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Voorwoord

Meer dan acht jaar geleden diende ik mĳn ontslag in bĳ mĳn toenmalige werkgever om als
voltĳds student een predoctorale opleiding te volgen. Het idee om als industrieel ingenieur
een doctoraat te maken was slechts enkele maanden voordien ontstaan als een mogelĳke
uitweg voor de geestdodende cultuur die eigen bleek te zĳn aan de sector waarin ik verzeild
was geraakt. De enige motivatie voor deze stap was de utopische gedachte dat ik de tĳd
zou krĳgen om mĳn eigen ideeën uit te werken. Hoewel er op dat moment totaal geen
sprake was van een mogelĳke financiering voor dit plan, kreeg het de onvoorwaardelĳke
steun van mĳn ouders, waarvoor ik hen uitermate dankbaar ben. Zĳ waren de eersten in
een lange rĳ van mensen die mĳ hebben geholpen en gesteund bĳ de realisering van dit
doctoraat.
Ik wil mĳn dankbaarheid uiten tegenover mĳn promotor Prof. dr. ir. Erik Van Bockstaele,
die mĳ na het afronden van mĳn predoctorale opleiding heeft opgevangen in het toenmali-
ge Departement voor Plantengenetica en -veredeling (DvP) van het huidige ILVO. Zonder
deze ingreep zou het ganse project een vroegtĳdige dood gestorven zĳn. Mĳn jaar op het
DvP was vruchtbaar in meerdere opzichten. Onder toezicht van mĳn begeleider dr. ir. Jan
De Riek werd het basisidee van deze doctoraatsstudie voor het eerst op papier gezet. De
gerenommeerde expertise van het DvP liet mĳ ook toe om contact te leggen met de weten-
schappelĳke kern van het Franse veredelingsbedrĳf RAGT R2n. De meeste componenten
van deze doctoraatsstudie maken dan ook gebruik van gegevens die werden aangebracht
door dit bedrĳf. Deze bron van informatie zou echter volledig onbeheersbaar zĳn geweest
zonder de oprechte wetenschappelĳke interesse en openheid van de RAGT medewerkers,
waar de talloze bĳdrages van Thierry Bouhet, Bruno Lefèvre, Bruno Claustres en Michel
Romestant een specifieke vermelding verdienen.
Mĳn eerste contact met mĳn promotor Prof. dr. Bernard De Baets dateert ook uit de
voornoemde DvP periode. Ik ben tot de dag van vandaag vereerd dat hĳ bereid was mĳ
te begeleiden doorheen de wiskundige aspecten van dit werk. De bĳdrage van Bernard
omschrĳven als louter wiskundig doet de waarheid trouwens onrecht aan daar hĳ eveneens



ii

fungeerde als een bron van inspiratie, motivatie en zelfvertrouwen. Bovendien was hĳ de
drĳfveer voor de verschillende wetenschappelĳke publicaties en presentaties die voortvloei-
den uit onze samenwerking.
Ondanks het vertrouwen van mĳn beide promotoren bleek het vinden van een financierings-
bron voor het uitwerken van mĳn idee nog steeds een onoverkomelĳke hindernis. Gelukkig
kon ik beginnen als academiseringsassistent op mĳn ‘oude school’ waardoor het pad naar dit
doctoraat eindelĳk zichtbaar leek te worden. Onder de begeleiding van Prof. dr. ir. Geert
Haesaert kreeg ik daar het vertrouwen en de vrĳheid die al zo lang op mĳn verlanglĳstje
stonden. Bovendien profiteerde mĳn werk aanzienlĳk van zĳn kennis van plantenveredeling
en genetica en kon ik hem ongebreideld lastig vallen met vragen en problemen van allerlei
aard. Het weinige dat ik daar kan tegenover stellen is een oprechte dankbetuiging in het
naar alle waarschĳnlĳkheid meest gelezen deel van mĳn doctoraat.
De laatste maar meest belangrĳke persoon die hier een bedanking verdient is mĳn geliefde
Chantal. Nog meer dan iedereen anders heeft ze mĳ gesteund en geholpen doorheen dit
ganse traject van ontslag tot promotie. Jouw gedrevenheid in het leven is voor mĳ een
continue motivatie geweest om dit doctoraat tot een goed einde te brengen.
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Symbols

N the set of natural numbers
R the set of real numbers
C the set of complex numbers
Rn set of real-valued vectors of size n

f() = f(·) function
f(x) evaluation of function f at x

‖f‖ norm of function f , generally referring to the 2-norm
∂xi

f(x) partial derivative of f(x) w.r.t. the i-th component of x

R
R

n

set of functions from R
n → R

K(·, ·) kernel function
I(i, i′) indicator function, equals 1 if i = i′ and 0 otherwise
L Lagrangian
H Hilbert space
X input space
Y output space
F hypothesis space
Dm sample of size m

O() (worst case) order of an algorithm
P(A) probability of event A

P(A | B) conditional probability of event A given B
ibd
= allele identity by descent from a common ancestor
ais
= allele identity by state
��ibd
= allele identity but not by descent from a common ancestor
h2 heritability
R2 squared Pearson correlation, coefficient of determination





CHAPTER 1

Introduction, objectives and outline

1.1 Introduction

Predicting the properties of the potentially unconceived offspring of two future parents
seems like a daunting task. On the other hand, the resemblance between parents and their
progeny has always inspired farmers and breeders to iteratively select the most promising
genotypes as parents for establishing the next generation. In fact, this process has had
such a major impact on the agronomic level of production of today’s domesticated crop
and animal species, that it is often difficult, if not impossible, to trace them back to their
ancestral origins. Therefore, these crude forms of phenotypic selection can be interpreted
as the first attempts towards progeny prediction. The accuracy of these implicit prediction
models is rather hard to assess as it depends largely on the heritability of the trait under
study, which in turn depends partially on the selection process itself.
The quest for accurate prediction models that can assess the agronomic potential of future
offspring is driven almost exclusively by economic reasons. If time and budget were uncon-
strained, one would just perform the cross between the two candidate parents and test the
qualities of their progeny. In terms of today’s plant and animal breeding programmes, this
would mean that thousands if not millions of new parental crosses need to be made with
subsequent phenotypic testing of their resulting progeny. In practice, this trial-and-error
process has been replaced with intelligent breeding schemes that are built on the knowledge
of quantitative genetics that has been accumulated in the last 100 years. In this respect,
the development of hybrid varieties in several agronomically important crop species, can
be considered as one of the seminal accomplishments in all of agricultural science. Maize
(Zea mays L.) is the unrivalled showpiece of this successful breeding approach and can be
considered to be one of the most important crops known to mankind. The world-wide area
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designated to maize production is estimated to be more than 142 million hectares with a
total estimated yearly production of 637 million ton.
The prediction of the agronomic performance of single-cross maize hybrids has always been
an extremely active topic of research. The expected financial returns of a reliable prediction
model for hybrid maize is an important but not entirely exclusive reason for this focus.
Maize plants can be selfed for several generations which allows for the creation of nearly
completely homozygous inbred lines. Such an inbred line always creates gametes with an
identical allele configuration over all genes. This means that all progeny that is obtained
by crossing two inbred lines is genetically identical. This genetic uniformity obviously has
several advantages. The uncertainty surrounding the unknown allelic configurations in the
gametes provided by the parents, can be taken out of the equation. Furthermore, as long as
both inbred lines are available, their unique and uniform offspring can always be recreated
and retested, allowing for very accurate phenotypic characterisations. These arguments
have turned maize into the de facto model plant for studies involving progeny prediction.
The advent of doubled haploid technology has further raised the stakes, as it allows to
skip the time-consuming process of inbreeding. This implies that most of the breeding
programme’s budget is now drained by phenotypic testing of the newly created hybrids,
exactly the part we are hoping to replace by accurate genomic prediction models.
Over the last 30 years, the field of biotechnology has evolved at an incredible pace. The
current state of molecular marker technology allows plant breeders to obtain dense molec-
ular fingerprints of their material with modest budgetary consequences. Furthermore, the
complete genome sequence is already available for several plant and animal species and
next-generation sequencing technology platforms are expected to vastly reduce the current
sequencing efforts. The developments in the field of computer science are equally impres-
sive, providing hardware and software platforms that can collect, analyse and store vast
amounts of information in seconds. Advanced machine learning algorithms are capable of
detecting relevant patterns in data streams which would overwhelm most classic statistical
approaches.
All these observations lead towards the main question to be answered in this dissertation:
is it possible, using the currently available arsenal of molecular and computational tools, to
make accurate predictions on the agronomic performance of candidate single-cross maize
hybrids?
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1.2 Research objectives

The primary goal of this dissertation is to develop a methodology that allows to assess
the agronomic potential of maize hybrids, based on the molecular fingerprints of their par-
ents. This prediction model needs to be constructed by detecting patterns in the available
phenotypic data that is collected during the routine genetic evaluation trials of the hybrid
maize breeding programme of the private company RAGT R2n. However, it should be
stressed that the detected patterns themselves, presumably in the form of marker trait
associations, are considered to be of lesser importance. To meet this primary goal, several
research objectives need to be defined.
The formulation of the primary goal does not specify a particular modelling approach. The
use of genetic evaluation data, however, limits the option list considerably. The problem
lies in the inherent unbalanced nature of this kind of data. Different hybrids are tested
in different environmental circumstances, which makes it very hard to estimate a single
agronomic score that allows to compare the genetic potential of these hybrids on the same
scale. The linear mixed model framework does allow to calculate Best Linear Unbiased
Predictors (BLUPs) of breeding values from unbalanced phenotypic data. Unfortunately,
linear mixed modelling does not solve all problems. The breeding programme of RAGT
R2n has produced phenotypic measurements on thousands of hybrids, while the available
budget for genotyping only allows to obtain a limited set of marker scores. This means
that we can either genotype a large set of inbred lines, using only a limited selection of
molecular markers, or that we can genotype only a few important inbred lines, using a very
dense, genome-covering molecular fingerprint. If we succeed in finding the optimal trade-
off between these opposing criteria, we also need a way to actually identify the optimal
selection of hybrids, having an exact and predefined number of parental inbred lines. In
a similar way, we need to identify a set of molecular markers with fixed cardinality such
that the resulting genome coverage is maximised. Finding a solution to these problems
constitutes as the first research objective.
BLUPs, expressing the agronomic potential of the selected hybrids, can be obtained by
fitting an appropriate linear mixed model to the available phenotypic data. In these models,
it is commonly assumed that the genotypic components of the hybrids can be fitted as
random effects for which the covariance model can be structured as some function of the
pairwise coefficients of coancestry. The required coancestry estimates can be obtained from
pedigree or marker information. Unfortunately, the marker-based estimation procedures
that are described in scientific literature do not guarantee that the resulting coancestry
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matrix will be at least positive semi-definite (PSD), a mathematical requirement for using
it as a covariance model in a linear mixed model analysis. Furthermore, several procedures
allow to obtain estimates that do not lie within the unit interval, contradicting the original
definition of the coefficient of coancestry and hampering a straightforward interpretation of
the estimated variance components. The second research objective is therefore to develop
a marker-based coancestry estimation procedure that is PSD, always produces estimates
within the unit interval and is specifically designed for use in hybrid breeding programmes.
The molecular fingerprints of the parental inbred lines provide a very high dimensional
predictor space in which each hybrid represents a specific point. We want to learn how to
express the genetic potential of these hybrids as a function of their predictors (i.e. their
specific position in the predictor space). This function should not be restricted to be
linear and should be able to fit higher level interactions between the predictors, if these are
relevant. Unfortunately, the high-dimensionality of the predictor space represents a major
problem for most classic regression approaches. In this respect, kernel-based methods,
a relatively recent development in the field of machine learning, might very well provide
an escape from this curse of dimensionality. In particular, the group of support vector
machine-based methods allows to fit non-linear classification and regression functions to
very high dimensional data, while at the same time, the risk of overfitting is minimised
and the resulting function allows for an efficient and fast evaluation of new hybrids. The
third research objective is therefore to explore and optimise the use of the support vector
machine regression framework, generally denoted as ε-insensitive support vector machine
regression (ε-SVR), for the construction of a hybrid prediction model.
The accuracy of a prediction model is quite often assessed by means of some cross-validation
procedure. This approach is scientifically justified if the set of training examples is suffi-
ciently large. However, most end-users of such a prediction model mistrust this form of
accuracy determination, generally claiming that the results are positively biased. In this
respect, accuracy measures of hybrid prediction models are mistrusted even more, as en-
vironmental conditions tend to have a great impact on the agronomic performance that is
actually measured on the field. As these environmental conditions are difficult to control,
predicted and actual field measurements can deviate quite substantially, depending on the
heritability of the trait under study. The fourth research objective therefore aims to eval-
uate the usefulness of ε-SVR-based hybrid prediction models from the perspective of the
end-user, which is basically the maize breeder. This means that we need to determine how
good the ε-SVR-based predictions correlate with actual field measurements taken in a val-
idation trial. Moreover, these results need to be compared with those of more conventional
prediction approaches.
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1.3 Research outline

