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Abstract. In the past, several types of Fourier transforms in Clifford analysis have been stud-
ied. In this paper, first an overview of these different transforms is given. Next, a new equation
in a Clifford algebra is proposed, the solutions of which will act as kernels of a new class of gen-
eralized Fourier transforms. Two solutions of this equation are studied in more detail, namely a
vector-valued solution and a bivector-valued solution, as well as the associated integral trans-
forms.
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1 INTRODUCTION

The classical Fourier transform is a mathematical tool of the utmost importance in harmonic
analysis and has of course an enormous number of applications in virtually all branches of
physics and engineering.

The theory of Clifford analysis, in its most basic form, is a refinement of the theory of har-
monic analysis in the m-dimensional Euclidean space. By introducing the so-called Dirac op-
erator, the square of which equals the Laplace operator, one introduces the notion of monogenic
functions. These are, at the same time, a refinement of harmonic functions and a generalization
of holomorphic functions in one complex variable.

As the classical Fourier transform is so important in the study of harmonic analysis, it is a
natural question to generalize this type of transform to the setting of Clifford analysis. By now,
several authors have presented definitions of new Fourier transforms, all of which preserve some
properties of the classical Fourier transform. In this paper, after an overview of the previously
introduced transforms, we will introduce a new family of transforms by exploiting an analogy
with the Fourier transform in the case of Dunkl operators and the Fourier transform in the case
of superspaces. The kernel of the classical Fourier transform as well as of these other two
transforms is determined uniquely by a system of partial differential equations. This system can
be formulated very compactly in the language of Clifford analysis, and we will call the integral
transform associated to every Clifford algebra-valued solution of this system a (generalized)
Fourier transform. We will study two of these transforms in some more detail, namely the case
of a vector Fourier transform and the case of a bivector Fourier transform.

The paper is organized as follows. In section 2 we introduce a few basic notions of Clifford
analysis. In section 3 we give an overview of Fourier transforms in Clifford analysis, as intro-
duced by other authors. In section 4 we define a new class of Fourier transforms. In section 5
we introduce the vector Fourier transform and study some of its properties. Finally, in section
6 we introduce a bivector Fourier transform.

2 CLIFFORD ANALYSIS

Clifford analysis (see a.o. [1, 8]) is a theory that offers a natural generalization of complex
analysis to higher dimensions. To Rm, the Euclidean space in m dimensions, we first associate
the Clifford algebra R0,m, generated by the canonical basis ei, i = 1, . . . ,m. These generators
satisfy the following multiplication rules

eiej + eiej = 0, i 6= j

e2
i = −1.

The Clifford algebra R0,m can be decomposed as follows

R0,m = ⊕m
k=0Rk

0,m

with Rk
0,m the space of k-vectors defined by

Rk
0,m = span{ei1...ik = ei1 . . . eik , i1 < . . . < ik}.

More precisely, we have that the space of 1-vectors is given by

R1
0,m = span{ei, i = 1, . . . ,m}
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and it is obvious that this space is isomorphic with Rm. The space of bivectors is given explicitly
by

R2
0,m = span{eij = eiej, i < j}.

We identify the point (x1, . . . , xm) in Rm with the so-called vector variable x given by

x =
m∑

j=1

xjej.

The Clifford product of two vectors splits into a scalar part and a bivector part:

xy = x.y + x ∧ y,

with

x.y = −〈x, y〉 = −
m∑

j=1

xjyj

and
x ∧ y =

∑
j<k

ejk(xjyk − xkyj).

It is interesting to note that the square of a vector variable x is scalar-valued and equals the norm
squared up to a minus sign:

x2 = −〈x, x〉 = −|x|2.

Similarly, we introduce a first order vector differential operator by

∂x =
m∑

j=1

∂xjej.

This operator is the so-called Dirac operator. Its square equals, up to a minus sign, the Laplace
operator in Rm:

∂2
x = −∆.

A function f defined in some open domain Ω ⊂ Rm with values in the Clifford algebra R0,m is
called monogenic if ∂xf = 0.

Another important operator in Clifford analysis is the Gamma operator, defined by

Γx = −x ∧ ∂x = −
∑
j<k

ejk(xj∂yk − xk∂yj).

