
A spectrum result on minimal blocking sets with

respect to the planes of PG(3, q) , q odd
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Abstract

This article presents a spectrum result on minimal blocking sets
with respect to the planes of PG(3, q) , q odd. We prove that for
every integer k in an interval of, roughly, size [q2/4, 3q2/4] , there
exists such a minimal blocking set of size k in PG(3, q) , q odd. A
similar result on the spectrum of minimal blocking sets with respect to
the planes of PG(3, q) , q even, was presented in [14]. Since minimal
blocking sets with respect to the planes in PG(3, q) are tangency sets,
they define maximal partial 1-systems on the Klein quadric Q+(5, q) ,
so we get the same spectrum result for maximal partial 1-systems of
lines on the Klein quadric Q+(5, q) , q odd.

Key Words: minimal blocking sets, maximal partial 1-systems.

1 Introduction

A blocking set B with respect to the planes of PG(3, q) is a set of points
intersecting every plane in at least one point. Such a blocking set is called
minimal when no proper subset of B still is a blocking set. A blocking set
B with respect to the planes of PG(3, q) is called non-trivial when it does
not contain a line.

It was proven by Bruen and Thas [4] that a minimal blocking set of this type
has at most size q2 +1 , and that every minimal blocking set with respect to
the planes of PG(3, q) of size q2 + 1 is equal to an ovoid of PG(3, q) , i.e.,
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a set of q2 + 1 points intersecting a plane in either one or q+ 1 points. For
q odd, this implies the complete classification of the minimal blocking sets
of size q2 + 1 since Barlotti proved that every ovoid of PG(3, q) , q odd,
is equal to an elliptic quadric [1]. For q even, next to the elliptic quadric,
there exists the Tits-ovoid in PG(3, q) , q = 22h+1 , h ≥ 1 [20].

Regarding large minimal blocking sets with respect to planes in PG(3, q) ,
Metsch and Storme proved the non-existence of minimal blocking sets of size
q2 − 1 , q ≥ 19 , and of size q2 [10].

Attention has also been paid to the smallest minimal blocking sets with
respect to the planes of PG(3, q) . By Bose and Burton [2], the lines are
the smallest minimal blocking sets with respect to the planes of PG(3, q) .
Bruen proved that the smallest non-trivial blocking sets with respect to the
planes of PG(3, q) coincide with the smallest non-trivial blocking sets with
respect to the lines of a plane PG(2, q) [3]. The following extensions to
these results have been found.

In the following theorem, a small blocking set in PG(3, q) with respect to the
planes of PG(3, q) is a blocking set of cardinality smaller than 3(q + 1)/2 .

Theorem 1.1 (Sziklai, Szőnyi, and Weiner [16, 17, 19]) Let B be a
small minimal blocking set in PG(3, q) , q = ph , p prime, h ≥ 1 , with re-
spect to the planes, then B intersects every plane in 1 (mod p) points. Let
e be the maximal integer for which B intersects every plane in 1 (mod pe)
points, then e is a divisor of h .

The preceding integer e is called the exponent of the small minimal block-
ing set B . The following theorem, which is based on results of [5, 17]
in combination with Notation 3.3 and Proposition 3.5 of [19], states that
the cardinality of a small minimal blocking set can only lie in a number of
intervals of small size.

Theorem 1.2 Let B be a small minimal blocking set in PG(3, q) , q = ph ,
p prime, h ≥ 1 , with respect to the planes. Then B intersects every plane
in 1 (mod pe) points. If e is the maximal integer for which B intersects
every plane in 1 (mod pe) points, then

q + 1 +
q

pe + 2
≤ |B| ≤ q + a0

q

pe
+ a1

q

p2e
+ · · ·+ ah/e−2p

e + 1,

with an the n -th Motzkin number,
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an =
1

n+ 1

n+1∑
i=0

(−1)i

(
n+ 1
i

)(
2n+ 2− 2i

n− i

)
.

As an application of the exponent of a small minimal blocking set with
respect to the planes of PG(3, q) , we mention the following characterization
result of Polverino and Storme [11, 12, 13].

Theorem 1.3 Let B be a small minimal blocking set with respect to the
planes of PG(3, q3) , q = ph , p prime, p ≥ 7 , h ≥ 1 . Assume that B

has an exponent larger than or equal to h , then B is one of the following
minimal blocking sets:

1. a line,

2. a Baer subplane if q is a square,

3. a minimal planar blocking set of size q3 +q2 +1 projectively equivalent
to the set {(1, x, x + xq + xq2

)||x ∈ Fq3} ∪ {(0, z, z + zq + zq2
)||z ∈

Fq3 \ {0}},

4. a minimal planar blocking set of size q3 +q2 +q+1 projectively equiv-
alent to the set {(1, x, xq)||x ∈ Fq3} ∪ {(0, z, zq)||z ∈ Fq3 \ {0}},

5. a subgeometry PG(3, q) .

