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ABSTRACT 20 

Soil erosion and declining soil quality are the major constraints for crop production and 21 

sustainable land management in Ethiopia. A conservation agriculture (CA) experiment was 22 

conducted in 2006 at Gumselasa, Northern Ethiopia, on experimental plots established in 2005 23 

on a farmer‟s field. The objectives of this experiment were to evaluate the short term changes in 24 
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soil quality of a Vertisol due to the implementation of conservation agriculture practices and to 25 

assess their effect on soil erosion, crop yield and yield components of tef (Eragrostis tef (Zucc.) 26 

Trotter). The treatments were permanent bed (PB), terwah (TERW) and conventional tillage 27 

(TRAD). Soil organic matter (SOM) was significantly higher in PB (2.49 %) compared to TRAD 28 

(2.33 %) and TERW (2.36 %). Although aggregate stability of PB (0.94) was higher than TRAD 29 

(0.83), the difference was not significant. PB had larger macroporosity (0.07 m
3
 m

-3
) compared 30 

to the other treatments. PB reduced runoff volume by 50% and TERW by 16% compared to 31 

TRAD. PB also reduced soil loss by 86% and TERW by 53% in comparison to TRAD. Despite 32 

the above soil physical quality improvements and effectiveness in runoff and soil loss reduction,  33 

biomass and plant height of tef were significantly higher in TRAD than PB. The significantly 34 

high weed dry matter at first weeding, the types of weeds and their water uptake behavior might 35 

have caused the lower tef yield on the PB. We therefore recommend that appropriate rate of 36 

herbicides must be used while growing tef using CA practices. 37 

 38 
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1. Introduction 42 

 43 

Agriculture in Ethiopia is dominated by low productive rainfed farming. The annual grain 44 

production, which averages 7 million tonnes, is too low to support national food demands 45 

(Eyasu, 2005). Land degradation in the form of soil erosion and declining soil quality is a serious 46 

challenge to agricultural productivity and economic growth (Mulugeta et al., 2005). Tigray, the 47 

northern-most region of the country, suffers from extreme land degradation as steep slopes have 48 

been cultivated for many centuries and are subject to serious soil erosion (Wolde et al., 2007). 49 

Rainfall is erratic and as a consequence there is strong seasonal (~8 months) moisture stress 50 
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limiting the productivity of rainfed agriculture in the region (Haregeweyn et al., 2005). In 51 

addition to this problem, tillage in Ethiopia is carried out with a breaking ard plough, locally 52 

known as maresha, whose shape and structure have remained unchanged for thousands of years 53 

(Nyssen et al., 2000; Solomon et al., 2006). 54 

The conventional tillage by maresha includes a primary tillage, followed by repeated 55 

secondary shallow tillage, aiming at controlling weeds, conserving moisture and aerating the soil 56 

(Melesse et al., 2008). In the study area, particularly since the widespread introduction of stone 57 

bunds for soil and water conservation in the late 1980s, plowing is done parallel to the contour. 58 

The first furrow is made at the lower end of the field, and the oxen move upslope for each 59 

subsequent furrow (Nyssen et al., 2000). These repeated operations cause moist soil to move to 60 

the surface favoring water loss by evaporation (Aase and Siddoway, 1982), exposing the soil to 61 

both wind and water erosion (Astatke et al., 2002; FAO, 2002) and causing structural damage 62 

(Melesse et al, 2008). Soil erosion due to high tillage frequency and other soil management 63 

problems has seriously affected over 25% of the Ethiopian highlands (Kruger et al., 1996). Such 64 

detrimental effect of soil erosion and water stress can be improved to some extent by other 65 

management options like conservation agriculture (CA) practices, including permanent beds and 66 

semi-permanent beds. 67 

The main benefit of CA is to preserve the soil in semi-natural conditions as soil disturbance 68 

by cultivation is minimized and physicochemical degradation is reduced (Kertesz, 2004). Long-69 

term application of CA practices has significantly reduced runoff in different soil types in 70 

different places (Lindstrom et al., 1997; Bosch et al., 2005; Zhang et al., 2007). Soil physical 71 

properties (infiltration rate, available water content, aggregate stability, and hydraulic 72 

conductivity) are also improved (Moreno et al., 1997; Crovetto, 1998; McGarry et al., 2000; 73 

Mikha and Rice, 2004; Whalen et al., 2004; Bosch et al., 2005; Limon-Ortega et al., 2006).  74 

Recent policies in Tigray favor in situ water conservation, stubble management and the 75 

abandonment of free grazing (Nyssen et al., 2006). In line with this policy, conservation 76 
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agriculture practices like permanent bed and semi-permanent bed have been introduced at 77 

experimental scale in Adigudom area (Fig 1) starting from 2004/2005 with the aim to improve 78 

soil properties, conserve moisture, reduce runoff and soil loss on farmers' fields on Vertisols. 79 