This operator is bivector-valued.

3 FOURIER TRANSFORMS IN CLIFFORD ANALYSIS: AN OVERVIEW

The classical Fourier transform is given by

F+(.) = (2π)−m/2

∫
Rm

ei〈x,y〉(.)dV (x).
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This transform is an isomorphism on the space S(Rm) of rapidly decreasing functions with
inverse given by

F−(.) = (2π)−m/2

∫
Rm

e−i〈x,y〉(.)dV (x).

The properties of this transform are of course well-known, see e.g. [21].
In the sequel, we will need an eigenfunction basis of the Fourier transform. This basis is

given by the so-called Hermite functions. They are defined in the following way:

ψk1,...,km =
(
∂k1

x1
e−x2

1

)
. . .
(
∂km

xme
−x2

m

)
= Hk1(x1) . . . Hkm(xm)e−r2/2

for all {k1, . . . , km} ∈ Nm, with Hki(xi) the Hermite polynomial of degree ki in the variable
xi. The set of all Hermite functions {ψk1,...,km} forms a basis of S(Rm) (and also of L2(Rm)).
The action of the Fourier transform and its inverse on this basis is given by

F+(ψk1,...,km) = ik1+...+kmψk1,...,km

F−(ψk1,...,km) = (−i)k1+...+kmψk1,...,km .

From this result, we see that the classical Fourier transform has 4 different eigenvalues, namely
±1 and ±i. Hence we easily obtain

(F+)4 = 1.

As the classical Fourier transform is a scalar transform, it would be interesting to construct a
generalization of this transform that does interact with the Clifford algebra R0,m. Three types of
such generalizations have received quite some attention in the field of Clifford analysis, namely

• kernels with the imaginary unit replaced by Clifford numbers

• the monogenic extension of the classical Fourier kernel

• the Clifford-Fourier transform.

We discuss them in some more detail. A first generalization is obtained by replacing the
kernel ei〈x,y〉 by

ee1x1y1 . . . eemxmym ,

where the role of the imaginary unit is taken over by the generators of the Clifford algebra.
This kernel was introduced in [18] and [1] and further studied by Sommen in [19, 20], mostly
from a theoretical point of view. In recent years, several related versions of this kernel have
been studied. In [4], Bülow and Sommer introduce a quaternionic analogue of this kernel with
the aim of establishing a theory of multi-dimensional signal analysis. The two- and three-
dimensional case have also been studied by Felsberg (see [13]) and Ebling and Scheuermann
(see [11, 12]). Similar transforms have been used by Mawardi and Hitzer in [17] to study
uncertainty principles in Clifford analysis.

Another possibility of generalizing the classical Fourier transform, is by considering the
monogenic extension of the Fourier kernel ei〈x,y〉 in Rm to Rm+1. This extension is given by

e(x, y) =
∞∑

j=0

1

j!
(e0x0∂x)jei〈x,y〉

= ei〈x,y〉
(

coshx0|y|+ e0i
y

|y|
sinhx0|y|

)
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and the associated transform has been studied intensively by Li, McIntosh and Qian in [16]. An
interesting feature of this transform is that it allows to extend the Paley-Wiener theorem to the
framework of Clifford analysis (see [14]) and to study sampling theory in higher dimensions
(see [15]).

Finally, in recent years the so-called Clifford-Fourier transform has been introduced by
Brackx, De Schepper and Sommen (see [2]). In this case, the kernel is given by

H± = e∓iπ
2

Γxe−i〈x,y〉.

The behaviour of the associated integral transform is somewhat peculiar. As an example, it can
be noted that in the even dimensional case, the transform has only 2 eigenvalues ±1, whereas
in the odd dimensional case it has 4 eigenvalues, namely ±1 and ±i.

In the two-dimensional case, the kernel is known in closed form and given by (see [3])

e±y∧x

In higher dimensional cases, obtaining a closed form of the kernel is far from trivial and subject
of ongoing research.

4 A NEW CLASS OF FOURIER TRANSFORMS

In this section we will develop a method to define new Fourier kernels in the field of Clifford
analysis. We start with the following observation regarding the classical Fourier transform. This
transform satisfies the following well-known calculus rules:

F+(xi.) = −i∂yiF+(.)

