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Abstract

Partitioned simulations of fluid-structure interactiomdze solved for the inter-
face’s position with Newton-Raphson iterations but obtagrihe exact Jacobian
is impossible if the solvers are “black boxes”. It is demoagd that only an
approximate Jacobian is needed, as long as it describegdlcan to certain
components of the error on the interface’s position. Basdtlisnnsight, a quasi-
Newton coupling algorithm with an approximation for theense of the Jacobian
(IQN-ILS) has been developed and compared with a monolgbleer in previ-
ous work. Here, IQN-ILS is compared with other partitionethiemes such as
IBQN-LS, Aitken relaxation and Interface-GMRES(R).
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1. Introduction

Recent research on fluid-structure interaction (FSI) haklgtkeboth more
complex applications and algorithmic improvements. kdgéng applications of
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FSI can be found in aeronautick 2] where FSI is used to assess flutter. Other
challenging problems are the dynamic analysis of parasH@ielue to the thin,
highly flexible structure and the interaction between acétme and free-surface
flow [4, 5]. Also of great interest are biomedical applications likeda flow in
arteries f, 7, 8] and in artificial heart valves9] 10, 11].

An FSI problem consists of a fluid domain and a structural domath in
between the fluid-structure interface. This multi-phygesblem with adjacent
domains can be simulated in a monolithic or in a partitioney.wThe former
signifies that both the flow equations and structural eqnatare solved simul-
taneously 12, 13] while the latter means that they are solved separately. The
monolithic approach requires a code developed for thisquaar combination of
physical problems whereas the partitioned approach preseoftware modular-
ity. Moreover, the partitioned approach allows to solveftbe equations and the
structural equations with different, possibly more efintieechniques which have
been developed specifically for either flow equations orcstinal equations. On
the other hand, a coupling algorithm is required to takeatimount the interaction
between flow and motion of the structure in partitioned satiahs.

Both Newton-Raphson methods and fixed-point methods can ldgaiselve
FSI problems and other multi-physics problems with adjgceon-overlapping
domains like soil-structure interactiod4, 15], but also the particle finite ele-
ment method 16], smooth particle hydrodynamic4T, 5], immersed boundary
methods 18] and fictitious domain methodd 9] have been used to solve FSI
problems. The prefixnterfaceis added to the classification if the method only
operates on variables related to the fluid-structure iaterfand the prefiklock
before Newton-Raphson denotes that the Jacobian considistioict blocks. In
the following paragraphs, an overview of some existing ro@shs given.

Block Newton-Raphson methods can be used in both the mormd]ithj 13,

20] and the partitionedd1, 22] approach. These methods solve the nonlinear flow
equations and the structural equations for the variabléeientire fluid and solid
domain with the Newton-Raphson method. As the flow problenoigesl on a
moving grid, the Jacobian of the flow equations with respedhe interface’s
position, the so-called shape derivative, is difficult técakate. However, it is
possible to calculate the complete Jacobian exa28 [The linear system within
the Newton-Raphson iteration can also be solved without ledge of the Jaco-
bian with a matrix-free Krylov solver, using a finite-difesrce approximation of
the Jacobian-vector produ@q, 21].

Whereas block Newton-Raphson methods solve the flow and staligirob-
lem for the state in the entire fluid and solid domain, Ferearahd Moubachir

2



[24] rewrote the fluid-structure problem as a nonlinear probiethe state of the
structure, with the flow state as internal variables of thabf@m. This system is
subsequently solved with the Newton-Raphson method usengxact Jacobian.

It is also possible to reformulate an FSI problem as a systémamly the
degrees-of-freedom in the interface’s position as unkrsoamd with all remain-
ing variables in the fluid and solid domain as internal vdaab This domain
decomposition condenses the error of the FSI problem intdapace related to
the interface 25]. The FSI problem can hence be written as either a root-fqdin
problem or a fixed-point problem, with the interface’s piasitas unknowns.

Interface Newton-Raphson methods solve this root-findinglem with Newton-
Raphson iterations, e.g. with an approximation of the Jagolriom a linear
reduced-physics modeR§, 27]. The linear system within the Newton-Raphson
iteration can also be solved with a matrix-free Krylov sojM®r example the
generalized minimal residual method (GMRES), using an appration of the
Jacobian-vector product based on finite-differences dn wilinear combination
of the previous residual vectors in Interface-GMRES @5 B8, 29].

The fixed-point problem can be solved with fixed-point itenas, also called
(block) Gauss-Seidel iteration2d], which means that the flow problem and struc-
tural problem are solved successively until the change @llemthan the con-
vergence criterion. However, the iterations converge lsiofnat all, especially
when the interaction between the fluid and the structureramgtdue to a high
fluid/structure density ratio or the incompressibility bétfluid [7]. The conver-
gence of the fixed-point iterations can be stabilized anélacated by Aitken re-
laxation and steepest descent relaxation, which adap¢kiveation factor in every
iteration based on the previous iteratioB6][ If the interaction between the fluid
and the structure is weak, only one fixed-point iteratioreguired within each
time step [, 31, 32, 33, 34, 35. These so-called staggered or loosely coupled
methods do not enforce the equilibrium on the fluid-struetaterface within one
time step but they are suitable for aeroelastic simulatwitis a heavy and rather
stiff structure.

Vierendeels et al.g] rewrite the FSI problem as a system of equations with
both the interface’s position and the stress distributiantlee interface as un-
knowns, and this system is solved with block quasi-Newtemnations of the
Gauss-Seidel type. The Jacobians of the flow solver andtstelsolver are ap-
proximated by means of least-squares models, construdtieths position of the
fluid-structure interface and the stress distribution anitherface in all previous
guasi-Newton iterations within one time sty 36]. This method will be referred
to as IBQN-LS, meaningiterface lock quasi-Newton with an approximation for
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the Jacobians fronehst-guares models.

