather than approximation accuracy. Finally theréés t
sure for estimating the generalization capabilities of @elo added complication of noise in the data and/or in the gener-
(cross validation, bootstrap, validation set, jack-knéfee.).  alization estimator (e.gk-fold cross validation). Since we
This is the well known problem of model selection and hasonly consider deterministic computer experiments noisg da
been discussed at length elsewhere [8,52,71,90,32]. A godsl usually not an issde However, when dealing with mea-
high level introductionis given in [105]. The point thisgap sured data or stochastic simulations this adds an extra laye
attempts to make is that it is far from obvious which methodof complexity.
to select that, when minimized, produces a model that an Yet a different approach is to employ Bayesian statistics
engineer is satisfied with. Simply using the in-sample er{see the work by O’Hagan et. al. [73]). Through Bayesian
ror is useless since it does not account for over-fitting anéhference one can exactly quantify the uncertainty or con-
is meaningless when used with interpolating methods (e.gfidence one has in a particular model. This is usually very
Kriging). Measures like AIC and its variants (BIC, CIC, useful from an application standpoint but is only possible
NIC, ...) and the methods from statistical learning theorywith specific model types.
(Vapnik-Chervonenkis (VC) Dimension, etc.) are more ad-  The only true, unbiased test for model quality would be
vanced in that they take the complexity of the model intoyg assess the model on a very dense, independent test set
account and have solid foundations in information theoryor analytical solution. However, for any real problem this
Unfortunately, an AIC value can only be interpreted rektiv s not a feasible option since data is too expensive and an
to another value and has no meaning on its own. They alsgnalytical solution is not available.
mean very little to a domain expert.
A validation (hold-out) setis a better solutionbutitmeans 2 |, some cases discretization and convergence noise may be
there is less data available for training. Also, the hold-oupresent, the magnitude depending on the application.




3.3 The need for handling multiple criteria proach is that dependencies and tradeoffs between criteria
can cause a deadlock (e.g., reaching one level means violat-
In sum, as it should be clear now, it is hard to agree upfroning another). A different way to interpret this is as a con-
on asingle requirementthat the final replacement metamodstrained optimization problem in the hyperparameter space
must respect. The fundamental reason is that an approximagach level adds a constraint. Care must be taken that there
tion task inherently involves multiple, conflicting, crite.  is at least one feasible region. Also the task for the opti-
[60] summarizes this particularly succinctly: mizer (over the model parameters) becomes considerably

Itis an illusion that performance evaluation can be ~ More difficult since _the optimization Iand;cape may change
done completely fairly and impartially. This is partly suddenly and drastically when a change in level takes place.
because simple metrics cannot capture a complete The third solution is to tackle the problem directly as
picture of the performance of an estimation algo- @ dynamic multiobjective optimization problem in the hy-
rithm and those that are more complete [...] are more ~ P€rparameter space (recall that due to the incremental sam-

complex and subject to subjective interpretations. Also, Pling the optimization surface is dynamic and not static).
use of any metric in performance evaluation implic- Each criterion becomes an objective and standard ranking

itly favors the estimator that tries to optimize this ~ Methods are used to identify the Pareto-optimal set. The dis
same metric. advantage here is that there is no longer the luxury of hav-

) o ) ing a single, unambiguous best solution. However, since we
Thus what usually happens in practice is the following: (1)noted above that such a linear ranking makes no sense this

a be;t effort is mgde o identity a suitaple quel S’(EIeCtiorl‘.hould come as no surprise. The advantage is that the prob-
metric, error funct|_0n and targets; (2) _S|mulat|ons are Peliem can be tackled directly using standard algorithms. From
formed, the modelis generated and delivered to the enginege, 5| pareto set the user is then able to extract knowl-

toge'Fher.wm(]jsomﬁ staﬂspcal te_st reﬁ’“',ts (€., d|fﬂzeerorl edge about the problem and make a better decision when
mhetrlcsg, ?n d(gd)t %en%",]?erv'sfu? y mspltfacts arr]\ exsior choosing the final solution. In addition, the final Paretamfro
the modeland decides It itis satistactory. It not the Pr8CeS onables the generation of diverse ensembles, where the en-

must be repeated. semble members consist of the (partial) Pareto-optimal set

While the final evaluation stage by a domain expert shouldyq yeferences in [33,82,49]). In this way all the informa-
always be performed, it would be advantageous if the dlfferfion in the front can be used. An added advantage of using

ent desired criteria could be enforced from the start. Th'%nsembles is that it allows the calculation of the predictio

can be done in three main ways: uncertainty which is very useful for an application.