Vertisols comprise about 12.6 million ha of land in Ethiopia, covering 10.3% of the total surface 80 

area of the country. Of this, only 25% of the soils are cultivated due to their poor physical quality 81 

(Bull, 1988; Jabbar et al., 2001). Vertisols have a great agricultural potential but poor 82 

workability; too hard when dry and too sticky when wet. They are among the most vulnerable 83 

soils to erosion depending on how they are managed and on their topsoil structure and texture 84 

(Deckers et al., 2001a; Moeyersons et al., 2006). Hence, selecting appropriate management 85 

options is of paramount importance while exploiting their potential for the growth of specific 86 

crop like tef (Eragrostis tef (Zucc.) Trotter. 87 

Gebreegziabher et al. (2009) have conducted research on the Adigudom Vertisol using wheat 88 

as an indicator crop in their erosion assessment. However, it is important to study how the 89 

treatments respond for tef. Tef is endemic to Ethiopia and belongs to the family Poaceae 90 

(Gramineae) (Ingram and Doyle, 2003). It is the only cultivated cereal in the genus Eragrostis 91 

and consists of about 350 varieties (Abebe, 2001). Tef can be grown on a wide range of soil type; 92 

both under moisture stress and waterlogged conditions. It suffers less from diseases, gives better 93 

grain yield and possesses higher nutrient contents, especially protein, when grown on Vertisols 94 

rather than on Andosols (Seyfu, 1997). Tef is cultivated on about 2.1 M ha of land covering 95 

about 28% of the area under cereals in the country (CSA, 2005). Similar to grass, this crop offers 96 

a better soil cover and denser root system than other crops and hence has good value for erosion 97 

control, to the point that Eragrostis species are sometimes presented as a valid alternative for 98 

vetiver grass (Nyssen et al., 2009). Traditionally, this fine-grained cereal (l000-seed weighs only 99 

265 mg, Seyfu, 1997) is cultivated with intensive seed bed preparations with 3-5 passes in semi-100 

arid (Solomon et al, 2006; Melesse et al., 2008) and 5-8 passes in humid areas of the country 101 

(Fufa et al., 2001) using the ox- driven local maresha, aimed mainly to avoid weeds. The seed is 102 
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then broadcasted over the surface of the seedbed after which it is mixed to the seedbed by use of 103 

thorny branches (Deckers et al., 2001b).  Due to the dominance of the vertic soils in the area, 104 

tillage is very difficult and farmers associate this with injuries on the shoulders of the oxen. More 105 

labor input and longer time is needed to accomplish the plowing activity (Fassil, 2002).  106 

In contradiction to the traditional belief, reduced tillage in experiments conducted in the 107 

central highland Vertisols with high rainfall have shown higher yield, although it was not 108 

statistically significant (Erkossa et al., 2006; Balesh et al., 2008). A similar study in the 109 

Adigudom Vertisol also showed promising results for the use of minimum tillage for tef growth 110 

(Habtegebrial et al., 2007). However, most of these studies stress only crop parameters and the 111 

gross margin of tef. There is little information on the effect of tillage practices on soil physical 112 

quality. Therefore, the objective of this study is to evaluate the impacts of CA practice, 113 

permanent beds together with terwah and traditional tillage, on changes in some soil physical 114 

quality indicators, soil erosion, tef yield and its yield components. 115 

 116 

2. Materials and methods 117 

 118 

2.1. The study site 119 

 120 

The CA experiment began in January 2005 in Gumselasa (Adigudom), Northern Ethiopia 121 

(13°14' N and 39°32' E) located ~740 km north of Addis Ababa at an altitude of 1960 m a.s.l. 122 

(Fig.1). The area has a cool tropical semi-arid climate, characterized by recurrent drought 123 

induced by moisture stress. Rainfall in the study site is unimodal, with > 85% falling in the 124 

period of July -September (Fig. 2). The mean annual rainfall (26 yr) is 504.6 mm (MU-IUC, 125 

2007) and the mean annual temperature is 23 °C. The average annual evapotranspiration was 126 

estimated as 1539 mm (NEDECO, 1997). According to USDA soil classification, the soil has a 127 

clay content of 73% and 24% silt content with high calcium content (20%) and high pH-H2O 128 
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(8.1).  High pH is common in areas where annual precipitation is lower than annual 129 

evapotranspiration. Taking into account the swelling and shrinking characteristic which lead to 130 

wide and deep cracks during the dry season and the presence of neo-formed smectites (Nyssen et 131 

al., 2008), the soil is classified as pelli Calcic Vertisol according to WRB (1998) and Typic 132 

Calciustert according to Soil Survey Staff (USDA, 1999).  133 

 134 

2.2. Experimental layout 135 

 136 

The experiment was conducted on a farmer‟s field under rainfed conditions. All plowing and 137 

reshaping of furrows was done using the maresha (as described by Gebreegziabher et al, 2009). 138 