In this work, the focus lies on partitioned methods and mgex#ically on
methods that couple a black-box flow solver and structurbleso When the
solvers are black boxes, it is difficult or even impossiblebdain the Jacobian
matrices which are required in Newton-Raphson methods. Mewa recent sta-
bility analysis B7, 38] on the unsteady, incompressible and inviscid flow in a
straight elastic tube has demonstrated that only certaimpooents of the error
on the interface’s position become unstable or are badlypeanduring Gauss-
Seidel iterations between the flow solver and the structsmbler. As will be
explained in this work, this means that if quasi-Newtonatems are used, the
approximate Jacobian only has to describe the reactiorogethinstable or badly
damped components; other components of the error will bgpddranyhow dur-
ing the coupling iterations. The complete Jacobian is thatsequired for fast
convergence of the coupled problem; an approximation ofJHembian can be
used instead.

Based on this insight, a quasi-Newton coupling algorithmhvéih approx-
imation for the inverse of the Jacobian has been developgld Because the
inverseof the Jacobian is approximated, one avoids that a linedesywith as
dimension the number of degrees-of-freedom in the intet$guosition has to be
solved in every quasi-Newton iteration. The approximai®eonstructed with
the least-squares technique developed for nonlinearragdtg Vierendeels et al.
[8] and applied to linear systems by Haelterman et 40].[ A matrix-free im-
plementation of the least-squares technique is describéud work. The term
“matrix-free” denotes that the approximate Jacobian iscootstructed explicitly
but that a procedure to calculate the product of the Jacaftithra vector is given
such that less memory and CPU time is required. Moreoveryrrdton from
previous time steps can be reused in the least-squaresxapptmn and the re-
sults demonstrate that this extension greatly acceletagesonvergence of the
guasi-Newton iterations. The quasi-Newton algorithm @nésd in B9 is called
IQN-ILS because it calculates th@&erface position usingugsi-Newton iterations
with an approximation for thenverse of the Jacobian from edlst-suares model.

Other techniques that are able to couple black-box solverg\dken relax-
ation, Interface-GMRES and IBQN-LS, all of which have beenddticed above.
By comparing the algorithms of these techniques with the IQ8lalgorithm, it is
shown that the IQN-ILS method can easily be implemented iRSinframework
that currently uses (Aitken) relaxation or Interface-GMREBand that IQN-ILS
is more straightforward to implement than IBQN-LS.

In the results section, the performance of all these tectesigs compared in
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two cases, both in terms of how often the flow problem and &iratproblem
have to be solved within one time step and in terms of the &iallation time.

The first case is the steady and unsteady two-dimensiongl g@iulation of a
flexible beam behind a cylinder in a laminar flow, which is gtated with a well-
known benchmark4l]. The second case is the propagation of a pressure pulse
in a three-dimensional (3D) flexible tube. These simulaiomicate that the
IQN-ILS is faster than Aitken relaxation and Interface-GMIXR) and that the
performance of IQN-ILS and IBQN-LS is similar.

In previous work 89|, the performance of the IQN-ILS algorithm was com-
pared with a monolithic Newton solver in five different casessidering various
structural configurations and incompressible fluids. Fahezase when conver-
gence was reached, the ratio of the time for the IQN-ILS satioh to the time
for the monolithic Newton simulation was between 1/2 and ut, there was a
case for which the partitioned simulation did not converyf¢hile problems of
various characteristics were solved, still, only specifigitems were considered
and in general rather small problems in number of equatibfaeover, the so-
lutions of the structural equations and the flow equation®walculated using a
direct sparse solver with full Newton-Raphson iteratiotisalgh different solver
schemes, in particular much more efficient for the fluid eguatwhen the num-
ber of elements becomes very large]| are frequently used in the partitioned
approach. The performance comparisons may consequealydiffierent when
different problems are solved and other solver schemessa®@. tHowever, the
general observations given iB89] can be used to assess whether a monolithic or
partitioned solution of a fluid-structure interaction pier might be more effec-
tive.

The remainder of this paper is organized as follows. Aftewling the nec-
essary definitions in Sectid?) Section3 explains why an approximation for the
Jacobian can be used. Sectibdescribes the IQN-ILS technique and the matrix-
free implementation of the least-squares approximatidh miuse of information
from previous time steps. In SectioBs6 and 7, IQN-ILS is compared with
respectively IBQN-LS, Aitken relaxation and Interface-GMKR). The perfor-
mance analysis of the coupling schemes is subsequentlyg givBection8, fol-
lowed by the conclusion in Secti¢h

2. Definitions

This section gives a definition of the functions that repnésiee flow solver
and structural solver, as they are used by interface Ne®eghson and fixed-
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point methods. The governing equations in the fluid and sdichain, the dis-
cretizations and the solution techniques of the discratatons are not described
here because they are not important for the comparison battire coupling al-
gorithms but they can be found i89] or any book on computational fluid and
solid mechanics.

Often, a velocity (or position after time integration) isposed on the fluid
side of the interface and a stress distribution is applietthestructural side, which
is a Dirichlet-Neumann decomposition of the FSI problefh [The following
abstract definitions emphasize that the solvers are treatbthck boxes.

The function

y = F(x) (1)

is referred to as the flow solver and it concisely represeewsral operations.
The discretized positior € R"* of the fluid-structure interface is given to the
flow code, and the grid of the fluid domain adjacent to the fater is adapted
accordingly. Subsequently, the grid velocity is calcudad@d the flow equations
are solved for the fluid state in the entire fluid domain, what$o results in a
stress distributiony € R* on the interface. In an unsteady simulation, bethnd
y are at the new time level and the boundary conditions and s#téngs ofF
are also adapted to the new time level.

The structural solver is represented by the function

x=38(y). (2)

This expression indicates that the fluid stress distriloubio the interface is given
to the structural code which then calculates the positich@entire structure and
thus also the new position of the fluid-structure interfag&th these definitions,
the FSI problem is given by

r=SoF(x) or R(zx)=SoF(x)—x=0, (3)

in fixed-point or root-finding formulation, respectivelyjttvR being the residual
operator.

If the flow problem and the structural problem are not diszeetin the same
way on the fluid-structure interface, there has to be a madptween the solvers.
In this paper, it is assumed that this mapping is includednia of the solvers if
necessary. An overview of mapping methods can be found3h Radial basis
functions can be used for both interpolation on the fluidettire interface44]
and mesh motion in the fluid domaidg).