Next to studying large and small minimal blocking sets with respect to the
planes of PG(3, q) , spectrum results on minimal blocking sets with respect
to the planes of PG(3, q) can be considered. A spectrum result gives a
non-interrupted interval of values of k for which a minimal blocking set of
size k with respect to the planes of PG(3, q) exists.

This has been studied by the authors for q even in [14]. In particular, the
following results were obtained. In the following theorem, bxc denotes the
largest integer smaller than or equal to x .

Theorem 1.4 For every integer k in the following intervals, there exists
a minimal blocking set of size k with respect to the planes of PG(3, q) , q

even:
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• q = 24h :

k ∈ [
q2 + 194q + 10qb48 log(q + 1)c − 190

10
,
9q2 − 69q + 440

10
],

• q = 24h+1 :

k ∈ [
q2 + 198q + 10qb48 log(q + 1)c − 230

10
,
9q2 − 68q + 430

10
],

• q = 24h+2 :

k ∈ [
q2 + 196q + 10qb48 log(q + 1)c − 210

10
,
9q2 − 66q + 410

10
],

• q = 24h+3 :

k ∈ [
q2 + 192q + 10qb48 log(q + 1)c − 170

10
,
9q2 − 67q + 420

10
].

The goal is to obtain a similar result for q odd. In Theorem 4.1, we prove
that for every integer k in the following intervals, there exists a minimal
blocking set of size k with respect to the planes of PG(3, q) , q odd, q ≥ 47 :

1. k ∈ [(q2 + 30q − 47)/4 + 18(q − 1) log(q), (3q2 − 18q + 71)/4] , when
q ≡ 1 (mod 4) ,

2. k ∈ [(q2 + 28q − 37)/4 + 18(q − 1) log(q), (3q2 − 12q + 57)/4] , when
q ≡ 3 (mod 4) .

In this way, a similar interval as for q even is obtained.

We wish to mention that also the following spectrum results on minimal
blocking sets with respect to the planes of PG(3, q) have been found [9, 18].
In fact, they are spectrum results on minimal blocking sets with respect to
the lines of a plane PG(2, q) , but when this plane is embedded in PG(3, q) ,
then an equivalent spectrum result on minimal blocking sets with respect to
the planes of PG(3, q) is obtained.

Theorem 1.5 (Innamorati and Maturo [9]) In PG(2, q) , q ≥ 4 , for
every integer k ∈ [2q− 1, 3q− 3] , there exists a minimal blocking set of size
k .
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Theorem 1.6 (Szőnyi et al [18]) In PG(2, q) , q square, for every inte-
ger k in the interval [4q log q, q

√
q − q + 2

√
q] , a minimal blocking set of

size k exists.

To conclude the introduction, we mention that as a further application, we
obtain an equivalent spectrum result on maximal partial 1-systems on the
Klein quadric Q+(5, q) , q odd.

2 The initial setting

We will use the ideas in the article of Szőnyi et al [18] for finding a spectrum
result on minimal blocking sets with respect to the planes of PG(3, q) , q
odd. In particular, we will need the statement introduced by Füredi in [6,
p. 190]:

Corollary 2.1 For a bipartite graph with bipartition L ∪ U where the de-
gree of the elements in U is at least d , there is a set L′ ⊆ L , for which
|L′| ≤ |L|1+log(|U |)

d , such that any element u ∈ U is adjacent to at least one
element of L′ .

The following setting is crucial for our purposes. We refer to Figure 1.
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Figure 1: Conics of Q−(3, q) in planes through `

Definition 2.2 Consider a plane π in PG (3, q) and a conic C in a plane
π′ , with π′ 6= π . We say that the plane π is tangent to the conic C if the
line π ∩ π′ is a tangent line to the conic C .

Consider the elliptic quadric Q−(3, q) : X2
0 − dX2

1 + X2X3 = 0 , d a non-
square, in PG(3, q) , q odd. Consider the point R = (0, 0, 0, 1) of Q−(3, q) ,
then its tangent plane is TR(Q−(3, q)) : X2 = 0 . Consider the tangent line
` : X0 = X2 = 0 to Q−(3, q) passing through R . Then ` lies in the secant
planes X0 = 0 and X0 = X2 .

