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Abstract

Partitioned simulations of fluid-structure interaction can be solved for the inter-
face’s position with Newton-Raphson iterations but obtaining the exact Jacobian
is impossible if the solvers are “black boxes”. It is demonstrated that only an
approximate Jacobian is needed, as long as it describes the reaction to certain
components of the error on the interface’s position. Based onthis insight, a quasi-
Newton coupling algorithm with an approximation for the inverse of the Jacobian
(IQN-ILS) has been developed and compared with a monolithicsolver in previ-
ous work. Here, IQN-ILS is compared with other partitioned schemes such as
IBQN-LS, Aitken relaxation and Interface-GMRES(R).
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1. Introduction

Recent research on fluid-structure interaction (FSI) has yielded both more
complex applications and algorithmic improvements. Interesting applications of
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FSI can be found in aeronautics [1, 2] where FSI is used to assess flutter. Other
challenging problems are the dynamic analysis of parachutes [3] due to the thin,
highly flexible structure and the interaction between a structure and free-surface
flow [4, 5]. Also of great interest are biomedical applications like blood flow in
arteries [6, 7, 8] and in artificial heart valves [9, 10, 11].

An FSI problem consists of a fluid domain and a structural domain with in
between the fluid-structure interface. This multi-physicsproblem with adjacent
domains can be simulated in a monolithic or in a partitioned way. The former
signifies that both the flow equations and structural equations are solved simul-
taneously [12, 13] while the latter means that they are solved separately. The
monolithic approach requires a code developed for this particular combination of
physical problems whereas the partitioned approach preserves software modular-
ity. Moreover, the partitioned approach allows to solve theflow equations and the
structural equations with different, possibly more efficient techniques which have
been developed specifically for either flow equations or structural equations. On
the other hand, a coupling algorithm is required to take intoaccount the interaction
between flow and motion of the structure in partitioned simulations.

Both Newton-Raphson methods and fixed-point methods can be used to solve
FSI problems and other multi-physics problems with adjacent, non-overlapping
domains like soil-structure interaction [14, 15], but also the particle finite ele-
ment method [16], smooth particle hydrodynamics [17, 5], immersed boundary
methods [18] and fictitious domain methods [19] have been used to solve FSI
problems. The prefixinterfaceis added to the classification if the method only
operates on variables related to the fluid-structure interface and the prefixblock
before Newton-Raphson denotes that the Jacobian consists ofdistinct blocks. In
the following paragraphs, an overview of some existing methods is given.

Block Newton-Raphson methods can be used in both the monolithic [12, 13,
20] and the partitioned [21, 22] approach. These methods solve the nonlinear flow
equations and the structural equations for the variables inthe entire fluid and solid
domain with the Newton-Raphson method. As the flow problem is solved on a
moving grid, the Jacobian of the flow equations with respect to the interface’s
position, the so-called shape derivative, is difficult to calculate. However, it is
possible to calculate the complete Jacobian exactly [23]. The linear system within
the Newton-Raphson iteration can also be solved without knowledge of the Jaco-
bian with a matrix-free Krylov solver, using a finite-difference approximation of
the Jacobian-vector product [20, 21].

Whereas block Newton-Raphson methods solve the flow and structural prob-
lem for the state in the entire fluid and solid domain, Fernandez and Moubachir

2



[24] rewrote the fluid-structure problem as a nonlinear problemin the state of the
structure, with the flow state as internal variables of the problem. This system is
subsequently solved with the Newton-Raphson method using the exact Jacobian.

It is also possible to reformulate an FSI problem as a system with only the
degrees-of-freedom in the interface’s position as unknowns and with all remain-
ing variables in the fluid and solid domain as internal variables. This domain
decomposition condenses the error of the FSI problem into a subspace related to
the interface [25]. The FSI problem can hence be written as either a root-finding
problem or a fixed-point problem, with the interface’s position as unknowns.

Interface Newton-Raphson methods solve this root-finding problem with Newton-
Raphson iterations, e.g. with an approximation of the Jacobian from a linear
reduced-physics model [26, 27]. The linear system within the Newton-Raphson
iteration can also be solved with a matrix-free Krylov solver, for example the
generalized minimal residual method (GMRES), using an approximation of the
Jacobian-vector product based on finite-differences or with a linear combination
of the previous residual vectors in Interface-GMRES(R) [25, 28, 29].

The fixed-point problem can be solved with fixed-point iterations, also called
(block) Gauss-Seidel iterations [22], which means that the flow problem and struc-
tural problem are solved successively until the change is smaller than the con-
vergence criterion. However, the iterations converge slowly if at all, especially
when the interaction between the fluid and the structure is strong due to a high
fluid/structure density ratio or the incompressibility of the fluid [7]. The conver-
gence of the fixed-point iterations can be stabilized and accelerated by Aitken re-
laxation and steepest descent relaxation, which adapt the relaxation factor in every
iteration based on the previous iterations [30]. If the interaction between the fluid
and the structure is weak, only one fixed-point iteration is required within each
time step [1, 31, 32, 33, 34, 35]. These so-called staggered or loosely coupled
methods do not enforce the equilibrium on the fluid-structure interface within one
time step but they are suitable for aeroelastic simulationswith a heavy and rather
stiff structure.

Vierendeels et al. [8] rewrite the FSI problem as a system of equations with
both the interface’s position and the stress distribution on the interface as un-
knowns, and this system is solved with block quasi-Newton iterations of the
Gauss-Seidel type. The Jacobians of the flow solver and structural solver are ap-
proximated by means of least-squares models, constructed with the position of the
fluid-structure interface and the stress distribution on the interface in all previous
quasi-Newton iterations within one time step [8, 36]. This method will be referred
to as IBQN-LS, meaning interface block quasi-Newton with an approximation for
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the Jacobians from least-squares models.
In this work, the focus lies on partitioned methods and more specifically on

methods that couple a black-box flow solver and structural solver. When the
solvers are black boxes, it is difficult or even impossible toobtain the Jacobian
matrices which are required in Newton-Raphson methods. However, a recent sta-
bility analysis [37, 38] on the unsteady, incompressible and inviscid flow in a
straight elastic tube has demonstrated that only certain components of the error
on the interface’s position become unstable or are badly damped during Gauss-
Seidel iterations between the flow solver and the structuralsolver. As will be
explained in this work, this means that if quasi-Newton iterations are used, the
approximate Jacobian only has to describe the reaction to those unstable or badly
damped components; other components of the error will be damped anyhow dur-
ing the coupling iterations. The complete Jacobian is thus not required for fast
convergence of the coupled problem; an approximation of theJacobian can be
used instead.

