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Abstract

In classical complex analysis the Szegö kernel method provides a con-
structive method to construct conformal maps from a given simply-connec-
ted domain G ⊂ C onto the unit disc. In this paper we revisit this method
in the three-dimensional case. We investigate whether it is possible to
construct 3D mappings from some elementary domains into the three di-
mensional unit ball by using the hypercomplex Szegö kernel. In the cases
of rectangular domains, L-shaped domains, cylinders and the symmet-
ric double cone the proposed method leads surprisingly to qualitatively
very good results. In the case of the cylinder we get even better results
than those obtained by the hypercomplex Bergman method that was very
recently proposed by several authors.

We round of with also giving an explicit example of a domain, namely
the T-piece, where the method does not lead to the desired result. This
shows that one has to adapt the methods in accordance to different classes
of domains.
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1 Introduction

In classical complex analysis the famous Riemann mapping theorem tells us
that one can map any simply-connected domain G ⊂ C conformally onto the
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unit disc D = {z ∈ C | |z| < 1}. This allows one to treat for instance difficult
aerodynamic problems equivalently in the simpler setting of the unit disc in
which the calculations simplify significantly. The theory of Bergman and Hardy
spaces provides a numerical method to approximate the mapping function in
terms of an orthogonal function series. See for instance [1, 2, 17] and elsewhere.
The Bergman space B2(G, C) is the space of functions that are L2 integrable
over a domain G ⊂ C and holomorphic in its inside. It is endowed with the
scalar product 〈f, g〉 :=

∫
G

f(z)g(z)dxdy. The Hardy space H2(∂G, C) is the
closure of the space of functions that are L2 over the boundary of such a domain
G, holomorphic in its inside with continuous extension to the boundary. This
one is endowed with the scalar product where the integration is correspondingly
extended over the boundary of the domain.
Both function spaces are Hilbert spaces with a continuous point evaluation.
Hence, they possess a uniquely defined reproducing kernel. In the first case
it is called the Bergman kernel B(z, w) and in the latter one the Szegö kernel
SG(z, w). The kernels satisfy

g(z) =
∫
G

BG(z, w)g(w)dw ∀g ∈ B2(G, C) (1)

g(z) =
∫

∂G

SG(z, w)g(w)dw ∀g ∈ H2(∂G, C) (2)

respectively. In contrast to the Cauchy kernel, the Bergman and the Szegö
kernel depend on the domain. For each domain one has a different Bergman
and Szegö kernel.
In this paper we focus exclusively on extending the Szegö kernel method (SKM).
The classical SKM is a method for approximating the conformal map f which
maps G onto D in such a way that f(0) = 0 and f ′(0) > 0. As a consequence
of the reproducing property (2) and the transformation formula one obtains in
the case where 0 ∈ G the well-known explicit relation

f(z) =
2π

SG(0, 0)

z∫
0

S2(0, z)dz, (3)

where the line integral is extended over any path from 0 to z. More precisely
the SKM involves the following calculation steps

1. Choose a basis (gj)+∞j=1 for the space H2(∂G, C).

2. Orthonormalize the subset (gj)N
j=1 by the Gram-Schmidt algorithm to

obtain an orthonormal set (hj)N
j=1.

3. Approximate the Szegö kernel SG(0, ·) by the Fourier sum

SN
G (0, z) =

N∑
j=1

hj(z)〈hj , SG(0, ·)〉 =
N∑

j=1

hj(z)hj(0).
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4. Approximate the mapping function f by

fN (z) =
2π

SG(0, 0)

z∫
0

SN
G

2
(0, z)dz.

In view of many questions from aerodynamics and fluid dynamics one is inter-
ested in three dimensional analogous constructions of mappings from a given
domain, such as for instance an airplane wing, into the three dimensional unit
ball. This would allow us to analogously do many calculations in the simpler
setting of the unit ball and would reduce the number of expensive wind chan-
nel experiments. Unfortunately, there is no direct analogue of the Riemann
mapping theorem for dimensions n ≥ 3. In fact, due to the famous theorem
of Liouville [22] (see also [10]), the only conformal mappings in Rn are Möbuis
transformations. However, in the setting of quaternions, it was possible to intro-
duce direct analogues of the classical Bergman and Hardy spaces for the three
and four-dimensional case, cf. [7, 15, 8, 28, 27] and elsewhere.
In this paper we investigate whether it is possible to construct 3D mappings
from some elementary domains into the three-dimensional unit ball by adapting
the classical method in the way using the quaternionic Szegö kernel instead.
For rectangular bounded domains, L-shaped domains, cylinders and the double
cone this methods leads surprisingly to qualitatively very good results. In the
case of the cylinder we obtain better results than those that were previously
obtained in works of S. Bock et al., B. Boone and J. Rüsges with the use of the
quaternionic Bergman kernel method, cf. [6, 4, 5, 26]. We round off with one
example, namely the T-piece, where the method does not lead to the desired
result. This exhibits the need of further investigation in this direction which
still offers a rich spectrum of possibilities for fine tuning.