There are exactly q planes tangent to the conics (X0 = 0) ∩Q−(3, q) and
(X0 = X2) ∩Q−(3, q) , in points of Q−(3, q) different from R .
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R

Figure 2: Group of q conics of Q−(3, q) tangent to (X0 = 0) ∩Q−(3, q)
and (X0 = X2) ∩Q−(3, q)

One of these planes is the plane X0 − 2dX1 + dX2 + X3 = 0 intersecting
Q−(3, q) in the points (0, 1, 1, d) and (1, 1, 1, d− 1) of X0 = 0 and X0 =
X2 . The other planes tangent to the conics (X0 = 0) ∩ Q−(3, q) and
(X0 = X2) ∩ Q−(3, q) , in a point of Q−(3, q) different from R , can be
obtained by applying one of the transformations

αc :


x0

x1

x2

x3

 7→


1 0 0 0
0 1 c 0
0 0 1 0
0 2cd dc2 1




x0

x1

x2

x3

 ,

for c ∈ Fq .

Note that the transformations αc form an elementary abelian group of order
q fixing Q−(3, q), R, and all planes passing through ` .
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Lemma 2.3 These q planes which form the orbit of the plane X0−2dX1+
dX2 + X3 = 0 under the transformations αc , c ∈ Fq , are the only planes
tangent to the conics Q−(3, q) ∩ (X0 = 0) and Q−(3, q) ∩ (X0 = X2) , in
points different from R . The q conics of Q−(3, q) in these planes are
intersected by the same (q + 3)/2 planes through ` . Two of them, X0 = 0
and X0 = X2 , contain exactly one point of each of those q conics, and the
other (q−1)/2 planes through ` contain exactly two points of each of those
q conics.

Every point, different from R , in Q−(3, q) ∩ (X0 = 0) and in Q−(3, q) ∩
(X0 = X2) lies in exactly one of those q conics, and the other points of
Q−(3, q) , lying in at least one of those q conics, lie in exactly two of those
q conics.

Proof. We first prove that there are exactly q such conics. Each such conic
C is uniquely defined by its intersection point with the conic Q−(3, q) ∩
(X0 = 0) . For let P be this tangent point, then the plane of C contains
the tangent line to Q−(3, q) ∩ (X0 = 0) in P ; it then also contains the
intersection point P ′ of this tangent line with ` . This point P ′ lies on the
tangent line ` to the conic Q−(3, q)∩ (X0 = X2) and on one other tangent
line `′ to the conic Q−(3, q)∩ (X0 = X2) . This line `′ then determines the
plane of C completely.

There are exactly (q−1)q/2 points of Q−(3, q)\{R} in the (q−1)/2 planes
through ` intersecting these q conics in two points. Let π be one of the
(q − 1)/2 planes through ` intersecting these q conics in two points. The
q points, different from R , in Q−(3, q)∩π , form one orbit under the group
of transformations αc , c ∈ Fq . Assume that the conic C of Q−(3, q) in
the plane X0− 2dX1 + dX2 +X3 = 0 contains the points P and αc(P ) of
Q−(3, q) ∩ π . Then αc′(P ) and αc′+c(P ) belong to αc′(P ) .

But then αc(P ) belongs to αc(C) and P belongs to α−c(P ) . So every
point P belongs to exactly two of those conics tangent to X0 = 0 and
X0 = X2 in points of Q−(3, q) \ {R} .

This then accounts for the total 2(q − 1)q/2 = (q − 1)q incidences of the q

conics of Q−(3, q) tangent to X0 = 0 and X0 = X2 in the planes through
` different from X0 = 0 and X0 = X2 . 2

The polar points of the q conic planes to Q−(3, q) tangent to the conics
(X0 = 0)∩Q−(3, q) and (X0 = X2)∩Q−(3, q) , in points different from R ,
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lie in the plane 2X0 = X2 , in which they are the points, different from R ,
of the conic {(1/2, 1 + c, 1, d(c+ 1)2)||c ∈ Fq} ∪ {R} .

We will also need to consider the conic which is the intersection (2X0 =
X2) ∩ Q−(3, q) . This is the conic of the points {(1/2, c, 1, dc2 − 1/4)||c ∈
Fq} ∪ {R} .

Lemma 2.4 A conic of Q−(3, q) , tangent to the conics (X0 = 0)∩Q−(3, q)
and (X0 = X2) ∩ Q−(3, q) , in points different from R , shares two points
with the plane 2X0 = X2 if and only if q ≡ 3 (mod 4) .

Proof. By using the elementary abelian group of the transformations αc ,
c ∈ Fq , it is sufficient to check the intersection of the line{

X0 − 2dX1 + dX2 +X3 = 0
2X0 = X2

with Q−(3, q) .

This leads to the quadratic equation X2
2 (−1−4d)+8dX1X2−4dX2

1 = 0 hav-
ing discriminant −16d . This is a square if and only if q ≡ 3 (mod 4) . 2

The following result is obvious, but we state it explicitly since we will make
use of the point (1, 0, 0,−1) in the construction of the minimal blocking
sets with respect to the planes of PG(3, q) , q odd.