1. the different criteria (objectives) are combined intana s Finally, one may imagine different hybrid combinations
gle, global criterion which is then used to drive the modelof the three methods mentioned above. For example, the
generation multiobjective approach where the number of objectiveigar

2. the different objectives are enforced sequentially in alynamically. For example, when only little data is avaitabl
multi-level process it makes no sense to enforce application specific criteria, 0

3. the different objectives are enforced simultaneousiytbh force the model response into particular bounds. That makes
a multiobjective approach more sense when sufficient data is available and the model

The first option is the easiest and allows existing algorghm u_ncertalnty_ h‘?‘S been_ reduced. Other _comblnatlons are pos-
to be re-used as is. An example of such scalarization is thalP1e but this is a topic that has seen little research and tha
geometric mean approach used by Goel et al. in [33]. Howdoes beyond the scope of_ this paper. Rather we shall con-
ever the problem remains of choosing an appropriate combfentrate on the multiobjective approach.

nation function (and its interpretation) and requiring @A u

derstanding of the ranges and nuances of the different mem-

ber functions. Thus the problem is simply moved to a highe# M odeling multiple outputs

level.

The second option is a sequential or milestone approacfhe previous section described how a multiobjective apgroa
Multiple criteria are supported by specifying differenehi  to global surrogate modeling can help sothe 5 percent
archical levelds, ..., L, that must be reached in succession.problem A second use case is when dealing with multi-
For example, first the hyperparameter optimization processutput systems. It is not uncommon that a simulation en-
must produce a model that satisfles(e.g., a ARE of 5%). gine has multiple outputs that all need to be modeled [10].
Once this target is reached, and only then, is the followind-or example, the combustion problem described in [44] has
level L, checked (e.g., a MRE of 10%). Thus, by sequenboth a chemical and temperature source term that needs to
tially working towards subsequent milestones, multipie cr be modeled. Also many Finite Element packages generate
teria can be incorporated. The potential problem of this apmultiple performance values simultaneously.



The direct approach is to model each output indepenerror measures (and incidentally one of the first formula-
dently with separate models (possibly sharing the samé.datéions of multiobjective learning) is [64] who minimized the
This, however, leaves no room for trade-offs nor gives any.,-norm, thelL,-norm and a complexity measure. Unfortu-
information about the correlation between different otdépu nately, a single-objective GA was employed to perform the
Instead of performing two modeling runs (doing a separat®ptimization, resulting in only a single solution. [27] als
hyperparameter optimization for each output) both outputgive an example with two error functions, the Euclidean and
can be modeled simultaneously if models with multiple out-robust error which they use to fit a noisy sinusoid with an
puts are used in conjunction with a multiobjective optimiza ANN.
tion routine. The resulting Pareto front then gives informa  Few references are available that explicitly deal with the
tion about the accuracy trade-off between the outputs in hytrade-offs between different error functions for surregabd-
perparameter space and allows the practitioner to choosging. [25] agree that determining the error function is key
the model most suited to the particular context. More arguput do not consider the problem any further. [3] give an ex-
ments, of essentially the same discussion, are given in [67}ensive treatment of 15 popular error functions for time se-

Again, multi-output Pareto based modeling enables théies extrapolation but is of little use for regression. A @or
generation of diverse ensembles. This is a popular approagblevant and extensive overview is given by Li and Zhao in
in rainfall runoff modeling and model calibration in hydrol [60] who discuss many practical metrics for performance
ogy [91,24]. Models are generated for different flow com-estimation in general and propose a number of new ones.
ponents and/or derivative measures and these are then commore restricted and philosophical discussion is given in
bined into a weighted ensemble or fuzzy committee. A Parefa3]. The previous references are mainly theoretical. Em-
based approach to multi-output modeling also allows intepirical results on performance estimation are harder ta find
gration with the automatic surrogate model type selection a One example is [21] who compare four different error func-
gorithm described in [39]. This enables automatic selectio tions used for neural network classification training.
of the best model type (Artificial Neural Network (ANN),  another topic that has been the subject of extensive re-
Kriging, Support Vector Machine (SVM), ...) for each out- search is that of multiobjective surrogate based optiritizat
put without having to resort to multiple runs [36, 37]. (MOSBO). Surrogate methods are widely used for the op-