2 Quaternionic Hardy spaces and Szegö kernels

2.1 Basics on quaternions and quaternionic analysis

For details on quaternions and quaternionic analysis we refer the interested
reader for instance to [8, 16, 21, 20]. By {1, e1, e2, e3} we denote the basis
elements of the four dimensional vector space R⊕R3 ∼= R4. This can be endowed
with a product according to the multiplication rules

e2
1 = e2

2 = e2
3 = −1, e1e2 = −e2e1 = e3.

This multiplication operation extends the vector space to an algebra. This is
called the algebra of real quaternions, denoted by H. Notice that the product is
non-commutative. In what follows we identify each vector x = (x0, x1, x2, x3)T ∈
R4 with the quaternion z = x0 + x1e1 + x2e2 + x3e3 ∈ H. The conjugate of z
is defined by z = x0 − x1e1 − x2e2 − x3e3. The Euclidean norm of the quater-

nion z has the form |z| =
√

zz =

√
3∑

i=0

x2
i . Any z ∈ H\{0} is invertible and
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z−1 = z
|z|2 . The quaternions form a skew-field. In what follows we identity the

three-dimensional vector space R3 with the subset of quaternions that are of
the form z = x0 + x1e1 + x2e2.

A meaningful generalization of the concept of holomorphic functions in C to the
three-dimensional case can be introduced by extending the Riemann approach.
Let G be a domain in R ⊕ R2 ∼= R3. Consider H-valued functions of the form
f : R3 → H, f(z) = f0(z)+f1(z)e1+f2(z)e2+f3(z)e3, where z = (x0, x1, x2) is a
shortened quaternion. The three-dimensional analogue of the Cauchy-Riemann
operator is defined as D := ∂

∂x0
+ ∂

∂x1
e1 + ∂

∂x2
e2. Following [8, 20] and others, a

function f : G → H is called left (right) quaternionic holomorphic if Df(z) = 0
(resp. fD = 0) for all z ∈ G. In view of the non-commutativity one needs to
distinguish between left or right quaternionic holomorphy. However, as shown
in [8, 20] and elsewhere, for both sets of functions and analogous function theory
can be established. We hence restrict ourselves to focus on the left quaternionic
holomorphic case. In fact, as shown in the above mentioned works, many classi-
cal theorems from complex analysis carry over to the higher dimensional context
using this approach. In particular, every function f that is (left) quaternionic
holomorphic in a neighborhood of the closure G of a domain G ⊂ R3 satisfies a
generalized Cauchy integral formula of the form

f(z) =
1
4π

∫
∂G

z − w

|z − w|3
dσ(w) f(w), (4)

where dσ(w) = dw1 ∧ dw2 − e1dw0 ∧ dw2 + e2dw0 ∧ dw1 is the oriented surface
measure.

2.2 The three-dimensional Szegö kernel method

In all that follows let G be a domain in R3. Then, following e.g. [7, 8, 19]
the three-dimensional analogue of the classical Hardy space in the quaternionic
setting can be introduced as follows:

Definition 1. Let G ⊂ R3 be a domain and let ∂G be the set of its boundary
points. The closure of the set