The structure of the dissertation follows the logical order that is imposed by the four
research objectives: data selection, coancestry estimation, ε-SVR prediction model opti-
misation and model validation. In reality however, these different research parts were not
necessarily performed in this particular order. The data selection approaches presented
in Chapter 5 for example, were needed to select the empirical data that is used in the
following chapters. In reality, the development of these procedures was a long and difficult
journey which was completed long after the phase in research in which they were actually
required. This means that the described selection of empirical data is most likely not op-
timal with respect to the accuracy of the resulting prediction models. A similar story is
at the bottom of the developed coancestry estimation procedure described in Chapter 6.
Its delayed finalisation explains why the linear mixed model formulations in later chapters
do not make use of this estimator for modelling the covariance between hybrids. Notwith-
standing these minor inconsistencies in the presented time line, it was opted to structure
this dissertation according to the logical instead of the chronological order of the presented
research components.
Chapter 2 introduces the topics of heterosis, hybrid breeding and prediction of agronomic
performance. This chapter starts by describing the historical developments that have paved
the road towards the commercial exploitation of heterosis in maize. Subsequently, an
overview of the most commonly adhered theories on the molecular foundations of heterosis
is provided. The chapter is concluded by an overview of earlier attempts to predict the
agronomic performance of maize hybrids, giving a good idea of the challenges that lie
ahead.
The mathematical foundations of the support vector machines framework is the topic
of Chapter 3. First, the concept and relevant properties of reproducing kernel Hilbert
spaces are introduced. Next, the focus is shifted towards the topic of structural risk
minimisation, a statistical learning framework which forms the foundations of ε-SVR. This
machine learning technique is gently introduced by restricting the set of candidate functions
to be linear. The following section describes how this approach can be extended to result in
non-linear ε-SVR models by applying the kernel trick. The chapter concludes by detailing
the sequential minimal optimisation procedure, a commonly used technique to solve the
quadratic optimisation problem that lies at the heart of ε-SVR.
Chapter 4 gives a description of the empirical data that was used in the different research
components that are presented in this dissertation. Some limited details on the genetic
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structure of the maize breeding pool and the available phenotypic data from the private
breeding company RAGT R2n are provided. Next, the ad-hoc rules which have guided the
selection of genotyped inbred lines are discussed. This selection of inbred lines has been
fingerprinted by means of SSR and AFLP markers for which details are provided at the
end of this chapter.
Chapter 5 deals exclusively with data selection issues. A framework is presented that
allows to select a fixed number of inbred lines from a large set of unbalanced phenotypic
data such that the resulting genomic prediction model has a superior prediction accuracy.
This problem setting is approached by combining theoretical results on data connectivity
issues with specific algorithms from the field of graph theory. A similar framework allows to
identify the maximal genome covering subset of markers of fixed cardinality. This chapter
concludes by demonstrating how one can identify the optimal trade-off between the number
of genotyped inbred lines and the size of the molecular fingerprint, by means of a simulation
study.
Chapter 6 introduces the newly developed weighted alikeness in state or WAIS coancestry
estimator. First, the derivation and mathematical proof of the PSD property are provided.
Next, the concept of matrix bending is introduced and a newly developed MCMC-based
bending procedure is discussed. The suitability of WAIS for modelling the covariance
between hybrids in a linear mixed model analysis is compared to that of commonly used
marker-based coancestry estimation using both simulated and actual maize breeding data.
Chapter 7 explores the suitability of the ε-SVR framework for predicting the agronomic
performance of maize hybrids based on the molecular fingerprints of their parents. The
unbalanced nature of the selected phenotypic data is tackled by means of a linear mixed
model analysis. The covariance between genetic components is modelled by means of
coancestry estimates obtained from SSR, AFLP or pedigree information. The impact of
the choice of kernel function on the accuracy of the ε-SVR prediction models is discussed.
Chapter 8 further optimises and validates the prediction framework established in Chap-
ter 7. A finetuning of the linear mixed model analysis allows to improve the prediction
accuracy of the subsequent ε-SVR models considerably. The robustness of ε-SVR is com-
pared to that of a competing prediction method by reducing the number of training ex-
amples or size of the molecular fingerprint. Prediction accuracy is estimated by means of
various cross-validation schemes and compared with the results of a validation field trial.
Chapter 9 is the final chapter of this dissertation. The initial research objectives are
confronted with the results and conclusions that were gathered during the different stages
of the presented research. This scientific reflection is finalised by a discussion of expected
developments and prospects in the field of genomic selection.
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Heterosis and hybrid prediction

2.1 History of hybrid maize

‘Nature thus tells us, in the most emphatic manner, that she abhors perpetual self-

fertilisation . . . For may we not infer as probable, in accordance with the belief of the vast

majority of the breeders of our domestic productions, that marriage between near relations

is likewise in some way injurious, that some unknown great good is derived from the union

of individuals which have been kept distinct for many generations?’

Charles Darwin, 1862

In these words, Charles Darwin concludes his book on the Fertilisation of Orchids. It is
tempting to introduce this quote as the official beginning of heterosis research but in truth,
many examples of the beneficial effects of outbreeding were already well documented by
that time. The increased strength and endurance of the mule for example, was already
noted as far as 4000 years ago. Likewise, the detrimental effects of inbreeding were probably
known even before that time as incest was forbidden or at least frowned upon in most
historically important societies, ancient Greek and Egyptian cultures and some of the
European royal families being notable exceptions to this rule. Despite the tenure of the
aforementioned conclusion, Darwin did not recognise the beneficial effects of outbreeding
as being opposite to the detrimental effects of inbreeding. He did however, inspire other
scientists like dr. William J. Beal, who made report of a field experiment where hybrid maize
(Zea mays L.) seeds were produced by sowing two different maize varieties in alternating
rows and detasseling the seed-bearing (i.e. female) variety. The resultant hybrid maize
seeds produced plants with 53% higher yields than either parent (Beal, 1878). Several
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other experiments confirmed these results but it was not until the landmark paper of Shull
(1908) that the roles of both inbreeding and outcrossing in the exploitation of heterosis were
clarified. He proposed a new breeding strategy that abandoned the Darwinian principle of
inbreeding avoidance and relied on cycles of explicit self-fertilisation followed by a controlled
cross-pollination of carefully selected purebred lines.
Although the principles of Shull were sound, the low seed yield of the parental inbred lines
prevented the adoption of this promising strategy by maize breeders. This problem was
overcome by the double-cross method proposed by East and Jones (1919), at the cost of
a slight reduction in vigour and uniformity of the resulting four-way hybrids. As most of
these developments took place in the United States, hybrid varieties steadily replaced the
open-pollinated varieties in the US corn belt. In 1930, hybrids represent only 1% of the
total US maize acreage, but this proportion increases rapidly towards 50% in 1940. By
the 1950s, the turnover is complete and the great bulk of maize throughout the United
States is hybrid (Khanna, 1991). This commercial success motivates the hybrid’s conquest
of the European continent where maize hybrids are being developed by crossing the corn
belt dent inbred lines with lines developed from well-adapted European open-pollinated
varieties (OPV).
Despite the tremendous success of hybrid maize varieties, the relationship between genetic
distance and combining ability is not well understood. Second and third-cycle hybrids
are being developed from the self-fertilisation of elite inbred line crosses. The idea is to
select combinations of inbred lines that compensate each other’s weaknesses and little
effort is put into the preservation of genetic distance or variability. The reinvention of
single-cross hybrids requires the concept of heterotic patterns which slowly crystallises in
the late 1960s and early 1970s (Tracey and Chandler, 1988). Inbred lines are partitioned
into groups according to their population of origin and demonstrated combining abilities
when crossed with inbred lines belonging to other groups. Iterative cycles of crossing,
self-fertilisation and selection of lines belonging to the same heterotic group assures the
preservation of the genetic distance between inbred lines belonging to different heterotic
groups. Hybrids for which both parents belong to distinct heterotic groups are therefore
more likely to exhibit a positive heterosis effect for yield, the most important trait from
a commercial perspective. This system should also preserve the genetic variability at the
population level (Lu and Bernardo, 2001) but due to the short-term breeding goals of the
seed companies, the overwhelming majority of the inbred lines trace their pedigree back to
only two OPVs, Reid Yellow Dent and to a far lesser extent, Lancaster Surecrop (Lee and
Tracey, 2009). For example, the last available report on the genetic diversity of US hybrid
maize indicates that 88% of the maize seed produced in 1984 included germplasm derived
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from Reid Yellow Dent (Darrah and Zuber, 1986). Currently, the debate is still ongoing
whether or not further genetic gain can be expected from the narrow genetic variability
that is manifested in today’s commercial breeding pools.

2.2 Genetic basis of heterosis

The term heterosis was introduced by Shull (1914) as a shorthand for ‘stimulation of het-
erozygosis’. In one of his later papers, Shull (1948) clarified that the word was purely
descriptive and was not intended to imply any genetic cause or explanation. He also pro-
vided a more explicit definition of heterosis as ‘the increased vigour, size, fruitfulness, speed
of development and resistance to diseases and pests manifested in crossbred organisms as
compared with corresponding inbreds as a specific result of unlikeness of the constitution
of the uniting parental gametes’.
Despite the great economical impact of hybrid varieties, the genetic basis of heterosis is
today as much a matter of debate as it was in the early days of its discovery. The amount
of literature devoted to the topic is daunting to say the least, with contrasting opinions
and conclusions being published almost on a weekly basis. From the beginning, two non-
exclusive hypotheses have been suggested namely, the dominance and the overdominance
theories.
The dominance theory was first proposed by Davenport (1908) and rests on the assumption
that the dominant genes in both parents complement each other in their hybrid offspring,
masking each other’s recessive, deleterious alleles. There were two main objections against
this hypothesis. (1) If the dominance theory holds, it should be possible to stack these
beneficial dominant alleles in one superior inbred line. As nobody has ever managed to
create such a high yielding, homozygous inbred line, the initial hypothesis must be false.
(2) If the dominance theory holds, the distribution of F2 phenotypes should be skewed as
the occurrence of the dominant genotypes over all loci is expected to follow a binomial
distribution with a success probability of 3

4
. As the observed distribution of F2 phenotypes

is generally symmetric, the dominance theory must be false. Both objections are however
easily overthrown by noting that the number of loci influencing a quantitative trait like
yield, is generally very large which (1) makes the odds of fixing the dominant allele at each
of these loci of a single inbred line extremely small and (2) removes the skewness of the
binomial distribution as it asymptotically approximates the normal distribution (Collins,
1921).
The competing overdominance theory traces back to Shull (1908, 1911) and East (1908).
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The idea is that the heterozygous state of a gene influencing a heterotic trait is more
advantageous than the homozygous states of either of the two alleles. In other words, the
two distinct alleles of the heterozygote both give a positive and nearly additive contribution
to the observed phenotype, while a homozygous inbred line has to manage with only
one of these allelic effects. The near additivity is hypothesised to originate from the
pleiotropic divergence of the allelic functions (East, 1936). The overdominance theory did
not find much acceptance as there were hardly any convincing examples of overdominant
loci. Jones (1917) also indicated that the identification of a true overdominant locus
is generally problematic as its beneficial allele might be tightly linked to a deleterious
recessive allele of another gene, a state generally referred to as pseudo-overdominance.
Furthermore, if the overdominance theory holds, it should be impossible to improve the
performance of inbred lines and this turned out to be quite feasible. As a consequence,
until the middle to late 1940s, the dominance hypothesis was generally accepted (Crow,
2000).
A paper of Hull (1945) tipped the scale over to overdominance. The paper contained lit-
tle truly persuasive arguments but was embraced by many plant breeders as they were
confronted with the failure of mass selection to substantially increase yield, which was
somewhat unexpected according to the dominance theory. Nevertheless, most breeders
opted for a breeding scheme that was shown to be effective under both theories, the re-
ciprocal recurrent selection advocated by Comstock and Robinson (1952), today still the
most commonly used scheme in hybrid breeding programmes. It employs the well-known
concepts of the general combining ability (GCA) and specific combining ability (SCA) that
were introduced earlier by Sprague and Tatum (1948).
The time window in which the overdominance theory held sway was short, as Sprague and
Russell (1956) reported their results on what was called the definitive experiment. Over
many years, two maize populations were each selected for increased yield in the hybrids
produced by crossing them with a separate but identical inbred tester line. Under the
overdominance theory, hybrids that originate by crossing inbred lines belonging to the two
populations are expected to show no heterosis as both have been accumulating the same
alleles to complement the tester line. By contrast, these F1 hybrids showed increased yield,
which confirmed the dominance theory.
Recently, the development of new molecular tools has given a new stimulus to heterosis
research. A plethora of studies have analysed heterosis-associated gene expression in a
multitude of species by comparing expression patterns of selected genes in inbred lines
and hybrids or by performing high-throughput gene expression analyses via microarray
profiling or GeneCalling (Hochholdinger and Hoecker, 2007). The results of these stud-
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ies are contradictive and confusing to say the least, as several empirical proofs of each
candidate theory has been published, included the early disregarded theory of epistasis.
As a personal opinion, I think the statement of Sprague (1983) still captures our level of
knowledge on the subject: “Studies have shown that additive and dominance gene effects
are generally much greater than other types of gene effects. Additive effects are precisely
those which respond to selection. Specially designed experiments have shown that both
overdominance and epistasis exist, but neither has been shown to be important at the
population level. . . . Thus, as far as the maize breeder is concerned, a pragmatic solution
to the dominance-overdominance controversy has been reached. Additive and dominance
effects provide a satisfactory model for the heterosis and for the rather remarkable progress
achieved through breeding.”