F+(∂xi .) = −iyiF+(.)

for all i = 1, . . . ,m.
In terms of the Fourier kernel, these properties are translated to the system of equations

∂yie
i〈x,y〉 = ixie

i〈x,y〉, i = 1, . . . ,m

∂xie
i〈x,y〉 = iyie

i〈x,y〉, i = 1, . . . ,m.

In particular, it is easily seen that the system

∂yiK(x, y) = ixiK(x, y), i = 1, . . . ,m (1)
∂xiK(x, y) = iyiK(x, y), i = 1, . . . ,m (2)

has, up to a multiplicative constant, a unique solution, namely

K(x, y) = ei〈x,y〉.

We conclude that the kernel of the Fourier transform is uniquely determined by a system of
equations. These equations (1), (2) can be reformulated in terms of Clifford analysis, using the
Dirac operator and the vector variable. This yields

∂yK(x, y) = iK(x, y)x (3)
(K(x, y))∂x = iyK(x, y). (4)
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The unique (up to a multiplicative constant) scalar solution to this system is the classical
Fourier kernel. Every other bounded and Clifford-algebra valued solution K(x, y) gives rise to
a new Fourier transform in Clifford analysis, by means of

FK(.) =

∫
Rm

K(x, y)(.)dV (x),

with as main property that it intertwines the Dirac operator with the vector variable. Indeed,
using (3), (4) we obtain that

FK(x.) = −i∂yFK(.)

FK(∂x.) = −iyFK(.).

Before discussing a few special solutions to (3), (4) leading to new Fourier transforms in the
following sections, we first present some more evidence for the appropriateness of the proposed
system.

First of all, it is possible to construct a deformation of the classical partial derivatives in
Rm to a set of operators (called Dunkl operators) that are only invariant under a certain finite
reflection group G and not under the whole orthogonal group (see [10]). Also in this case there
exists a Fourier transform which is now not orthogonally invariant, but only invariant under the
group G (see [9] and [7] for a thorough study of this so-called Dunkl transform). The kernel of
this integral transform is given by the unique solution of a generalization of equations (1), (2).
Again this set of equations can be formulated in terms of Clifford algebras as

Dk,yK(x, y) = iK(x, y)x

(K(x, y))Dk,x = iyK(x, y)

with Dk the Dunkl-Dirac operator (see [5]).
Similarly, in the study of superspaces it is also possible to introduce a Fourier transform (see

[6]), which is now symplectically invariant. Again the kernel of this transform arises as the
unique scalar solution of the system

∂ỳK(x, y) = iK(x, y)x̀

(K(x, y))∂x̀ = iỳK(x, y)

with ∂x̀ the fermionic Dirac operator and x̀ the corresponding vector variable.
Finally, also the Clifford-Fourier transform H± = e∓iπ

2
Γxe−i〈x,y〉 in Rm can be cast in a

similar form. Indeed, we have that

∓(∓i)m∂yH∓ = H±x
(H±)∂x = ±(∓i)myH∓.

These three examples show that it is indeed a good idea to consider each solution of the
system (3), (4) as a new Fourier transform. In the next two sections, we construct a vector
and a bivector solution to this system and discuss a few properties of the associated integral
transforms.
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5 THE VECTOR FOURIER TRANSFORM

We will determine a kernel

K(x, y) =
m∑

i=0

Ki(x, y)ei

that satisfies the system (3), (4) and that is as close as possible to the classical Fourier transform.
We begin by considering a term Kjej . Such a term satisfies the mentioned system if

∂xjKj = iyjKj

∂xkKj = −iykKj, k 6= j.

Hence, we obtain, up to a constant,

Kj(x, y) = eixjyj−
P
k 6=j ixkyk .

Although the function Kjej is a solution to the system, it is not very symmetrical. Extension
by cyclic permutation yields

K(x, y) =
m∑

j=0

eixjyj−
P
k 6=j ixkykej

= e−i〈x,y〉
m∑

j=0

e2ixjyjej.