A2(∂G, H) := {f ∈ C1(G) ∩ L2(∂G); | Df(z) = 0 ∀z ∈ G}

endowed with the quaternion valued scalar product defined by

〈f, g〉 :=
∫

∂Ω

f(z)g(z)dS(z),

where dS(z) = |dσ(z)| is the scalar valued surface measure, is called the quater-
nionic Hardy space of left monogenic functions in G. This one will be denoted
by H2(∂G, H).
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Strictly speaking, H2(G, H) only forms a right H-module in view of the non-
commutativity of the quaternions. By means of the generalized Cauchy integral
formula for left quaternionic holomorphic functions given in (4) one can prove
in close analogy to the complex case that this function space has a continuous
point evaluation. See for instance [7, 15, 8] for details.
It hence possesses a uniquely defined reproducing kernel, called the quaternionic
Szegö kernel. Due to the lack of a direct analogue of the Riemann mapping
theorem, it is very difficult to compute closed formulas for the Szegö kernel.
Closed formulas for the unit ball, the half-space, the rectangular strip domain
0 < x0 < d and for the infinite cylinder are resp. given in [7, 10, 13, 14, 25]. In
the case where G is a bounded domain that contains the origin in its inside, the
kernel can be approximated by applying the Gram-Schmidt algorithm on the
set of the Fueter polynomials. For convenience we recall their definition in the
three-dimensional case (cf. e.g. [8, 20, 23, 24]):

Definition 2. (cf. e.g. [8], p. 68, [20] pp.113)
Let z = x0 + x1e1 + x2 ∈ R3 and Zi := xi − x0ei for i = 1, 2. Further, for k ∈ N
let (l1, . . . , lk) ∈ {1, 2}k. The Fueter polynomials then are defined by

p0(z) := 1

pl1,...,lk(z) :=
1
k!

∑
π∈Sk

Zπ(l1) . . .Zπ(lk),

where Sk stands for the symmetric group of permutations on k elements.

These polynomials form a basis for H2(∂G, H) if G is a bounded domain con-
taining the origin. This is a consequence of the Taylor expansion theorem for
monogenic functions, cf. e.g. [8] p. 73, [20] p. 183.
The orthonormalization process of Gram-Schmidt applied to the set of the
Fueter polynomials then produces an orthonormal set (hj)j of H2(∂G, H). No-
tice that the set of left monogenic functions only forms a right-H-module. The
coefficients produced by the Gram-Schmidt algorithm thus appear at the right
hand side, i.e. the n-th step of the procedure has the form

h̃n := pn −
n−1∑
j=1

hj〈hj , pn〉, hn :=
1

〈h̃n, h̃n〉
h̃n,

where pn is the n-the Fueter polynomial that is to be orthonormalized.
Note that the use of the Fueter polynomials up to degree N corresponds to a
total of n := (N+1)(N+2)

2 functions. The Szegö kernel is then approximated by
the finite Fourier sum

SN
G (0, z) =

(N+1)(N+2)/2∑
j=1

hj(z)hj(0), N = 0, 1, . . .
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Then we compute the line integral

fN (z) =

z∫
0

SN
G

2
(0, u)du, N = 0, 1, . . . (5)

In the classical two dimensional complex case, the complex analogue of the
function series (fN )N converges to the function that maps the given domain
G conformally onto the unit disc. In the higher dimensional case we cannot
expect f to be conformal in the classical sense of Gauss in general, as we know
from Liouville’s theorem that the set of conformal maps in the sense of Gauss
coincides with the set of Möbius transformations.

Remarks and assumptions for the calculations:

1. In the three-dimensional case, the line integral (5) is not independent from
the choice of the path. Here, we choose the direct line connection from 0
to z as integration path. In view of the non-commutativity this still leads
to two different choices of integration, namely

f := z 7→
1∫

0

zS2
GG(tz, 0)dt (6)

resp.

f := z 7→
1∫

0

S2
G(tz, 0)zdt. (7)

In this paper we perform the calculations for both variants. For the nu-
merical evaluation the first variant is used only.

2. We assume without restriction that the origin is an interior point of the
domains considered here. Suppose that SG(·, ·) is the Szegö kernel of a
domain G. Then the Szegö kernel of the translated domain G + d, d ∈ H
is given by SG(·−d, ·−d). The calculations that we performed lead to the
conjecture that symmetry with respect to the origin leads to a positive
effect on the quality of the results.

3. The hypercomplex integral is computed componentwise. One computes
the corresponding four real-valued integrals of the real components of the
quaternionic expression.

4. In this paper we restrict to consider domains in R3. Although the Fueter
polynomials are only R3 valued, as shown for instance in [23, 20], the
orthonormalized functions hj take in general values in the four-dimensional
space H. To obtain a map to R3 we here simply cut off the e3-component.

5. As known, the usual Gram-Schmidt algorithm has the crucial disadvantage
that it is numerically very unstable. Even small round-off errors can cause

6



significant effects on the final result. To overcome this problem we perform
all calculations with the MAPLE program which calculates symbolically
and hence exactly. However, this implies very long computation times.