Lemma 2.5 The q planes tangent to the conics (X0 = 0) ∩Q−(3, q) and
(X0 = X2)∩Q−(3, q) , in points different from R , all pass through the point
(1, 0, 0,−1) .

This point (1, 0, 0,−1) is the polar point of the plane 2X0 = X2 with respect
to Q−(3, q) .

Proof. The point (1, 0, 0,−1) lies in the plane X0−2dX1 +dX2 +X3 = 0 .
Since all transformations αc , c ∈ Fq , fix (1, 0, 0,−1) , this point lies in
all these q planes tangent to the conics (X0 = 0) ∩ Q−(3, q) and (X0 =
X2) ∩Q−(3, q) , in points different from R . 2

3 Construction

From the above section, we know that there are exactly q planes tangent
to the conics (X0 = 0) ∩ Q−(3, q) and (X0 = X2) ∩ Q−(3, q) , in points
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different from R . Of these, we select two conics C1 and C2 in such a way
that they intersect in two points, not in the plane 2X0 = X2 , and that
the polar points of their planes are not incident with the plane of the other
conic. We first prove that this indeed is possible.

Lemma 3.1 Consider a conic C1 of Q−(3, q) tangent to the conics (X0 =
0)∩Q−(3, q) and (X0 = X2)∩Q−(3, q) , in points different from R . Then if
q ≡ 1 (mod 4) , C1 intersects the q−1 other conics of Q−(3, q) tangent to
the conics (X0 = 0)∩Q−(3, q) and (X0 = X2)∩Q−(3, q) , in points different
from R , in zero or two points, and if q ≡ 3 (mod 4) , C1 intersects two of
the q−1 other conics of Q−(3, q) tangent to the conics (X0 = 0)∩Q−(3, q)
and (X0 = X2) ∩ Q−(3, q) , in points different from R , in one point, and
the q−3 other conics of Q−(3, q) tangent to the conics (X0 = 0)∩Q−(3, q)
and (X0 = X2)∩Q−(3, q) , in points different from R , in zero or two points.

Proof. Let C1 be the conic of Q−(3, q) in the plane X0 − 2dX1 + dX2 +
X3 = 0 . Applying the elementary abelian group acting in one orbit on
the q conics of Q−(3, q) tangent to the conics (X0 = 0) ∩ Q−(3, q) and
(X0 = X2) ∩ Q−(3, q) , in points different from R , the other conics lie in
the planes X0 + (−2d+ 2cd)X1 + (−2cd+ d+ dc2)X2 +X3 = 0 .

To find the intersection with Q−(3, q) of the intersection line of the planes
X0−2dX1 +dX2 +X3 = 0 and X0 +(−2d+2cd)X1 +(−2cd+d+dc2)X2 +
X3 = 0 , with c 6= 0 , the quadratic equation

(4d2c2 − 8d2c− dc2 + 4d2 + 4cd− 4d)X2
2 + (8cd− 8d+ 4)X2X3 + 4X2

3 = 0,

needs to be solved.

The discriminant of this quadratic equation is equal to 4 + 4dc2 and is zero
if and only if c2 = −1/d . Since d is a non-square, this has two solutions in
c if and only if q ≡ 3 (mod 4) . 2

We now use the results of Lemma 3.1 to select two conics C1 and C2 of
Q−(3, q) tangent to the conics (X0 = 0)∩Q−(3, q) and (X0 = X2)∩Q−(3, q)
in points different from R . These two conics C1 and C2 will be used in the
construction method which will lead to the non-interrupted interval for the
sizes k of the minimal blocking sets with respect to the planes of PG (3, q)
(Corollary 3.2 and Theorem 4.1). In particular, we will select these two
conics C1 and C2 in such a way that they share two distinct points. This
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will give us the freedom of a new parameter u which can vary from 0 to 2;
helping us to find the non-interrupted spectrum of Theorem 4.1.

Namely, if one selects C1 , one of the q conics of Q−(3, q) tangent to the
conics (X0 = 0) ∩ Q−(3, q) and (X0 = X2) ∩ Q−(3, q) in points different
from R , there are always at least (q − 3)/2 other conics of Q−(3, q) tan-
gent to the conics (X0 = 0)∩Q−(3, q) and (X0 = X2)∩Q−(3, q) in points
different from R , which intersect C1 in two distinct points. Now the po-
lar points of the q planes tangent to the conics (X0 = 0) ∩ Q−(3, q) and
(X0 = X2)∩Q−(3, q) are in the plane 2X0 = X2 and C1 shares two points
with this plane when q ≡ 3 (mod 4) . We impose that the two intersection
points of C1 and C2 do not lie in the plane 2X0 = X2 . The motivation
is as follows: to get a non-interrupted spectrum, we need to let vary a pa-
rameter u , where 0 ≤ u ≤ 2 (see (1)). The parameter u is the number of
points in C1 ∩C2 that are not deleted when constructing the new blocking
set. So sometimes, they both will not be deleted ( u = 2 ), sometimes only
one of them will be deleted ( u = 1 ), and sometimes both of them will be
deleted ( u = 0 ). But we always delete the points of Q−(3, q) in the plane
2X0 = X2 . So, to be able to let vary u from 0 to 2, we must make sure that
none of the points of C1 ∩C2 lies in the plane 2X0 = X2 . The plane of C1