Tef was sown by broadcasting in all plots on August 4, 2006. The sowing rate was 30 kg ha
-1

 and 139 

the fertilizer rate was 100 kg ha
-1

 DAP and 50 kg ha
-1

 Urea for all treatments. The moisture 140 

content at sowing was 0.291 kg kg
-1

. The experimental design was a randomized complete block 141 

with two replications for each of the following treatments:  142 

1. Traditional tillage practice (TRAD): The land was plowed three times, once in May, once in 143 

July and the last time on the sowing date, just before broadcasting the seed.  144 

2. Terwah (TERW): This is a traditional water conservation technique in which furrows are 145 

made by maresha along the contour at an interval of 1.5-2 m. It is similar to TRAD except for 146 

the furrows are made at regular intervals 147 

3. Permanent beds (PB): Beds and furrows of 60-70 cm width (middle of the furrow to the next 148 

one) were made after plowing the plots. The furrows were reshaped after every cropping season 149 

without any tillage on the top of the bed. In the current experiment, the furrows were reshaped 150 

in May and refreshed on the sowing date.  151 
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The whole experimental field was isolated from the upslope area by a 1.2 m wide and 0.5 m 152 

deep ditch to avoid any flow of water entering the upper side of the experimental field. The 153 

plots were separated from each other by a 0.5 m wide ditch, in order to avoid surface or 154 

subsurface hydrological „contact‟ between them. The size of each plot was 19 m * 5 m and it 155 

had a 3% slope. Wheat was sown in the summer 2005 rainy season and tef in the rainy season 156 

of 2006. Runoff collection ditches at the bottom of each plot were lined with 0.5 mm thick 157 

plastic sheets to collect runoff and sediment generated from the experimental plots. The size of 158 

the trenches was ~1.5 m wide at the top, 4.5 m long and ~1 m deep. Trench depth and shape 159 

was variable and hence each trench was calibrated for volume-depth relationships.  160 

 161 

2.3. Soil sampling and analysis 162 

 163 

Disturbed composite soil samples of 1.5 kg were collected from each plot from 0-20 cm 164 

depth in May 2006, prior to the first plowing for analysis of soil texture, soil organic matter 165 

(SOM), CaCO3, soil shrinkage characteristic curve and aggregate stability. Undisturbed samples 166 

were also collected from each plot and soil depth to determine the soil water retention curve. 167 

Standard sharpened steel 100 cm
3
 cylinders were driven into the soil using a dedicated ring 168 

holder (Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands). The particle size 169 

distribution of the mineral components of the soils (i.e. after destruction of organic matter and 170 

CaCO3) was determined using the combined sieve and pipette method (De Leenheer, 1959). 171 

SOM was determined using the Walkley and Black (1934) method, while CaCO3 was 172 

determined by acid neutralization (De Leenheer, 1959). 173 

The soil shrinkage characteristic curve (SSCC), describing the volume changes of clay soils 174 

with change in moisture content was determined using the balloon method as first described by 175 

Tariq and Durnford (1993) and slightly modified by Cornelis et al. (2006a). Soil samples (40-50 176 
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cm
3
 of air-dried, crumbled soil) were passed through a 2 mm sieve, saturated with distilled 177 

water and put inside a rubber balloon taking care to avoid air entrapment. The samples were 178 

gradually dried by air flowing at low pressure over the sample and their volume and weight was 179 

recorded regularly by submergence in water. A simple four-parameter model as presented by 180 

Cornelis et al. (2006b) was then fitted through the observed void ratio e - moisture ratio  data 181 

pairs:  182 

 183 

 expo c

b
e e a  (1) 184 

 185 

where, e0 is the void ratio at oven-dryness (m
3
 m

-3
), and a, b and c are fitting parameters 186 

determined by curve-fitting to observed SSCC data, for which we used MathCad 2000 software. 187 

The moisture ratio  (m
3
 m

-3
) was calculated as: 188 

 189 

 w

w s

 (2) 
190 

 191 

where, w is gravimetric water content (kg kg
-1

), s is particle density (Mg m
-3

) and w water 192 

density (Mg m
-3

). The void ratio e (m
3
 m

-3
) can be written as: 193 

 194 

 1
b

se , (3) 195 

 196 

where b is bulk density (Mg m
-3

).  197 

The soil water characteristic curve (SWCC) was determined using the sandbox apparatus 198 

(Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands) for high soil matric potentials 199 
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(0-0.01 MPa) and standard tension plate (Soilmoisture Equipment, Santa Barbara CA, USA) for 200 

low soil matric potentials (0.02-1.5 MPa), following the procedure outlined in Cornelis et al. 201 

(2005). Gravimetric water content was converted to volumetric water content using bulk density. 202 

The latter was computed for each data pair of the SWCC by combining the SSCC (Eq. 1) with 203 

Eqs. (2) and (3). To fit the curve through the observed matric head h - volumetric water content θ 204 

data pairs, the van Genuchten (1980) expression was used: 205 

  206 

 

m

nrsr

1

1
 (4) 207 

 208 

where, θ r and  θ s  are residual and saturated soil water content, respectively, (m³ m
-3