3 Numerical experiments

In this section we present explicit numerical experiments for some elementary
domains. These include the regular cube as a typical example of a rectangular
domain, an L-piece, a closed cylinder and the regular double pyramid. We
shall see that the proposed method works pretty well for these domains. At
the end we also present the T-piece. For the T-piece however the method does
not lead to the desired result. All result from calculations with the program
MAPLE, thus from symbolically computations. The pictures in the left row
provide the mappings that result from applying the integration variant (6),
i.e. where z is multiplied from the left-hand side from the square of the Szegö
kernel. Correspondingly, the pictures in the middle row refer to the calculations
based on the integration variant (7). The picture in the right row refer to the
integration over the arithmetic mean value of both integration variants, i.e. to
constructing the mapping function by taking

1
2

( 1∫
0

zS2
GG(tz, 0)dt +

1∫
0

S2
GG(tz, 0)zdt

)
.

The value N indicates that in the approximation all Fueter polynomials up to
total degree N are involved. The pictures show the evolution of the mapping
with growing degree of polynomials that are involved.

3.1 The unit cube

The unit cube [−0.5, 0.5]3 has been treated with the Bergman kernel method in
all the works [4, 5, 6, 26]. As the pictures show, also the Szegö kernel method
that we propose in this paper surprisingly leads to results of a similar quality:

Figure 1: N=2

Figure 2: N=6

Figure 3: N=12
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Figure 4: N=22

In the following table we analyze the quality of the mapping numerically. The
function has been evaluated on a grid of test points lying on the surface of
the domain. Then we computed the minimum and maximum values, the mean
value, the median and the standard deviation to the mean value of the image
points.

Cube
N rmin rmax rmedian rmean σmean

2 0.50000000 0.86602540 0.64342831 0.64525227 0.08356600
4 0.98720516 1.15243593 1.04434276 1.04987762 0.03502725
6 1.11372639 1.22799009 1.1547270 1.16339697 0.03182012
8 1.11373570 1.23203983 1.15316478 1.16293096 0.03305621

10 1.11293754 1.23597561 1.15202359 1.16251405 0.03365807
12 1.11735315 1.24909031 1.15588925 1.16462883 0.03385515
14 1.11731079 1.25824223 1.15610186 1.16536819 0.03409364
16 1.11799870 1.25606978 1.15637633 1.16588101 0.03397282
18 1.11795488 1.25377415 1.15737486 1.16600946 0.03394483
20 1.11799870 1.256069781 1.15637633 1.16588101 0.03397282
22 1.11832249 1.25748121 1.15704597 1.16630522 0.03390004

One observes that the variance of the radii decreases rapidly up to N = 6. After
that one observes a stagnation of the variance. The same effect appears when
applying the Bergman kernel method, as analyzed in detail in [26]. Nevertheless,
both approaches lead to a very ball-like domain in the case of the unit cube.

The stagnation effect of the variance of the radii has not been observed in the
preceding work of [4, 5]. The reason is that the stagnation effect appears in the
BKM for the cube only up from N = 14. The authors from [4, 5] however have
stopped at the step N = 12 because of the heavy long calculation times. With
the MAPLE versions that were used on the existing computer servers in 2004 it
was not practicable to get exact results beyond N = 12. The conclusion in [4, 5]
that the proposed algorithm really converges to a perfect ball thus turned out
to be drawn to quick. One gets a very ball-like domain, but there is still a
perturbation effect that additionally needs to be compensated. This topic will
be discussed in Section 3.6 of this paper.
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Cube : e3 component
N e3min

e3max
e3median

e3mean
σmean

2 0.00000e+00 0.00000e+00 0.00000e+00 0.00000000e+00 0.0000e+00
4 0.00000e+00 0.00000e+00 0.00000e+00 0.00000000e+00 0.0000e+00
6 0.00000e+00 0.00000e+00 0.00000e+00 0.00000000e+00 0.0000e+00
8 -0.00228758 0.00228758 0.00000e+00 0.22427271e-24 0.00105679