intersects the plane 2X0 = X2 in a line containing at most two points of
Q−(3, q) . If this is the case, they lie on a second conic of Q−(3, q) tangent
to X0 and X0 = X2 , so we need to exclude at most two possibilities for
C2 . We also impose that the polar point of C1 does not lie in the plane of
C2 , and vice versa. These polar points lie on a conic in 2X0 = X2 . So we
exclude at most two other possibilities for C2 . For q large enough, we still
have at least q−11

2 choices for C2 .

We would like to use Corollary 2.1 in order to obtain a spectrum of minimal
blocking sets with respect to the planes of PG(3, q) , for q odd. Therefore
we need to introduce variables s and r , where s is the number of conics
in planes through the tangent line ` which are not replaced by their polar
point where r of these planes intersect C1 and C2 . Thus q − s conics
in planes through the line ` are replaced by their polar points on the line
X1 = X2 = 0 .
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R
r s

C1 C2

Figure 3: We leave s conics of Q−(3, q) in the planes through ` in the
blocking set of which r intersect C1 and C2

For the bipartite graph we need to construct in order to be able to use
Corollary 2.1, we form sets U and L with respect to the tangent line ` .

The elements of L are the conics in planes through ` except X0 = 0 ,
X0 = X2 , and except those conics in planes through ` intersecting the q

conics of Q−(3, q) tangent to (X0 = 0)∩Q−(3, q) and (X0 = X2)∩Q−(3, q)
in points different from R . So |L| = q−3

2 .

For the elements of the set U , we use the conics of Q−(3, q) except those
in a plane containing ` and the q conics of Q−(3, q) tangent to (X0 =
0) ∩ Q−(3, q) and (X0 = X2) ∩ Q−(3, q) in points different from R , thus
|U | ≤ q3 − q < q3 . A lower bound on the degree is given in [15] by d ≥
q−6−3

√
q

4 . But since we always delete the conic of Q−(3, q) in the plane
2X0 = X2 , and this conic belongs to L when q ≡ 1 (mod 4) , we decrease
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the lower bound on d to d ≥ q−10−3
√

q
4 . From Corollary 2.1, we get an

upper bound on |L′| :

|L′| ≤ q − 3
2
· 1 + log(q3)

1
4(q − 10− 3

√
q)

≤ 2 · (1 + 3 log(q)) · q − 3
q − 10− 3

√
q
.

This imposes a further condition on q . For q ≥ 47 , (q−3)/(q−10−3
√
q) ≤

3 and we get |L′| ≤ 6 + 18 log(q) .

The result of Füredi now states that there exists, within the set of (q−3)/2
conics of L , a set L′ of at most 6 + 18 log(q) conics such that every conic
of Q−(3, q) in U intersects at least one of the conics of L′ . There are s−r
conics in L . In terms of the cardinalities of the minimal blocking sets, this
implies the following condition on the parameters s and r :

s− r ≥ 6 + 18 log(q).

We impose this condition for the following reason: we will not delete the
conics of Q−(3, q) in the set L′ in the construction of the new set B of
which we will show that it is a minimal blocking set with respect to the
planes of PG (3, q) . Then every plane of PG (3, q) intersecting Q−(3, q) in
a conic of the set U intersects at least one of the conics in the set L′ in
a point. This point is not deleted from Q−(3, q) to construct the new set
B (of which we will show that it is a minimal blocking set with respect to
the planes of PG (3, q) ), thus showing that all the planes intersecting the
elliptic quadric Q−(3, q) in a conic of the set U are blocked by a point of
the newly constructed set B , and thus implying that only a small number
of planes of PG (3, q) still need to be verified whether they are blocked by
the newly constructed set B (see also the proof of Theorem 3.3).

Altogether, we get the following construction of minimal blocking sets with
respect to the planes of PG(3, q) , q odd, which will give a non-interrupted
interval of sizes k of minimal blocking sets.

Corollary 3.2 We construct a new minimal blocking set B with respect to
the planes of PG(3, q) , q odd: First we replace q−s conics of Q−(3, q) in
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planes through ` by their polar points, assuming that r of the s remaining
conics in planes through ` intersect the tangent conics C1 and C2 . We
always delete the conic of Q−(3, q) in the plane 2X0 = X2 and replace it
by its polar point (1, 0, 0,−1) . We add back the point R . Then we remove
C1 and C2 , and replace both by their polar points P1 and P2 . The set B
has cardinality k = (s+ 1)q − s− 4r + u′ , with 3 ≤ u′ ≤ 9 . We prove this
as follows.