2.3 Hybrid prediction

The reciprocal recurrent selection scheme used by hybrid maize breeders requires the de-
velopment of a large number of new inbred lines on a yearly basis. These new inbred lines,
belonging to a particular heterotic group, tend to have a good general combining ability
when crossed with inbred lines belonging to a complementary heterotic group, as decades of
recombination and selection have adapted both gene pools to combine well with each other.
However, to become a commercial success, a hybrid, in addition to these pedigree-derived
beneficial additive effects, generally needs to manifest a considerable, positive heterosis ef-
fect for the important traits (e.g. yield, earliness). New inbred lines are therefore screened
for their heterotic potential by crossing them with a tester line belonging to a complemen-
tary heterotic group. The resulting F1 hybrids are tested in extensive multi-environment
field trials that absorb a fair amount of time, labour and budget. Therefore, despite the fact
that experienced maize breeders tend to have some feeling on what combination of inbred
lines is likely to demonstrate a commercially valuable heterosis effect, the development of
a new hybrid variety generally remains a costly trial-and-error process.
It is clear that a hybrid breeding programme would benefit substantially from a reliable way
to predict the phenotypic performance of an F1 hybrid using only observable properties
of its parents. Early prediction attempts use a phenotypic index that is obtained by
measuring morphological traits on each of the parents, which is then used as a predictor
for the yield of their F1 maize hybrid (Anderson and Brown, 1952). The resulting R2

values are however too low (16%) to be of any practical value. Other attempts try to
exploit the observed correlation between the level of heterosis manifested by the hybrid
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and the genetic diversity between its parents. Rao (1952) proposes to use the Mahalanobis
D2-statistic obtained from the measurements on one or more agronomic traits of the two
parents in several environments, as an indirect measure of genetic diversity and as such, a
predictor for heterosis. Again, the obtained prediction accuracy is of little practical value
to the breeders.
From the early seventies to the late eighties, several papers were published concerning the
use of isozymes for the estimation of genetic diversity and hybrid performance. Results
for yield are generally disappointing as, for example, Smith and Smith (1989) make re-
port of a prediction accuracy of R2 = 0.36, using 32 isozyme loci on a panel of 100 maize
hybrids. By contrast, a genetic diversity measure obtained by scoring 230 RFLP marker
loci on the same panel results in an R2 value of 0.87. This striking result is unfortu-
nately only attainable for crosses between closely related inbred lines, as demonstrated by
Melchinger et al. (1990). The correlation between the RFLP-based genetic distance mea-
sure and the phenotypic performance of crosses between unrelated lines (i.e. the standard
approach in hybrid breeding programmes) is too weak for a reliable prediction of hybrid
yield performance. This conclusion was reached simultaneously by Godshalk et al. (1990)
and confirmed theoretically by Charcosset et al. (1991), Charcosset and Essioux (1994)
and Bernardo (1992).
Bernardo (1994) makes predictions on single-cross hybrids having unrelated parents by
means of Best Linear Prediction (BLP). The idea is to predict the phenotypic perfor-
mance of untested hybrids by taking into account the observed phenotypic measurements
of closely related hybrids. The latter are analysed by means of a linear mixed model where
the different variance components (i.e. additive, dominance and residual variances) are es-
timated by means of Restricted Maximum Likelihood (REML). The covariance between
the genotypic values of two hybrids is modelled according to a simplification of the covari-
ance model described by Stuber and Cockerham (1966) by assuming linkage equilibrium
between QTLs, statistical independence of identical alleles in the two involved heterotic
groups and absence of epistasis and other higher order interactions between alleles. This
covariance model requires estimates for the coefficient of coancestry (CoC) between all
involved inbred lines within the same heterotic group. The required CoC estimates can
be obtained from pedigree information but also by fingerprinting the inbred lines with
co-dominant molecular markers as demonstrated earlier by Bernardo (1993).
The prediction accuracy of the presented BLP-based approach is promising for the impor-
tant trait grain yield (i.e. maximum cross-validation-based R2 = 0.64) and the RFLP-based
covariance model seems to be slightly better than the pedigree-based model. In a series of
subsequent papers, Bernardo (1995, 1996a,b,c) examines the robustness of the approach
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by demonstrating applications to the unbalanced data generated by a commercial maize
breeding programme and studying different traits, heterotic patterns, genetic model as-
sumptions and misspecifications of the coefficient of coancestry. The general conclusion
is that the BLP approach is robust, giving a relatively good prediction accuracy that is
largely dependent on the heritability of the trait. Unfortunately, predictions on the much
desired SCA component remain unreliable. Charcosset et al. (1998) use silage maize data
to compare the capabilities of three different methods (i.e. genetic distance, principal com-
ponent analysis and BLP) for improving the classic additive model by adding a predicted
SCA component. For crosses between unrelated inbred lines, the improvements over the
additive model are slim, but the BLP approach always results in the highest prediction
accuracy.
The BLP approach, advocated by Bernardo, summarises the molecular marker scores of
the hybrids in pairwise CoC estimates which are subsequently used to model the covari-
ance between the hybrids. Other published prediction methods try to estimate the QTL
effects, associated with the genotyped markers, more directly by some form of least squares
estimation of the marker effects (Vuylsteke et al., 2000; Schrag et al., 2006, 2007). The
problems related to the curse of dimensionality (i.e. simultaneous estimation of marker ef-
fects is not possible if the number of genotyped markers exceeds the number of genotypes)
are circumvented by using only a subset of informative markers. This preliminary screening
is based on the iterative or stepwise application of a parametric or non-parametric statis-
tical test. Finding an appropriate significance threshold is however not straightforward as
the familywise error rate and problems related to the multicollinearity of marker effects
increase substantially when the number of markers to screen is large.
The advent of single nucleotide polymorphism (SNP) markers, in combination with high-
throughput technologies, has opened the door to large-scale genotyping. The number of
genotyped markers is rapidly increasing while the cost per entry is decreasing (Bernardo,
2008). This ongoing trend has motivated the development of the genomewide or genomic
selection approaches as introduced by Meuwissen et al. (2001). The main idea is to skip
the error-prone marker selection (i.e. screening) part and to use prediction methods that
are able to fit all marker-based predictors without being susceptible to the inherent dimen-
sionality problems of large molecular fingerprints. This is achieved by fitting the markers
as random effects in a linear mixed model. Meuwissen et al. (2001) show, by means of
a simulation study, that assuming heterogeneous variances for these marker effects in a
Bayesian perspective allows to further improve the prediction accuracy. Bernardo and Yu
(2007) demonstrate how this approach can be integrated in a maize breeding programme.
Gianola et al. (2006) and Gianola and van Kaam (2008) explore the concept of repro-
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ducing kernel Hilbert spaces regression (RKHS) to incorporate massive amounts of SNP
scores in a linear mixed model setting. This regression approach is very closely related
to the ε-insensitive support vector machine regression (ε-SVR), for which the theoretical
foundations are discussed in the next chapter. The use of specific kernel functions allows
to model non-additive, epistatic interactions between marker alleles, irrespective of the
number of genotyped loci. Gonzálec-Recio et al. (2008) compare this approach with three
other marker-based prediction methods using a dataset on mortality rates of broiler chick-
ens. Although the obtained prediction accuracies are very low for all methods, most likely
as a consequence of the low heritability of this trait (h2 < 0.05), the RKHS approach is
shown to be superior to all examined competitors.



CHAPTER 3

ε-insensitive Support Vector Machine

Regression

Support Vector Machines are a recent development in statistical learning theory by Vapnik
(1995). The foundations of these techniques depend heavily on the theory of reproducing
kernel Hilbert spaces for which a short introduction is provided. This introduction is by
no means complete, but merely tries to provide some insight into the basic ideas. Readers
expecting a more detailed treatment of the topic are referred to Aronszajn (1950) and Berg
et al. (1984).

3.1 Reproducing kernel Hilbert spaces

A vector space V is a space that contains elements called ‘vectors’ over a field X that
supports two kinds of operations: addition of vectors and multiplication by scalars drawn
from the same field X . These operators must obey several axioms including associative,
commutative, inverse, identity and distributive laws. We typically think of vectors as finite
dimensional arrays of elements over fields like R or C but the set of functions from R→ R,
denoted as RR, also represents a vector space. In this case, we can define addition and
multiplication as (fg)(x) = f(x)g(x) and (af)(x) = af(x) for f, g ∈ RR and a ∈ R.
Another example of a vector space of functions is RR

n

, the set of functions that take an
n-dimensional vector over the field R as an argument. These vector spaces of functions are
generally referred to as function spaces.
A metric vector space V is a space that has a distance metric defined d(x, y) with x, y ∈ V,
which allows to assess the proximity of these elements. A metric vector space V is said to
be complete if every Cauchy sequence of vectors in V has a limit that is also in V. This
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basically means that the space V contains all elements that one would expect and that
there are no missing vectors (i.e. no holes in the space). A Banach space is a complete
vector space which is equipped with one or more vector norms. The norm of a vector v,
denoted as ‖v‖, allows to assess the size of this vector and has to satisfy the following
properties:

‖v‖ ≥ 0

‖v‖ = 0⇔ v = 0

‖au‖ = |a|‖u‖

‖u + v‖ ≤ ‖u‖+ ‖v‖

where u, v ∈ V and a ∈ X . An example of such a norm defined for the complete vector
space Rn is the p-norm where p ≥ 1:

‖x‖p =

(

n
∑

i=1

|xi|p
)

1
p

.

If p = 2, this equation results in the well-known Euclidean norm. For complete function
spaces that contain only continuous functions, a similar norm function can be defined as:

‖f‖p =





+∞
∫

−∞

|f p(x)|dx





1
p

.

If we require this norm function to give a finite, positive size to all continuous functions f

in the space, we can define such a space as

Lp = {(f : R
n → R) :

+∞
∫

−∞

|f p(x)|dx < +∞} .

A Hilbert space H is a Banach space for which a dot-product operation is defined. If H is
a vector space over the field X , the result of this dot product is an element of X . The dot
product of x and y is denoted 〈x, y〉 and must satisfy the associative, commutative and
distributive laws. Rn for example, is a Hilbert space for which the dot product for vectors
x and y ∈ Rn is defined as

〈x, y〉 =
n
∑

i=1

xiyi .
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In a similar way, we can define a dot product for functions f and g ∈ RR
n

as:

〈f, g〉 =
+∞
∫

−∞

f(x)g(x)dx .

To explain the specifics of a reproducing kernel Hilbert space (RKHS), we first need to
introduce the concept of functionals. Similar to an ordinary function y = f(x) that is
defined on the space Rn and takes values in R, a functional T is a function on a space of
functions V that determines uniquely a number in R for each member in V. For example,
if V = L2(X ) (i.e. the L2 space of functions that take an argument from the field X ), a
functional T over V could take the form

T (f) =

∫

X

f(x)dx .

A functional is linear if it satisfies

T (αf + βg) = αT (f) + βT (g) ,

for all real numbers α and β and all members f and g in V. A functional F is bounded if
there exists a number M > 0 ∈ R such that for all f ∈ V:

‖F (f)‖ ≤M‖f‖ .

The Riesz representation theorem states that if F is a bounded linear functional on a
Hilbert space H, then there is always a unique vector (function) g ∈ H for which

F (f) = 〈f, g〉 .

A Dirac evaluation functional Fx is a bounded linear functional defined as

Fx(f) = f(x), ∀f ∈ H ,

which basically evaluates the argument function f at the point x ∈ X (where generally
X ⊆ Rn). A RKHS is defined as a Hilbert space for which all Dirac evaluation functionals
Fx are bounded. According to the Riesz representation theorem this implies that

Fx(f) = f(x) = 〈f, kx〉 ,

where kx ∈ H is the unique representer function for the Dirac evaluation functional Fx at
a point x ∈ X . As kx is a function itself, we can evaluate it at a different point y ∈ X as

Fy(kx) = kx(y) = 〈ky, kx〉 .
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Using this, we can define the reproducing kernel function K for H as K : X × X → R or
K(x, y) = 〈kx, ky〉 where x, y ∈ X . The reproducing property of such a kernel function
relates to the fact that the dot product 〈f(.), K(x, .)〉 = 〈f, kx〉 = f(x) reproduces the
function f evaluated at element x. It can be shown that this reproducing kernel function
is unique for each RKHS. Mercer’s theorem states the properties of a symmetric function
K(x, y) to be a reproducing kernel function with an associated RKHS.

Theorem 3.1, Mercer’s Theorem (Mercer, 1909; Cristianini and Shawe-Taylor, 2000):
Let X be a compact subset of Rn. Suppose K(·, ·) is a continuous symmetric function such
that the integral operator TK : L2(X )→ L2(X ),

(TKf)(·) =

∫

X

K(·, x)f(x)dx ,

is positive, that is
∫∫

X×X

K(x, y)f(x)f(y)dxdy ≥ 0 ,

for all f ∈ L2(X ). Then we can expand K(x, y) in a uniformly convergent series on X ×X
in terms of TK ’s orthonormal eigenfunctions ωj ∈ L2(X ), normalised in such a way that
‖ωj‖L2 = 1, and positive associated eigenvalues λj ≥ 0,

K(x, y) =

dH
∑

j=1

λjωj(x)ωj(y) ,

where dH is the dimension of the Hilbert space, either dH ∈ N or dH =∞.