Although the solvers are used as black boxes, it is impottakéep in mind
that differences between the numerical methods of bothscode cause undesir-
able effects. When different time integration schemes agd by both solvers, it
is possible that spurious oscillations in time are presetiié acceleration of the
fluid and the structure and thus also in the stresses on #adaoé. This has been
demonstrated both analytically and numerically46][

In the remainder of this paper, all values and functions athenew time
leveln + 1, unless indicated otherwise with a left superscript. Atglperscript
indicates the coupling iteration while a subscript dendheselement in a vec-
tor. Capital letters denote matrices, bold lower case Ritaticate vectors and
lower case letters represent scalars. Approximationsdiedted with a hat. The
output of the solverg” andsS is indicated with a tilde because this is only an in-
termediate value that is not passed on to the next coupkmngtibn. This tilde is
dropped once the final value that will be used in the nexttitmnénas been calcu-
lated. Depending on the context, the equality sign can @eeither assignment
or equality.

All coupling algorithms begin the next time step from an agtlation of the
interface’s position

2’ = Z("x) —2("ta) + = ("2x), (4)

based on the previous time steps. Lower order extrapoktiomnused for the first
two time steps.

3. Motivation for the use of quasi-Newton methods

Degroote et al.37] have presented a stability analysis of the Gauss-Seatel it
ations between the flow solver and the structural solver iartitned simulation
of the one-dimensional (1D) unsteady flow in a straight, Bextube. In this sec-
tion, only the conclusion of this analysis is offered as aivadibn for the use of
guasi-Newton methods. To simplify the equations, the massecstructure is ne-
glected and the fluid is incompressible and inviscid. Theegawmg equations are
linearized such that Fourier error analysis can be conduwte the behaviour of
the different wave numbers in the error on the interface&tmm can be analyzed.
Although this simplified model does not include all physidatails, it provides
insight into the stability of coupling algorithms for paidned FSI simulations.

The stability analysis investigates the difference betwibe correct position
of the interface and its value during the Gauss-Seideltitara (further denoted as
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the error) by decomposing it as a weighted sum of cosine ifumetvith different
wave numbers. The amplificatign of the error is written as a function of the
wave number and three parameters, namely the dimensiatitissss of the tube

k, the dimensionless time stepand the number of degrees-of-freedom in the
discretization of the interface. For more details and the exact definition of these
parameters, the reader is referred3d||

Figurel depicts the amplification of the error as a function of the evaum-
ber. From this figure, it can be seen that the error ampliboaticreases ik or 7
decreases and that especially the low wave numbers areblenstbowever, even
for a very flexible tube and a small time step, only some wavwebers are unsta-
ble. The physical meaning of these curves is shown in FiguiEhe position of
the wall of a tube, which initially has a constant cross secéind contains fluid at
rest, is perturbed with two different wave numbers. At tHetiand outlet, a zero
pressure is imposed. Because the fluid is incompressiblesptgadement of the
interface with a low wave number requires that the fluid isstsmrated globally,
which causes large pressure variations throughout thedhddhus also a violent
motion of the structure. On the other hand, a displacemeéhtaudigh wave num-
ber only generates local fluid motion and hence smaller presgradients and
structural motion. The pressure differences in the casheohigh wave number
can barely be seen since the same scale has been used foravatimuwmbers.
The material properties, geometrical dimensions and titep #r this simula-
tion are identical to those in Secti@?2 Although the curves in Figurgédepend
on the geometry and discretization, this physical integtien indicates that the
underlying idea would remain valid in other situations.

Only the components of the error which are unstaple>( 1) or which dis-
appear slowly 4 ~ 1) in Gauss-Seidel iterations between the flow solver and the
structural solver, or equivalently Richardson iteratiomsthe FSI problem, have
to be removed by means of a quasi-Newton technique. Thughdauasi-Newton
iterations to converge quickly, the approximate Jacobiay bas to describe the
reaction to a limited number of components in the error onrttezface’s position,
namely the components with low wave numbers. For the compsmvehich are
not included in the approximate Jacobian, the quasi-Newoations correspond
to Richardson iterations, as will be explained below.

4. IQN-ILS

In this section, the IQN-ILS method with a matrix-free implentation of
the least-squares approximation is presented. IBQN-L3eAirelaxation and
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Interface-GMRES(R) are reviewed in the following sectionsgishe same nota-
tion.

The FSI problem reformulated as a set of nonlinear equatiothe interface’s
position

R(x)=0 (5)
can be solved by means of Newton-Raphson iterations
d
solve dr Axh = —p* (6a)
dx | _x
= 2F 4 Ax® (6b)

with the residual calculated as
r* = R(z") = So F(x¥) — xF = " — *. (7)

The Newton-Raphson iterations in one time step have congempen||r*||, <

£, With ¢, the convergence tolerance. However, the exact Jacobidh isfun-
known as the Jacobians gf andS are unavailable. Moreover, a linear system
(6@ with as dimension the number of degrees-of-freedom in thestipn of the
fluid-structure interface has to be solved in every Newtop#Ran iteration. Al-
though the number of degrees-of-freedom in the interfgoesstion is generally
smaller than the number of degrees-of-freedom in the efitire and structure
domain, the Jacobian matrikR /dx is usually dense. As a result, the solution
of the linear systemg@) corresponds to a significant computational cost in large
simulations, especially if a direct solver is used.