timization of expensive functions [78]. While initially ¢fir

use has been constrained to the single objective case, an in-
5 Related work creasing number of results are being reported in the multiob

jective case. An example is the work on statistical improve-
There is a vast body of research available on single obgctivnent by Keane et. al. [51] and ParEGO [56], the multiob-
hyperparameter optimization strategies and model selecti jective version of the popular Efficient Global Optimizatio
criteria for different model types: [9,59,95,90,1,4,78da (EGO) approach [50]. Another example is the application
the extensive work by Yao et. al. [102,103]. Many authord0 parameter optimization of earth system models in [77],
have noticed the problems with single objective hyperpafor crashworthiness design optimization in [61], and fanth
rameter optimization but it is only very recently that mul- wall structure optimization in [87]. The well known NSGA-
tiobjective versions of classical machine learning method!l algorithm [13] has also been extended to incorporate sur-
have been presented [70,92,30,47]. An extensive and excébgate models [12,98]. In this context some work has also
lent overview of the work in this area is given by Jin et. al. inbeen done on comparing different performance measures for
[49] and the book (edited by Jin) [46]. By far the majority of use in MOSBO [54, 97]. [54] compare different performance
the cited work uses multiobjective techniques to improee th criteria for improving metamodel based optimization. They
training of learning methods. Typically an accuracy crite-also“...recognize that in order to obtain desirable informa-
rion (such as the validation error) is used together withesomtion or knowledge about a response surface, multiple per-
regularization parameter or model complexity measure,(e.gformance measures taken in concert may be necessamy.”’
the number of support vectors in SVMs) in order to producdortunately they stop there and do not discuss the issue any
more parsimonious models [25]. Other criteria used includefurther. Though the research into MOSBO is still young, an
sensitivity, specificity, interpretability, and numberinput  excellent overview of current research is already avaglabl
features [92,49]. [57].

It seems less work has been done on high level objectives The contribution of the current work is that it deals with
(with error functions and generalization estimators in-parglobal surrogate modeling with iterative sampling and hy-
ticular) that do not depend on a particular machine learningerparameter optimization. The goal is to generate a high
method. [26] optimize an accuracy metric (the RMSE) to-fidelity global approximation using as few simulations as
gether with an application specifiReturnmetric useful for  possible (replacement metamodeling) and minimizing user
stock market forecasting. An example of the use of multiplénteraction. The paper takes an application perspective, a



multiobjective optimization is considered on a higher, be-automated, adaptive surrogate model construction algorit

havioral level (“What criteria should a model satisfy”) ver Given a simulation engine the toolbox produces a surrogate
sus a more model specific level (“How to generate a parsimodel within the time and accuracy constraints set by the
monious neural network”). user. Different plugins are supported: model types (ratio-

More concretely, the authors stress the importance of aal functions, Kriging, splines, SVM, etc.), model paraemnet
critical analysis of performance estimation criteria ahel t optimization algorithms (BFGS, EGO, simulated annealing,
associated trade-offs when generating surrogates (a@gtimietc.), sample selection (random, error based, densitydbase
ing the hyperparameters). In particular, a founded choicetc.), and sample evaluation methods (local, on a cluster
of error function and target is often overlooked and per-or grid). The behavior of each component is configurable
formance estimation is done in a more ad hoc manner [through a central XML configuration file and components
14], constrained to a single objective [31,23,22], or done &an easily be added, removed or replaced by custom imple-
posteriori (after the model parameters have been fixed) tmentations (see figure 5).
compare different models [72,22]. While the implications
and trade-offs of different performance criteria are wel d
scribed in the statistics community (e.g., [3]), the raaglt
insights and possible solutions can use more visibility.

In addition we propose to model multi-output simula-
tors simultaneously where this makes sense. Thus giving in-
sight into the modeling trade-off between the outputs and
avoiding multiple runs. An added benefit of this approach
is the possibility of automatically selecting the best node
type for each output. As [57] statékittle is known about ANN
which types of model accord best with particular features
of a landscape and, in any case, very little may be knowi.
to guide this choice.!” Thus an algorithm to automatically
solve this problem is very useful [54]. This is also noticed
by [98] who compare different surrogate models for approx-
imating each objective during optimization. They note that
in theory their approach allows the use of a different model
type for each objective. However, such an approach will stil
require an a priori model type selection and does not allow
for dynamic switching of the model type or the generation
of hybrids. We know of no other related work that tacklesFig.5 SUMO Toolbox Plugins
this issue.