In other words, we obtain a new Fourier kernel that is the product of the (inverse) classical
Fourier kernel with a vector.

This kernel gives rise to the following new integral transform

FK(.) = (2π)−m/2

∫
Rm

K(x, y)(.)dV (x).

We calculate the action of this transform on the basis {ψk1,...,km} of S(Rm). We obtain for a
basis element that

FK(ψk1,...,km) = (2π)−m/2

∫
Rm

K(x, y)ψk1,...,kmdV (x)

= (2π)−m/2

m∑
j=0

ej

∫
Rm

eixjyj−
P
k 6=j ixkykψk1,...,kmdV (x)

=
m∑

j=0

ej(−i)k1 . . . (i)kj . . . (−i)kmψk1,...,km

= (−i)
Pm
j=1 kj

(
m∑

j=0

ej(−1)kj

)
ψk1,...,km .

Note that every ψk1,...,km is an eigenfunction of the new Fourier transform. The eigenvalues are
no longer real numbers, but 1-vectors in the Clifford algebra R0,m.
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The transform FK(.) is invertible. Indeed, putting G = K(−x, y), we have

FG(ψk1,...,km) = (2π)−m/2

∫
Rm

K(−x, y)ψk1,...,kmdV (x)

= i
Pm
j=1 kj

(
m∑

j=0

ej(−1)kj

)
ψk1,...,km .

Hence we obtain
FG(FK(ψk1,...,km)) = (−m)ψk1,...,km .

We also have that
F4

k = m2,

which is a similar relation as satisfied by the classical Fourier transform.
Now, let us consider the action of the vector Fourier transform on a vector function, i.e. a

function of the form

f(x) =
m∑

i=1

fi(x)ei, fi(x) ∈ L1(Rm).

It is easily seen that FK(f) consists of a scalar part and a bivector part. The scalar part is given
by

[FK(f)]0 = −(2π)m/2

m∑
j=0

∫
Rm

e−i〈x,y〉e2ixjyjfj(x)dV (x)

and the bivector part by

[FK(f)]2 = (2π)m/2
∑
j<k

ejk

∫
Rm

e−i〈x,y〉 (e2ixjyjfk(x)− e2ixkykfj(x)
)
dV (x).

6 THE BIVECTOR FOURIER TRANSFORM

We begin by considering a bivector of the form Kjkejk with j < k. Such a term satisfies the
system (3), (4) if

∂xpKjk = −iypKjk, p ∈ {j, k}
∂xqKjk = iyqKjk, q 6∈ {j, k}.

Hence, we obtain, up to a constant,

Kjk(x, y) = e−ixjyj−ixkyk+
P
l 6=j,k ixlyl .

Although the function Kjkejk is a solution to the system, it is not very symmetrical. Exten-
sion by cyclic permutation yields

K(x, y) =
∑
j<k

e−ixjyj−ixkyk+
P
l 6=j,k ixlylejk

= ei〈x,y〉
∑
j<k

e−2ixjyj−2ixkykejk.
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In other words, we obtain a new Fourier kernel that is the product of the classical Fourier kernel
with a bivector.

This kernel gives rise to the following new integral transform

FK(.) = (2π)−m/2

∫
Rm

K(x, y)(.)dV (x).

We calculate again the action of this transform on the basis {ψk1,...,km} of S(Rm). We obtain
for a basis element that

FK(ψk1,...,km) = (2π)−m/2

∫
Rm

K(x, y)ψk1,...,kmdV (x)

= (2π)−m/2
∑
j<k

ejk

∫
Rm

e−ixjyj−ixkyk+
P
l 6=j,k ixlylψk1,...,kmdV (x)

=
∑
j<k

ejki
k1 . . . (−i)kj . . . (−i)kk . . . ikmψk1,...,km

= i
Pm
j=1 kj

(∑
j<k

ejk(−1)kj+kk

)
ψk1,...,km .

The eigenvalues of the transform are now bivectors. This makes inverting the transform more
complicated, as one does not have a general formula for the inverse of a bivector. In low
dimensional cases (m = 2, 3), the transform is more simple and we can obtain an inverse.
Indeed, if m = 2, then the transform takes the following form

FK(.) =
1

2π

∫
R2

e−i〈x,y〉e12(.)dV (x).