Based on this insight, a quasi-Newton coupling algorithm with an approx-
imation for the inverse of the Jacobian has been developed [39]. Because the
inverseof the Jacobian is approximated, one avoids that a linear system with as
dimension the number of degrees-of-freedom in the interface’s position has to be
solved in every quasi-Newton iteration. The approximationis constructed with
the least-squares technique developed for nonlinear systems by Vierendeels et al.
[8] and applied to linear systems by Haelterman et al. [40]. A matrix-free im-
plementation of the least-squares technique is described in this work. The term
“matrix-free” denotes that the approximate Jacobian is notconstructed explicitly
but that a procedure to calculate the product of the Jacobianwith a vector is given
such that less memory and CPU time is required. Moreover, information from
previous time steps can be reused in the least-squares approximation and the re-
sults demonstrate that this extension greatly acceleratesthe convergence of the
quasi-Newton iterations. The quasi-Newton algorithm presented in [39] is called
IQN-ILS because it calculates the interface position using quasi-Newton iterations
with an approximation for the inverse of the Jacobian from a least-squares model.

Other techniques that are able to couple black-box solvers are Aitken relax-
ation, Interface-GMRES and IBQN-LS, all of which have been introduced above.
By comparing the algorithms of these techniques with the IQN-ILS algorithm, it is
shown that the IQN-ILS method can easily be implemented in anFSI framework
that currently uses (Aitken) relaxation or Interface-GMRES(R) and that IQN-ILS
is more straightforward to implement than IBQN-LS.

In the results section, the performance of all these techniques is compared in
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two cases, both in terms of how often the flow problem and structural problem
have to be solved within one time step and in terms of the totalsimulation time.
The first case is the steady and unsteady two-dimensional (2D) simulation of a
flexible beam behind a cylinder in a laminar flow, which is validated with a well-
known benchmark [41]. The second case is the propagation of a pressure pulse
in a three-dimensional (3D) flexible tube. These simulations indicate that the
IQN-ILS is faster than Aitken relaxation and Interface-GMRES(R) and that the
performance of IQN-ILS and IBQN-LS is similar.

In previous work [39], the performance of the IQN-ILS algorithm was com-
pared with a monolithic Newton solver in five different casesconsidering various
structural configurations and incompressible fluids. For each case when conver-
gence was reached, the ratio of the time for the IQN-ILS simulation to the time
for the monolithic Newton simulation was between 1/2 and 4, but there was a
case for which the partitioned simulation did not converge.While problems of
various characteristics were solved, still, only specific problems were considered
and in general rather small problems in number of equations.Moreover, the so-
lutions of the structural equations and the flow equations were calculated using a
direct sparse solver with full Newton-Raphson iterations although different solver
schemes, in particular much more efficient for the fluid equations when the num-
ber of elements becomes very large [42], are frequently used in the partitioned
approach. The performance comparisons may consequently look different when
different problems are solved and other solver schemes are used. However, the
general observations given in [39] can be used to assess whether a monolithic or
partitioned solution of a fluid-structure interaction problem might be more effec-
tive.

The remainder of this paper is organized as follows. After providing the nec-
essary definitions in Section2, Section3 explains why an approximation for the
Jacobian can be used. Section4 describes the IQN-ILS technique and the matrix-
free implementation of the least-squares approximation with reuse of information
from previous time steps. In Sections5, 6 and 7, IQN-ILS is compared with
respectively IBQN-LS, Aitken relaxation and Interface-GMRES(R). The perfor-
mance analysis of the coupling schemes is subsequently given in Section8, fol-
lowed by the conclusion in Section9.

2. Definitions

This section gives a definition of the functions that represent the flow solver
and structural solver, as they are used by interface Newton-Raphson and fixed-
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point methods. The governing equations in the fluid and soliddomain, the dis-
cretizations and the solution techniques of the discrete equations are not described
here because they are not important for the comparison between the coupling al-
gorithms but they can be found in [39] or any book on computational fluid and
solid mechanics.

Often, a velocity (or position after time integration) is imposed on the fluid
side of the interface and a stress distribution is applied onthe structural side, which
is a Dirichlet-Neumann decomposition of the FSI problem [7]. The following
abstract definitions emphasize that the solvers are treatedas black boxes.

The function
y = F(x) (1)

is referred to as the flow solver and it concisely represents several operations.
The discretized positionx ∈ Ru of the fluid-structure interface is given to the
flow code, and the grid of the fluid domain adjacent to the interface is adapted
accordingly. Subsequently, the grid velocity is calculated and the flow equations
are solved for the fluid state in the entire fluid domain, whichalso results in a
stress distributiony ∈ Rw on the interface. In an unsteady simulation, bothx and
y are at the new time level and the boundary conditions and other settings ofF
are also adapted to the new time level.

The structural solver is represented by the function

x = S(y). (2)

This expression indicates that the fluid stress distribution on the interface is given
to the structural code which then calculates the position ofthe entire structure and
thus also the new position of the fluid-structure interface.With these definitions,
the FSI problem is given by

x = S ◦ F(x) or R(x) = S ◦ F(x) − x = 0, (3)

in fixed-point or root-finding formulation, respectively, with R being the residual
operator.

If the flow problem and the structural problem are not discretized in the same
way on the fluid-structure interface, there has to be a mapping between the solvers.
In this paper, it is assumed that this mapping is included in one of the solvers if
necessary. An overview of mapping methods can be found in [43]. Radial basis
functions can be used for both interpolation on the fluid-structure interface [44]
and mesh motion in the fluid domain [45].
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Although the solvers are used as black boxes, it is importantto keep in mind
that differences between the numerical methods of both codes can cause undesir-
able effects. When different time integration schemes are used by both solvers, it
is possible that spurious oscillations in time are present in the acceleration of the
fluid and the structure and thus also in the stresses on the interface. This has been
demonstrated both analytically and numerically in [46].

In the remainder of this paper, all values and functions are at the new time
leveln + 1, unless indicated otherwise with a left superscript. A right superscript
indicates the coupling iteration while a subscript denotesthe element in a vec-
tor. Capital letters denote matrices, bold lower case letters indicate vectors and
lower case letters represent scalars. Approximations are indicated with a hat. The
output of the solversF andS is indicated with a tilde because this is only an in-
termediate value that is not passed on to the next coupling iteration. This tilde is
dropped once the final value that will be used in the next iteration has been calcu-
lated. Depending on the context, the equality sign can denote either assignment
or equality.

All coupling algorithms begin the next time step from an extrapolation of the
interface’s position

x
0 =

5

2
(n

x) − 2(n−1
x) +

1

2
(n−2

x), (4)

based on the previous time steps. Lower order extrapolations are used for the first
two time steps.

3. Motivation for the use of quasi-Newton methods

Degroote et al. [37] have presented a stability analysis of the Gauss-Seidel iter-
ations between the flow solver and the structural solver in a partitioned simulation
of the one-dimensional (1D) unsteady flow in a straight, flexible tube. In this sec-
tion, only the conclusion of this analysis is offered as a motivation for the use of
quasi-Newton methods. To simplify the equations, the mass of the structure is ne-
glected and the fluid is incompressible and inviscid. The governing equations are
linearized such that Fourier error analysis can be conducted and the behaviour of
the different wave numbers in the error on the interface’s position can be analyzed.
Although this simplified model does not include all physicaldetails, it provides
insight into the stability of coupling algorithms for partitioned FSI simulations.