In sum this paper takes a domain expert's point of view. The toolbox control flow is as follows: First, a small ini-

By_ bU|Id|ng_ on advances ar_1d_establlshed research in m";tli'al set of samples is chosen according to some experimental
chine learning [49] and statistics [3] we attempt to furtherdesign (e.9.. Latin hypercube, Box-Behnken, etc.). Based 0
improve the global surrogate modeling process and make el ! 1 St

. . . ans initial set, one or more surrogate models are consduct
more useful and accessible for an engineer. At the same time ; o .

. : ) and their hyperparameters optimized according to a chosen
we hope to increase awareness of the issues involved.

hyperparameter optimization algorithm (e.g., BFGS, Parti
cle Swarm Optimization (PSO), Genetic Algorithm (GA),
EGO, DIRECT, NSGA-II, etc.). Models are assigned a score
based on one or more measures (e.g., cross validation, AIC,

This section presents some concrete illustrations of taesd  ©{C-) and the optimization continues until no further imero
and concepts discussed previously. All tests were run usin%lent is possible. The models are then ranked according to

the SUrrogate MOdeling (SUMO) Toolbox which we first their score and new samples are selected based on the best
briefly discuss below. performing models and the behavior of the response (the ex-

act criteria depend on the sampling algorithm used). The hy-

perparameter optimization process is continued or restart
6.1 The SUMO Toolbox intelligently and the whole process repeats itself untié on

of the following three conditions is satisfied: (1) the max-
The SUMO Toolbox [38,35] is an adaptive tool that inte-imum number of samples has been reached, (2) the maxi-
grates different modeling approaches and implementsya fullmum allowed time has been exceeded, or (3) the user re-
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quired accuracy has been met. Also, the sample evaluatic
component runs in parallel with the other components (non
blocking) and not sequentially. The toolbox and all algo-
rithms described here is available for download frotnp:
//www.sumo.intec.ugent.be.
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6.2 Low Noise Amplifier (LNA)

6.2.1 Background

Smoothness score (input noise)

b
We first consider a test case from electronics: a simple RI ) *
circuit, a narrow band Low Noise Amplifier (LNA) [58]. 0 L o
A LNA is the typical first stage of a receiver, having the RWM+%M% b
main function of providing the gain needed to win the noise 01 015 02 0% 03 0% 04 045 05 0%

. ... . Validation error (input noise, RRSE)
of subsequent stages, such as a mixer. In addition it has 10

give negligible distortion to the signal while adding atidit ~F'9- 6 Pareto search trace for the LNA problem (no sampling)
noise as possible. We have extensively discussed the model-

ing of this system in [39,40,38]. For this paper we restrictsampling iteration. Each individual in the population epr
ourselves to the 2D version and will use it to illustrate theggnts 4 Kriging model as a tup(éy, 6,) with 6 the corre-
use of multiple criteria in generating approximation madel |4ti0n parameter ifiog;o space @ € [—5,3]). The correla-

The input parameters are the (normalized) width of thejon function was set to Gaussian and a linear regression was
MOSFETW, and the normalized inductante,. The output  ;5ed.

is the input noise curren\s/ﬁ which previous results have
shown to be the most difficult to model [39]. 6.2.3 Results

A plot of the full Pareto search trace for the first run (no
sampling) is shown in figure 6. As the figure shows there is
a clear trade-off between the two objectives. This can aso b

a difficult function to model accurately with Kriging models seen from the plot (,)f the model at each of thg two extreme
points (figure 7). Given these results a domain expert now

(see [40]). Kriging models have difficulty reproducing the o
smooth surface of the input noise, they suffer from too man)bas the flexibility to browse though the front and select the

unwanted ‘ripples’ between the data points if a hold-out anOSt suitable model.

cross validation measure is minimized. For this reason we WNen sample selection is enabled th_e optimal Pareto
consider two criteria. The first is the RRSE on a 20% min-S€! changes as more data becomes available. The succes-

max validation set, the second, a custom smoothness metﬁj:ve Pareto fronts at the start of each sampling iteratien ar

that penalizes a model if it produces ripples between datdown in figure 8. The figure cl:lea.lrly shows how the front
points. advances and the model quality improves as more data be-