10 -0.00230644 0.00230644 0.00000e+00 0.64077918e-24 0.00106629
12 -0.00192833 0.00192833 0.00000e+00 -0.17941817e-23 0.00071375
14 -0.00180835 0.00180835 0.00000e+00 0.32551582e-23 0.00070496
16 -0.00144594 0.00144594 0.00000e+00 0.11085479e-23 0.00073729
18 -0.01117734 0.01117734 0.00000e+00 -0.18582596e-23 0.00268926
20 -0.00166455 0.00166455 0.00000e+00 0.23388440e-23 0.00074334
22 -0.00161783 0.00161783 0.00000e+00 0.21658336e-23 0.00074106

In the construction of the 3D image the e3-component has been cut off. This
table list the corresponding statistical values for the e3-component and exhibits
the influence of the cut-off effect of this component. We observe that the values
of the e3 component of fN are rather small in the case of the unit cube. The
variance of the e3-component is rather small, too. Up to N = 4 the variance of
the e3-component decreases faster with the proposed Szegö kernel method than
with the Bergman kernel method evaluated in [26]. It also reaches its best value
(N=6) faster than the Bergman kernel method (N=10). However, up from
N = 8 the variance of the e3-component is twice as much as for the Bergman
kernel method. This could be one plausible explanation why the variance of
the radii from the previous table is twice as much as for the Bergman kernel
method. In the thesis [19] other examples cuboids have been treated as well.
For all these domains, the method produced similar results.

3.2 L-shaped domains

More general rectangular domains than the cuboid are domains that are com-
posed by several cuboids. These include for instance L-pieces, T -pieces or U -
pieces. To compare the Bergman kernel method with the Szegö kernel method
we here treat in this paper the same L-piece that has been considered in the
earlier works [4, 26].
Since the underlying L-piece results from cutting a cuboid out off a cube, it is
rather logical that the pictures obtained by applying the integration variant (6)
have a very similar form than for the cube. The only difference is that one
observes a deeper grave at one of the sides instead of the usual round surface
part. An application of the integration variant (7) surprisingly leads to very
similar results. There are only insignificant differences visible at the upper and
the top and the ground face. Up from N = 8 the results and the images are very
similar to those that were obtained in [4, 26] with the Bergman kernel method.
However, when applying the Bergman kernel method, one still observes some
irregular peaks at the surfaces of the image. These peaks do not appear with the
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Szegö kernel method. For the L-piece the Szegö kernel method hence produces
a better result than the Bergman kernel method. However, fine-tuning is still
necessary here, too. One still observes a stagnation effect of the variance of the
radii for increasing N . However, its range is only in the scale of 10−3.

Figure 5: N=1

Figure 6: N=1

Figure 7: N=5

L-shaped domain
N rmin rmax rmedian rmean σmean

1 1.29110504 4.22985007 1.90557024 2.02486247 0.51739487
2 1.59809997 5.07927861 2.17863892 2.27370955 0.47476290
3 1.63736788 5.03931703 2.16433255 2.32549655 0.48629799
4 2.54886031 4.77818610 3.31881835 3.37611382 0.36107106
5 2.74479081 5.71129134 3.64954531 3.72384741 0.57386032
6 2.93080994 5.54651383 3.82458952 3.97682430 0.60970685
7 3.06404575 5.60116956 3.92206356 4.13410487 0.67945785
8 3.08726704 5.68528393 3.90940097 4.15092371 0.68781810
9 3.11336417 5.81721474 3.92411841 4.16962584 0.68747531

10 3.16333834 5.81188175 3.94874348 4.19816488 0.67524324
11 3.17983624 5.79778564 3.96058365 4.20895869 0.67041921
12 3.20757014 5.87300760 3.97151572 4.22188708 0.66420943
13 3.22909373 5.84779945 3.97877892 4.234227911 0.66087301
14 3.24375778 5.89087350 3.98668491 4.24203212 0.65819242
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Figure 8: N=5

Figure 9: N=10

L-shaped domain : e3 component
N e3min

e3max
e3median

e3mean
σmean

1 -0.32751953 0.32751953 -0.01370106 -0.02501915 0.11399155
2 -0.12887333 0.12887333 0.00143468 0.00404507 0.03701626
3 -0.20132596 0.20132596 0.0000e+00 -0.00916962 0.07296013
4 -0.14821086 0.14821086 -0.00098458 -0.78166246e-5 0.03471432
5 -0.12802317 0.12799876 -0.00208522 -0.00797864 0.05012145
6 -0.13911314 0.13911314 -0.00185279 -0.00836915 0.04140280
7 -0.06966210 0.06958879 -0.00060571 -0.00407754 0.02304851
8 -0.04925492 0.04922581 -0.00043222 -0.00245824 0.01367536
9 -0.04917340 0.04911626 -0.00016990 -0.00113724 0.01332052