The stability analysis investigates the difference between the correct position
of the interface and its value during the Gauss-Seidel iterations (further denoted as
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the error) by decomposing it as a weighted sum of cosine functions with different
wave numbers. The amplificationµ of the error is written as a function of the
wave number and three parameters, namely the dimensionlessstiffness of the tube
κ, the dimensionless time stepτ and the number of degrees-of-freedom in the
discretization of the interfaceu. For more details and the exact definition of these
parameters, the reader is referred to [37].

Figure1 depicts the amplification of the error as a function of the wave num-
ber. From this figure, it can be seen that the error amplification increases ifκ or τ
decreases and that especially the low wave numbers are unstable. However, even
for a very flexible tube and a small time step, only some wave numbers are unsta-
ble. The physical meaning of these curves is shown in Figure2. The position of
the wall of a tube, which initially has a constant cross section and contains fluid at
rest, is perturbed with two different wave numbers. At the inlet and outlet, a zero
pressure is imposed. Because the fluid is incompressible, a displacement of the
interface with a low wave number requires that the fluid is accelerated globally,
which causes large pressure variations throughout the fluidand thus also a violent
motion of the structure. On the other hand, a displacement with a high wave num-
ber only generates local fluid motion and hence smaller pressure gradients and
structural motion. The pressure differences in the case of the high wave number
can barely be seen since the same scale has been used for both wave numbers.
The material properties, geometrical dimensions and time step for this simula-
tion are identical to those in Section8.2. Although the curves in Figure1 depend
on the geometry and discretization, this physical interpretation indicates that the
underlying idea would remain valid in other situations.

Only the components of the error which are unstable (µ > 1) or which dis-
appear slowly (µ ≈ 1) in Gauss-Seidel iterations between the flow solver and the
structural solver, or equivalently Richardson iterations for the FSI problem, have
to be removed by means of a quasi-Newton technique. Thus, forthe quasi-Newton
iterations to converge quickly, the approximate Jacobian only has to describe the
reaction to a limited number of components in the error on theinterface’s position,
namely the components with low wave numbers. For the components which are
not included in the approximate Jacobian, the quasi-Newtoniterations correspond
to Richardson iterations, as will be explained below.

4. IQN-ILS

In this section, the IQN-ILS method with a matrix-free implementation of
the least-squares approximation is presented. IBQN-LS, Aitken relaxation and
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Interface-GMRES(R) are reviewed in the following sections using the same nota-
tion.

The FSI problem reformulated as a set of nonlinear equationsin the interface’s
position

R(x) = 0 (5)

can be solved by means of Newton-Raphson iterations

solve
dR

dx

∣∣∣∣
xk

∆x
k = −r

k (6a)

x
k+1 = x

k + ∆x
k (6b)

with the residual calculated as

r
k = R(xk) = S ◦ F(xk) − x

k = x̃
k+1 − x

k. (7)

The Newton-Raphson iterations in one time step have converged when||rk||2 ≤
εo with εo the convergence tolerance. However, the exact Jacobian ofR is un-
known as the Jacobians ofF andS are unavailable. Moreover, a linear system
(6a) with as dimension the number of degrees-of-freedom in the position of the
fluid-structure interface has to be solved in every Newton-Raphson iteration. Al-
though the number of degrees-of-freedom in the interface’sposition is generally
smaller than the number of degrees-of-freedom in the entirefluid and structure
domain, the Jacobian matrixdR/dx is usually dense. As a result, the solution
of the linear system (6a) corresponds to a significant computational cost in large
simulations, especially if a direct solver is used.

If the JacobiandR/dx is approximated and quasi-Newtons iterations are per-
formed, black-box solvers can be used but this approach doesnot circumvent that
the linear system (6a) has to be solved. It is more advantageous to approximate
the inverseof the Jacobian by applying the least-squares technique introduced by
Vierendeels et al. [8] on a particular set of vectors as will be explained below. The
quasi-Newton iterations with the approximation for the inverse of the Jacobian
can be written as

x
k+1 = x

k +
̂(

dR

dx

∣∣∣∣
xk

)−1 (
−r

k
)
. (8)

It can be seen from equation (8) that the approximation for the inverse of
the Jacobian does not have to be created explicitly; a procedure to calculate the
product of this matrix with the vector−r

k is sufficient. The vector−r
k is the
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difference between the desired residual, i.e.0, and the current residualr
k and it is

further denoted as∆r = 0−r
k = −r

k. In this work, the matrix-vector product is
calculated from information obtained during the previous quasi-Newton iterations.
Equation (7) shows that the flow equations and structural equations are solved in
quasi-Newton iterationk, resulting inx̃

k+1 = S ◦ F(xk) and the corresponding
residualrk. The vectors̃x andr from all previous coupling iterations are also
available, giving a set of known residual vectors

r
k, r

k−1, . . . , r
1, r

0 (9a)

and the corresponding set of vectorsx̃

x̃
k+1, x̃

k, . . . , x̃
2, x̃

1. (9b)

The differences between all vectors from previous iterations (superscripti) and
the most recent vector (superscriptk) are calculated

∆r
i = r

i − r
k (10a)

∆x̃
i+1 = x̃

i+1 − x̃
k+1 (10b)

for i = 0, . . . , k − 1. The final result will be the same if vectors other than
r

k andx̃
k+1 are selected as the reference: choosing the first iteration as reference

would avoid that all differences have to be recalculated in every coupling iteration;
however, choosing the last iteration facilitates the comparison between the IQN-
ILS method and Aitken relaxation in Section6.

Each∆r
i corresponds to a∆x̃

i+1 and these vectors are stored as the columns
of the matrices

n+1V k =
[
∆r

k−1 ∆r
k−2 . . . ∆r

1 ∆r
0
]

(11a)

and
n+1W k =

[
∆x̃

k ∆x̃
k−1 . . . ∆x̃

2 ∆x̃
1
]
. (11b)

Due to the similarity between subsequent time steps, the information from the
previous time steps can be reused. The matricesn+1V k andn+1W k are then com-
bined with those fromq previous time steps (if at leastq time steps have already
been performed), giving

V k =
[
n+1V k nV . . . n−q+2V n−q+1V

]
(12a)
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and
W k =

[
n+1W k nW . . . n−q+2W n−q+1W

]
. (12b)

The columns of the matricesn−i+1V andn−i+1W are calculated by subtracting
the vector of the last iteration of time stepn − i + 1 from all previous vectors in
that time step, in the same way as in equation (10). By including the information
for q previous time steps, the convergence of the coupling iterations is remarkably
accelerated. However, if information from too many time steps is reused, the
convergence can slow down again as information from time stepn−q+1 might no
longer be relevant in time stepn+1. The optimal value ofq is problem dependent
but the convergence of the coupling iterations does not change significantly near
the optimum such that the performance of the method is robustwith respect to the
parameterq.

The number of columns inV k andW k is indicated withv and is generally
much smaller than the number of rowsu. Nevertheless, in simulations with a low
number of degrees-of-freedom on the interface, it is possible that the number of
columns has to be limited tou by discarding the rightmost columns.