If the Jacobianrl’R /dx is approximated and quasi-Newtons iterations are per-
formed, black-box solvers can be used but this approachrdmesrcumvent that
the linear system6@) has to be solved. It is more advantageous to approximate
theinverseof the Jacobian by applying the least-squares techniquednted by
Vierendeels et alg] on a particular set of vectors as will be explained belowe Th
guasi-Newton iterations with the approximation for theerse of the Jacobian
can be written as

dR k;)_ (—Tk). (8)

k+1 _ ok G
x T+ <dzc
It can be seen from equatioB)(that the approximation for the inverse of
the Jacobian does not have to be created explicitly; a puwedd calculate the
product of this matrix with the vectorr* is sufficient. The vector-r* is the




difference between the desired residual, ®.eand the current residuat and it is
further denoted adr = 0 —r* = —r*. In this work, the matrix-vector product is
calculated from information obtained during the previouasj-Newton iterations.
Equation 7) shows that the flow equations and structural equationsavedin
quasi-Newton iteratiort, resulting inz**! = S o F(z*) and the corresponding
residualr®. The vectorst andr from all previous coupling iterations are also
available, giving a set of known residual vectors

vkl el 0 (9a)
and the corresponding set of vectars
R LN S (9b)

The differences between all vectors from previous iterati(superscript) and
the most recent vector (superscriptare calculated

Art =i — ¥ (10a)

Azt = g+t — ghtt (10b)

fori = 0,...,k — 1. The final result will be the same if vectors other than
r¥ andz"! are selected as the reference: choosing the first iteragiogference
would avoid that all differences have to be recalculatedergcoupling iteration;
however, choosing the last iteration facilitates the camspa between the IQN-
ILS method and Aitken relaxation in Sectién
EachAr’ corresponds to Az'™! and these vectors are stored as the columns
of the matrices

PHYE = [ArkTL A2 Art AP (11a)

and
R = [AzE AR Az Az (11b)

Due to the similarity between subsequent time steps, tlegnrdtion from the
previous time steps can be reused. The mattit€g* and™+'1//* are then com-
bined with those frong previous time steps (if at leagttime steps have already
been performed), giving

A K R T A (12a)
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and
W= [Pk WL meeRRy ety (12b)

The columns of the matrices 'V and”~“*'1¥ are calculated by subtracting
the vector of the last iteration of time step- ¢ + 1 from all previous vectors in
that time step, in the same way as in equatit®).(By including the information
for ¢ previous time steps, the convergence of the coupling iterais remarkably
accelerated. However, if information from too many timepstés reused, the
convergence can slow down again as information from tin@rsteg+ 1 might no
longer be relevant in time step+ 1. The optimal value of is problem dependent
but the convergence of the coupling iterations does notgdaignificantly near
the optimum such that the performance of the method is ratitistespect to the
parameter;.

The number of columns iv* and W* is indicated withv and is generally
much smaller than the number of rowsNevertheless, in simulations with a low
number of degrees-of-freedom on the interface, it is ptessitat the number of
columns has to be limited to by discarding the rightmost columns.

The vectorAr = 0—r* is approximated as a linear combination of the known
Ar?

Ar ~ VEck (13)

with c& € R the coefficients of the decomposition. Because u, equation 13)

is an overdetermined set of equations for the element$ ahd hence the least-
squares solution to this linear system is calculated. 8]nthe solution of the
least-squares problem is calculated as

¢t = (Vv A (14)

but this implementation becomes unstable if the number loiheos in the matrix
V¥ is high which is especially encountered when informatiamfiprevious time
steps is reused. For that reason, the so-called econom@Bizdecomposition of
V¥ is calculated using Householder transformatiofg |

vk = QFR* (15)

with Q% € R“*? an orthogonal matrix an&®* ¢ Rv*¥ an upper triangular matrix.
The coefficient vectoe” is then determined by solving the triangular system

RFer = QF Ar (16)
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using back substitution. If Ar? vector is (almost) a linear combination of other
ArJ vectors, one of the diagonal elementsitf will (almost) be zero. Conse-
quently, the equation corresponding to that row6fcannot be solved during the
back substitution and the corresponding element af set to zero. The threshold
for the detection of small diagonal elements is sett(to' - || R¥||, in this work.

The Az that corresponds tAr is subsequently calculated as a linear combi-
nation of the previoud\z‘, analogous to the equatioh3d), giving

Az = Wk, (17)
From equation?), it follows that
Ar = Az — Ax (18)
and substitution of equatiod ) in equation {8) results in
Ax =W — Ar. (19)

Because the coefficient§ are a function of\r, equation {9) shows howAx can

be approximated for a givefair. Hence, equatiornl®) can be seen as a procedure
to calculate the product of the approximation for the ingeskthe Jacobian and a
vectorAr = —r*

P

-1
d
Az — (£ > Ar = Whek 4 (20)

This matrix-free procedure requires less memory (propodl to the number of
rows and columns iv*, sou x v) and is also faster than the explicit creation of
approximation for the inverse of the Jacobian as

dR
dx
with 7 the unity matrix inR***, This is a significant advantage for simulations
with a high number of degrees-of-freedom on the interface.
The relation betweerr and Az is thus found by means of th&x values.

One might try to relate the residualdirectly to « instead of tox, but this ob-
viously will not work as the new input faf o F would be a linear combination

—1
) —WERFTIQFT — T (21)
T
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of the previous inputs. The only new information in the inp@tS o F would
originate from numerical errors and the coupling iteragi@ould not converge.

From equation 16), it can be seen that if part akr is orthogonal toV*
and thus toQ*, the decomposition coefficients’ will be zero for that part of
Ar. Equation 20) shows that this component of the residual is not modifieth suc
that Gauss-Seidel iterations between the flow solver andttbetural solver are
performed for this component of the residual which corresisoto Richardson
iterations for the complete FSI problem. Only the composi@htAr in the span
of the columns of/* are reduced by means of quasi-Newton iterations.

As for any other Newton-Raphson or quasi-Newton scheme QREILS it-
erations will only converge when the initial guess is sudiintly close to the final
solution. For example, if the deformation of the structuithim one time step is
too large and the coupling iterations do not converge, theritne step must be
adjusted. The same remark can be made for the IBQN-LS anddo¢eeGMRES
coupling techniques.

The complete IQN-ILS technique is shown in Algoritiirand a simplified
version is shown in Figurg(a). Because the matricés® and1/* have to contain
at least one column, a relaxation with facto(line 4) is performed in the second
coupling iteration of the first time step if information fraime previous time steps
is reusedq > 0) and in the second coupling iteration of every time step outh
reuse ¢ = 0).