10 -0.02759811 0.027598110 -0.00015535 -0.00074930 0.00868300
11 -0.03498017 0.03498017 -0.00018160 -0.00103293 0.00946875
12 -0.02392399 0.02392399 -0.00013241 -0.00057233 0.00730533
13 -0.02596903 0.02596903 -0.00030332 -0.00063560 0.00664760
14 -0.02544119 0.02548315 -0.00036848 -0.00065572 0.00712399

3.3 Cylinders

In this subsection we treat two typical cylindrical domains of finite height. First,
we take the regular cylinder D×[−1/2, 1/2] where D := {(x0, x1)T | x2

0+x2
1 ≤ 1}

is the two dimensional unit disc. As one could expect, the computations turn
out to cost more time than for the unit cube. For small values of N the effort
however still remains acceptable. Up from N = 12 the effort however increases
significantly.
When applying the integration variant (6) the sequence of images converges
rapidly to a very ball-like domain with increasing N . One observes that the
resulting images show around the circle of the equator a uniform “Einkerbung”
which seems to remain for growing N . Outside this area one does not observe
any deviation from the ball form.
When however applying the integration variant (7) then the image sequence
converges to a different kind of domain which is very asymmetric. This one is
still a closed domain but does not show any similarity to a ball. The arithmetic
mean of both integration variants gives an image which evidently turns out

Figure 10: N=10
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Figure 11: N=14

Figure 12: N=14

to be a mixture case out of two different figures looking a like an asymmetric
hamburger. This underlines how much influence the choice of the placement of
the factors in the quaternionic product has on the resulting image.
When applying the integration variant (6), then the variance of the radii de-
creases very fast already in the first four approximation steps N = 4. Up from
N = 4 one observes again a stagnation. The variance of the e3-component is
negligible small. In view of the calculation accuracy which improves with grow-
ing N one can assume that the e3 component vanishes; hence we get indeed a
mapping into R3.
A comparison to the results obtained for this cylinder in [26] with the Bergman
kernel method shows that the Szegö kernel method proposed here leads to a
better result for the cylinder. This is also observed in the following second
example.
Take now the less symmetric cylinder D × [−3/2, 3/2]. Again when applying
the integration variant (6), then we obtain a very ball-like domain. Here we get
even better results than for the cylinder treated before. The deformation effect
that we observed around the equator at the first cylinder does not appear hear.
One only observes a decreasing deformation in the region of the north pole.
Concerning the behavior of the e3 component we can make the same comment
as for the other cylinder. We can assume that the e3 component vanishes with
growing N so that lim

N→+∞
fN indeed turns out to be a function that takes only

values in R3.
Here for this concrete example the Szegö kernel method turns out to be much
more efficient than the Bergman kernel method. A quantitative comparison
to the results obtain with the Bergman kernel method in [26] shows that the
variance of the radii is 20 times smaller with the Szegö kernel method than with
the Bergman kernel method.

Figure 13: N=1
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Figure 14: N=4

Figure 15: N=7

Cylinder [1,1,3]
N rmin rmax rmedian rmean σmean

1 0.00158314 0.00285405 0.00244214 0.00238152 0.00034455
2 0.00242315 0.00327263 0.00282067 0.00280683 0.00028537
3 0.00242315 0.00327263 0.00282067 0.00280683 0.00028537
4 0.00360382 0.00423581 0.00362364 0.00376276 0.00023215
5 0.00360382 0.00423581 0.00362364 0.00376276 0.00023215
6 0.00341783 0.00438405 0.00355619 0.00368638 0.00031369
7 0.00341783 0.00438405 0.00355619 0.00368638 0.00031369
8 0.00349747 0.00447397 0.00353591 0.00370332 0.00031115
9 0.00349747 0.00447397 0.00353591 0.00370332 0.00031115