The vector∆r = 0−r
k is approximated as a linear combination of the known

∆r
i

∆r ≈ V k
c

k (13)

with c
k ∈ Rv the coefficients of the decomposition. Becausev ≤ u, equation (13)

is an overdetermined set of equations for the elements ofc
k and hence the least-

squares solution to this linear system is calculated. In [8], the solution of the
least-squares problem is calculated as

c
k = (V kT

V k)−1V kT
∆r (14)

but this implementation becomes unstable if the number of columns in the matrix
V k is high which is especially encountered when information from previous time
steps is reused. For that reason, the so-called economy sizeQR-decomposition of
V k is calculated using Householder transformations [47]

V k = QkRk (15)

with Qk ∈ Ru×v an orthogonal matrix andRk ∈ Rv×v an upper triangular matrix.
The coefficient vectorck is then determined by solving the triangular system

Rk
c

k = QkT
∆r (16)
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using back substitution. If a∆r
i vector is (almost) a linear combination of other

∆r
j vectors, one of the diagonal elements ofRk will (almost) be zero. Conse-

quently, the equation corresponding to that row ofRk cannot be solved during the
back substitution and the corresponding element ofc

k is set to zero. The threshold
for the detection of small diagonal elements is set to10−10 · ||Rk||2 in this work.

The∆x̃ that corresponds to∆r is subsequently calculated as a linear combi-
nation of the previous∆x̃

i, analogous to the equation (13), giving

∆x̃ = W k
c

k. (17)

From equation (7), it follows that

∆r = ∆x̃ − ∆x (18)

and substitution of equation (17) in equation (18) results in

∆x = W k
c

k − ∆r. (19)

Because the coefficientsck are a function of∆r, equation (19) shows how∆x can
be approximated for a given∆r. Hence, equation (19) can be seen as a procedure
to calculate the product of the approximation for the inverse of the Jacobian and a
vector∆r = −r

k

∆x =

̂(
dR

dx

∣∣∣∣
xk

)−1

∆r = W k
c

k + r
k. (20)

This matrix-free procedure requires less memory (proportional to the number of
rows and columns inV k, sou × v) and is also faster than the explicit creation of
approximation for the inverse of the Jacobian as

̂(
dR

dx

∣∣∣∣
xk

)−1

= W kRk−1
QkT

− I (21)

with I the unity matrix inRu×u. This is a significant advantage for simulations
with a high number of degrees-of-freedom on the interface.

The relation between∆r and∆x is thus found by means of the∆x̃ values.
One might try to relate the residualr directly to x instead of tox̃, but this ob-
viously will not work as the new input forS ◦ F would be a linear combination
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of the previous inputs. The only new information in the inputof S ◦ F would
originate from numerical errors and the coupling iterations would not converge.

From equation (16), it can be seen that if part of∆r is orthogonal toV k

and thus toQk, the decomposition coefficientsck will be zero for that part of
∆r. Equation (20) shows that this component of the residual is not modified such
that Gauss-Seidel iterations between the flow solver and thestructural solver are
performed for this component of the residual which corresponds to Richardson
iterations for the complete FSI problem. Only the components of ∆r in the span
of the columns ofV k are reduced by means of quasi-Newton iterations.

As for any other Newton-Raphson or quasi-Newton scheme, the IQN-ILS it-
erations will only converge when the initial guess is sufficiently close to the final
solution. For example, if the deformation of the structure within one time step is
too large and the coupling iterations do not converge, then the time step must be
adjusted. The same remark can be made for the IBQN-LS and Interface-GMRES
coupling techniques.

The complete IQN-ILS technique is shown in Algorithm1 and a simplified
version is shown in Figure3(a). Because the matricesV k andW k have to contain
at least one column, a relaxation with factorω (line 4) is performed in the second
coupling iteration of the first time step if information fromthe previous time steps
is reused (q > 0) and in the second coupling iteration of every time step without
reuse (q = 0).

Algorithm 1 IQN-ILS method

1: k = 0; x̃
1 = S ◦ F(x0); r

0 = x̃
1 − x

0

2: while ||rk||2 > εo do
3: if k = 0 and (q = 0 or n = 0) then
4: x

k+1 = x
k + ωr

k

5: else
6: constructV k andW k as shown in equation (10) to (12)
7: calculate QR-decompositionV k = QkRk

8: solveRk
c

k = −QkT
r

k

9: x
k+1 = x

k + W k
c

k + r
k

10: end if
11: k = k + 1; x̃

k+1 = S ◦ F(xk); r
k = x̃

k+1 − x
k

12: end while
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5. IBQN-LS

The IBQN-LS method is explained in detail in Algorithm2 and a simplified
representation is shown in Figure3(b). This coupling technique solves the FSI
problem written as

F(x) − y = 0 (22a)

S(y) − x = 0 (22b)

with block-Newton-Raphson iterations of the Gauss-Seidel type. The linear sys-
tem [

d̂F
dx

−I

−I d̂S
dy

] [
∆x

∆y

]
= −

[
F(x) − y

S(y) − x

]
(23)

is thus first solved for∆x, followed by an update ofx and the right-hand side.
Subsequently, the modified system is solved for∆y andy is updated. As a con-
sequence, the IBQN-LS method modifies the stress distribution that is calculated
by the flow solver before transferring it to the structural solver, as opposed to the
other techniques described in this paper. With the notationfor intermediate values
defined in Section2, the input and output of the flow solver are thus denoted as
x

k andỹ
k+1 and the input and output of the structural solver arey

k+1 andx̃
k+1.

Starting from the positionxk that was given as input to the flow solver in
the previous coupling iteration, the positionx

k+1 = x
k + ∆x

k is calculated by
solving the system

(
I −

d̂S

dy

k
d̂F

dx

k)
∆x

k = x̃
k+1 − x

k +
d̂S

dy

k

(ỹk+1 − y
k+1) (24)

for ∆x
k. As opposed to the original approach of Vierendeels et al. [8], this linear

system is solved with an iterative solver like the generalized conjugate residual
method [48] or the generalized minimal residual method [49] in a matrix-free
way. The matrix on the left-hand side of equation (24) and consequently the

approximate JacobianŝdF
dx

k

and d̂S
dy

k

do not have to be calculated explicitly; a
procedure to calculate the product of these matrices with a vector is sufficient.