),  ψ is the 209 

matric potential (cm), and  (in cm
-1

 for ψ in cm) and n (dimensionless) are fitting parameters 210 

obtained by using RETC software (van Genuchten et al., 1991). We restricted the number of fitting 211 

parameters to four, as suggested by Cornelis et al. (2005), with m = 1-1/n.  212 

The SWCC was then used to compute the soil physical quality index (S) as defined by Dexter 213 

(2004), and macroporosity and matrix porosity, air capacity and plant-available water capacity 214 

according to Reynolds et al. (2007). Dexter (2004) defined S as the slope of the soil water 215 

retention curve at its inflection point and it can be written as:  216 

 217 

 

1
[ 2]2 1

( ).[ ]
1

n
s r

n
S n

n  (5)
 218 

  219 

The value of S is an indication of the extent to which soil porosity is concentrated into a 220 

narrow range of pore sizes and is assumed to be a measure of soil microstructure, which controls 221 

many soil physical properties. The residual water content θ r was set at a zero value, as was also 222 
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done by Dexter (2004). This parameter is mathematically defined as the water content where dθ/dψ 223 

becomes zero or at ψ = -  MPa, which is physically not realistic. Furthermore, θ r often becomes 224 

negative in the curve-fitting procedure and as negative water content is undefined; it is then forced 225 

to converge to zero, which results as well in an unrealistic path of the retention curve at low water 226 

contents (Cornelis et al., 2005).   227 

Macroporosity (MacPOR - mac) and matric porosity (MatPOR - mat) express the volume of 228 

macropores and matrix pores, respectively (Reynolds et al., 2007): 229 

 230 

 mmat  (6) 231 

 matsmac  (7) 232 

 233 

where, m is the saturated volumetric water content exclusive of macropores (i.e. soil matrix 234 

porosity; m
3
 m

-3
).  235 

Reynolds et al. (2007) defined m as the water content at a matric potential of -0.1 m (-1 236 

kPa), or, when using the capillary rise equation (Jury and Horton, 2004), the water content 237 

contained in pores with diameters >300 µm. In contrast to Reynolds et al. (2007), we considered 238 

macropores as pores with a diameter >50 µm and thus related macroporosity to their functions in 239 

relation to plant growth, as suggested by Lal and Shukla (2004). Such pores correspond to 240 

transmission pores facilitating air movement and drainage of excess water (Greenland, 1977). 241 

According to this definition, m is the water content at a matric potential of -0.6 m (-6 kPa). 242 

The soil air capacity (AC), which is an indicator of soil aeration (Reynolds et al., 2007), was 243 

calculated as: 244 

 245 

 FCsAC  (8) 246 

 247 
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where, FC is the volumetric water content at so-called field capacity (m
3
 m

-3
).  248 

 The latter ( FC) was determined gravimetrically on a 2 x 2 m plot adjacent to our 249 

experimental site and with similar texture. An earth embankment was constructed along the four 250 

sides of the plot, which was ponded with water overnight to saturate the soil profile until 1 m 251 

depth. The plot was then covered with a plastic sheet to avoid evaporation and was left to drain 252 

under the influence of gravity. Soil samples taken from 0-20 cm after 48 hours were used to 253 

determine the gravimetric water content at field capacity, and this value was converted to 254 

volumetric values using the SSCC. 255 

Plant-available water capacity (PAWC), which expresses the soil‟s capacity to store and 256 

provide water that is totally available to plants, was calculated as: 257 

 258 

 PWPFCPAWC  (9) 259 

 260 

where PWP is the volumetric water content at permanent wilting point (m
3
 m

-3
), which we 261 

assumed to correspond to a matric potential of -150 m (-1.5 MPa). 262 

The stability of the soil aggregates to a depth of 20 cm was determined using the dry and wet 263 

sieving method of De Leenheer and De Boodt (1959). Soil samples were air-dried and 0.25 kg 264 

was sieved on sieves with mesh sizes of 8.00, 4.76, 2.83, 2.00, 1.00, 0.50 and 0.30 mm to obtain 265 

the aggregate-size distribution. Then, per fraction four subsamples were taken and pre-wetted 266 

until „field capacity‟ by falling raindrops. After incubating the samples for 24 hours, they were 267 

subjected to wet sieving. The stability of the aggregates to external forces was then expressed in 268 

terms of the stability index (SI): 269 

 270 

 
wetdry MWDMWD

SI
1

 (10) 271 
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 272 

where, MWDdry and MWDwet is the mean weighted diameter (mm) of the dry and wet sieving, 273 

respectively 274 

Runoff volume was measured at 8 AM, each day after a storm that caused runoff, by 275 

measuring the depth of collected runoff in the trench using a graduated ruler and reducing the 276 

amount of direct rainfall into the ditches. The collected runoff was stirred thoroughly and ~ 4 l 277 

was collected from each trench using two 2 l plastic bottles for the determination of sediment 278 

concentration. Then the contents of runoff in each bottle were filtered separately in the 279 

laboratory using funnel and filter paper (Whatman # 12), making the number of observations 12 280 

for soil loss determination. Sediment on the filter paper was then oven-dried for 24 hours at 281 