Kernel functions that obey this positivity condition are called Mercer kernels and it can be
shown that for these kernels, there always exists a RKHS H of functions defined over X for
which K is the reproducing kernel. The converse is also true, meaning that for any Hilbert
space of functions in which the Dirac evaluation functionals are bounded and linear (i.e.
any RKHS), there exists an associated reproducing kernel function which is also a Mercer
kernel (Wahba, 1990; Cristianini and Shawe-Taylor, 2000). The positivity condition of the
integral operator TK is a generalisation of the positive semi-definite (PSD) property of the
kernel matrix obtained for any finite subset of X of size m as

m
∑

i=1

m
∑

j=1

aiajK(xi, xj) ≥ 0, ∀ai, aj ∈ R ,

Mercer’s theorem states that each symmetric, PSD kernel function K has an associated
RKHS H for which K is the unique, reproducing kernel function. In addition to H, we
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can define a mapping φm between each element of X and its associated vector in a dH-
dimensional vector space F called the feature space as

φm : X ⊆ R
n → F : x→ [

√

λ1ω1(x) . . .
√

λdHωdH(x)] .

The dot product of two of these vectors in the feature space can be represented as

〈φm(x), φm(y)〉 =

dH
∑

i=1

λiωi(x)ωi(y)

= K(x, y)

This result is in fact the main conclusion of our introduction to the concept of a RKHS.
Any symmetric, PSD kernel function K when evaluated for two vectors x and y basically
evaluates the dot product between the mapping of these two vectors in some (preferably
high dimensional) feature space. It is however important to realise that the RKHS induced
by a particular PSD kernel function K is only unique up to isometric isomorphism which
implies that the mapping φ is also not unique. Therefore, the mapping φm carries the
subscript m to indicate that this mapping is a direct consequence of Mercer’s theorem.
Other RKHSs and mappings can be described for the same kernel function K, but there
always exists an isometric isomorphism between their induced feature spaces (Schölkopf
and Smola, 2001).

3.2 Structural Risk Minimisation

The ε-insensitive Support Vector Machines regression (ε-SVR) technique was built upon the
statistical learning framework developed by Vapnik (1995, 1998). This framework assumes
that there are two sets of variables x ∈ X ⊆ Rn and y ∈ Y ⊆ R that are related by a
probability distribution p(x, y) over the set X×Y . This probability distribution is unknown
but we assume to have a random sample of this distribution Dm = ((xi, yi))

m

i=1 ⊆ X ×Y for
which it is assumed that the measurement error on the vectors xi is negligible compared
to the accuracy of the yi measurements. We want to find a function f : X → Y using the
data set Dm, which we can use to predict the value y for any given x ∈ X .
To find this function f , we need to define a set of candidates which are grouped in what
is called the hypothesis space F . We also need a criterion which allows to select the
best candidate function from this hypothesis space F . In statistical learning theory, this
criterion is called a risk functional, which measures the average error associated with an
estimator f . If the function V (y, f(x)) is a loss function measuring the error we make
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when we predict y by f(x), then the theoretical or expected risk functional can be defined
as

I[f ] =

∫∫

X×Y

V (y, f(x))p(x, y)dxdy .

Unfortunately it is not possible to find the function f that minimises this theoretical risk
functional (often called the target function f0) because the probability distribution p(x, y)

is unknown. The empirical risk minimisation method therefore uses the data set Dm to
build a stochastic approximation of the expected risk, which is usually called the empirical
risk, and is defined as:

Iemp[f,Dm] =
1

m

m
∑

i=1

V (yi, f(xi)) . (3.1)

Straightforward minimisation of the empirical risk is generally problematic as there are
an infinite number of solutions and it can lead to overfitting, meaning that although the
minimum of the empirical risk can be very close to zero, the theoretical risk, which is what
we are really interested in, can be very large (Evgeniou et al., 2002). One can however
define a probabilistic bound on the distance between the empirical and theoretical risk
of a function f . This bound involves the number of examples m and the capacity h of
the function space. This capacity h is a measure for the complexity of the hypothesis
space F , or in other words, a measure for the flexibility of the functions in F . Several
appropriate capacity measures have been proposed in literature but the most general one
is the Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis, 1971). This VC-
dimension is defined as the maximum number of training examples that can be separated
by the members of the hypothesis space, for each possible labelling of the points. For
example, the set of linear functions in Rn has a VC-dimension h = n + 1 since it is not
possible to separate more than n + 1 points by a linear hyperplane in Rn for each possible
labelling. The higher the VC-dimension, the easier it becomes to reduce the empirical risk,
at the cost of an increased probability that the minimiser overfits the training data. The
probabilistic bound on the distance between the empirical and the theoretical risk of a
function f obeys with a probability η (Evgeniou et al., 2002):

I[f ] < Iemp[f,Dm] + ϕ

(
√

h

m
, η

)

, (3.2)

where ϕ is an increasing function of h
m

and η. From this equation it should be clear that
a minimisation of both empirical risk and capacity of the hypothesis space are needed to
minimise theoretic risk. These are conflicting objectives as a higher capacity h will make
it easier to fit the training data (i.e. to minimise the empirical risk Iemp), while function
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sets with lower capacity tend to generalise more, which results in an increased empirical
risk.
The idea of structural risk minimisation is to define a nested sequence of hypothesis spaces
H1 ⊂ H2 ⊂ . . . ⊂ Hp, where each hypothesis space Hi has a finite capacity hi that is
larger than that of all previous sets, that is h1 ≤ h2 ≤ . . . ≤ hp. One needs to identify the
function f that minimises the empirical risk in the hypothesis space Hi that minimises the
right-hand side of Eq. (3.2).
In a RKHS, a nested sequence of functions can be constructed by bounding the norm of
the functions. This can be achieved by defining a set of constants a1 ≤ a2 ≤ . . . ≤ ap which
allows to define a nested series of p function spaces of the form (Evgeniou et al., 1999)

Hi = {f ∈ RKHS : ‖f‖ ≤ ai} .

Unfortunately, solving the constrained optimisation problem for each value ai is generally
unfeasible as in theory, ai can take an infinite number of monotonically increasing values.
To bypass this issue, the problem is reformulated as finding the function f that minimises
(Tikhonov and Arsenin, 1977; Evgeniou et al., 2002)

min
f∈H

1

m

m
∑

i=1

V (yi, f(xi)) + λ‖f‖2 . (3.3)

This equation allows for a smooth trade-off between the empirical risk of the training data
Dm and the size of the RKHS norm of the set of candidate functions, an indirect measure
for their capacity h. The regularisation parameter λ is basically a penalty for functions
with a high capacity: the larger λ, the smaller the allowed RKHS norm of the solution
function. The optimal value for λ is usually determined by some form of cross-validation
on the training data.
There are many possible choices for the loss function V (y, f(x)) but the most common
variants for regression purposes are:

the L1 norm loss function: V (y, f(x)) = |y − f(x)|

the L2 norm or squared loss function: V (y, f(x)) = (y − f(x))2

the ε-insensitive loss function: V (y, f(x)) = max(0, |y − f(x)| − ε)

the quadratic ε-insensitive loss function: V (y, f(x)) = max(0, (|y − f(x)| − ε)2)
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3.3 Linear ε-SVR

ε-SVR is intrinsically a non-parametric, non-linear regression technique. We initially
demonstrate the approach by restricting the set of candidate functions to linear functions
of the form

f(x) = 〈w, x〉+ b ,

where w ∈ Rn and b ∈ R. For the moment, we will assume that there actually exists such
a linear function which, according to the ε-insensitive loss function, results in a perfect fit
of the training data Dm. This means that all training examples lie within a distance of ε

of the hypersurface created by f which translates into

yi − 〈w, xi〉 − b ≤ ε

〈w, xi〉+ b− yi ≤ ε ,

for all (xi, yi) ∈ Dm. Figure 3.1 gives a graphical representation of such a linear function
f in R2. We can see that not all points lie within the grey insensitivity tube of width 2ε

‖w‖

which means that the depicted function f does not provide a perfect fit to the training
data according to the ε-insensitive loss function. To accommodate these non-fitting points,
we introduce slack variables ζ and ζ∗ which allow the function f to respectively underes-
timate or overestimate the actual value y of a training example (x, y). Using these slack
variables we can reformulate the minimisation problem of Eq. (3.3) using the ε-insensitive
loss function as (Vapnik, 1995)

min
w,b

1

2
‖w‖2 + C

m
∑

i=1

(ζi + ζ∗
i ) , (3.4)

subject to











yi − 〈w, xi〉 − b ≤ ε + ζi

〈w, xi〉+ b− yi ≤ ε + ζ∗
i

ζi, ζ
∗
i ≥ 0

The variable C plays the role of λ in Eq. (3.3) and allows to make a trade-off between the
capacity (or flatness) of the function and the prediction errors it makes on the training data
in Dm. Only half of the norm of vector w is used as this allows for a cleaner formulation
of the problem after differentiation with respect to w. Eq. (3.4) is called the primal
formulation of the problem.
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Figure 3.1: Example of a linear function y = f(x) = wx+b in combination with the insensitivity

tube of width 2ε
‖w‖ depicted by the dashed lines. The points scattered around the regression line

are the training examples (xi, yi) ∈ Dm ⊂ R
2. Points within the insensitivity tube are considered

to have a zero error when predicted by the linear function f according to the ε-insensitive loss

function.
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The inequality constraints are included into the minimisation problem by means of La-
grange multipliers which results in what is called the Lagrangian of the problem:

L(w, b, α, η) =
1

2
‖w‖2 + C

m
∑

i=1

(ζi + ζ∗
i )−

m
∑

i=1

(ηiζi + η∗
i ζ

∗
i )

−
m
∑

i=1

αi(ε + ζi − yi + 〈w, xi〉+ b)

−
m
∑

i=1

α∗
i (ε + ζ∗

i + yi − 〈w, xi〉 − b)

The Lagrange multipliers η
(∗)
i and α

(∗)
i in L are called the dual variables. As all constraints

are linear, we can invoke the Karush-Kuhn-Tucker (KKT) conditions (Nocedal and Wright,
1999), an important result from the field of constrained optimisation, which state that at
the optimal values for w and b, the following conditions are met:

∂wL = w −
m
∑

i=1

(αi − α∗
i )xi = 0 (3.5)

∂bL =
m
∑

i=1

(αi − α∗
i ) = 0 (3.6)

∂
ζ
(∗)
i

L = C − α
(∗)
i − η

(∗)
i = 0 (3.7)

ζ
(∗)
i ≥ 0 , ∀i = 1, . . . , m (3.8)

yi − 〈w, xi〉 − b− ε− ζi ≤ 0 , ∀i = 1, . . . , m (3.9)

〈w, xi〉+ b− yi − ε− ζ∗
i ≤ 0 , ∀i = 1, . . . , m (3.10)

η
(∗)
i ≥ 0 , ∀i = 1, . . . , m (3.11)

α
(∗)
i ≥ 0 , ∀i = 1, . . . , m (3.12)

η
(∗)
i ζ

(∗)
i = 0 , ∀i = 1, . . . , m (3.13)

αi(yi − 〈w, xi〉 − b− ε− ζi) = 0 , ∀i = 1, . . . , m (3.14)

α∗
i (〈w, xi〉+ b− yi − ε− ζ∗

i ) = 0 , ∀i = 1, . . . , m (3.15)

The first three conditions state that each partial derivative of the Lagrangian, evaluated
at the optimal tuple (w, b) is zero. Eqs. (3.9)-(3.11) indicate that the solution is feasible
(i.e. all constraints are met) and Eqs. (3.12)-(3.14) indicate that each of the dual variables
is either positive or zero. The last three conditions state that each of the dual variables is
necessarily zero if their equivalent constraint is not active. This means for example that αi

is zero if yi − 〈w, xi〉 − b− ε− ζi is not, a condition only met by points which are located
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on or above the hypersurface and within the insensitivity tube. If on the other hand the
point is located on the boundary of the insensitivity tube, yi−〈w, xi〉− b− ε− ζi becomes
zero which indicates that the dual variable αi can have a non-zero value. As the objective
function of Eq. (3.4) is convex and the inequality constraints are linear (i.e. they give
rise to a convex feasible region), the KKT conditions can be shown to be both necessary
and sufficient conditions for a tuple (w, b) to be the optimal solution to the minimisation
problem.
As a result of the convexity of both the objective function and its constraints, we can also
make use of the strong duality theorem which states that minimising the primal objective
function of Eq. (3.4) is equivalent to maximising the dual optimisation problem with respect
to the dual variables:

max
α,η

min
w,b

L(w, b, α, η)

subject to

{

α
(∗)
i ≥ 0 , ∀i = 1 . . .m

η
(∗)
i ≥ 0 , ∀i = 1 . . .m

The minimum of the Lagrangian is obtained at the vanishing partial derivatives with
respect to the unknowns w, b and ζ

(∗)
i (i.e. Eqs. (3.6)-(3.8)) which provides the expressions

w =
m
∑

i=1

(αi − α∗
i )xi and η

(∗)
i = C − α

(∗)
i . If we substitute these expressions back into the

Lagrangian we obtain the dual optimisation problem:

max
α

− 1

2

m
∑

i=1

m
∑

j=1

(αi − α∗
i )(αj − α∗

j )〈xi, xj〉

− ε
m
∑

i=1

(αi + α∗
i ) +

m
∑

i=1

yi(αi − α∗
i ) ,

(3.16)

subject to the constraints
m
∑

i=1

(αi − α∗
i ) = 0 and α

(∗)
i ∈ [0, C]. Note that Eq. (3.6) allows us

to rewrite f as:

f(x) =
m
∑

i=1

(αi − α∗
i )〈xi, x〉+ b . (3.17)