The procedure to calculate the product of the approximate Jacobiand̂F
dx

k

or d̂S
dy

k

with a vector is similar to the procedure described in Section 4. The matrix-vector

product with d̂F
dx

k

is calculated from the previous inputs

x
0, . . . , x

k (25a)
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and the corresponding outputs

ỹ
1 = F(x0), . . . , ỹ

k+1 = F(xk). (25b)

of the flow solver which are converted into differences with respect to the last
input and output

∆x
i = x

i − x
k (26a)

∆ỹ
i+1 = ỹ

i+1 − ỹ
k+1 (26b)

for i = 0, . . . , k−1. All ∆x
i and∆ỹ

i+1 from the current time step (and possibly
from previous time steps) are stored as columns of the matricesV k

f andW k
f with

the subscriptf referring to the flow solver. Subsequently, the economy-size QR-

decomposition ofV k
f is calculated. To determine the product of̂dF

dx

k

with a vector
∆x, the triangular system

Rk
fc

k
f = Qk

f

T
∆x (27)

is solved forck
f and the matrix-vector product is then calculated as

d̂F

dx

k

∆x = W k
f c

k
f . (28)

The product of̂dS
dy

k

with a vector is calculated analogously, based on the inputs
and outputs of the structural solver.

Oncexk+1 has been obtained,k is increased, the corresponding stress distribu-
tion ỹ

k+1 = F(xk) is calculated and the matricesVf , Wf , Qf andRf are updated.
To calculate the stress distributiony

k+1 = y
k + ∆y

k that has to be applied on the
structure, the system

(
I −

d̂F

dx

k
d̂S

dy

k−1)
∆y

k = ỹ
k+1 − y

k +
d̂F

dx

k

(x̃k − x
k) (29)

is solved, again with the matrix-free iterative solver. Every time the solution of
either the flow problem or the structural problem is calculated, the approximate
Jacobian of the corresponding solver is improved by means ofthe solver’s latest
input and output.

Analogous to the IQN-ILS technique, the matricesV k
s,f andW k

s,f have to con-
tain at least one column to calculate the quasi-Newton update; otherwise a relax-
ation with factorω is used for the interface’s position (line4 in Algorithm 2) and
the stress distribution is passed on without modification (line13).
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Algorithm 2 IBQN-LS method [8]

1: k = 0; ỹ
1 = F(x0); y

1 = ỹ
1; x̃

1 = S(y1); r
0 = x̃

1 − x
0

2: while ||rk||2 > εo do
3: if k = 0 and (q = 0 or n = 0) then
4: x

k+1 = x
k + ωr

k

5: else
6: constructV k

s andW k
s

7: calculate QR-decompositionV k
s = Qk

sR
k
s

8: solve equation (24) for ∆x
k

9: x
k+1 = x

k + ∆x
k

10: end if
11: k = k + 1; ỹ

k+1 = F(xk)
12: if k = 1 and (q = 0 or n = 0) then
13: y

k+1 = ỹ
k+1

14: else
15: constructV k

f andW k
f

16: calculate QR-decompositionV k
f = Qk

fR
k
f

17: solve equation (29) for ∆y
k

18: y
k+1 = y

k + ∆y
k

19: end if
20: x̃

k+1 = S(yk+1); r
k = x̃

k+1 − x
k

21: end while

6. Aitken relaxation

Aitken relaxation [30], shown in Algorithm3 and Figure3(c), determines
a dynamically varying scalar relaxation factorωk for the fixed-point iterations
within a time step.

x
k+1 = x

k + ωk
r

k (30a)

= (1 − ωk)xk + ωk
x̃

k+1 (30b)

The next input forS ◦ F is thus a linear combination of the last output and the
previous input. Moreover, the update of the interface’s position is in the direction
of the residual vector, as opposed to the update from the IQN-ILS method on
line 9 of Algorithm 1. The first relaxation in a time step is executed with the
relaxation factor from the end of the previous time step, butlimited to ωmax, so

16



ω0 = sign(nω) min(|nω|, ωmax) and0ω0 = ωmax. The value ofωk is obtained as

ωk = −ωk−1 (rk−1)T(rk − r
k−1)

(rk − rk−1)T(rk − rk−1)
(31)

which is interpreted in [30] as the secant method for scalars directly applied to
vectors and projected onrk − r

k−1. By combining equations (30) and (31), it can
be seen that the update of the interface’s position is given by

x
k+1 = x

k +
(xk − x

k−1)T(rk − r
k−1)

(rk − rk−1)T(rk − rk−1)
(−r

k) (32a)

= x
k +

[
(x̃k+1 − x̃

k)T(rk − r
k−1)

(rk − rk−1)T(rk − rk−1)
− 1

]
(−r

k) (32b)

for k > 0. The previous equation is similar to line9 of Algorithm 1. If the
Jacobian were created explicitly in the IQN-ILS algorithm,if the normal equations
were used to solve the least-squares problem in equation (13) and if the matrices
V k andW k were limited to their last column, line9 of Algorithm 1 would give

x
k+1 = x

k +

[
(x̃k+1 − x̃

k)(rk − r
k−1)T

(rk − rk−1)T(rk − rk−1)
− I

]
(−r

k). (33)

Equations (32) and (33) are, however, not identical because the coefficient of−r
k

is a scalar in the first equation and a matrix in the second one.This proves that
Aitken relaxation is fundamentally different from the IQN-ILS method. On the
other hand, it demonstrates that implementing the IQN-ILS method is hardly more
complex than implementing Aitken relaxation. However, Aitken relaxation can
also be seen as an interface quasi-Newton technique: if the inverse of the Jaco-
bian in equation (8) is approximated by−ωkI, the Aitken relaxation method is
retrieved.

Section8 will demonstrate the gain in performance obtained by using the in-
formation from all previous iterations or even previous time steps in the approx-
imate Jacobians instead of only from the last two iterationsin Aitken relaxation.
Steepest descent relaxation [30] is similar to Aitken relaxation, but it is not stud-
ied in this paper as it exhibits stepwise or zig-zag convergence which is typical for
steepest descent methods and well understood [50].

7. Interface-GMRES(R)

Interface-GMRES (Algorithm4 and Figure3(d)) uses the Newton-Raphson
method to solve the nonlinear equationR(x) = 0 for the interface’s position. It
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Algorithm 3 Aitken relaxation [30]

1: k = 0; x̃
1 = S ◦ F(x0); r

0 = x̃
1 − x

0

2: while ||rk||2 > εo do
3: if k = 0 then
4: ω0 = sign(nω) min(|nω|, ωmax)
5: else
6: ωk = −ωk−1 (rk−1)T(rk−r

k−1)
||rk−rk−1||2

7: end if
8: x

k+1 = x
k + ωk

r
k

9: k = k + 1; x̃
k+1 = S ◦ F(xk); r

k = x̃
k+1 − x

k

10: end while

is a hybrid Newton-Krylov method [51], applied to FSI. The Newton-Raphson
update∆x is obtained by solving the linear system in equation (6a). To be able
to calculate the Jacobian-vector product, fixed-point iterations are first performed
in line 4 to 19 which results in a sequence of interface positionsx

i and the cor-
responding residualsri with i = 1, . . . , j. From these sequences, differences
∆x

i = x
i − x

0 and∆r
i = r

i − r
0 are calculated and stored as columns ofV j

andW j. It has been proved by induction that the Krylov space corresponding with
the linear system in equation (6a) is asymptotically similar tospan{∆x

i}j
i=1 and

the fixed-point iterations thus serve as a preconditioner tothe GMRES solution of
equation (6a) [25, 28]. The residual atx +

∑j

i=1 ci∆x
i is approximated as

R(x +

j∑

i=1

ci∆x
i) ≈ r

0 +

j∑

i=1

ci∆r
i (34)

which can be considered as a finite-difference approximation. When the mini-
mization problem in the residual space

min
c

||r0 +

j∑

i=1

ci∆r
i||2 (35)
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of the GMRES method has converged sufficiently, the corresponding Newton-
Raphson update is calculated as

c = arg min
c

||r0 +

j∑

i=1

ci∆r
i||2 (36a)

∆x =

j∑

i=1

ci∆x
i. (36b)

The coefficient vectorc is calculated in the same way as in the IQN-ILS method,
as shown on line17of Algorithm 4. The expressionminc ||r

0 +
∑j

i=1 ci∆r
i||2 is

called the linearized residualζ, as opposed to the true residual||r||2.