105°C and weighed.  282 

Agronomic parameters (plant height at maturity, tef dry matter, yield, and weed dry matter) 283 

were collected. For the determination of yield, harvestable areas of 2 x 8 m and 2 x 6 m were 284 

delineated. Hand weeding was performed 4 and 8 weeks after sowing. The weed dry matter was 285 

determined by air-drying the first weeding. The Harvest Index was also calculated as the ratio 286 

of grain yield to the dry above-ground biomass.  287 

 288 

2.4. Statistical analysis 289 

 290 

ANOVA was used to test the statistical differences of soil physical properties and crop 291 

parameters between the management treatments. Mean comparison (student t-test, at alpha = 292 

0.5) was conducted for parameters that were significantly different. The JMP version 5.0 (SAS 293 

Institute Inc., 2002) software was used for analysis. 294 

 295 

 296 

 297 
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3. Results 298 

 299 

3.1. Soil organic matter and aggregate stability 300 

 301 

PB had significantly higher (p=0.0003) soil organic matter (SOM) than TRAD and TERW, 302 

while the latter two didn‟t show a significant difference (Fig. 3). Although the stability index of 303 

aggregates in PB was higher than for the TERW and TRAD (Fig. 4), the differences among the 304 

three treatments were not significant. There was no significant difference among the different 305 

size classes for the three treatments either (data not shown). 306 

 307 

3.2. Soil water characteristic curve and derived soil physical quality parameters 308 

Table 1 shows soil moisture content at saturation (θs), S, MatPOR, MacPOR, θPWP, AC and 309 

PAWC values as calculated for the different treatments. PB and TRAD have relatively higher 310 

moisture content near saturation compared to TERW. The field-derived water content at field 311 

capacity was 0.510 m
3
 m

-3
 for the site. This corresponds to matric potential values between       312 

-100 to -200 kPa, when using the SWCC (figure not shown). The SSCC developed for the site 313 

is presented in Fig 5. The bulk density and void ratio at oven dryness was 1.87 Mg m
-3

 and 314 

0.39, respectively. PB had higher MacPOR (0.070 m
3
 m

-3
) compared to TRAD (0.063 m

3
 m

-3
), 315 

while TERW (0.055 m
3
 m

-3
) had the lowest value (Table 1).  TRAD showed higher MatPOR 316 

followed by PB, whereas TERW had the lowest value. PB and TRAD had equivalent AC 317 

values, 0.087 m
3
 m

-3 
and 0.088 m

3
 m

-3
, respectively, which are higher than that of TERW 318 

(0.059 m
3
 m

-3
). The θPWP of all the treatments is similar (~0.35 m

3
 m

-3
). The PAWC of TERW 319 

(0.158 m
3
 m

-3
) and TRAD (0.159 m

3
 m

-3
) were slightly higher than PB (0.155 m

3
 m

-3
). 320 

 321 

 322 

 323 
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3.3. Runoff and soil loss 324 

 325 

The runoff generated after each rainfall that caused runoff was not significantly different 326 

between the treatments in the first week after sowing (Fig. 6). Once the soil stabilized, however, 327 

(i.e after crop emergence) TRAD had significantly higher runoff volume than PB for a given 328 

rainfall amount. Nevertheless, the runoff generated from TERW and PB was not significantly 329 

different for the second and third week after sowing, although runoff from TERW was higher. 330 

After the furrows were filled with sediment TERW had the highest loss, although the loss was 331 

not significantly different from TRAD on days when rainfall was higher (i.e., August 27 and 332 

September 3 and 4 2006). Even after the furrows were filled with sediment, TERW had 333 

significantly lower runoff compared to TRAD for most days with little rainfall. The overall 334 

runoff volume over the complete growing period showed that PB had significantly lower runoff 335 

than TRAD (Fig. 7). PB also showed lower runoff compared to TERW, though it was not 336 

significant. The mean of total runoff volume collected from TRAD, TERW and PB was 92.8, 337 

78.2 and 46.7 mm, respectively. 338 

  339 

Soil loss also followed a similar trend to runoff in the first week after sowing. However, 340 

there was a significantly higher soil loss from TRAD on August 9 when there was very high  341 

rainfall. Soil loss from TERW was significantly higher than for PB, unlike the runoff data 342 

during the third week after sowing. Soil loss was significantly higher in TRAD than the other 343 

two treatments by the end of the rainy season, especially when high rainfall occurred, unlike 344 

runoff where TRAD and TERW had no significant difference. There were significant 345 

differences among all treatments (Fig. 8) in overall soil loss (p=0.0002).  346 

 347 

 348 

 349 
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3.4. Crop yield and its components 350 