Algorithm 1 IQN-ILS method
Lk=0;2' =SoF(x°); r’=2' — x°
2: while ||7¥|]; > €, do
30 ifk=0andg=0orn=0)then
karl — mk + w’rk
else
constructl’* andW* as shown in equatiori() to (12)
calculate QR-decompositidri* = Q* R*
solve Rkck = —QF ' pk
xhtl = gk + Whek 4 p*
10: endif
11: k=k+1; 2" = So F(zF); rF = 2" — F
12: end while

© o N a A

13



5. IBQN-LS

The IBQN-LS method is explained in detail in Algorithenand a simplified
representation is shown in FiguB¢b). This coupling technique solves the FSI
problem written as

Flx)—y=0 (22a)
Sy —x=0 (22b)
with block-Newton-Raphson iterations of the Gauss-Seig®d .t The linear sys-
tem L
ar _
T /\I Ax _ Flx)—vy (23)
—1 $]|Ay Sly) —=

is thus first solved forAz, followed by an update at and the right-hand side.
Subsequently, the modified system is solvedZqy andy is updated. As a con-
sequence, the IBQN-LS method modifies the stress distrittitiat is calculated
by the flow solver before transferring it to the structurdieq as opposed to the
other techniques described in this paper. With the notdtiomtermediate values
defined in Sectior2, the input and output of the flow solver are thus denoted as
x* andg**! and the input and output of the structural solvergie' andz***.
Starting from the position:* that was given as input to the flow solver in
the previous coupling iteration, the positieh*! = x* 4+ Az" is calculated by
solving the system

~k—k K
dS dF ds
) NN S S R S N s | 24
( dydw>w o, Wy (24)

for Az*. As opposed to the original approach of Vierendeels e8ltljis linear
system is solved with an iterative solver like the geneealizonjugate residual
method B8] or the generalized minimal residual methotB] in a matrix-free
way. The matrix on the left-hand side of equatid@®#)(and consequently the

—~k —k
approximate Jacobian. and 42 do not have to be calculated explicitly; a
procedure to calculate the product of these matrices wittcsov is sufficient.

—~k —k
The procedure to calculate the product of the approximaxeztﬂan% or %
with a vector is similar to the procedure described in Sectior he matrix-vector

—~k
product withi—i is calculated from the previous inputs

0, ..., xF (25a)
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and the corresponding outputs
gt =F@%, ..., gt =F(xh). (25b)

of the flow solver which are converted into differences wiispect to the last
input and output

Az’ =z — z* (26a)
A~z+1 ,ngrl gk+1 (26b)

fori =0,...,k—1. All Az’ andAg"" from the current time step (and possibly
from previous time steps) are stored as columns of the matWJé ande with
the subscriptf referring to the flow solver. Subsequently, the ec:onomg.l QR-

decomposition of/’“ is calculated. To determine the product%éf with a vector
Az, the trlangular system

Rich = Q' A (27)
is solved forc’} and the matrix-vector product is then calculated as

d
é Ax = W]’fc’}’ (28)

—k
The product of% with a vector is calculated analogously, based on the inputs
and outputs of the structural solver.
Oncex**! has been obtaineél,is increased, the corresponding stress distribu-
tion g**! = F(z*) is calculated and the matrices, W, Q; andR; are updated.
To calculate the stress distributigfi™! = y* + Ay* that has to be applied on the
structure, the system

dF ds dF*
I — Ak:~k+1_ k ~k .k 29
( Iz dy ) y' =y A (" —z") (29)

is solved, again with the matrix-free iterative solver. BvBme the solution of
either the flow problem or the structural problem is caladatthe approximate
Jacobian of the corresponding solver is improved by meatiseo$olver’s latest
input and output.

Analogous to the IQN-ILS technique, the matndg’g andWW f have to con-
tain at least one column to calculate the quasi-Newton L@p@&iihermse arelax-
ation with factorw is used for the interface’s position (lidein Algorithm 2) and
the stress distribution is passed on without modificatiore(l3).
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Algorithm 2 IBQN-LS method §]
Lk=0;9' = Fa; y' = 9" &' =S(y'); v’ = 3" —
2: while ||7*|]; > ¢, do
3 ifk=0andg=0orn=0)then
wk—i—l — .’Bk + wrk
else
constructV’* andwk
calculate QR-decompositidi* = Q* rR*
solve equationZ4) for Az*
wk—i—l — .’Ek + Awk
10:  endif
11 k=k+1; " = F(zF)
12 if k=1and g =0orn=0)then

© o N g

13: yhtt = ght!

14. else

15: constructV’y and W}

16: calculate QR-decomposmdr} = Q} R}
17: solve equationZ9) for Ay*

19:  endif

00 gkt — S<yk+1); rk — k1 _ ok
21: end while

6. Aitken relaxation

Aitken relaxation 0], shown in Algorithm3 and Figure3(c), determines
a dynamically varying scalar relaxation factof for the fixed-point iterations
within a time step.

bt = gk 4 Wik (30a)

= (1 — wF)x" + Fz* (30b)

The next input forS o F is thus a linear combination of the last output and the
previous input. Moreover, the update of the interface’stosis in the direction
of the residual vector, as opposed to the update from the IlE\Nmethod on
line 9 of Algorithm 1. The first relaxation in a time step is executed with the
relaxation factor from the end of the previous time step,liooited to w™**, so
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w? = sign("w) min(|"w|, w™**) andw’ = w™**, The value ofu* is obtained as

k—I\T/(,.k k—1
k P G N G
= — 1
w w (’I”k _ T.k—l)T(T.k _ ,r.k—l) (3 )
which is interpreted in30] as the secant method for scalars directly applied to
vectors and projected arf — r*~!. By combining equations30Q) and @1), it can
be seen that the update of the interface’s position is giyen b

(xh — k1) T(rk — k=)
(rk — ph=1)T(pk — pk-1)

B wk (ik—i-l o ik)T(’I“k - Tk_l)
o + [ (rk _ Tk;—l)T(rk _ Tk:—l)

for £ > 0. The previous equation is similar to lireeof Algorithm 1. If the
Jacobian were created explicitly in the IQN-ILS algorithifthe normal equations
were used to solve the least-squares problem in equdt®)ragd if the matrices
V¥ andW* were limited to their last column, lin@ of Algorithm 1 would give

(®k+1 _ i,k)(rk _phlyT - o
(rk — ph=1)T(pk _ pk-1) ]] ( ).