Algorithm 4 Interface-GMRES method [28]

1: k = 0; x̃
1 = S ◦ F(x0); r

0 = x̃
1 − x

0

2: while ||rk||2 > εo do
3: j = 0; ζ = ||rk||2
4: while ζ > ǫ1 do
5: j = j + 1
6: ∆x

j = x̃
j − x

0

7: for i = 1 to j − 1 do
8: ∆x

j = ∆x
j − ∆x

jT
∆x

i

||∆xi||2
∆x

i

9: end for
10: ∆x

j = ω ||r0||2
||∆xj ||2

∆x
j

11: x
j = x

0 + ∆x
j

12: x̃
j+1 = S ◦ F(xj)

13: ∆r
j = (x̃j+1 − x

j) − r
k

14: constructV j = [∆r
1 · · ·∆r

j]
15: constructW j = [∆x

1 · · ·∆x
j]

16: calculate QR-decompositionV j = QjRj

17: solveRj
c = −QjT

r
k

18: ζ = ||rk + V j
c||2

19: end while
20: x

0 = x
0 + W j

c

21: k = k + 1; x̃
1 = S ◦ F(x0); r

k = x̃
1 − x

0

22: end while

For FSI with strong interaction, the relaxation on line10 of Algorithm 4 is
imperative as the inner loop consists of fixed-point iterations which diverge fast
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without relaxation. The optimal value of the relaxation factor ω is problem depen-
dent and one is limited by the finite accuracy of the solvers for a lower bound and
divergence for an upper bound. The orthonormalization of the∆x

i from line7 to
9 is recommended in [28] to improve the accuracy of the solution of equation (35).

Algorithm 4 can be conceived as the construction of a model with the residual
as input and the interface’s position as output. Instead of using the model to up-
date the interface’s position in the inner loop, underrelaxed fixed-point iterations
are performed until the model meets the user-defined tolerance ǫ1. To prevent
that equation (35) is solved too accurately during the first few Newton-Raphson
iterations,ǫ1 is set to a fractionλ of the current residual||rk||.

Instead of discarding thexi andr
i from the previous Newton-Raphson iter-

ations, they can be reused in the next Newton-Raphson iteration, which is called
Interface-GMRESR. Algorithm5 shows the alterations to Algorithm4 that bring
about reuse of the fixed-point iterations from previous Newton-Raphson itera-
tions.

Algorithm 5 Interface-GMRESR method[28]

1: k = 0; x̃
1 = S ◦ F(x0); r

0 = x̃
1 − x

0

2: j = 0; ζ = ||rk||2
3: while ||rk||2 > εo do
4: . . .

21: k = k + 1; x̃
j+1 = S ◦ F(x0); r

k = x̃
j+1 − x

0

22: solveRj
c = −QjT

r
k

23: ζ = ||rk + V j
c||2

24: end while

The inner loop is executed at least once before going to the Newton-Raphson
update; otherwise no additional∆r and∆x are known with respect to the previ-
ous Newton-Raphson update and the Newton-Raphson update would be ineffec-
tive. Every time a Newton-Raphson update is performed on line21, the reference
x

0 is modified and the solvers are evaluated. However, this solver evaluation does
not result in an additional difference∆x and∆r, whereas IBQN-LS and IQN-
ILS modify the reference in every iteration and obtain a difference of the input
and output in every iteration except for the first one.

Due to the relaxation on line10, the∆x
j in Algorithm 4 all have the same

norm, regardless of whether it is the first or the final iteration in the time step.
However, the step size is adapted to the initial residual. Ifthe problem is non-
linear, the∆x and∆r can be inaccurate because this finite difference step size
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is suboptimal. Because the norm of the differences in IBQN-LS and IQN-LS is
equal to the step size, it automatically decreases during the coupling iterations as
they converge and these methods do not require a preset step size.

Reuse of differences from the previous time steps and not onlyfrom the previ-
ous Newton-Raphson iterations has been introduced by Michler [52] who mention
that reuse increases the efficiency, but that it comes at the expense of robustness
and therefore has to be used with some caution. Results for only 25 time steps
have been presented in a simulation with a compressible fluid. To enable reuse in
Interface-GMRESR,j should not be reset to 0 at the beginning of the time step.
The convergence plots in [52] demonstrate that with reuse from the previous time
steps, there is a large discrepancy between the linearized residual and the true
residual. The inner loop with fixed-point iterations converges after one iteration
because the linearized residual already is very small. Consequently, the algorithm
repeatedly performs one fixed-point iteration followed by aNewton-Raphson up-
date and in this regime an additional∆x and∆r are obtained at the cost of two
solver evaluations.

8. Results

In this section, the performance of the coupling algorithmsis compared for two
different cases, namely a 2D flexible beam behind a cylinder and the propagation
of a pressure pulse in a 3D flexible tube.

8.1. 2D flexible beam

The first cases are the steady FSI1 test and the unsteady FSI2 test from the
benchmark in [41]. This test is well-documented in the aforementioned reference
and thus it will only be described briefly. As can be seen in Figure4, the geometry
consists of a horizontal channel of 0.41 m high, containing arigid cylinder with
center positioned 0.2 m above the bottom of the channel. A laminar, viscous flow
with density103 kg/m3 and kinematic viscosity10−3 m2/s enters the channel from
the left hand side with a parabolic velocity profile. A constant pressure is imposed
at the outlet of the channel and a no-slip boundary conditionis applied on the
walls. The mean inlet velocity is 0.2 m/s for FSI1 and 1.0 m/s for FSI2. A linearly
elastic beam is attached to the right hand side of the cylinder and this beam has
a density of103 kg/m3 or 104 kg/m3, respectively in FSI1 and FSI2, a Young’s
modulus of1.40 · 106 N/m2 and a Poisson’s ratio of 0.4.