 351 

Results of grain yield analysis (Table 2) indicated a significant difference between PB  352 

(with a mean of 678 kg ha
−1

) and TERW (mean yield of 925 kg ha
−1

). There was also a 353 

significant difference (p=0.0016) among treatments in weed infestation. The mean mass of 354 

weed dry matter during the first weeding in the TRAD, TERW and PB was 77, 125 and 242 355 

kg ha
−1

, respectively.  There was a significant (p<0.0001) negative correlation (r= -0.956, n=  6) 356 

between weed dry matter and tef yield.  Plant height at maturity was significantly higher for 357 

TRAD compared with both TERW and PB. The Harvest Index (HI) of PB and TERW was 358 

significantly (p=0.01) higher than TRAD (Table 2). Although there was a significant difference 359 

in yield between treatments, no difference in tef biomass was observed between PB and TERW. 360 

 361 

4. Discussion 362 

 363 

4.1 Soil organic matter and aggregate stability 364 

 365 

The significantly higher SOM in PB was most probably from the incorporation of plant 366 

residue from the previous year. Christensen (1986) and Smith and Elliott (1990) reported that 367 

incorporation of straw and other organic materials promotes soil particle aggregation. Plant 368 

residues from the previous cropping season and less soil disturbance resulted in higher 369 

aggregate stability on PB and our result accords with findings by Gebreegziabher (2006) on the 370 

same experimental site in the previous year (2005). Higher aggregate stability was reported 371 

even in short-term application of reduced tillage or no till (D‟haene et al., 2008; Coppens et al., 372 

2006). In cumulic Phaeozems in Mexico, Govaerts et al. (2007), found significantly higher 373 

aggregate stability on PB with full residue retention compared to those with residue removal. 374 

However, significant differences between the treatments may be obtained in the long term 375 
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(Oorts et al., 2007), as the formation of aggregates is a gradual process. The higher stability 376 

index (SI) can contribute to improved infiltration of water and hence more soil water storage in 377 

PB than in the other treatments. According to the De Leenheer and De Boodt (1959) 378 

classification for stability index, our soils can be classified as „good‟. Generally the presence of 379 

cementing agents like CaCO3, high clay content and the addition of residue resulted in good 380 

aggregate stability. 381 

 382 

4.2. Soil physical properties and soil physical quality indicators  383 

 384 

The high clay content caused more pronounced shrinkage in a way to have a very high bulk 385 

density and low void ratio at oven dryness. These values are similar to Cuban Vertisols 386 

(Cornelis et al., 2006a). According to Dexter (2004), the soil physical quality index of our soil 387 

was good because all S values were > 0.035, which is the critical value. He stated that soils with 388 

high S than 0.035 have better soil microstructure than those with S value <0.035. However, it is 389 

questionable if the critical value suggested by Dexter (2004) is also applicable to shrinking 390 

soils. The high moisture content at saturation for PB can be due to large amounts of macropores 391 

produced by the cessation of tillage; whereas the reason for the high value in TRAD is presently 392 

unclear. The high MacPOR of PB relative to the other treatments might be due to less soil 393 

disturbance and addition of residue from the previous crop that had led to the formation of 394 

macropores. In Canada, two years application of no-till (NT) increased MacPOR rapidly on 395 

clay loam soil (Reynolds et al., 2007). Our finding is supported by the relatively high SOM in 396 

PB compared with TERW and TRAD, although it was not significant. The lower bulk density 397 

of PB at saturation compared to TERW also tells us that PB has larger MacPOR. Overall, the 398 

MacPOR of all treatments is in the range for undegraded soils, for medium to fine textured soils 399 

according to Drewry and Paton (2005). The soil MacPOR refers to pores with diameter >0.05 400 

mm, whereas MatPOR refers to pores having equivalent diameters <0.05 mm. The higher 401 
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MatPOR in TRAD is expected due to its lower MacPOR than that of PB. The MacPOR and 402 

MatPOR of TERW were lower than the other two treatments. The lower AC value of TERW 403 

relative to PB and TRAD could be due to the low moisture content at saturation. According to 404 

the suggestion of Cockroft and Olsson (1997), our soil has lower AC to compensate for low gas 405 

diffusion rates and the respirative demands of biological activity, although AC requirement of 406 

tef is not yet studied. This may be due to the inherent nature of Vertisols. There is no distinct 407 

difference in PAWC between treatments because permanent wilting point (PWP) values are 408 

quite similar as it is mainly affected by texture rather than soil structure. Moreover, Reynolds et 409 

al. (2007) mentioned that PAWC does not respond substantially in fine textured soils. 410 

 411 

4.3. Runoff and soil loss  412 

 413 

In the central highland Vertisols of Ethiopia, erosion experiments were conducted to test the 414 

effect of the Broad Bed Furrow (BBF) to drain excess water from the field (Erkossa et al. 415 