Eq. (3.17) shows that f is specified as a linear combination of all training examples xi

expressed as dot products. We also deduced from the KKT conditions that the coefficients
αi or α∗

i can only be non-zero if (yi−f(xi)) ≥ ε or (f(xi)−yi) ≥ ε respectively. This means
that all samples inside the insensitivity tube are not used in the formulation of f . All other
training examples with nonvanishing coefficients α

(∗)
i are called the support vectors, hence

the name Support Vector Machines. This approach allows for a sparse representation of
function f , which makes calculating f(x) very efficient.
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Now imagine we have found the values for αi and α∗
i that maximise Eq. (3.16). If we want

to represent f(x) according to Eq. (3.17), we still need an estimate for variable b. There
are several approaches for obtaining the optimal value for b but these generally depend on
the optimisation routine that is used for maximising Eq. (3.16) (Keerthi et al., 2001). A
more theoretical approach is based on the the KKT conditions. If αi > 0 (i.e. point i is on
the boundary of the insensitivity tube or above), α∗

i necessarily equals 0 as otherwise the
the last KKT condition, α∗

i (〈w, xi〉 + b − yi − ε − ζ∗
i ) = 0 will not be fulfilled. A similar

reasoning for α∗
i > 0 allows to conclude that αiα

∗
i = 0 for all points i ∈ Dm. Now imagine

that αi < C, then we know from Eq. (3.8) that ηi > 0 which means that according to
Eq. (3.14), ζi = 0 which in turn implies (using Eq. (3.10)) that b ≥ yi − 〈w, xi,−〉ε. If
on the other hand αi > 0, we know that α∗

i = 0 which results in b ≤ yi − 〈w, xi, +〉ε. A
similar reasoning for α∗

i allows for the statement

max
i∈Dm

{yi−〈w, xi〉−ε | αi < C or α∗
i > 0} ≤ b ≤ min

j∈Dm

{yj−〈w, xj〉+ε | α∗
j < C or αj > 0} .

(3.18)
If there exists an αi for which 0 < αi < C or equivalently an α∗

i for which 0 < α∗
i < C, the

inequalities in Eq. (3.18) become equalities and as such, allow for the estimation of b.

3.4 Extension to non-linear models

If we preprocess the training examples xi by a map φ : X → F into a higher dimensional
space, i.e. the feature space F , and solve the linear regression there, we can state Eq. (3.17)
as

f(x) =

m
∑

i=1

(αi − α∗
i )〈φ(xi), φ(x)〉+ b . (3.19)

Depending on the map φ this approach effectively allows us to create non-linear functions
f . When predicting y for an unknown example x using the in feature space learned lin-
ear function f , Eq. (3.19) obliges us to apply the mapping φ to this new case as well
as to all training examples and subsequently make the dot product between them. This
approach is often not computationally feasible, so we use instead a symmetric kernel func-
tion K(xi, x) = 〈φ(xi), φ(x)〉 that gives us directly the dot product in some RKHS. This
shortcut allows us to reformulate Eq. (3.19) as

f(x) =

l
∑

i=1

(αi − α∗
i )K(xi, x) + b . (3.20)
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Note how also the dual optimisation function of Eq. (3.16) is based on dot products between
training vectors xi, which makes it straightforward to plug in a well-chosen kernel function
in the formulation. This approach is commonly called the ‘kernel trick’.
Some commonly used kernel functions are:

the polynomial kernel with degree d: K(x, z) = (x′z + 1)d

the radial basis or Gaussian kernel with kernel width γ: K(x, z) = exp(−γ‖x−z‖2)

the sigmoid kernel with parameters κ and θ: K(x, z) = tanh(κx′y + θ)

most kernel functions require the knowledge of one or several kernel parameters. Further-
more, in the derivation of Eqs. (3.16) and (3.17) it was also assumed that C and ε are
known parameters. In rare cases, good values for all these parameters can be copied from
previous studies on similar training data but in general, some form of multi-dimensional
grid-search in combination with a cross-validation-based target score function is required.

3.5 Sequential minimal optimisation

So far, it has been assumed that we can easily find the dual variables α
(∗)
i that maximise

Eq. (3.17). This task is unfortunately not that straightforward, as we are dealing with a
constrained, quadratic programming problem (QP) with generally, a very high dimension-
ality. One rather simple approach consists of iteratively selecting arbitrary subsets of the
data, denoted as the working set, and subsequently solving the problem for these examples
(Boser et al., 1992). Only supporting vectors (i.e. training points where α

(∗)
i > 0) are

added to the next chunk, and the process is repeated until all support vectors are found.
Unfortunately, this chunking approach still cannot handle large-scale training problems if
the number of support vectors is large. Osuna et al. (1997) prove that a decomposition
of such a problem in smaller, more manageable pieces, will reduce the overall objective
function as long as at least one example that violates the KKT conditions is added to
the working set at each iteration. It should, however, be clear that a each decomposed
piece of the problem remains a QP which needs to be solved by for example stochastic
gradient descent, Newton’s method, conjugate gradient descent or a primal-dual interior
point method.
Platt (1998) takes decomposition to the extreme by only allowing a working set of size two.
This problem can be solved analytically, avoiding a numerical QP solver altogether. He
calls this approach sequential minimal optimisation (SMO) and as long as the two selected
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variables at each iteration violate the KKT conditions, the algorithm is guaranteed to
converge to the optimal solution, in accordance with Osuna’s theorem. In practice however,
the algorithm suffers from slow convergence if the working set is chosen at random. Keerthi
et al. (2001) provide an improvement to Platt’s algorithm by specifically using the ‘maximal
violating pair’ at each iteration. The identification of this maximal violating pair is based
on Eq. (3.18), a direct result of the KKT conditions. This approach is shown to result
in a significant improvement in the speed of convergence. Fan et al. (2005) show that
the maximal violating pair is related to the first order approximation of Eq. (3.16) and
show how the working set selection algorithm can be improved by means of a second
order approximation of the optimisation function. This working set selection approach is
integrated in the software package LIBSVM (Chang and Lin, 2006) which allows for both
classification and regression using the support vector machines framework by an elegant
reformulation of Eq. (3.16).

3.6 Conclusions

In this chapter, an attempt was made to introduce the theoretical foundations of ε-
insensitive support vector machines regression. However, it needs to be emphasised that
this overview is by no means claimed to be comprehensive and that ε-SVR itself, only
represents a tiny speckle in the world of techniques that are based on the kernel trick
and/or support vector machines. Most textbooks introduce these topics in the chronolog-
ical sequence of their development, namely support vector machines as a non-parametric
classification technique for which subsequently, numerous adaptions and optimisations have
been published, including the presented ε-SVR. Other interesting developments include ν-
support vector classification and regression (ν-SVM and ν-SVR) in which the number of
support vectors (i.e. the sparsity) and training error are being controlled (Schölkopf et al.,
2000) and least squares support vector machines (LS-SVM), in which the standard clas-
sification and regression problems are reformulated such that the optimisation problems
become linear and therefore easier to solve (Suykens and Vandewalle, 1999).
Notwithstanding the plethora of elegant yet powerful kernel-based techniques, it was opted
to focus this chapter directly on ε-SVR, as this is the only kernel-based technique that is
explored in this dissertation. Furthermore, all presented results on ε-SVR-based hybrid
prediction are obtained by using the linear, ε-insensitive loss function, while numerous other
loss functions could have been envisioned. In a similar spirit of downsizing the option
list, the performance of only a limited set of well-known kernel functions was explored.
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These observations allow to conclude that the presented results and conclusions on hybrid
prediction, should be considered as the low-hanging fruit of the new and continuously
expanding world of kernel-based methods.





CHAPTER 4

Data description

This dissertation is the result of a close collaboration between University College Ghent,
Ghent University, the Institute for Agricultural and Fisheries Research (ILVO) and the pri-
vate breeding company RAGT R2n. The phenotypic data that was used in different parts
of the presented research was generated as part of the grain maize breeding programme
of RAGT R2n. The molecular marker data on the other hand was partially provided by
RAGT R2n (SSR) and partially by the Plant Sciences Unit of ILVO (AFLP). Due to confi-
dentiality agreements, this dissertation contains no details about the structure of the grain
maize breeding pool of RAGT R2n nor does it contain technical aspects of their field and
molecular experiments.

4.1 Phenotypic data

The major part of the inbred lines in the RAGT grain maize breeding pool has a corn
belt dent background. The pool is roughly divided in several big heterotic groups, named
according to historically important corn belt inbred lines or OPVs such as Iowa Stiff Stalk
Synthetic (ISSS), Iodent Reid and Lancaster Sure Crop. Each of these heterotic groups
is composed of several subheterotic groups, generally having a long history of reciprocal
recurrent selection in an attempt to optimise the heterotic response for grain yield.
Each new combination of inbred lines is tested in one or several multi-environment trials
(MET). To implement these METs, RAGT R2n has several experimental stations in France
and other European countries. All phenotypic measurements that were recorded as part of
the RAGT grain maize breeding programme from 1985 until 2005 were made available to
this research. These measurements are grouped in 5197 METs, evaluating the phenotypic
performance of on average 28.7 hybrids in on average 3.4 distinct locations. A MET always
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starts and ends within a single growing season. We use the word trial when referring to
a field experiment that measures the phenotypic performance of a set of hybrids at a
particular location as part of a MET. Trials are therefore nested within METs and as
such, also nested within growing seasons. A single location (i.e. experimental station) in a
particular growing season generally houses trials belonging to different METs, but a single
MET can also have more than one trial at the same location, altough this generally implies
different experimental settings with varying sowing and harvesting dates or fertiliser and
irrigation treatments.
The experimental design and number of replications varies between METs. In 61.6% of
the trials, there is only a single replication while the experimental design in the remaining
trials is always resolvable, allowing for a reduction to randomised complete block designs.
A plot is the smallest experimental unit and allows to measure the phenotypic response of a
single hybrid in a particular trial. For each plot, several phenotypic traits can be recorded
including yield (in quintaux ha−1 = 100 kg ha−1), grain moisture content (%), the number
of days until female flowering, stalk and root lodging and ordinal scores on various pests
and fungi including Ostrinia nubilalis (European corn borer), Ustilago maydis (corn smut)
and Helminthosporium spp. Not all plots have a recording for each of these traits but the
data for yield and moisture content are complete. The measurements for the trait days
until flowering are generally not replicated within the same trial.
The budget for molecular fingerprinting was limited and therefore it was decided to include
approximately 200 inbred lines in the presented study. Selecting these inbred lines from
the huge set of candidates turned out to be a non-trivial task. A single inbred line is,
on average, parent of 4.3 distinct hybrids but a lot of inbred lines only have a single
offspring while others (i.e. the tester lines) are parent of thousands of hybrids. Moreover,
a single hybrid is tested on average in 28.7 trials but many hybrids are only tested once,
while others have served as checked varieties and are therefore present in numerous trials.
The problem of identifying the optimal set of inbred lines with respect to the available
unbalanced phenotypic data of their hybrids is tackled using a graph-based procedure
which is discussed in Chapter 5. Unfortunately, this procedure was not yet finished at the
early stages of the presented research and therefore the selection of 200 inbred lines was
guided by a set of reasonable but nevertheless rather ad hoc conditions. The underlying
idea is to maximise the number of hybrids for which both genotypic (i.e. molecular marker)
and phenotypic information is available (i.e. the training set), within the constraints of the
fixed genotyping budget. As all candidate inbred lines are almost completely homozygous,
we can nearly always deduce the entire molecular fingerprint of a hybrid from the marker
scores of its parents. This means that we need to select the set of 200 inbred lines which
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has created the largest number of single-cross hybrids amongst themselves. On the other
hand, hybrids which have only a small number of phenotypic records should not be taken
into account as it will not be possible to obtain a reliable estimate of genotypic performance
for these hybrids. These observations resulted in the following five conditions which are
met by the selection of inbred lines used in the presented research:

The set of candidate inbred lines is limited to one specific combination of two
(sub)heterotic groups denoted hereafter as ISSS and Iodent respectively. This spe-
cific heterotic combination has resulted in the largest number of hybrids for which
phenotypic data is available and is therefore more likely to result in a training set of
maximum size.

The hybrids under consideration should be tested in METs that were performed in
or after the year 1998. Choosing the most recent field trials automatically results
in selecting recently developed inbred lines which are already routinely being fin-
gerprinted using SSR and SNP markers. Altough we need a higher marker density
than what is provided by the routine fingerprinting procedure, the already available
SSR marker scores save time and money. Moreover, older inbred lines are usually
no longer available for fingerprinting. A second argument for this condition can be
found in the observed connectivity structure of the phenotypic data. Trials which
have no varieties in common could be disconnected and this is more likely for trials
that are separated far in time. As will be explained in detail in Chapter 5, analysing
data from disconnected trials should be avoided at all cost.

A hybrid can only be selected if it has been tested in at least three trials of the same
MET. This condition assures that the genetic performance of each selected hybrid
can be estimated with a reasonable accuracy, even if all its phenotypic records are
obtained from single-replicate trials.