The s non-deleted conics of Q−(3, q) in planes through ` , together with
the q − s polar points of the q − s deleted conics of Q−(3, q) in planes
through ` , give a set of 1 + (s+ 1)q− s points. We assume that r of the s

non-deleted conics in planes through ` intersect C1 and C2 . Assume that
two of those r conics are X0 = 0 and X0 = X2 only sharing one point
with C1 and C2 . Assume that u , with 0 ≤ u ≤ 2 , of the two intersection
points of C1 and C2 lie in one of those r conics. Then these r conics in
planes through ` contain (r − 2) · 2 · 2 + 2 · 2 − u points of C1 and C2 .
Then, when we delete C1 and C2 , we delete another 4r−4−u points from
Q−(3, q) and add back two polar points. So the new cardinality is

1 + (s+ 1)q − s− (4r − 4− u) + 2 = (s+ 1)q − s− 4r + u+ 7, (1)

with 0 ≤ u ≤ 2 .

But we can also let the plane X0 = 0 contain one of the deleted conics, then
we get sizes (s + 1)q − s − 4r + u + 5, with 0 ≤ u ≤ 2 , or we can also let
the planes X0 = 0 and X0 = X2 contain one of the deleted conics, then we
get sizes (s+ 1)q − s− 4r + u+ 3, with 0 ≤ u ≤ 2 . This all leads to sizes
k = (s+ 1)q − s− 4r + u′ , with 3 ≤ u′ ≤ 9 .

We also impose the following constraints:

1. 4 ≤ r ≤ q−7
2 ,

2. if s ≥ q−1
2 , then r ≥ s− q−3

2 ,

3. s− r ≥ 6 + 18 log(q) .

The restrictions follow from the construction above and the application of
Corollary 2.1 in the construction. For instance, the condition r ≥ 4 follows
from the fact that, depending on the cardinality desired, the two planes
through ` containing the two intersection points of C1 and C2 , and the
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two planes X0 = 0 and X0 = X2 are deleted or non-deleted. To make
sure that these four planes can be non-deleted, we impose r ≥ 4 . But we
always delete the conic of Q−(3, q) in the plane 2X0 = X2 , and this conic
intersects C1 and C2 when q ≡ 3 (mod 4) , so when also the two conics
of Q−(3, q) in the planes through ` containing the two intersection points
of C1 and C2 , and the two conics of Q−(3, q) in the planes X0 = 0 and
X0 = X2 are deleted, then r ≤ (q− 7)/2 , so we also impose r ≤ (q− 7)/2 .

Theorem 3.3 The set B is a minimal blocking set with respect to the
planes of PG(3, q) , q odd.

Proof. Part 1. We first prove that B effectively is a blocking set.

Consider a tangent plane π to the elliptic quadric Q−(3, q) . This tangent
plane π either still contains its tangent point R of Q−(3, q) when R be-
longs to B , or in case R does not belong to B , then π contains the polar
point of the deleted conic C of Q−(3, q) to which R belongs.

Consider a secant plane π to Q−(3, q) . If π intersects Q−(3, q) in a conic
which is deleted from Q−(3, q) in the construction of B , then either π

passes through R or passes through (1, 0, 0,−1) , and these points belong to
B . If the conic π∩Q−(3, q) is not deleted from Q−(3, q) in the construction
of B , we only discuss planes π not passing through R since R ∈ B . If the
conic π ∩Q−(3, q) is not intersected by the same (q+ 3)/2 planes through
` : X0 = X2 = 0 as the conics C1 and C2 , then by the definition of the set
L′ , the conic π∩Q−(3, q) shares at least one point with one of the conics in
L′ , and their points belong to B . If the conic π ∩ Q−(3, q) is intersected
by the same (q + 3)/2 planes through ` : X0 = X2 = 0 , then it is one of
the q conics of Q−(3, q) tangent to the conics of Q−(3, q) in X0 = 0 and
X0 = X2 . In this case, the plane π passes through (1, 0, 0,−1) , and this
point belongs to B .

We have discussed all cases: every plane of PG(3, q) contains at least one
point of B .

Part 2. We now show that B is a minimal blocking set.