2005). However, in the Vertisols of the northern highlands, water shortage is a serious problem 416 

and water conservation is a major concern. Accordingly, our experimental site was designed to 417 

study possible methods that can harvest as much moisture for healthy growth of different crops 418 

grown in the area to enhance in-situ water conservation. Gebreegziabher et al. (2009) found 419 

over 60% decrease in total runoff using wheat as a test crop in the previous growing period, 420 

while we found 50% decrease in PB compared to TRAD. Our result accords with their findings.  421 

The runoff generated from all the treatments in the first week after sowing was not significantly 422 

different between treatments. This can be due to the disturbance of the field during reshaping 423 

and plowing at sowing. Once the soil was stabilized, (i.e after crop emergence), TRAD had a 424 

significantly higher runoff volume than PB for a given rainfall amount. Engel et al. (2009) 425 

found variation in runoff during the different growth stages of crops grown on their research 426 

under simulated rainfall. However, they also found significantly lower runoff from the NT 427 
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treatment over the total growing period, as has been the case in our site. Soil management can 428 

have different impacts on runoff under different crops (Gebreegziabher et al., 2009). NT under 429 

young olive groves grown on heavy clay soil in Spain resulted in highest runoff and least soil 430 

physical quality compared to conventional tillage (Gomez et al., 2009). PB has reduced 431 

sediment loss by 85% and TERW by 70%. Long-term experiments under CA using simulated 432 

rain have shown significantly lower runoff in direct till and no till experiments compared with 433 

conventional tillage practices (Zhang et al., 2007; Jin et al., 2008; Jin et al., 2009). The higher 434 

soil loss measured on September 4 and 7, 2006 (Fig. 6) may be due to high intensity rainfall 435 

that caused more soil detachment, although crop cover was higher compared to the first weeks 436 

after sowing. Antecedent moisture and amount, duration and intensity of rainfall affect runoff 437 

amount. Runoff substantially increases as rain falls frequently and soil is saturated. The 438 

infiltration rate is reduced as deeper soil layers become saturated, since the hydraulic gradient 439 

decreases. This may have caused higher amounts of runoff at the end of the rainy season. Both 440 

for soil loss and sediment yield, our findings are consistent with those of Gebreegziabher et al. 441 

(2009). We therefore support their suggestion that TERW can be a better step towards 442 

permanent in-situ moisture conservation and runoff reduction for all crops. 443 

 444 

4.4 Agronomic parameters 445 

 446 

The study shows that PB and TERW reduced tef yield and biomass production on the 447 

experimental site. In contrast to tef, Gebreegziabher (2006) found 30 and 33.3% higher yields 448 

of wheat (Triticum Spp.) on TERW and PB, respectively, compared to TRAD, though the 449 

differences were not significant. This shows that the type of crop grown has different responses 450 

for the implemented soil water management systems on Vertisols (Erkossa et al., 2006). 451 

Habtegebrial et al. (2007) found higher moisture content in minimum tillage compared to 452 

conventional tillage near our experimental site. However, Seyfu (1997) reported that tef can 453 
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grow both under moisture stress and waterlogged conditions.  A greenhouse experiments by 454 

Ameha (2002) showed that the crop can grow at a matric potential of even as low as –3.7 MPa. 455 

This shows that the crop can resist water stress without reducing yield. The amount of rainfall 456 

in 2006 was ~110 mm more than the long-term average, so that even in TRAD, there was no 457 

shortage of water during the cropping season. Moreover, the PAWC of the three treatments 458 

were similar, evidencing that moisture stress may not be the reason for lower yield in PB and 459 

TERW. Waterlogging was also not observed during the growing period in our experiment. Tef 460 

is a weed sensitive crop and needs more frequent plowing, especially in heavy clay soils 461 

(Rockström et al., 2009; Seyfu, 1997; Taddesse 1969). PB had significantly higher weed 462 

infestation than TRAD. Similar results were reported on zero tillage (Balesh et al., 2008) and 463 

minimum tillage on Vertisols in Ethiopia (Habtegebrial et al., 2007). Rezene and Zerihun 464 

(2001) reported yield loss of 23-65% due to weed competition. Therefore, the significantly 465 

lower production (p= 0.0174) of tef on PB compared to TERW and TRAD in this experiment 466 

could most probably be due to resource competition from high weed infestation. Balesh et al. 467 

(2008) reported lower grain yield and biomass on zero tillage compared to the other treatments 468 

in the central highland Vertisols of Ethiopia during the second year of their research. 469 

Researchers, however, suggest minimum or reduced tillage with herbicide application (Erkossa 470 

et al., 2006; Sasakawa Global., 2004) as a better option for tef production on Vertisols, because 471 

it yields slightly higher or almost similar grain yield compared to conventional tillage. The 472 

grain yield from TERW in our experiment is in the higher range of national average yield of tef, 473 

although it was lower than that of TRAD. Therefore, considering it as the first step towards PB 474 

may be a better option, as proposed by Gebreegziabher et al. (2009). The significantly higher 475 