All selected inbred lines must be parent of at least two distinct hybrids. If a line
is tested in only one hybrid, it is not possible to get a precise estimate of its GCA
value.

All selected hybrids must have been evaluated in one or several METs that are fully
connected. In theory, a set of METs is connected if each MET has at least one hybrid
in common with another MET in the selection. In an attempt to improve the quality
of the resulting phenotypic data, we enforce a slightly more stringent connectivity
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criterion by selecting only METs that have at least two hybrids in common with one
or two other METs.

These criteria have resulted in a selection of 105 ISSS lines and 92 Iodent lines resulting
in 2361 single-cross, interheterotic hybrids. These hybrids only represent 24.4 % of all
possible crosses in the theoretical half-diallel between the selected ISSS and Iodent lines.
The phenotypic data on these hybrids is also severely unbalanced on a secondary level as
each selected hybrid is on average present in 2.6 of a total of 1284 METs. These METs also
contain phenotypic measurements for 33991 additional hybrids which have only one or no
parental inbred lines in the selection. These hybrids are referred to as check varieties or
checks and their measurements allow to connect the different METs. There are 209794 plots
in this selection for which yield and grain moisture content measurements were recorded
while days until flowering was only recorded for 148234 of them.

4.2 Molecular marker data

The 197 selected inbred lines were fingerprinted using microsatellite or simple sequence
repeat markers (SSR) and amplified fragment length polymorphism markers (AFLP).

4.2.1 SSR

The selected set of inbred lines was fingerprinted by means of 101 SSR markers with known
positions on the proprietary linkage map of RAGT R2n. This selection of markers is more
or less evenly distributed over the 10 maize chromosomes. Due to problems identifying some
SSR alleles (null alleles), only 75 markers have complete profiles over all selected inbred
lines. In this dissertation, only the information of these complete SSR loci was used. 2.6%
of all SSR locus/inbred line combinations is heterozygous, preventing an exact deduction
of the hybrid genotype when these lines are used as parents. The average Polymorphism
Information Content (PIC) of these 75 SSR loci is 0.55.

4.2.2 AFLP

The AFLP marker scores were generated according to the protocol of Vos et al. (1995) using
11 PstI-MseI and 4 EcoRI-MseI primer combinations. The EcoRI and MseI primers each
had three selective nucleotides, while there were only two for the PstI primers. There was a
preference for the PstI-MseI primer combinations as the resulting markers are likely to be
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Table 4.1: Overview of the 11 PstI-MseI and 4 EcorI-MseI primer combinations that were used

to generate the AFLP-based fingerprints for the 197 selected inbred lines. The first row and

column of the table give a specific name to each primer according to the naming scheme used

by Vuylsteke et al. (1999). Primer names starting with M stand for MseI-based primers, P for

PstI and E for EcorI primers. The second row and column of the table contain the selective

nucleotides which identify the specific primer. Primer combinations which were used to generate

the AFLP fingerprints are indicated with an × while blank cells indicate primer combinations

that were not used.

M47 M48 M49 M50 M51 M55 M59 M61 M62

CAA CAC CAG CAT CCA CGA CTA CTG CTT

P12 AC × × × × × × ×
P13 AGC × × × ×
E38 ACTC ×
E39 AGAC × ×
E46 AGGC ×

more evenly distributed over the maize genome than EcoRI-MseI markers (Vuylsteke et al.,
1999; Castiglioni et al., 1999). Table 4.1 gives an overview of the 15 primer combinations
which produced 569 polymorphic bands for the 197 selected inbred lines.





CHAPTER 5

Graph-based data selection for the

construction of genomic prediction models

5.1 Introduction

Despite the numerous studies devoted to molecular marker-based breeding, the genetic
progress of most complex traits in today’s plant and animal breeding programmes still
heavily relies on phenotypic selection. Most breeding companies have established dedi-
cated databases that store the vast number of phenotypic records that are being routinely
collected throughout the course of their breeding programmes. These phenotypic records
are, however, gradually being complemented by various types of molecular marker scores
and it is to be expected that effective marker-based selection schemes will eventually allow
to reduce current phenotyping efforts (Bernardo, 2008; Hayes et al., 2009). The avail-
able marker and phenotypic databases already allow for the construction and validation of
marker-based selection schemes. Mining the phenotypic databases of a breeding company
is, however, quite different from analysing the data that is generated by a carefully designed
experiment. Genetic evaluation data is often severely unbalanced as elite genotypes are
usually tested many times on their way to becoming a commercial variety or sire, while less
performing genotypes are often disregarded after a single trial. Furthermore, the different
phenotypic evaluation trials are separated in time and space and as such, subjected to
different environmental conditions. Therefore, ranking the performance of genotypes that
were evaluated in different phenotypic trials is usually a non-trivial task.

The content of this chapter has been submitted as Maenhout, S., De Baets B. and Haesaert G. (2009).

Graph-based data selection for the construction of genomic prediction models. Genetics
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Animal breeders are well experienced when it comes to handling unbalanced genetic eval-
uation data. The best linear unbiased predictor or BLUP approach (Henderson, 1975)
presented a major breakthrough in this respect, especially when combined with restricted
maximum likelihood or REML estimation of the needed variance components (Patterson
and Thompson, 1971). Somewhat later on, this linear mixed modelling approach was also
adopted by plant breeders as the de facto standard for handling unbalanced phenotypic
data. The more recent developments in genomic selection (Bernardo, 1995; Meuwissen
et al., 2001; Gianola and van Kaam, 2008) and marker-trait association studies (Yu et al.,
2006) are, at least partially, BLUP-based and are therefore, in theory, perfectly suited for
mining the large marker and phenotypic databases that back each breeding programme.
In practice, however, the unbalancedness of the available genetic evaluation data often re-
duces its total information content and the construction of a marker-based selection model
is limited to a more balanced subset of the data.
The most extreme case of an unbalanced design is a disconnected design. Table 5.1 gives
an example of a disconnected sire evaluation design taken from Kennedy and Trus (1993).
The breeding values of four sires are evaluated by measuring the performance of their
offspring in three different herds. Sires having offspring in different herds provide verti-
cal connections between herds while herds containing offspring of different sires provide
horizontal connections. In a perfectly balanced design, each sire would have the same
number of offspring tested in each herd. In the presented scenario however, sires s1 and
s2 are disconnected from sires s3 and s4 as there is no possible path between these groups.
This means that if we analyse the phenotypic data from this design with an ordinary least
squares model, contrasts involving sires that belong to the disconnected groups would be
inestimable. However, if we fit a linear mixed model to this data in which we assume
herds as fixed and sires as random effects, contrasts involving sire BLUPs belonging to
these disconnected groups are perfectly estimable. Ignoring connectivity issues by treat-
ing sire effects as random variables is, however, not without consequence. This approach
implicitly assumes that all evaluated genotypes originate from the same population and as
such have the same breeding value expectation. This assumption is generally not valid in
animal breeding programmes as the better sires are usually evaluated in the better herds
(Foulley et al., 1990). A similar stratification can be observed in genetic evaluation tri-
als performed by plant breeders where late and therefore higher yielding genotypes are
generally tested in geographical regions with longer growing seasons. As a consequence,
BLUP-based genomic selection routines will be less efficient, while marker-trait association
studies will suffer from increased false positive rates and reduced power. A very unbalanced
but nevertheless connected design will also reduce the effectiveness of marker-based selec-
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tion approaches as the prediction error variance of the estimated breeding values increases
substantially. Furthermore, the estimated breeding values will be regressed towards the
mean and will not account for the true genetic trend.
As phenotypic data is available, genotyping costs limit the total number of genotypes
that can be included in the construction of a genomic prediction model. The best results
will be obtained by selecting a subset of genotypes for which the phenotypic evaluation
data exhibits the least amount of unbalancedness. In this paper we demonstrate how
this phenotypic subset selection problem can be translated into a standard graph theory
problem which can be solved with exact algorithms or less time consuming heuristics.
In most plant and animal species, the number of available molecular markers is rapidly
increasing, while the genotyping cost per marker is decreasing. Nevertheless, as budgets
are always limited, genotyping all mapped markers for a small number of genotypes might
be less efficient than genotyping a restricted set of well-chosen markers on a wider set
of genotypes. One should therefore be able to select a subset of molecular markers that
covers the entire genome as uniformly as possible. We demonstrate how also this marker
selection problem can be translated into a well-known graph theory problem which has an
exact solution.
The third problem we tackle by means of graph theory is more specific to hybrid breeding
programmes where the parental genotypes are nearly or completely homozygous. This
implies that we can deduce the molecular marker fingerprint of a hybrid genotype from the
marker scores of its parents. As the phenotypic data is collected on the hybrids, genotyping
costs can be reduced by selecting a subset of parental inbreds that have produced the
maximum number of genetically distinct offspring amongst themselves. Obviously, the
phenotypic data on these offspring should be as balanced as possible.
Besides solving the above-mentioned selection problems by means of graph theory algo-
rithms, we demonstrate their use in a simulation study that allows to determine the opti-
mum trade-off between the number of genotypes and the size of the genotyped molecular
marker fingerprint for predicting the phenotypic performance of a hybrid genotype by
means of ε-insensitive support vector machine regression (ε-SVR) and Best Linear Predic-
tion (BLP) (Bernardo, 1994, 1995, 1996a).
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Table 5.1: Example of a disconnected sire × herd design taken from Kennedy and Trus (1993).

The cell numbers indicate how many offspring of the sire pertaining to that particular column

were evaluated in the herd pertaining to that particular row.

s1 s2 s3 s4

h1 3 6 0 0

h2 3 4 0 0

h3 0 0 7 5

5.2 Selecting genotypes from unbalanced phenotypic evaluation

data

In most plant or animal breeding programmes, all phenotypic measurements that were
recorded during genetic evaluation trials are stored for future reference. We can assume
that this entire data set contains unbalanced phenotypic measurements on t genotypes,
where t is generally a very large number. The available phenotypic data allows the breeder
to try out one or more of the more recent BLUP-based genomic selection approaches
without setting up dedicated trials. Given his financial limit for genotyping, he wants
to select exactly p genotypes from this data set. The selection of p genotypes should
be optimal in the sense that the precision of the BLUPs of the p breeding values that
are obtained from a linear mixed model analysis of the full set of phenotypic records, is
superior to the precision of any other set of BLUPs with cardinality p. This optimality
criterion requires a measure of precision of a subset of BLUPs obtained from a linear mixed
model analysis. To introduce this criterion, we will make the general assumption that the
applied linear mixed model takes the form

y = Xβ + Zu + e , (5.1)

where y is a column vector containing n phenotypic measurements on the t genotypes. β

is a vector of fixed nuisance effects like trial, herd and replication effects and u is vector
containing random genetic effects for each of the t genotypes. For ease of explanation, we
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will assume that u only contains t breeding values, but the presented approach can easily
be generalised to cases where u is made up from GCA and SCA effects and possibly the
different levels of various G×E interaction factors. Vector e contains n random residuals.
Matrices X and Z link the appropriate phenotypic records to the effects in β and u

respectively. Furthermore we assume that we can represent the variance of u and e as

Var

[

u

e

]

=

[

G 0

0 R

]

.

G can contain an assumed covariance structure for the t genotypes, typically a scaled
numerator relationship matrix calculated from available pedigree or marker data. It is,
however, important to realize that fitting a covariance between breeding values allows the
BLUPs from genotypes which have little phenotypic information themselves, to borrow
strength from phenotypic records on closely related genotypes. As a result, the p genotypes
with the highest BLUP precision will most likely be close relatives which is detrimental
for the generalising capabilities of the marker-based selection model. If we want the se-
lection of p genotypes to rely completely on the amount of information and the structure
(balancedness) of their phenotypic records, G should be a scaled identity matrix. Once
the p genotypes have been selected, a pedigree or marker-based covariance structure can
be incorporated in G for the construction of the actual marker-based prediction model.
The covariance structure of the residuals in matrix R can contain heterogeneous variances
for the different production environments, or in case that data originates from actual field
trials, spatial information like row or column correlations. The BLUPs in vector u are
obtained by solving the mixed model equations (Henderson, 1984)

[

X ′R−1X X ′R−1Z

Z ′R−1X Z ′R−1Z + G−1

][

β̂

û

]

=

[

X ′R−1y

Z ′R−1y

]

.

The inverse of the coefficient matrix allows to obtain the prediction error variance (PEV)
matrix of vector û as

[

X ′R−1X X ′R−1Z

Z ′R−1X Z ′R−1Z + G−1

]−1

=

[

C11 C12

C21 C22

]

,

where
PEV(û) = Var(û− u) = C22 .