The SUMO Toolbox (v6.1) was configured to use theCOmes available. In addition the trade-off in the front seem

Kriging [65] and NSGA-II [13] plugins. For the first run a to decreasg as the number of points increase. This shOL_JId be
expected since as the amount of data increases there is less

fixed 7x7 factorial design was used, no additional samplin :
. gzfncertamty about the correct hyperparameter values and th
was performed. For the second run a density based sample .

reement between both measures increases.

selection algorithm was used that covers the design spac?é]
evenly (previous tests showed it to give the best results wit
Kriging). Starting from a LHC design of 15 points together
with the 4 corner points, the algorithm adds 15 points be

tween each hyperparameter optimization iteration up to %h q e lication f h .
maximum of 400. e second example is an application from the automotive

For the first run NSGA-Il was configured with a pop- industry (see [31] for details) and illustrates the modgpbi

ulation size of 30 and run for a maximum of 250 genera-a multi-output system.

tions. For the second run the maximum number of genera-3 A movie showing the evolution is available at
tions was set to 20, with the evolution continuing after eachttp://sumolab.blogspot.com/

6.2.2 Experimental setup

Previous experience with this function teaches us thaighis

6.3 Automotive problem
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Plot of iin using KrigingModel
(built with 49 samples)

Plot of iin using KrigingModel
(built with 49 samples)
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Fig. 7 Plot of the models at the extreme Pareto points for the LNAlerm (no sampling, left: minimal validation error, rightimmal smoothness
penalty )
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5 W
o - o
- AL geometry parameters and in which combination they have an
MRS~ effect on the feasibility is, however, intuitively hard toep
0" o dict. For simulation purposes the door entry area can be sep-

Validation eror (input noise, RRSE) arated from the side frame by simple boundary conditions

Fig. 8 Pareto search trace for the LNA problem (sampling enabled) without major restrictions for the validity of the analybist
computing times considerably go down.

The entry anglen;, opening anglex,, frame depthh
and entry radius, have been chosen as geometry param-
Today the early concept phase of a car body developmeeters (see [31] for details). In addition, for every geometr
process is marked by the optimal coordination of desigrconstellation the blank boundary was determined so that the
specifications with the requirements on the mechanical bderming result was optimal. Additional process parameters
havior of the structure as well as on the feasibility. Theapl like draw bead or blank holder forces, have not been used.
ning process is repetitive for the same body parts and th8o there were six parameters that have been taken into ac-
solution finding is carried out mostly by experience with ancount. With these input quantities a sampling based on a
additional virtual tryout afterwards in order to improveeth LHC was created. Maximum scaled distances of the strain
solution. The use of surrogate modeling can enable an earftates to the forming limit curve and a maximum thinning
feasibility prediction of body parts. limit respectively were chosen as output quantities indica

The geometry of a B-pillar bottom of a side frame ising feasibility. The data sampling phase resulted in 1998
shown in figure 9. There you have a recurring feasibilitydata points evaluated that were suitable for modeling. The
challenge in sheet metal forming that can be explained bgverall target for this particular problem setting was te-pr
radii, depths and angles as experience shows. Which of thedét a given set of geometry parameters as feasible, i.e., to

6.3.1 Background
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predict the existence of cracksréckingoutput) or unac- | | cracking [ thinning |

ceptable thinningthinningoutput). LQZ\’;'M 8-(1);1);‘ 8-83425

Table1l ARE on 15-fold cross validation of the final models (automo-
tive example)

6.3.2 Experimental setup

Both outputs shall be modeled together using the ANN and

LS-SVM plugins of the SUMO Toolbox. The ANN mod- ) . o
els are based on the Matlab Neural Network Toolbox and 1 1€ Poor performance of SVMs in this case is in line
are trained with Levenberg Marquard backpropagation WitI){V'th the author’s previous experience. We found SVM mod-

Bayesian regularization [66, 28] (300 epochs). The topplog els to require too muc_h data when a non-linear, noise-free
and initial weights are determined by a GA. The LS-SVM response needs to be fitted smoothly and accurately. In those

models are based on the LS-SVMIab toolbox plugin [gg]cgses, SVM models are very gogd atfitt.ing the no.n-linear re-
and the hyperparameters are searchelbgio space with gions but generate unwanted ‘ripples’ in the regions where