10 0.00344938 0.00454236 0.00356252 0.00370536 0.00032172

Cylinder [1,1,3] : e3 component
N e3min

e3max
e3median

e3mean
σmean

1 0.00e+00 0.00e+00 0.0000e+00 0.00000000e+00 0.00000000e+00
2 -0.2e-22 0.2e-22 0.0000e+00 -0.17968217e-25 0.36127734e-23
3 -0.2e-22 0.2e-22 0.0000e+00 -0.17968217e-25 0.36127734e-23
4 -0.3e-22 0.3e-22 0.0000e+00 -0.84454696e-25 0.46042072e-23
5 -0.3e-22 0.3e-22 0.0000e+00 -0.84454696e-25 0.46042072e-23
6 -0.4e-22 0.4e-22 0.0000e+00 0.24664872e-26 0.70084603e-23
7 -0.4e-22 0.4e-22 0.0000e+00 -0.60478405e-25 0.70586156e-23
8 -0.5e-22 0.5e-22 0.0000e+00 0.49709419e-25 0.79834586e-23
9 -0.4e-22 0.5e-22 0.0000e+00 0.16597078e-24 0.82536710e-23

10 -0.63e-22 0.6e-22 0.0000e+00 0.11360774e-24 0.10152898e-22

3.4 The double-cone

Our investigation shows that the symmetry of the domain has a strong influence
on the calculation effort of the procedure and on the quality of the approximation
of the ball. We shall see that we will get excellent results for the double-cone
which is a very symmetric domain around the origin. In the thesis [19] the
single cone has also been treated. Indeed, for the single-cone which is far less
symmetric the approximation turned out to be much worse.

Figure 16: N=10
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When applying the integration variant (6) then the image of the double cone
gets a very ball-like domain with increasing values for N . The quality of the
convergence to a ball is much better than for all the other examples. Further-
more, the variance of the radii decreases constantly with increasing N . There is
no stagnation effect of the variance. The sequence of the maps fN actually leads
to a ball. One observes similarities to the images that result from applying the
integration variant (6) to the unit cylinder. One observes a uniform “Einker-
bung” around the equator and small deformations at the north and south pole.
The images that result from applying the integration variant (7) are less sym-
metric. As the table shows the values of the e3-component are in the range of
10−20; so we actually have a mapping into R3.

Figure 17: N=1

Figure 18: N=2

Figure 19: N=4

Double-cone
N rmin rmax rmedian rmean σmean

1 0.70710678 1.0000e+00 0.79699435 0.81537185 0.09221557
2 0.78535246 1.57451220 0.86944714 0.96767296 0.21897766
3 0.78535246 1.57451220 0.86944714 0.96767296 0.21897766
4 1.06335843 1.17979150 1.13107275 1.12867477 0.03868012
5 1.06335843 1.17979150 1.13107275 1.12867477 0.03868012
6 1.06977691 1.16577452 1.13531226 1.12857269 0.03142416

Double-cone : e3 component
N e3min

e3max
e3median

e3mean
σmean

1 0.00e+00 0.00e+00 0.0000e+00 0.0000e+00 0.00000000e+00
2 -0.1e-20 0.1e-20 0.0000e+00 0.0000e+00 0.35488437e-21
3 -0.1e-20 0.1e-20 0.0000e+00 0.0000e+00 0.35488437e-21
4 -.5e-20 0.5e-20 0.0000e+00 0.0000e+00 0.89365513e-21
5 -.5e-20 0.5e-20 0.0000e+00 0.0000e+00 0.89365513e-21
6 -0.19e-24 0.24e-19 0.0000e+00 -0.82160707e-23 0.19427223e-20

3.5 A negative example

In the preceding subsection we treated a number of different elementary do-
mains. In all the cases the Szegö kernel method applied in the proposed way,
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Figure 20: N=6

provided a mapping to a ball-like domain. As the following example shows, the
proposed method does not always lead to the desired result. Let us consider the
T -piece with the coordinates ...

Figure 21: N=1

Figure 22: N=5

As the table shows, the tendency of the variance of the radii is increasing. Also
the e3-component increases tendentiously with increasing values for N .

T-shaped domain
N rmin rmax rmedian rmean σmean

1 0.62869011 3.25638346 1.45243092 1.55209673 0.66278507
2 1.58746150 3.88501251 3.12257072 3.01030995 0.48166481
3 1.99716411 5.10222146 3.47785357 3.54189457 0.62226441
4 2.96976280 5.94358776 4.90110743 4.87076052 0.49241734
5 3.21222302 6.63945740 5.10698776 5.13929779 0.59966766
6 3.93782517 7.00930407 5.87131361 5.87962579 0.53224723
7 4.24044045 7.82022191 6.20906818 6.18624177 0.66360582
8 4.68281732 7.94880591 6.68282069 6.63691241 0.64621133
9 5.16737501 8.88266468 7.11249434 7.10468791 0.74201834