Equations 82) and @3) are, however, not identical because the coefficientof
is a scalar in the first equation and a matrix in the second ®hes proves that
Aitken relaxation is fundamentally different from the IQNS method. On the
other hand, it demonstrates that implementing the IQN-Ilg8hmd is hardly more
complex than implementing Aitken relaxation. However,k&i relaxation can
also be seen as an interface quasi-Newton technique: ihtlegse of the Jaco-
bian in equation §) is approximated by-w*I, the Aitken relaxation method is
retrieved.

Section8 will demonstrate the gain in performance obtained by udnegir-
formation from all previous iterations or even previousdisteps in the approx-
imate Jacobians instead of only from the last two iteration&itken relaxation.
Steepest descent relaxati@0] is similar to Aitken relaxation, but it is not stud-
ied in this paper as it exhibits stepwise or zig-zag convergavhich is typical for
steepest descent methods and well understodd [

ot = xF + (—rF) (32a)

— 1} (—rF) (32b)

mk-ﬁ-l — CBk + |: (33)

7. Interface-GMRES(R)

Interface-GMRES (Algorithnd and Figure3(d)) uses the Newton-Raphson
method to solve the nonlinear equati@ix) = 0 for the interface’s position. It
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Algorithm 3 Aitken relaxation BQJ
1 k=0; 2" =SoF(z); '’ =z" — a°
2: while ||7*|]; > ¢, do

3 if k=0then
0

4: w! = sign("w) min(|"w|, w™*)
5 else e
} k_ _ k=1 (rE—rkTT)
6: w = w Tk 1]
7. endif
8 Ml =zxF 4+ hrk

90 k=k+1,; P - So}—(xk); rk — gkt _ ok
10: end while

is a hybrid Newton-Krylov method5[l], applied to FSI. The Newton-Raphson
updateAx is obtained by solving the linear system in equatiég.( To be able

to calculate the Jacobian-vector product, fixed-poinatiens are first performed
in line 4 to 19 which results in a sequence of interface positieAsnd the cor-
responding residuals’ with i« = 1,...,j. From these sequences, differences
Az’ = ' — 2 andAr' = r' — r¥ are calculated and stored as columngd/of
andl’. It has been proved by induction that the Krylov space cpoeding with
the linear system in equatiofd) is asymptotically similar tepan{Az'}/_, and
the fixed-point iterations thus serve as a preconditiondredsMRES solution of
equation 6g) [25, 28]. The residual aiz + > 7_, ¢; Az’ is approximated as

J J
R(x + Z cAz') =~ r’ + Z ciAr (34)
i=1 i=1

which can be considered as a finite-difference approximatd/hen the mini-
mization problem in the residual space

J
min || + > aAr), (35)

i=1
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of the GMRES method has converged sufficiently, the corredipgnNewton-
Raphson update is calculated as

J
¢ = argmin ||r° + Z AT | (36a)
i=1
j .
Ax =) cAx (36b)
i=1

The coefficient vectoe is calculated in the same way as in the IQN-ILS method,
as shown on lind7 of Algorithm 4. The expressiomin, ||7° + >/, ¢;Ar||5 is
called the linearized residug) as opposed to the true residlial||,.

Algorithm 4 Interface-GMRES metho@®f]
1 k=02 =SoF(z°); r’=3' — 2"
2: while ||r*]| > ¢, do

3 j=0; ¢=||r"]:

4:  while { > ¢; do

5: j=7+1

6: Ax? =37 —

7 fori=1toj —1do

8: Azl = Ax? — %Ami
9 end‘for . '

100 Awl = wii A

11: ) =20 + Az’

12: &t =S o F(xh)

13: Arl = (It — 7)) — pk

14: constructl’’ = [Ar! ... Ar]
15: constructV’ = [Ax?! - - - Ax’]
16: calculate QR-decompositidri¥ = 7 R’
17: solveRic = —(i "k
18: ¢C=||r*+ Vie|l

19: end while

200 x'=2"+Wic

21: k=k+1;, &' =SoF(z°); r* ="' — z°
22: end while

For FSI with strong interaction, the relaxation on lih@ of Algorithm 4 is
imperative as the inner loop consists of fixed-point iteradi which diverge fast
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without relaxation. The optimal value of the relaxationtéacy is problem depen-
dent and one is limited by the finite accuracy of the solversafiower bound and
divergence for an upper bound. The orthonormalization eftk’ from line 7 to
9is recommended ir2fg] to improve the accuracy of the solution of equatiBB)(

Algorithm 4 can be conceived as the construction of a model with theuakid
as input and the interface’s position as output. Insteadsimiguthe model to up-
date the interface’s position in the inner loop, underretafixed-point iterations
are performed until the model meets the user-defined tateran To prevent
that equation35) is solved too accurately during the first few Newton-Raphson
iterations.e, is set to a fraction\ of the current residud|r*||.

Instead of discarding the’ andr? from the previous Newton-Raphson iter-
ations, they can be reused in the next Newton-Raphson dgaratihich is called
Interface-GMRESR. Algorithnd shows the alterations to Algorithshthat bring
about reuse of the fixed-point iterations from previous N@wRaphson itera-
tions.

Algorithm 5 Interface-GMRESR metho2§]
Lkhk=0; &' =SoF(x); r'=3' — x°
20 j=0; (= ||r*]]:
3: while [|7*||; > ¢, do
4:
21 k=k+1, @ =So F(a); vk =2/ — 2"
22:  solveRic= —Qi'rk
23: (= |lrk+Viell
24: end while

The inner loop is executed at least once before going to thddteRaphson
update; otherwise no additionAlr and Ax are known with respect to the previ-
ous Newton-Raphson update and the Newton-Raphson updatd b@ineffec-
tive. Every time a Newton-Raphson update is performed or2in¢he reference
x" is modified and the solvers are evaluated. However, thieselaluation does
not result in an additional differenc&x and Ar, whereas IBQN-LS and IQN-
ILS modify the reference in every iteration and obtain aet#hce of the input
and output in every iteration except for the first one.