HI on PB and TERW compared to TRAD (p=0.0100) is in line with the strong negative 476 

correlation (p<0.005, n=6) of HI with yield and biomass of tef (r = -0.97 and r = -0.99, 477 

respectively).  478 

 479 



 20 

5. Conclusions 480 

 481 

This short-term research showed significantly higher SOM in PB compared to the other 482 

treatments. However, the SWCC shows that PB and TRAD had relatively higher moisture 483 

content near saturation compared to TERW. The relatively higher MacPOR of PB showed that 484 

the increase in the SOM and aggregate stability have contributed to this improvement. The 485 

effectiveness of TRAD and PB in runoff and soil loss reduction suggests that these soil 486 

management systems could be a requirement for all crops for better soil and water conservation. 487 

Despite the above improved soil physical properties and soil erosion reduction, which most 488 

probably resulted in higher soil water storage in PB than in the other treatments, yield, biomass 489 

and plant height of tef were significantly higher in TRAD than in PB. The significantly high 490 

weed dry matter at first weeding in PB, the types of weeds and their water uptake behavior have 491 

most probably caused the reduced tef yield. 492 
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Table 1. Soil moisture and bulk density at saturation calculated from SSCC, and soil physical 722 

quality index (S), matric porosity ( mat), macro porosity ( mac), water content at permanent 723 

wilting point (θPWP), plant available water content (PAWC) and air capacity (AC) calculated 724 

based on the van Genuchten (1980) parameters of the soil water retention curve for the different 725 

treatments. Values with standard errors, α =0.05, n=6). 726 

Treat 

ments 

Soil physical quality parameters 

b (Mg m-3) θs  

(m3 m-3) 

S 
mat  

 (m3 m-3) 

mac 

(m3 m-3) 

θPWP 

 (m3 m-3) 

PAWC  

(m3 m-3) 

AC               

(m3 m-3) 

PB 0.98± 0.031a 0.596±  0.014a  0.067 0.527 0.070 0.355 0.155 0.087 

TERW 1.05±  0.004a  0.569±  0.017a 0.06 0.514 0.055 0.352 0.158 0.059 

TRAD 0.98±  0.021a  0.598±  0.009a 0.06 0.535 0.063 0.351 0.159 0.088 

 727 

1
 List of abbreviations728 

                                                 
1
 AC – Soil Air Capacity 

CA – Conservation Agriculture 

HI- Harvest Index 

MacPOR = mac= Macro Porosity 

MatPOR = mac=Matric Porosity 

PAWC – Plant Available Water Content 

PB - Permanent bed 

SOM – Soil Organic Matter 

S – Soil Physical Quality Index  

SSCC – Soil Shrinkage Characteristics Curve 

SWCC – Soil Water Characteristics Curve 

SI – Stability Index  

TERW – Terwah 

TRAD – Traditional tillage practice 
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Table 2. Agronomic parameters, mean tef yield, mean biomass, mean plant height, mean weed 729 

dry matter at first weeding and harvest index for the different treatments. Values between 730 

parenthesis are standard error (α = 0.05, n = 6) 731 

Treatment Tef yield  

(kg ha
-1

) 

Weed dry matter 

(kg ha
-1

) 

Tef biomass 

(kg ha
-1

) 

Plant height at 

maturity (cm) 

Harvest index 

TRAD  1173 (50) a  77 (4) c  6.7 (0.18) a  44 (2.5) a  0.18 (0.007) b  

TERW  925 (99) b 125 (10) b  4.5 (0.64) b  39 (3.5) b  0.21(0.007) a  

PB  678 (73) c 242 (17) a  3.0 (0.69) b  31(1.7) b  0.22 (0.004) a  

Values with different letters within a column are statistically significant (P<0.05)732 
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Figure caption 733 

Figure 1. Location map of the study area  734 

Figure 2. Mean monthly rainfall in Adigudom (1972 – 2006) (source: MU-IUC, 2007) 735 

Figure 3. Mean soil organic matter (±SE) for the three treatments for 0-20 cm soil depth (n=6) 736 

Figure 4. Mean aggregate stability index (±SE) for the three treatments for 0-20 cm soil depth 737 

(n=12) 738 

Figure 5. Soil shrinkage characteristic curve fitted according to the model of Cornelis et al. 739 

(2006b) for samples collected from 0-20 cm 740 

Figure 6. Rainfall, runoff and sediment loss after each rainfall event that caused runoff for the 741 

different types of soil management practices: PB = Permanent bed, TERW = Terwah, TRAD = 742 

traditional tillage practice.  Same letters within each day indicate no significant difference 743 

Figure 7. Mean total runoff depth (±SE) for the growing period (n=6) 744 

Figure 8. Mean total soil loss (±SE) from each treatment during the whole growing period (n=12) 745 
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