0 € [-4,4), c € [-5,5] (an RBF kernel is used). The multi- the response needs to be smooth or data is sparse. ANN

objective algorithm used is the one implemented in the Mat™0d€ls on the other hand, are able to adapt much better

lab GADS toolbox which, in turn, is based on NSGA-II. The to thg heterogeneity of the response. The sigmoid transfer
population size is set to 10. For comparison each output wil!"ctions allow for high non-linearity, while proper tramg
be modeled separately as well (single objective). (e.g., through thg use of regularization) ensures a smdoth fi
In all cases the metric used to drive the hyperparameté? th? sparse regions. o
optimization is the Average Relative Error (ARE) on 5-fold Figure 12 shoyvs.the. full tracg of the multiobjective hy-
cross validation. For the single objective runs the timeouPerParameter optimization. In this case the model genera-

was 25 generations, for the multiobjective runs the timeoufion is driven by a 2-_0t?jecf[|ve (= th? cross validation score
was 50 generations. on each output) optimization algorithm. In both cases it is

immediately clear that there is no real Pareto front, a sing|
best model can be identified in each case. Thus this teaches
us that there is a very strong correlation between both out-

Figure 10 shows the final error curves after the SUMO ToolPuts and that good performance on one output, implies good

box has terminated. A point s plotted for each time the toolP€rformance on the other. This is actually to be expected
box finds a model that improves on the previous model. A§incecrackingandthinningare closely related (as can also
can be seen from the figure, the ANN models clearly outP® seen from figure 11).

perform the SVM models, especially for ticeackingout- Of course this is not always the case (see for example

put. One could argue the poor performance of the LS-syM37))- It is not always clear how much the outputs are re-

models is due to poor hyperparameter optimization. Howdlly correlated, or how much one quality metric influences

ever, this is not the case. For reference a brute force search@nother (in the case of multiple metrics). We argue that in
the hyperparameter landscape was conducted on a 50 by Hpse cases a direct multiobjective approach should be con-
grid. This is shown in figure 11 (bounds liagyo scale, the sidered. It is guaranteed to give at least as much informatio

white crosses show the area explored by the SUMO Tool@S doing multiple single objective runs for about the same
box). The minimum found through this search: computational cost (which is still outweighed by the cost of

the simulation). Also, it gives the engineer more flexililit
feracking(—0.160Q —1.4993 = 0.1348 and is a cleaner approach than manually combining the mul-

fininning(0; —2.9996) = 0.0730 tiple objectives into a single formula.

6.3.3 Results

is comparable to the minimum found by the SUMO Tool-
box: 6.4 Chemistry problem

feracking(—0.21730.2978 = 0.1280 6.4.1 Background
fininning(0.0423 1.0948 = 0.0741 This example and its description is taken from [44], where
Thus the hyperparameter optimization is not to blamehe authors describe the generation of an optimal ANN using
(remember that the cross validation procedure introduces pattern search algorithm. We use this example to briefly
some noise into the surface). A more extensive cross valiflustrate the automatic model type selection per outpoit. F
dation (15 folds) was also done on the final best model ira more extensive example see [36].
each case (table 1). As can be seen, the accuracy remains The chemical process under consideration describes mesthan
unchanged. air combustion. The GRI 2.11 chemical mechanism contain-
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Fig. 10 Model accuracies in the single objective case (&tcking right: thinning)
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Fig. 11 SVM hyperparameter optimization surface (l€ftacking right: thinning)

ing 277 elementary chemical reactions among 49 specigg4.2 Experimental setup
is used. The steady laminar flamelet equations [76] are of-

ten employed to describe the reaction-diffusion balance ifpe heterogeneous evolution plugin of the SUMO Toolbox
non-premixed flames. The solutions to these equations prgs ;sed and configured with the following model types: RBF
vide temperature and mass fractions of all species in termgnNs | S-SVMs, and Rational functions. Together with the
of two parameters. The mixture fractiarand the reaction  gnsemble models (which result from a heterogeneous cressov
progress variable are used for this parametrization. The e.g., a crossover between a neural network and a rational
two responses are the temperature and the chemical SOURgRction), this makes that 4 model types will compete to fit
term ofc, which can be viewed as a measure of heat releasghe data. The GA used is the NSGA-II based algorithm as

implemented in the Matlab GADS toolbox. The population

size of each model type is set to 10 and the evolution was

run for 290 generations. A full discussion of the automatic

For the approximation 1000 data samples are availablenodel type selection algorithm is out of scope for this paper

half of which will be used for training, the other half to Such details can be foundin [34,39]. The difference with the
drive the hyperparameter optimization. Sample data wereork discussed in [39] is that now the algorithms have been
obtained by applying an acceptation-rejection method.[81] extended to the multiobjective case.
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Fig. 12 Model accuracies in the multiobjective case (left: ANNhitigSVM)
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Fig. 13 Heterogeneous Pareto trace