Due to the relaxation on lin&0, the Az’ in Algorithm 4 all have the same
norm, regardless of whether it is the first or the final itenatin the time step.
However, the step size is adapted to the initial residuathéfproblem is non-
linear, theAx and Ar can be inaccurate because this finite difference step size
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is suboptimal. Because the norm of the differences in IBQN-b& IQN-LS is
equal to the step size, it automatically decreases durimgadhipling iterations as
they converge and these methods do not require a preseiztep s

Reuse of differences from the previous time steps and notfamty the previ-
ous Newton-Raphson iterations has been introduced by MifB2kwho mention
that reuse increases the efficiency, but that it comes atdgbense of robustness
and therefore has to be used with some caution. Results fgra@ntime steps
have been presented in a simulation with a compressible floiénable reuse in
Interface-GMRESR; should not be reset to 0 at the beginning of the time step.
The convergence plots iB2] demonstrate that with reuse from the previous time
steps, there is a large discrepancy between the linearesadual and the true
residual. The inner loop with fixed-point iterations comes after one iteration
because the linearized residual already is very small. Cuesgly, the algorithm
repeatedly performs one fixed-point iteration followed dyewton-Raphson up-
date and in this regime an additionale and Ar are obtained at the cost of two
solver evaluations.

8. Results

In this section, the performance of the coupling algoritiex®mpared for two
different cases, namely a 2D flexible beam behind a cylinddrthe propagation
of a pressure pulse in a 3D flexible tube.

8.1. 2D flexible beam

The first cases are the steady FSI1 test and the unsteady éssi2am the
benchmark in41]. This test is well-documented in the aforementioned exfee
and thus it will only be described briefly. As can be seen iuFed, the geometry
consists of a horizontal channel of 0.41 m high, containimgyia cylinder with
center positioned 0.2 m above the bottom of the channel. Anlanviscous flow
with density10% kg/m® and kinematic viscosity0—2 m?/s enters the channel from
the left hand side with a parabolic velocity profile. A cométaressure is imposed
at the outlet of the channel and a no-slip boundary condisoapplied on the
walls. The mean inlet velocity is 0.2 m/s for FSI1 and 1.0 rofHSI2. A linearly
elastic beam is attached to the right hand side of the cylindd this beam has
a density of10® kg/m?® or 10* kg/m?, respectively in FSI1 and FSI2, a Young's
modulus of1.40 - 10° N/m? and a Poisson'’s ratio of 0.4.

The finite volume flow solver uses second order discretindtiothe pressure
and second order upwind for the momentum. It solves the K&tekes equa-
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tions in arbitrary Lagrangian Eulerian (ALE) formulatioorfthe pressure and ve-
locity simultaneously with first order time accuracy. Thestmef the fluid domain
is adapted to the position of the fluid-structure interfad® & spring analogy and
remeshing is performed if the skewness of the cells is tgelarhe spring anal-
ogy means that the edges between the grid nodes are rephasgpdigs, with a
spring constant inversely proportional to the length of édge. This results in
a pseudo-structural problem with the grid displacementr&sowns p3]. The
finite element structural solver uses implicit time intégma of plain strain ele-
ments with 8 nodes and takes into account the geometricneatities due to the
large deformation of the structure. The coupling algoritisn@xecuted on one
processor, the flow solver and structural solver each on teogssors.

After validating the flow solver and the structural solvethnthe tests listed in
[41], the FSI1 and FSI2 tests have been performed. Thhled Figures give the
displacement in the andy direction of the point4, which is located at the right
end of the beam, and the drag and lift force on the entire tstreign the same
format as in the benchmark papdr]. The difference between the simulations
of the FSI1 test decreases as the grid is refined and thesesutespond well
with the benchmark values, even for the FSI2 test consigé¢hiat the flow solver
is only first-order accurate in time on moving meshes. Theesesults have
been found with each coupling method. Pressure contoutsinitinity of the
structure are shown in Figure

The number of solver evaluations and the relative duratichesimulations
are given in Tabl@. The residual|r;||, is reduced five orders of magnitude with
respect to its initial value and the number between bradiedighd the name of an
algorithm indicates from how many time steps informatiomeigsed. For FSI1,
the number of solver evaluations is independent of the gfidement. Interface-
GMRESR has been used with= 0.01 because this resulted in the lowest num-
ber of solver evaluations. In the unsteady FSI2 test, lateHGMRESR requires
more coupling iterations than Interface-GMRES, especialign the deforma-
tion within a time step is large. Reuse of information fromrBéisteps reduces
the number of coupling iterations with approximately 30 %ldoth IQN-ILS and
IBQN-LS. For this unsteady simulation, the duration of thadation is simi-
lar for IQN-ILS(3) and IBQN-LS(3), which are significantlydter than Aitken
relaxation and Interface-GMRES(R).

8.2. 3D flexible tube

The second test case is a 3D simulation of a straight flexiible +— represent-
ing an artery — with radius 0.005 m and length 0.05 m, as desdty Fernandez
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and Moubachir24], Formaggia et al.4], Gerbeau and Vidrasc2§]. The same
flow solver and structural solver as in Sect®i have been used, but the struc-
ture has been modeled with one layer of shell elements. Testwall is a linear
elastic material with density 1200 kg#myoung’s modulus 30° Nm?, Poisson’s
ratio 0.3 and thickness 0.001 m. The structure is clamped diractions at the
inlet and outlet. The fluid is incompressible and has a dge$it 000 kg/nt and

a dynamic viscosity of 0.003 Pa

Both the fluid and the structure are initially at rest. During first 31073 s, an
overpressure of 1333.2 N/nis applied at the inlet. The wave propagates through
the tube during 02 s, simulated with time steps @f~*s. The fluid model con-
tains 37128 degrees-of-freedom and the structure mod&®@with v = 4896
degrees-of-freedom in the interface’s position ang: 4992 degrees-of-freedom
in the stress distribution on the fluid-structure interfa@eessure contours on the
fluid-structure interface are shown in Figwand they correspond well with the
above mentioned references. The same results have beeanh otlmeach cou-
pling method.