A logical choice of measure to express the precision of a selection of p BLUPs from the
t candidates in vector û would be some function of the p × p principal submatrix C

p

22
,
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obtained by removing the rows and columns of C22 that pertain to genotypes that are not
in that particular selection. As a good design is strongly associated with the precision of
pairwise contrasts (Bueno and Gilmour, 2003), we use the lowest precision of all possible
pairwise contrast vectors between the p selected genotypes as optimisation criterion. A
pairwise contrast vector qij for the genotypes i and j is a vector where qij

i = 1 and
qij
j = −1, while all other elements of qij are zeros. Laloé (1993) and Laloé et al. (1996)

propose to express the precision of a linear contrast vector q by means of the generalised
Coefficient of Determination which is defined as

CD(q) =
q′(G−C22)q

q′Gq
,

where CD(q) always lies within the unit interval. They indicate that CD(q) can be obtained
as a weighted average of the t − 1 non-zero eigenvalues µi of the generalised eigenvalue
problem

((G−C22)− µiG)vi = 0 , (5.2)

as

CD(q) =

t
∑

i=2

a2
i µi

t
∑

i=2

a2
i

, (5.3)

where the first eigenvalue µ1 always equals zero as a consequence of the well-known sum-
mation constraint 1

′G−1û (see e.g. Foulley et al. (1990)). Each linear contrast vector q

can be expressed as a linear combination of the t− 1 non-zero eigenvectors vi as

q =

t
∑

i=2

aivi .

In fact, all linear contrast vectors that are estimable in the least squares sense, are linear
combinations of the eigenvectors vi of Eq. (5.2) that are associated to non-zero eigenvalues
µi, while those contrasts that are not estimable in a least squares sense, are linear combina-
tions of eigenvectors for which at least one associated eigenvalue is zero. This implies that
the CD of a pairwise contrast vector involving two genotypes that were evaluated in two
disconnected groups does not necessarily become zero as several eigenvalues µi in Eq. (5.3)
might be non-zero. This might bias the selection procedure to favour a disconnected set
of genotypes with a high information content (i.e. a high level of replication) instead of a
connected set of genotypes with low information content. To avoid this situation, the CD of
pairwise contrast vectors between disconnected genotypes should be forced to zero. In case
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Eq. (5.1) represents a simplified animal model where G = Iσ2
g and R = Iσ2

e , disconnected
pairs of genotypes can be easily identified by examining the block diagonal structure of the
PEV matrix C22 as explained in Appendix A1 of this chapter. In Appendix A2 we show
how disconnected genotype pairs can be identified by means of the transitive closure of the
adjacency matrix of the t genotypes.
Now that we have the corrected CD for each of the p(p−1)

2
pairwise contrast vectors, we can

represent the t genotypes as vertices (also called nodes) of a weighted complete graph where
the edge between genotype i and genotype j carries the weight CD(qij), expressing the pre-
cision of the pairwise contrast as a number between zero and one. We need to select exactly
p vertices such that the minimum edge weight in the selected subgraph is maximised. This
problem is equivalent to the ‘discrete p-dispersion problem’ from the field of graph theory.
This problem setting is encountered when locating facilities that should not be clustered in
one location, like nuclear plants or franchises belonging to the same fast-food chain. This
problem is NP-hard even when the distance matrix satisfies the triangle inequality. Erkut
(1990) describes two exact algorithms based on a branch and bound strategy and compares
10 different heuristics (Erkut et al., 1994). An interesting solution lies in the connection
between the discrete p-dispersion problem and the maximum clique problem. A clique in
a graph is a set of pairwise adjacent vertices, or in other words, a complete subgraph. The
corresponding optimisation problem, the maximum clique problem, is to find the largest
clique in a graph. This problem is also NP-hard (Carraghan and Pardalos, 1990). The
idea is to decompose the discrete p-dispersion problem in a number of maximum clique
problems by assigning different values to the minimum required contrast precision CDmin.
Initially, CDmin is low (e.g. CDmin = 0.1) and we define a graph G′(V, E ′) where the edges
of the original graph G are removed when their edge weight is smaller than CDmin. This
implies that there will be no edges between disconnected genotype pairs in the derived
graph as these edge weights have been set to zero by the CD correction procedure. Solv-
ing the maximum clique problem in G′(V, E ′) allows to identify a complete subgraph for
which all edge weights are guaranteed to be greater than CDmin. The number of vertices
in this complete subgraph is generally smaller than t but greater than p. By repeating
this procedure with increasing values of CDmin one can make a trade-off between sample
size and sample quality as is demonstrated in Figure 5.1 for a representative sample of size
t = 4236 genotypes for which of the genetic evaluation data was recorded as part of the
grain maize breeding programme of the private company RAGT R2n. Each dot represents
the largest possible selection of genotypes where CDmin ranges from 0 to 0.97. The data
used in this example is connected as there is no sudden drop in the number of genotypes
when CDmin is raised from 0.0 to 0.1. In general, the surface below the curve represents
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a measure of data quality. If one is only interested in obtaining the optimal selection of
exactly p genotypes from a set of t candidates, one can implement the described maximum
clique-based procedure in a binary search.

Figure 5.1: Graphical representation of the trade-off between the selection size and the selection

quality for a sample of the RAGT grain maize breeding pool. For each examined level of CDmin,

ranging from 0.0 tot 0.97, the dot represents the maximum cardinality selection of genotypes for

which the minimum precision of a pairwise contrast is at least CDmin.
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The presented approach for solving the discrete p-dispersion problem requires an efficient
algorithm to obtain the maximum clique from a graph. Several exact algorithms and
heuristics have been published, but comparing these is often difficult as the dimensions
and densities of the provided example graphs as well as computational platforms tend to
differ between papers. The exact algorithm of Carraghan and Pardalos (1990) is, however,
considered as the basis for most later algorithms. Although the efficiency of this algorithm
has been superseded by that of more recent developments (Östergȧrd, 2002; Tomita and
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Seki, 2003), its easy implementation often makes it the method of choice. If the available
run-time is limited, a time-constrained heuristic like the Reactive Local Search approach
presented by Battiti and Protasi (2001) might be more appropriate. Bomze et al. (1999)
give an overview of several other heuristic approaches found in literature, in particular
greedy construction and stochastic local search including simulated annealing, genetic al-
gorithms and tabu search.

5.3 Selecting markers from a dense molecular fingerprint

The construction of a genomic prediction model requires genotypic information on each of
the p selected genotypes. Generally it is assumed that a good prediction accuracy can only
be achieved by maximising the genome coverage, which implies genotyping a large number
of molecular markers. This approach seems particularly attractive as genotyping costs
are decreasing rapidly. However, as will be shown in Chapter 8, the relation between the
number of genotyped markers and the obtained prediction accuracy seems to be subject
to the law of diminishing marginal returns. This means that it might be more efficient to
construct the genomic prediction model using a larger number of genotypes in combination
with a smaller molecular fingerprint. This subset of molecular markers should cover the
genome as uniformly as possible such that the probability of detecting a marker-trait
association is maximised.
We start by solving this selection problem on a single chromosome for which t candidate
molecular markers have been mapped. We want to select exactly q of these markers such
that the chromosome coverage is optimal compared to all other possible selections of q

markers. Maximising the chromosome coverage could mean several things, including max-
imising the average intermarker distance and maximising the minimum marker distance.
We prefer the latter definition as it implies a one-dimensional version of the discrete p-
dispersion problem. In this restricted setting, a reduction to a series of maximum clique
problems is not necessary as Ravi et al. (1991) have published an algorithm that obtains
the optimal solution in an overall running time of O(min(t2, qt log(t))).
The extension to c > 1 chromosomes is again dependent on the interpretation of a uni-
form genome coverage. In case this means an approximately equal number of uniformly
distributed markers on each chromosome we can select q

c
markers on each chromosome

using the above-mentioned algorithm. If q is not an exact multiple of c, the remainder
after division could be attributed to each of the different chromosomes in decreasing order
of their minimum intermarker distance after the addition of one marker. A more intuitive
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interpretation of a uniform genome coverage entails a selection of markers such that the
minimum intermarker distance over all chromosomes is maximised. This can be achieved
by linking all chromosomes head to tail as if all markers were located on a single chro-
mosome. To be able to use the above-mentioned algorithm, the distance between the last
marker of the first chromosome and the first marker of the second chromosome of each
linked chromosome pair should be set to infinity.

5.4 Selecting parental inbred lines

In hybrid breeding programmes, the molecular marker fingerprint of a single-cross hybrid
can be easily deduced from the fingerprints of its two homozygous parents. This allows
to reduce the total genotyping cost of the genomic prediction model considerably. If we
assume we have a budget for fingerprinting exactly k parental inbred lines, we can max-
imise the number of genotyped single-cross hybrids by selecting the set of lines which have
produced the maximum number of single-cross hybrids amongst themselves. We approach
this selection problem by representing the total set of parental inbred lines as the vertices
of an unweighted pedigree graph where an edge between two vertices represents an off-
spring genotype (i.e. a single-cross hybrid) for which genetic evaluation data is available.
Figure 5.2 shows such a graph representation of the sample used in Figure 5.1 containing
487 inbred lines and 4236 hybrids. We need to select a k-vertex subgraph which has the
maximum number of edges. In graph theory parlance, this problem is called the ‘densest
k-subgraph problem’ which is shown to be NP-hard. Several approximation algorithms
have been published including the heuristic based on semidefinite programming relaxation
presented by Feige and Seltser (1997) and the greedy approach of Asahiro et al. (2000).
The basic idea of the latter is to repeatedly remove the vertex with minimum degree (i.e.
minimum number of edges) from the graph until there are exactly k vertices left. This
approach has been shown to perform almost just as good as the much more complicated
alternative based on semidefinite programming.
The presented selection procedure does not consider the quality of the genetic evaluation
data that is available for the hybrids. As a result, the optimal selection with respect
to the maximisation of the number of training examples might turn out to be a very
poor selection with respect to the quality of the phenotypic data. To enforce these data
quality constraints, the described inbred line selection procedure should be performed after
a preselection of the hybrids based on the precision of pairwise contrasts. If we select k

inbred lines where k ranges from the total number of candidate parents to 3 for each level of
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Figure 5.2: Graph representation of a sample of the RAGT grain maize breeding pool. The

vertices represent inbred lines and the edges are single-cross hybrids.

CDmin ranging from 0.1 tot 0.97 we get a 3-dimensional representation of the data quality
as shown in Figure 5.3. Similarly to Figure 5.1, each dot on the surface represents the
size of the optimal selection of hybrids under the constraints of a genotyping budget for k

parental inbred lines and a minimum pairwise contrast precision of CDmin.

5.5 Simulation study

The construction of a hybrid prediction model based on ε-insensitive support vector ma-
chine regression (ε-SVR) (Chapters 7 and 8) or Best Linear Prediction (BLP) (Bernardo,
1995) requires a combination of genotypic and phenotypic data on a predefined number of
inbred lines and their hybrid offspring respectively. As phenotypic data is available from
past genetic evaluation trials, the number of training examples that is used for the con-
struction of this prediction model is constrained by the total genotyping cost. If we reduce
the size of the fingerprint, more inbred lines can be genotyped and more training exam-
ples become available which should result in a better prediction accuracy of the model.
However, reducing the size of the molecular marker fingerprint comes at the price of a
reduced genome coverage and an increased number of selected hybrids results in a reduced
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Figure 5.3: Graphical representation of the trade-off between the selection size and the selection

quality when only k parental inbred lines are being genotyped. For each examined level of CDmin

ranging from 0.0 tot 0.97 the number of genotyped inbred lines k is reduced from 487 tot 3. Each

dot in the plotted surface represents the maximum cardinality selection of hybrid genotypes for

which the minimum precision of a pairwise contrast is at least CDmin and the number of parents

is exactly k.
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precision of BLUP contrasts due to connectivity issues (e.g. Figure 5.1). Therefore, it is to
be expected that within the constraints of a fixed genotyping budget, maximum prediction
accuracy can be achieved by finding the optimal balance between the fingerprint size and
the number of training examples. The location of this optimum is obviously highly depen-
dent on the information content of the available phenotypic data and the applied linkage
map, but can be estimated by means of the afore mentioned graph theory algorithms for
each specific data set.

5.5.1 Simulation setup

To demonstrate the approach, we use the phenotypic data that was generated as part of the
grain maize breeding programme of the private breeding company RAGT R2n and their
proprietary SSR linkage map. We assume to have a limited budget for genotyping 101 SSR
markers on 200 inbred lines or 20200 markers in total. We will also assume that we can
limit the number of candidate inbred lines to 400 by restricting the prediction model to a
specific heterotic group combination, a specific environment (i.e. maturity rating, irrigation
and fertiliser treatments, . . . ) and the set of inbred lines that are available at the moment
of genotyping. This intensive preselection of candidate lines is mainly needed for keeping
the simulations tractable. In a more realistic setting, calculations are only performed once
so the set of initial candidate lines can be larger. Table 5.2 gives a schematic overview of
the different steps that are performed at each iteration of the simulation routine.
Again we make use of the pedigree graph representation where inbred lines are represented
as vertices and each single-cross hybrid is represented as an edge between two vertices as
shown in Figure 5.2. In this graph, the degree of a vertex (i.e. the number of edges incident
to the vertex) therefore equals the number of distinct single-cross hybrids of which the
inbred line is a parent. Figure 5.4 shows the empirical distribution of these degrees on a log
scale for the entire RAGT grain maize breeding pool. The observed long-tailed behaviour of
the empirical distribution is not unexpected as most inbred lines only have a limited number
of children, while inbred lines with higher progeny numbers (i.e. the tester lines) are rare.
In an attempt to parametrise the underlying distribution from which the observed vertex
degrees were drawn, several candidate distributions among which the Poisson, geometric,
discrete log-normal and discrete power-law distributions were fitted by means of likelihood
maximisation. The best fit was observed for the discrete power-law distribution with a
left threshold value of 6 which is indicated as a straight line on Figure 5.4. The fit of this
distribution is, however, insufficient as indicated by the significantly large Kolmogorov-
Smirnov D-statistic where significance is determined by means of the parametric bootstrap
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Table 5.2: Description of each step that is performed during a single iteration of the simulation

routine. The goal is to find the optimal trade-off between the number of genotyped inbred lines

and the size of their molecular fingerprint, when the total genotyping budget is fixed.

step description

1 sample 400 vertices from the pedigree graph by means of the ‘Forest Fire’ algo-
rithm:

⇒ indirect sampling of hybrids

⇒ indirect sampling of METs

2 partition sampled inbred lines in c heterotic groups by means of the Dsatur vertex
colouring algorithm

3 simulate 8 breeding cycles on each of the c heterotic groups

4 simulate phenotypic records on the sampled hybrids

5 reduce the number of sampled hybrids by gradually increasing CDmin

6 reduce the number of genotyped inbred lines by means of the greedy densest
k-subgraph algorithm

7 select q SSR markers with maximal genome coverage

8 determine the prediction accuracy of ε-SVR and BLP using the reduced set of
training examples
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Figure 5.4: Log-scaled degree distribution of the graph created from part of the RAGT R2n

grain maize breeding programme. In this undirected, unweighted graph, parental inbred lines are

represented as vertices and single-cross hybrids as edges. Each dot represents a unique log-scaled

vertex degree (horizontal axis) and the log of its frequency in the graph (vertical axis). The

straight line represents the fitted power law distribution by means of likelihood maximisation.