6.4.3 Results

0.4

- Ensemble
o RBFNN

o SVM

x  Rational

7 Summary and conclusion

The use of surrogate models to aid optimization, design ex-
ploration, sensitivity analysis, etc. has become stanplach

tice among scientists and engineers alike. This work has
concentrated on the construction of global surrogate nsodel
A crucial problem of generating global surrogate models for
a particular application (or any function approximatioskta
for that matter), is agreeing upfront with the domain expert
what criteria the final surrogate should satisfy. The pnoble

is that each criterion (encompassing an error function; gen
eralization estimator, and target value) involves a trffdeo
between interpretability, accuracy, bias, and computatio
efficiency. Thus, for cases where this trade-off cannot be in
ferred from domain knowledge or application constraings th
authors advocate a multiobjective approach to solving this
problem should be considered. The advantage of a multiob-
jective approach is also that it allows multiple outputs¢o b
modeled together, giving information about the tradeoff in
the hyperparameter space. It further enables the generatio
of diverse ensembles and the application of an automatic
model type selection algorithm. This enables each output
to be automatically modeled with the most suitable model
type. There is also some empirical evidence that the number

The full Pareto trace (enlarged for clarity) is shown in fig-Of local optima can be reduced by converting multi-modal
ure 13. The figure shows that the LS-SVM models are bestingle-objective problems, into multiobjective ones [49]

at fitting the temperature output, while fitting the chemicalth® same can be proven in machine learning it means the
source term works best with a combination of models (entask of identifying good surrogate models can become eas-
semble). The ensembles turn out to consist of a combind€" through a multiobjective approach.

tion of LS-SVM and RBFNN models. The rational functions

However, a disadvantage of the multiobjective approach

turn out to perform very poorly on this data and are thus nots that as the number of dimensions (criteria/outputs) in-
shown on the (enlarged) figure. This trace can now also bereases the solution space increases exponentially [B6% T
used to generate a global ensemble of models (e.g., for uthe search for the Pareto optimal set becomes harder, re-

certainty estimation).

quires more search iterations, and the final set is more cum-
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bersome for the practitioner to explore and understand. Faf the optimum, reducing the computational cost. The influ-
costly simulation codes the extra computational efforeign ence of noise and discrete variables on the hyperparameter
ligible, and good GUI tools can help a domain expert un-optimization (e.g., neural network topology selectiorgoal
derstand the relationships present in the Pareto-optietal s remains an issue.
However, for cheaper codes a trade off between simulation In general, while some progress towards dynamic multi-
cost and modeling cost will have to be made. The poor scabbjective optimization has been made [63,42], this is actopi
ability of non-dominated sorting algorithms above 4 dimen-hat current research in multiobjective surrogate modelin
sions is also an issue [57]. Luckily, algorithmic advancesds only just coming to terms with [57]. Or as English pithily
(e.g., [83,69]) and gains in computational efficiency (e.g.puts it:“Optimization is easy, learning is hard (in the typical
[45]) continue to be made. function)” [20]

A disadvantage of the multiobjective approach versus
the milestone approach is that the direct multiobjective ap
proach takes all criteria into account straight away. T8is i

not necessarily a problem but is not always the most com- .
yap y The authors wish to thank Markus Ganser and Karen Grossen-

putationally efficient. For example, in the case of adaptiveh her f BMW mot P Kina th 0
sampling it makes no sense to check or enforce an (expe acherirom motor company for maxing the automo-

sive) application specific constraint if only a few data isin tive data available and the fruitful discussions. The argho

are available. The model first needs to mature by incorporaﬁlsottha[r;k t]erc,i/?ndcl.roorg) fromt the tNé(.P;]SMC _Flfﬁsilar::hh
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