Table 3 gives the number of solver evaluations in a time step, aesrayer
the entire simulation, and the relative duration of the $ations. In every time
step,||r||» is reduced three orders of magnitude with respect to it&@inialue
in that time step. The results demonstrate that the perfocemaf the coupling
methods is different with respect to number of solver evadna and CPU time.
The reason for this difference is that if the coupling altorn predicts an irregular
position of the interface or pressure distribution on theriiace, it will take the
flow solver and structural solver longer to converge. Faos ttase, the duration
of the simulation is again similar for IBQN-LS(10) and IQNS(10), which are
faster than the other methods.

9. Conclusion

It has been demonstrated that the complete Jacobian isquoted in an inter-
face Newton-Raphson technique for partitioned simulatidlua-structure inter-
action. Based on this insight, an interface quasi-Newtdmtiegie with an approx-
imation for the product of the inverse of the Jacobian witlkeetor (IQN-ILS) and
reuse of information from previous time steps has been dpeel B9]. A com-
parison of the IQN-ILS algorithm with IBQN-LS, Aitken relattan and Interface-
GMRES(R) indicates that the IQN-ILS method can easily be imgleted in an
FSI framework that currently uses (Aitken) relaxation otehface-GMRES(R)
and that IQN-ILS is more straightforward to implement th8®@N-LS. The re-
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sults show that the IQN-ILS method performs similarly to IBN-LS method
and better than Aitken relaxation and Interface-GMRES(R).
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Figure 1. Amplification of the error on the interface’s pasitas a function of the wave number
(). This result has been obtained by means of Fourier errdysinan the Gauss-Seidel itera-
tions between the flow solver and structural solver in a shtiorh of 1D unsteady, incompressible
flow in a flexible tube 87] with (a) constant product of the dimensionless time stegnd the
number of degrees-of-freedomin the discretization of the interface« = 0.1) and(b) constant
dimensionless stiffness of the tube£ 10).
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Figure 2: Pressure contours in an axisymmetric tube duedalteplacements of the tube’s wall
with the same amplitude but a different wave number. Itighe fluid is at rest and the tube has
a constant cross section. The straight horizontal linedsittis of symmetry, the curved horizontal
line is the tube’s wall. A displacement of the tube’s wall v low wave number (top) creates
much larger pressure variations than a displacement wilsdme amplitude but a higher wave
number (bottom). Only the difference between the two calbohs and not the values as such are
important.
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Figure 3: Simplified representation of tfeg IQN-ILS, (b) IBON-LS, (c) (Aitken) relaxation and
(d) Interface-GMRES algorithm for partitioned FSI simulatomith black-box solvers.
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Figure 4: Pressure contours in the 2D unsteady FSI2 testthatfiexible beam aftefa) 12 s;(b)
16s.
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Figure 5: Displacement and force in the 2D unsteady FSI2ngktthe flexible beam. Displace-
ment of node A in(@) the x-direction;(b) the y-direction. Force on the beam and cylinde(dh
the x-directionj(d) the y-direction.
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Figure 6: Pressure contours on the fluid-structure interfa@ 3D simulation of the flexible tube
after(@)10~2s;(b) 5-1073s;(c) 9103 s.
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Results for the 2D flexible beam

FSI1
DOF (F +S) | displ, [10®°m] | displ, [10~° m] force, [N] force, [N]
74418+7650 0.022643 0.83672 14.234 0.75416
164394+16874 0.022645 0.83489 14.254 0.75616
290574+29699 0.022651 0.83478 14.266 0.75753
Benchmark 0.022700 0.82090 14.295 0.76380
FSI2
DOF (F +S) | displ, [107°m] | displ, [107° m] force, [N] force, [N]
89760+7650 | -14.07:12.37[3.7] 1.18£76.5[ 1.9 | 217.52:84.65[3.7] -0.74:267.6[1.9
Benchmark | -14.58£12.44[3.8] 1.23:80.6[ 2.0 | 208.83:73.75[3.8] 0.88£234.2[2.0

l

Table 1. Displacement and force in the 2D steady FSI1 anceadgtFSI2 test with the flexible
beam for different grids. The number of degrees-of-free@@@F) is indicated for each grid, sep-
arately for the flow solver and the structural solver, and thimber varies slightly in the unsteady

test due to remeshing. For the FSI2 test, the values are giverear-amplitude[frequency].
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Performance of the algorithms for the 2D flexible beam

FSI1
Algorithm Evaluations| Duration
IBQN-LS 5 1.18
IQN-ILS 5 1.00
Aitken relaxation 8 1.42
Interface-GMRES 7 1.35
Interface-GMRESR 6 1.00

FSI2
Algorithm Evaluations| Duration
IBON-LS 7.2 1.54
IBQN-LS(3) 4.8 1.00
IQN-ILS 9.4 1.84
IQN-ILS(3) 6.1 1.07
Aitken relaxation 9.9 1.81
Interface-GMRES 10.5 1.94
Interface-GMRESR 14.4 2.71
Interface-GMRESR(3 12.4 2.71

Table 2: Number of solver evaluations and relative duratrthe 2D steady FSI1 test and un-
steady FSI2 test with the flexible beam. The data are indegeraf the grid refinement in the
steady simulation and the number of solver evaluationsiper step in the unsteady simulation
has been averaged over the last period of the oscillation.
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Performance of the algorithms for the 3D flexible tube

Algorithm Evaluations| Duration
IBQN-LS(2) 8.2 1.29
IBQN-LS(10) 6.3 1.00
IQN-ILS(2) 8.4 1.30
IQN-ILS(10) 6.6 1.03
Aitken relaxation 26.7 4.69
Interface-GMRES 16.1 2.71
Interface-GMRESR(2) 11.7 1.79
Interface-GMRESR(10 9.5 1.45

Table 3: Number of solver evaluations per time step andivelduration for the simulation of the
3D flexible tube. The number of solver evaluations per tirep sias been averaged over the entire
simulation.
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