We first show the necessity of the point (1, 0, 0,−1) . We selected the two
conics C1 and C2 such that their planes do not contain the corresponding
polar points P1 and P2 . So, the only point of B that they contain is
(1, 0, 0,−1) . This shows the necessity of (1, 0, 0,−1) .
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We now show the necessity of a point T of B ∩ Q−(3, q) , with T 6= R .
Then T lies in a plane π through ` in which the conic C = π ∩Q−(3, q)
is not deleted in the construction of B . Its tangent plane πT to Q−(3, q)
intersects the line X1 = X2 = 0 in the polar point T̃ of C . But since C

is not deleted, T̃ 6∈ B . Also, P1 and P2 do not lie in πT , or else T ∈ C1

or T ∈ C2 , but then T 6∈ B . Hence, πT ∩B = {T} , so T is necessary.

The point R is also required in B . Since r ≤ (q− 7)/2 , we delete at least
five conics in planes through ` intersecting C1 and C2 . For at least one
of those planes, R is the only point of B in that plane, so R is necessary.
This concludes the necessity of the points of B ∩Q−(3, q) .

We now discuss the necessity of a point T on X1 = X2 = 0 , being the
polar point of a deleted conic C of Q−(3, q) in a plane through ` .

This point T lies in q tangent planes to Q−(3, q) in the points of C \{R} .
The only points of B that possibly could belong to these q tangent planes
are P1 and P2 . If they all contain either P1 or P2 , then, for instance,
P1 belongs to at least q/2 of those tangent planes. Consider the line TP1

and its intersection S with the plane T⊥ . Then S would belong to at
least q/2 tangent lines to C in T⊥ . This implies q/2 ≤ 2 . Note that this
argument also works for the point T = (1, 0, 0,−1) which is the polar point
of the deleted conic of Q−(3, q) in the plane 2X0 = X2 .

Finally, we discuss the necessity of the points P1 and P2 in B . The point
P1 is the polar point of the conic C1 . Of the s conics in planes through `

that are still belonging to B , r of them intersect C1 and C2 . Consider a
tangent plane π , passing through P1 , to Q−(3, q) in the point P . Suppose
that π intersects X1 = X2 = 0 in T . Then T ∈ TP (Q−(3, q)) if and only
if P ∈ T⊥ , where T⊥ is a plane through ` . If T corresponds to one of the
r non-deleted conics of Q−(3, q) through ` intersecting C1 and C2 , then
T 6∈ B . So this tangent plane contains in this case, besides P1 , at most
the point P2 . But if this is the case, then P ∈ C1 ∩ C2 . So this occurs
for only two points of C1 . Since we imposed r ≥ 4 , there exists a point
P ∈ C1 \ C2 . So P1 is necessary for B .

We have discussed all the points of B ; we have shown that B is a minimal
blocking set. 2
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4 Calculation of the interval

We know from Corollary 3.2 how to construct a blocking set B of size k

and proved in Theorem 3.3 that B is a minimal blocking set with respect
to the planes of PG(3, q) , q odd. We proceed as follows to find a non-
interrupted interval of values of k for which a minimal blocking set B of
size k exists in PG(3, q) , q odd.

For a given pair (s, r) , we can construct minimal blocking sets of sizes
(s + 1)q − s − 4r + 3, . . . , (s + 1)q − s − 4r + 9 . For a given s , the larger
r , the smaller the size of the minimal blocking set. To get a large non-
interrupted interval of values of k for which a minimal blocking set of size
k in PG(3, q) , q odd, exists, we must make sure that for a given value
s , the smallest value for the size k in the interval of sizes arising from the
different values for r for this given value of s , is smaller than or equal
to the largest value for the size k in the interval of sizes arising from the
different values for r for the next value s′ = s− 1 .

We first discuss the maximum possible value for the size k of a minimal
blocking set in the non-interrupted interval that can be obtained by our
arguments.

The largest possible value for r that is allowed is r = (q − 7)/2 . Then the
smallest value for the size of the minimal blocking set is (s+1)q−s−4r+3 =
(s+ 1)q − s− 2q + 17 .

The largest value for the size of the minimal blocking set, for an allowed
pair of parameters (s′, r′) is (s′ + 1)q− s′ − 4r′ + 9 . For s′ = s− 1 , this is
the value sq − s− 4r′ + 10 . We investigate when the following condition

sq − s− 4r′ + 10 ≥ (s+ 1)q − s− 2q + 17

is valid to make sure that the intervals for the sizes k of the minimal blocking
sets corresponding to the parameters s and s− 1 overlap.

This condition implies that r′ ≤ (q − 7)/4 .

So we must be able to use the value r′ = (q − 7)/4 for s′ = s− 1 .