The finite volume flow solver uses second order discretization for the pressure
and second order upwind for the momentum. It solves the Navier-Stokes equa-
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tions in arbitrary Lagrangian Eulerian (ALE) formulation for the pressure and ve-
locity simultaneously with first order time accuracy. The mesh of the fluid domain
is adapted to the position of the fluid-structure interface with a spring analogy and
remeshing is performed if the skewness of the cells is too large. The spring anal-
ogy means that the edges between the grid nodes are replaced by springs, with a
spring constant inversely proportional to the length of theedge. This results in
a pseudo-structural problem with the grid displacement as unknowns [53]. The
finite element structural solver uses implicit time integration of plain strain ele-
ments with 8 nodes and takes into account the geometric nonlinearities due to the
large deformation of the structure. The coupling algorithmis executed on one
processor, the flow solver and structural solver each on two processors.

After validating the flow solver and the structural solver with the tests listed in
[41], the FSI1 and FSI2 tests have been performed. Table1 and Figure5 give the
displacement in thex andy direction of the pointA, which is located at the right
end of the beam, and the drag and lift force on the entire structure in the same
format as in the benchmark paper [41]. The difference between the simulations
of the FSI1 test decreases as the grid is refined and the results correspond well
with the benchmark values, even for the FSI2 test considering that the flow solver
is only first-order accurate in time on moving meshes. The same results have
been found with each coupling method. Pressure contours in the vicinity of the
structure are shown in Figure4.

The number of solver evaluations and the relative duration of the simulations
are given in Table2. The residual||ri||2 is reduced five orders of magnitude with
respect to its initial value and the number between bracketsbehind the name of an
algorithm indicates from how many time steps information isreused. For FSI1,
the number of solver evaluations is independent of the grid refinement. Interface-
GMRESR has been used withλ = 0.01 because this resulted in the lowest num-
ber of solver evaluations. In the unsteady FSI2 test, Interface-GMRESR requires
more coupling iterations than Interface-GMRES, especiallywhen the deforma-
tion within a time step is large. Reuse of information from 3 time steps reduces
the number of coupling iterations with approximately 30 % for both IQN-ILS and
IBQN-LS. For this unsteady simulation, the duration of the simulation is simi-
lar for IQN-ILS(3) and IBQN-LS(3), which are significantly faster than Aitken
relaxation and Interface-GMRES(R).

8.2. 3D flexible tube

The second test case is a 3D simulation of a straight flexible tube — represent-
ing an artery — with radius 0.005 m and length 0.05 m, as described by Fernandez
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and Moubachir [24], Formaggia et al. [54], Gerbeau and Vidrascu [26]. The same
flow solver and structural solver as in Section8.1 have been used, but the struc-
ture has been modeled with one layer of shell elements. The tube’s wall is a linear
elastic material with density 1200 kg/m3, Young’s modulus 3·105 Nm2, Poisson’s
ratio 0.3 and thickness 0.001 m. The structure is clamped in all directions at the
inlet and outlet. The fluid is incompressible and has a density of 1000 kg/m3 and
a dynamic viscosity of 0.003 Pa·s.

Both the fluid and the structure are initially at rest. During the first 3·10−3 s, an
overpressure of 1333.2 N/m2 is applied at the inlet. The wave propagates through
the tube during10−2 s, simulated with time steps of10−4 s. The fluid model con-
tains 37128 degrees-of-freedom and the structure model 29760, with u = 4896
degrees-of-freedom in the interface’s position andw = 4992 degrees-of-freedom
in the stress distribution on the fluid-structure interface. Pressure contours on the
fluid-structure interface are shown in Figure6 and they correspond well with the
above mentioned references. The same results have been found with each cou-
pling method.

Table3 gives the number of solver evaluations in a time step, averaged over
the entire simulation, and the relative duration of the simulations. In every time
step,||r||2 is reduced three orders of magnitude with respect to its initial value
in that time step. The results demonstrate that the performance of the coupling
methods is different with respect to number of solver evaluations and CPU time.
The reason for this difference is that if the coupling algorithm predicts an irregular
position of the interface or pressure distribution on the interface, it will take the
flow solver and structural solver longer to converge. For this case, the duration
of the simulation is again similar for IBQN-LS(10) and IQN-ILS(10), which are
faster than the other methods.

9. Conclusion

It has been demonstrated that the complete Jacobian is not required in an inter-
face Newton-Raphson technique for partitioned simulation of fluid-structure inter-
action. Based on this insight, an interface quasi-Newton technique with an approx-
imation for the product of the inverse of the Jacobian with a vector (IQN-ILS) and
reuse of information from previous time steps has been developed [39]. A com-
parison of the IQN-ILS algorithm with IBQN-LS, Aitken relaxation and Interface-
GMRES(R) indicates that the IQN-ILS method can easily be implemented in an
FSI framework that currently uses (Aitken) relaxation or Interface-GMRES(R)
and that IQN-ILS is more straightforward to implement than IBQN-LS. The re-
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sults show that the IQN-ILS method performs similarly to theIBQN-LS method
and better than Aitken relaxation and Interface-GMRES(R).

Acknowledgments

The authors gratefully acknowledge the funding of Joris Degroote and Peter
Bruggeman by a Ph.D. fellowship of the Research Foundation - Flanders (FWO).
Joris Degroote acknowledges a grant for a long stay abroad atthe Massachusetts
Institute of Technology (MIT) of the Research Foundation - Flanders. Jan Vieren-
deels acknowledges the funding by Research Project G027508 of the Research
Foundation - Flanders and the Ghent University Association.

References

[1] C. Farhat, K. van der Zee, P. Geuzaine, Provably second-order time-accurate
loosely-coupled solution algorithms for transient nonlinear computational
aeroelasticity, Computer Methods in Applied Mechanics and Engineering
195 (2006) 1973–2001.

[2] L. Cavagna, G. Quaranta, P. Mantegazza, Application of Navier-Stokes sim-
ulations for aeroelastic stability assessment in transonic regime, Computers
and Structures 85 (11–14) (2007) 818–832.

[3] K. Stein, T. Tezduyar, V. Kumar, S. Sathe, R. Benney, R. Charles, Numer-
ical simulation of soft landing for clusters of cargo parachutes, in: P. Ni-
ettaanm̈aki, T. Rossi, K. Majava, O. Pieronneau (Eds.), European congress
on computational methods in applied sciences and engineering ECCOMAS
2004, Jyv̈askyl̈a, 1–14, 2004.

[4] C. Lee, H. Noguchi, S. Koshizuka, Fluid-shell structure interaction analysis
by coupled particle and finite element method, Computers and Structures
85 (11–14) (2007) 688–697.

[5] S. Potapov, B. Maurel, A. Combescure, J. Fabis, Modeling accidental-type
fluid-structure interaction problems with the SPH method, Computers and
Structures 87 (11–12) (2009) 721–734.

[6] K. Riemslagh, J. Vierendeels, E. Dick, Coupling of a Navier-Stokes solver
and an elastic boundary solver for unsteady problems, in: K.Papailiou,

24
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Bungartz, M. Scḧafer (Eds.), Fluid–Structure Interaction – Modelling, Sim-
ulation, Optimisation, no. 53 in Lecture Notes in Computational Science and
Engineering, Springer, Berlin, 146–170, ISBN 3-540-34595-7, 2006.