The inverse of this transform is clearly given by

− 1

2π

∫
R2

ei〈x,y〉e12(.)dV (x).

The kernel of the inverse transform is thus given by −K(−x, y).
If m = 3, then the transform is given by

FK(.) = (2π)−3/2

∫
R3

e−i〈x,y〉 (e2ix3y3e12 + e2ix2y2e13 + e2ix1y1e23

)
(.)dV (x).

Again, we can calculate the inverse transform. This transform is given by

−1

3
(2π)−3/2

∫
R3

ei〈x,y〉 (e−2ix3y3e12 + e−2ix2y2e13 + e−2ix1y1e23

)
(.)dV (x).

7 CONCLUSIONS AND OUTLOOK

In this paper we have introduced a new equation in a Clifford algebra. Every solution of this
equation gives rise to a generalized Fourier transform in Clifford analysis. We have studied two
special types of solutions of this equation, leading to the vector and bivector Fourier transform.
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In the vector case, we have obtained the inverse of the transform. In the bivector case this is still
an open problem.

In future work we will further study the solutions to the introduced equation, with focus on
k-vector solutions. We are also interested in the behaviour of the new class of transforms with
respect to spherical monogenics. Finally, we would also like to study solutions which have
certain symmetry properties, such as rotational or translational invariance.
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[8] R. Delanghe, F. Sommen and V. Souček, Clifford algebra and spinor-valued functions,
vol. 53 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dor-
drecht, 1992.

[9] C. F. Dunkl, Hankel transforms associated to finite reflection groups. Proc. of the spe-
cial session on hypergeometric functions on domains of positivity, Jack polynomials and
applications. Proceedings, Tampa 1991, Contemp. Math. 138 (1992), 123 – 138.

[10] C. F. Dunkl and Y. Xu, Orthogonal polynomials of several variables, vol. 81 of Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, Cambridge,
2001.

[11] J. Ebling and G. Scheuermann, Clifford convolution and pattern matching on vector fields.
In: Proceedings of IEEE Visualization ’03, IEEE Computer Society, Los Alamitos, CA,
2003, 193–200.

[12] J. Ebling and G. Scheuermann, Clifford Fourier transform on vector fields. IEEE Trans-
actions on Visualization and Computer Graphics 11 (2005), 469–479.

[13] M. Felsberg, Low-level image processing with the structure multivector. PhD-thesis,
Christian-Albrechts-Universität, Kiel, 2002.

10



[14] K. Kou and T. Qian, The Paley-Wiener theorem in Rn with the Clifford analysis setting.
J. Funct. Anal. 189 (2002), 227–241.

[15] K. Kou and T. Qian, Shannon sampling in the Clifford analysis setting. Z. Anal. Anwen-
dungen 24 (2005), 853–870.

[16] C. Li, A. McIntosh and T. Qian, Clifford algebras, Fourier transforms and singular con-
volution operators on Lipschitz surfaces. Rev. Mat. Iberoamericana 10 (1994), 665–721.

[17] B. Mawardi and E. M. S. Hitzer, Clifford Fourier transformation and uncertainty principle
for the Clifford geometric algebra Cl3,0. Adv. Appl. Clifford Algebr. 16 (2006), 41–61.

[18] F. Sommen, A product and an exponential function in hypercomplex function theory.
Applicable Anal. 12 (1981), 13–26.

[19] F. Sommen, Hypercomplex Fourier and Laplace transforms. I. Illinois J. Math. 26 (1982),
332–352.

[20] F. Sommen, Hypercomplex Fourier and Laplace transforms. II. Complex Variables Theory
Appl. 1 (1982/83), 209–238.

[21] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton
University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32.

11


	INTRODUCTION
	CLIFFORD ANALYSIS
	FOURIER TRANSFORMS IN CLIFFORD ANALYSIS: AN OVERVIEW
	A NEW CLASS OF FOURIER TRANSFORMS
	THE VECTOR FOURIER TRANSFORM
	THE BIVECTOR FOURIER TRANSFORM
	CONCLUSIONS AND OUTLOOK