When q ≡ 1 (mod 4) , we always delete the conic in the plane 2X0 = X2

which is skew to C1 and C2 . We examined s = (q − 3)/2− 1 + (q − 9)/4 ,
and the values smaller than and larger than this value of s . This showed
that k = (3q2 − 18q + 71)/4 is the maximum value for the non-interrupted
interval of sizes of k for which a minimal blocking set is constructed. This
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value of k is obtained for (s, r) = ((q − 3)/2 − 1 + (q − 5)/4, (q − 5)/4) .
For q ≡ 3 (mod 4) , we tested the value of s = (q − 3)/2 + (q − 7)/4 , and
the smaller and larger values of s , and found that k = (3q2 − 12q + 57)/4
is the maximum value of the non-interrupted interval. This value of k is
obtained for (s, r) = ((q − 3)/2 + (q − 3)/4, (q − 3)/4) .

Now we discuss the minimum possible value for the size k of a minimal
blocking set in the non-interrupted interval that can be obtained by our
arguments. We know that s−r ≥ 6+18 log(q) . We let s = r′+6+18 log(q) ,
so for a given value s , necessarily 4 ≤ r ≤ r′ . For a given value s ,
the largest value for the size k is obtained for r = 4 , and is equal to
(s + 1)q − s − 4r + 9 . For s = r′ + 6 + 18 log(q) , this gives the value
r′q + 7q − r′ − 13 + 18(q − 1) log(q) .

For r equal to r′ , which is the maximum allowed value for r when s =
r′ + 6 + 18 log(q) , the smallest value of k for the given parameter s =
r′ + 6 + 18 log(q) is equal to (s + 1)q − s − 4r′ + 3 , which reduces to
r′q + 7q − 5r′ − 3 + 18(q − 1) log(q) .

For q ≡ 1 (mod 4) , we looked at the value s = (q + 7)/4 + 6 + 18 log(q) ,
and the values larger than and smaller than s . This showed that the
smallest value of the non-interrupted interval is k = (q2 + 30q − 47)/4 +
18(q − 1) log(q) . This value is obtained for (s, r) = ((q + 7)/4 + 6 +
18 log(q), (q + 7)/4) . For q ≡ 3 (mod 4) , we inspected the value s =
(q + 5)/4 + 6 + 18 log(q) , and the values larger than and smaller than
s . This showed that the smallest value of the non-interrupted interval
is k = (q2 + 28q − 37)/4 + 18(q − 1) log(q) . This value is obtained for
(s, r) = ((q + 5)/4 + 6 + 18 log(q), (q + 5)/4) .

We now summarize the results on the interval in the next theorem.

Theorem 4.1 There exists a minimal blocking set B with respect to the
planes of PG(3, q) , q odd, q ≥ 47 , for every integer k in the following
intervals

1. k ∈ [(q2 + 30q − 47)/4 + 18(q − 1) log(q), (3q2 − 18q + 71)/4] , when
q ≡ 1 (mod 4) ,

2. k ∈ [(q2 + 28q − 37)/4 + 18(q − 1) log(q), (3q2 − 12q + 57)/4] , when
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q ≡ 3 (mod 4) .

5 Application

Another application of our spectrum result is a spectrum result on maximal
partial 1-systems of the Klein quadric Q+(5, q) [7, Section 15.4].

Definition 5.1 A 1-system M on Q+(5, q) is a set of q2+1 lines `1, . . . , `q2+1

on Q+(5, q) such that `⊥i ∩ `j = ∅ , for all i, j ∈ {1, . . . , q2 + 1} , i 6= j .

A partial 1-system M on Q+(5, q) is a set of s ≤ q2 + 1 lines `1, . . . , `s
on Q+(5, q) such that `⊥i ∩ `j = ∅ , for all i, j ∈ {1, . . . , s} , i 6= j .

A line of the Klein quadric lies in two planes of the Klein quadric. The
above definition of a 1-system is equivalent to the definition that a 1-system
M on Q+(5, q) is a set of q2 + 1 lines `1, . . . , `q2+1 on Q+(5, q) such that
every line `j is skew to the two planes of the Klein quadric through any
line `i , for all i, j ∈ {1, . . . , q2 + 1} , i 6= j .

A similar observation can be made regarding the definition of a partial 1-
system.

Via the Klein correspondence, points of the Klein quadric correspond to lines
of PG(3, q) , and lines of the Klein quadric correspond to planar pencils of
PG(3, q) , i.e., they correspond to the lines of PG(3, q) through a point R

in a plane Π passing through R .

A tangency set T of PG(3, q) is a set of points of PG(3, q) , such that for
every point R ∈ T , there is a plane ΠR intersecting T only in R . It
is proven in [10] that a tangency set in PG(3, q) is equivalent to a partial
1-system on the Klein quadric.

A minimal blocking set B w.r.t. the planes of PG(3, q) is an example of a
tangency set; thus we can apply the results of Theorem 4.1.

Corollary 5.2 For every value k belonging to one of the intervals of The-
orem 4.1, there exists a maximal partial 1-system of size k on the Klein
quadric Q+(5, q) , q odd.
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