10 5.42091318 9.26735105 7.38437372 7.37597136 0.79198273
11 5.70569596 9.78585978 7.56275106 7.63099778 0.85313835
12 6.15720875 10.29145546 7.96898281 8.07221013 0.92017379
13 6.21257453 10.66292250 8.04832502 8.12272326 0.93784211
14 6.60881968 11.36873232 8.28063366 8.49797189 1.03307091
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Figure 23: N=10

Figure 24: N=14

T-shaped domain : e3 component
N e3min

e3max
e3median

e3mean
σmean

1 -0.16472993 0.16472993 0.0000e+00 0.16660258e-22 0.06311044
2 -0.05310026 0.05310026 0.0000e+00 0.53120594e-22 0.02087962
3 -0.80036860 0.80036860 0.0000e+00 0.62155581e-22 0.20528667
4 -0.21511797 0.21511797 0.0000e+00 -0.81058567e-22 0.07179865
5 -0.54296123 0.54296123 0.0000e+00 0.13815199e-20 0.13915914
6 -0.60924710 0.60924710 0.0000e+00 0.34666154e-21 0.18505258
7 -0.62790810 0.62790810 0.0000e+00 -0.12623349e-21 0.14794378
8 -1.69379604 1.69379604 0.0000e+00 0.78175060e-21 0.32218857
9 -1.57521761 1.57521761 0.0000e+00 0.19864154e-21 0.34464221

10 -1.90113518 1.90113518 0.0000e+00 0.98679994e-21 0.38067378
11 -2.67010729 2.67010729 0.0000e+00 0.13840830e-20 0.52133534
12 -2.42997746 2.42997746 0.0000e+00 -0.70485710e-21 0.51423994
13 -2.38352815 2.38352815 0.0000e+00 -0.41971036e-20 0.49548429
14 -3.06866824 3.06866824 0.0000e+00 0.82019735e-21 0.64679373

3.6 Discussion

In the cases of rectangular domains, cylinders and the double cone the proposed
Szegö kernel method lead to very ball-like domains. In particular, we obtained
very good results for symmetric cylinders and the symmetric double cone where
we observed a tendentiously decreasing variance of radii with increasing N as
well as negligible small values for the e3-components. In the case of rectangular
domains, one obtains very ball-like domains; however one observes a stagnation
effect in the variance of the radii up from a certain value of N . This indicates
that there is a perturbation effect that still needs to be compensated. On the
one hand, in the case of rectangular domains, the variance of the e3-component
shows the same behavior. It does not seem to converge to zero, although its
values are small. Notice that cutting of the e3-component is only one possibility
among many other possibilities to get a three-dimensional object. It is definitely
not the most canonical one. Furthermore, we observed a significant difference
between applying the integration variant (6) and the variant (7). Actually, the
integration variant (7) lead in all cases a worse result. This however, does not
mean that the integration variant (6) does already provide us with the best
choice. A further possibility of fine tuning consists of choosing the integration
path from z = 0 to z = z0. Notice that in the hypercomplex case the integral is
not path independent. In all the examples treated before we choose the direct
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path from z = 0 to z0. However, as the following calculation shows one can get
better results for the unit cube when instead choosing the path .... .
TO BE INSERTED
Here, we have another possibility of fine tuning.
Finally, we observed that the quality of convergence to a ball seems to be in-
fluenced by the symmetry of the original domain. The more symmetric is the
original domain with respect to the origin, the better result we obtained. In
fact, this makes it important to re-consider the starting point of the integra-
tion. Instead of choosing a priori always the origin, a different choice might be
more appropriate. In fact, it is plausible that we can increase the quality of the
convergence to a ball by applying fine-tuning. it cannot be a coincidence that
one obtains very ball like domains for so different kinds of domains. Indeed, we
claim that f is a conformal map in the sense of Gauss on each boundary part
of the domain. Indeed this is logical, because the Riemann mapping theorem
is still valid on a number of classes of 2-manifolds in R3. This might be one
possible explanation why we still get for so many domains images to ball-like
domains.
However, as the results of the T -piece show, that we cannot expect the method
to work universally for all kind of domains. We expect that the geometry of
the domain enters significantly in the scheme. Summarizing, the result indicate
that still a lot of research with promising results can be performed on the basis
of the generalized Szegö kernel method.
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Valued Functions, Dordrecht-Boston-London: Kluwer 1992.
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