[21] H. Matthies, J. Steindorf, Partitioned strong coupling algorithms for fluid-
structure interaction, Computers and Structures 81 (2003) 805–812.

[22] H. Matthies, R. Niekamp, J. Steindorf, Algorithms for strong coupling pro-
cedures, Computer Methods in Applied Mechanics and Engineering 195
(2006) 2028–2049.

[23] M. Fernandez, M. Moubachir, An exact block-Newton algorithm for solv-
ing fluid-structure interaction problems, Comptes Rendus de l’Academie des
Sciences - Series I: Mathematics 336 (8) (2003) 681–686.

[24] M. Fernandez, M. Moubachir, A Newton method using exactJacobians for
solving fluid-structure coupling, Computers and Structures83 (2005) 127–
142.

[25] C. Michler, E. van Brummelen, R. de Borst, Error-amplification analysis
of subiteration-preconditioned GMRES for fluid-structure interaction, Com-
puter Methods in Applied Mechanics and Engineering 195 (2006) 2124–
2148.

26



[26] J.-F. Gerbeau, M. Vidrascu, A quasi-Newton algorithm based on a reduced
model for fluid-structure interaction problems in blood flows, ESAIM: Math-
ematical Modelling and Numerical Analysis 37 (4) (2003) 631–648.

[27] J. Gerbeau, M. Vidrascu, P. Frey, Fluid-structure interaction in blood flows
on geometries based on medical imaging, Computers and Structures 83 (2-3)
(2005) 155–165.

[28] E. van Brummelen, C. Michler, R. de Borst, Interface-GMRES(R)Accelera-
tion of Subiteration for Fluid-Structure-Interaction Problems, Report DACS-
05-001, available from: http://www.em.lr.tudelft.nl/downloads/DACS-05-
001.pdf., 2005.

[29] C. Michler, E. van Brummelen, R. de Borst, An interface Newton-Krylov
solver for fluid-structure interaction, International Journal for Numerical
Methods in Fluids 47 (10-11) (2005) 1189–1195.
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(a)

(b)

Figure 1: Amplification of the error on the interface’s position as a function of the wave number
(θ). This result has been obtained by means of Fourier error analysis on the Gauss-Seidel itera-
tions between the flow solver and structural solver in a simulation of 1D unsteady, incompressible
flow in a flexible tube [37] with (a) constant product of the dimensionless time stepτ and the
number of degrees-of-freedomu in the discretization of the interface (τu = 0.1) and(b) constant
dimensionless stiffness of the tube (κ = 10).
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Figure 2: Pressure contours in an axisymmetric tube due to two displacements of the tube’s wall
with the same amplitude but a different wave number. Initially, the fluid is at rest and the tube has
a constant cross section. The straight horizontal line is the axis of symmetry, the curved horizontal
line is the tube’s wall. A displacement of the tube’s wall with a low wave number (top) creates
much larger pressure variations than a displacement with the same amplitude but a higher wave
number (bottom). Only the difference between the two calculations and not the values as such are
important.
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Figure 3: Simplified representation of the(a) IQN-ILS, (b) IBQN-LS, (c) (Aitken) relaxation and
(d) Interface-GMRES algorithm for partitioned FSI simulations with black-box solvers.
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Figure 4: Pressure contours in the 2D unsteady FSI2 test withthe flexible beam after(a) 12 s;(b)
16 s.

33



13 13.2 13.4 13.6 13.8 14
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

t [s]

di
sp

l x [m
]

(a)

13 13.2 13.4 13.6 13.8 14
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t [s]
di

sp
l y [m

]

(b)

13 13.2 13.4 13.6 13.8 14
120

140

160

180

200

220

240

260

280

300

t [s]

fo
rc

e x [N
]

(c)

13 13.2 13.4 13.6 13.8 14
−250

−200

−150

−100

−50

0

50

100

150

200

250

t [s]

fo
rc

e y [N
]

(d)

Figure 5: Displacement and force in the 2D unsteady FSI2 testwith the flexible beam. Displace-
ment of node A in(a) the x-direction;(b) the y-direction. Force on the beam and cylinder in(c)
the x-direction;(d) the y-direction.
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Figure 6: Pressure contours on the fluid-structure interface in a 3D simulation of the flexible tube
after(a)10

−3 s; (b) 5·10
−3 s; (c) 9·10

−3 s.
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Results for the 2D flexible beam

FSI1
DOF (F + S) displx [10−3 m] disply [10−3 m] forcex [N] forcey [N]
74418+7650 0.022643 0.83672 14.234 0.75416

164394+16874 0.022645 0.83489 14.254 0.75616
290574+29698 0.022651 0.83478 14.266 0.75753

Benchmark 0.022700 0.82090 14.295 0.76380

FSI2
DOF (F + S) displx [10−3 m] disply [10−3 m] forcex [N] forcey [N]
89760+7650 -14.07±12.37[3.7] 1.18±76.5[ 1.9 ] 217.52±84.65[3.7] -0.74±267.6[1.9]
Benchmark -14.58±12.44[3.8] 1.23±80.6[ 2.0 ] 208.83±73.75[3.8] 0.88±234.2[2.0]

Table 1: Displacement and force in the 2D steady FSI1 and unsteady FSI2 test with the flexible
beam for different grids. The number of degrees-of-freedom(DOF) is indicated for each grid, sep-
arately for the flow solver and the structural solver, and this number varies slightly in the unsteady
test due to remeshing. For the FSI2 test, the values are givenas mean±amplitude[frequency].
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Performance of the algorithms for the 2D flexible beam

FSI1
Algorithm Evaluations Duration
IBQN-LS 5 1.18
IQN-ILS 5 1.00
Aitken relaxation 8 1.42
Interface-GMRES 7 1.35
Interface-GMRESR 6 1.00

FSI2
Algorithm Evaluations Duration
IBQN-LS 7.2 1.54
IBQN-LS(3) 4.8 1.00
IQN-ILS 9.4 1.84
IQN-ILS(3) 6.1 1.07
Aitken relaxation 9.9 1.81
Interface-GMRES 10.5 1.94
Interface-GMRESR 14.4 2.71
Interface-GMRESR(3) 12.4 2.71

Table 2: Number of solver evaluations and relative durationfor the 2D steady FSI1 test and un-
steady FSI2 test with the flexible beam. The data are independent of the grid refinement in the
steady simulation and the number of solver evaluations per time step in the unsteady simulation
has been averaged over the last period of the oscillation.
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Performance of the algorithms for the 3D flexible tube

Algorithm Evaluations Duration
IBQN-LS(2) 8.2 1.29
IBQN-LS(10) 6.3 1.00
IQN-ILS(2) 8.4 1.30
IQN-ILS(10) 6.6 1.03
Aitken relaxation 26.7 4.69
Interface-GMRES 16.1 2.71
Interface-GMRESR(2) 11.7 1.79
Interface-GMRESR(10) 9.5 1.45

Table 3: Number of solver evaluations per time step and relative duration for the simulation of the
3D flexible tube. The number of solver evaluations per time step has been averaged over the entire
simulation.
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