The threshold value of 6 was determined by minimising the Kolmogorov-Smirnov statistic as

described by Clauset et al. (2009).
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procedure described by Clauset et al. (2009).
As no conclusive evidence on the underlying distribution of the observed vertex degrees was
found, we prefer to sample inbred lines from the full RAGT graph directly. However, taking
a representive sample from a large graph is not a trivial task. The sample quality of various
published graph sampling algorithms seems to be highly dependent on the properties of the
graph. To decide which sampling routine is optimal for the RAGT data, we first need to
decide on a measure of sample quality. We compare the empirical cumulative distribution
(ECD) of the vertex degrees in the full graph with those ECDs of 100 samples containing
400 vertices. From these ECDs, we calculate the average Kolmogorov-Smirnov D-statistic
for each examined sampling routine. For the RAGT data, the ‘Forest Fire’ vertex sampling
approach resulted in the smallest average D-statistic compared to the alternative methods
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described by Lescovec and Faloutsos (2006). This sampling routine starts by selecting a
vertex v0 uniformly at random from the graph. Vertex v0 now spreads ‘the fire’ to a random
selection of its neighbours which are then in turn allowed to infect a random selection of
their own neighbours. This process is continued until exactly 400 vertices are selected. If
the fire dies out before the sample is complete, a new starting vertex is selected uniformly
at random. The number of neighbours that is infected at each selected vertex, is obtained
as a random draw from a geometric distribution where the parameter p was set to 0.62, as
this value resulted in the best average sample quality. All hybrids for which both parents
were sampled (i.e. the edges of the subgraph) have associated phenotypic records and as
such indirectly sample a set of multi-environment trials (METs). All hybrids that were
not indirectly selected by the inbred line sample, but do have phenotypic records in the
sample of METs, are included in the selection as data connecting check varieties. Despite
the fact that the RAGT data already provides phenotypic records for the selected hybrids
and check varieties, we replace these by simulated measurements as we want to be able
to assess the actual prediction accuracy of ε-SVR and BLP under various levels of data
quality.
The simulation of these phenotypic records for the sampled hybrids starts by partitioning
the selected inbred lines into heterotic groups. This partitioning should ensure that the
two parents of each single-cross hybrid always belong to distinct heterotic groups, while
the total number of groups needs to be minimised. The graph theory equivalent of this
problem is called the ‘vertex colouring problem’ which, as all previously described graph
theory problems, belongs to the complexity class of NP-hard problems. The minimum
number of colours (i.e. heterotic groups) is called the chromatic number of the graph. The
vertex colouring problem has been extensively studied in graph theory literature (Jensen
and Toft, 1995) and several efficient heuristics are available. The greedy desaturation
algorithm or Dsatur published by Brélaz (1979) is often used as a benchmark method to
assess the efficiency and precision of newly developed vertex colouring algorithms. Its good
performance on a variety of graphs and easy implementation makes it the method of choice
for designating inbred lines to heterotic groups at each iteration of the simulation routine.
Once the chromatic number c has been determined for the sampled set of inbred lines,
an entire breeding programme is simulated starting from c open-pollinated varieties and
resulting in c unrelated heterotic groups. The simulation of this breeding programme
mimics the maize breeding programme of the university of Hohenheim as described by
Stich et al. (2007) and described in detail in Chapter 6. In short, the simulation routine
uses the proprietary linkage map of the breeding company RAGT R2n containing 101
microsatellites and adds an additional 303 evenly distributed, simulated SSRs. It also
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generates 250 QTL loci of the selection trait (e.g. yield) which are randomly positioned
on the genetic map. The number of alleles for each SSR or QTL is drawn from a Poisson
distribution with an expected value of 7. Each simulation starts by generating an initial
base population in Hardy-Weinberg equilibrium. Allele frequencies for each locus are drawn
from a Dirichlet distribution and used to calculate the allele frequencies in each of the c

subpopulations assuming an Fst value of 0.14. We perform 8 breeding cycles where each
cycle consists of 6 generations of inbreeding and subsequent phenotypic selection based on
line per se or testcross performance as described by Stich et al. (2007). The result is a
set of 400 highly selected inbred lines partitioned in c unrelated heterotic groups. Within
each of these groups, the simulated inbred lines are randomly assigned to the sampled
inbred lines and a genotypic value is generated for each interheterotic hybrid by summing
the effects of the 250 QTL alleles of both parents and adding a normally distributed SCA
value. The size of the SCA variance component depends on the heritability of the trait
under consideration, but is assumed to be only 1

8
of the total non-additive variance (SCA +

G×E and residual error) as this was the average of observed ratios for the traits grain yield,
grain moisture contents and days until flowering in the actual RAGT data. The genotypic
values of the check varieties are generated from a single normal distribution where the
variance is the sum of the additive variance and SCA variance of the sampled hybrids. The
simulated genotypic values of hybrids and check varieties are used to generate phenotypic
records according to the sampled MET data structure, assuming a single replication in
each location of a MET. This implies that G×E effects are confounded with the residual
error and only a single effect is drawn from a normal distribution where the variance is 7

8

of the total non-additive variance. The main environmental effect of each location is also
drawn from a normal distribution for which the variance is twice the additive variance of
the hybrids.
The simulated phenotypic records that are associated with the sampled data structure allow
to estimate the genotypic value of each hybrid by means of a linear mixed model analysis.
We fit genotypes (hybrids and check varieties) as random and locations as fixed effects
as this approach should result in an ε-SVR model with a superior prediction accuracy as
will be shown in Chapter 8. To avoid selections of closely related hybrids, the variance-
covariance matrix of the genotypic effects is fitted as a scaled identity matrix. The resulting
PEV matrix of the random genotypic effects is used to iteratively select a smaller subset
of the sampled hybrids by gradually increasing the minimum required precision of each
pairwise contrast in the selection. Initially, the required CDmin value is set to 0 which
implies that all hybrids are selected. The next examined level of precision requires CDmin >

0 which effectively excludes selections containing disconnected genotypes. More stringent
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levels of precision are enforced by requiring CDmin > qp where qp is the pth quantile of
the observed distribution of CD values in the complete sample and p ranges from 0 tot
0.875 in steps of 0.125. Defining CDmin values as quantiles allows to compare the obtained
prediction accuracies over the different samples of the simulation routine.
For each level of CDmin, the number of genotyped inbred lines is reduced from 400 to 50 in
steps of 50, while at the same time the number of markers in the molecular fingerprint is
increased from 50 to 404. For each combination of CDmin and number of genotyped inbred
lines, the BLUPs of the selected hybrids are used to construct an ε-SVR and a BLP-based
prediction model. In fact, the prediction accuracy of both methods is verified by randomly
assigning the BLUPs to one of five groups. For each of these groups, a separate ε-SVR
and BLP prediction model is constructed using all BLUPs in the remaining four groups
as training data. The resulting prediction model is then used to make predictions on the
hybrids in the selected group (i.e. the validation data). Combining the predictions of all
five models allows to obtain a measure of prediction accuracy by correlating them against
the simulated genotypic values.

5.5.2 Simulation results

We expect that enforcing a minimum required pairwise contrast precision CDmin > 0,
results in a selection of BLUPs that has greater accuracy compared to the full set of
hybrids. In Figure 5.5 this BLUP accuracy is plotted against CDmin and the maximum
number of inbred lines for each of the three examined heritability levels. Each point on
these wireframe surfaces represents the squared Pearson correlation between the BLUPs
and the actual, simulated genotypic values of the selected hybrids at that particular level of
CDmin and number of parental inbred lines, averaged over 100 iterations of the simulation
routine. We can see that an increase in CDmin results in an almost linear increase in BLUP
precision for each heritability level. This effect is especially pronounced for the lowest
heritability level h2 = 0.25. As expected, the BLUP precision is not influenced by the
number of parental inbred lines.
Figure 5.6 presents the prediction accuracy of both ε-SVR and BLP for increasing values
of the minimum required contrast precision CDmin and a decreasing number of genotyped
inbred lines. The height of each point in the wireframes represents the average prediction
accuracy, expressed as a squared Pearson correlation, over 100 iterations of the simulation
routine. For each of the examined heritability levels, ε-SVR generally performs better than
BLP. The negative effect of disconnected hybrids in the selection of training examples is
visualised as the sharp increase in prediction accuracy when the minimum required contrast
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Figure 5.5: Accuracy of the genotypic value BLUPs of the hybrids selected using the described

graph-based procedures. The three examined heritability levels h2 = 0.25, h2 = 0.5 and h2 = 0.75

are represented by the bottom, middle and top wireframe surfaces respectively. Each point on

a surface is the squared Pearson correlation between the BLUPs and the actual (simulated)

genotypic values of the selected hybrids under the constraints of a minimum required contrast

precision CDmin, expressed as a percentile of the sampled CD values, and the number of genotyped

inbred lines, averaged over 100 iterations of the simulation routine.
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Figure 5.6: Average prediction accuracy of ε-SVR and BLP prediction models over 100 iterations

of the simulation routine for varying levels of the minimum required contrast precision CDmin,

expressed as a percentile of the sampled CD values ranging from 0 tot 0.875, and the number

of genotyped inbred lines. The height of each point in the wireframe represents the prediction

accuracy obtained by ε-SVR and BLP when training on the optimal selection of hybrids under

the constraints imposed by the levels of the two independent variables. Prediction accuracy is

expressed as the average squared Pearson correlation between the simulated and the predicted

genotypic values of the hybrids. The scales of the vertical axes are only comparable within the

same heritability level.
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precision is slightly constrained from CDmin = 0 to CDmin > 0 . This effect is more
pronounced for BLP than for ε-SVR. Increasing CDmin any further, generally decreases the
prediction accuracy, especially for traits with lower heritability. This observation implies
that, at least for the RAGT data set, a larger number of training examples of lower
data quality is to be preferred over a smaller selection of hybrids for which more and
better connected phenotypic information is available, as long a disconnected genotypes are
excluded.
BLP and ε-SVR do not take an unanimous stand on the optimal number of genotyped
inbred lines. For BLP, the optimum seems to lie somewhere around 100 inbred lines for
h2 = 0.25 and 150 for h2 = 0.50 and h2 = 0.75, the equivalent of fingerprint sizes of 202

and 134 SSR markers respectively. This optimum is, however, less pronounced for the
higher heritability levels. For ε-SVR, the optimal number of inbred lines is 150, 200 and
350 for h2 = 0.25, h2 = 0.5 and h2 = 0.75 respectively. At the highest heritability level,
ε-SVR seems to prefer training sets of maximum size, at the cost of a very small molecular
fingerprint size. The observed behaviour of both BLP and ε-SVR is consistent with the
results presented in Chapter 8, where it is shown that BLP is less sensitive to a reduction of
the number of training examples compared to ε-SVR, as long as the molecular fingerprint
is dense. ε-SVR on the other hand, although requiring a training set of considerable size,
handles smaller or less informative molecular fingerprints better than BLP.

5.6 Discussion

This article presents three selection problems that are relevant to the budget-constrained
construction of a genomic prediction model from available genetic evaluation data. The
first problem considers the selection of exactly p genotypes from a set of t candidates
that will be genotyped to serve as training examples for the construction of the prediction
model. This selection should be optimal in the sense that a linear mixed model analysis
of the associated phenotypic records should result in a set of p BLUPs of genotypic values
that have the highest precision of all possible selections. By defining the precision of a
selection as the minimum generalised coefficient of determination of a pairwise contrast,
this selection problem can be translated to the ‘discrete p-dispersion problem’ from the
field of graph theory. The reduction of this problem to a set of maximum clique problems
allows to visualise the trade-off between selection size and selection quality. The greedy
nature of a breeding programme does unfortunately bias the presented selection approach
towards high-performing genotypes. These are generally tested more thoroughly than their
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low-performing colleagues. As the latter generally only have a few associated phenotypic
records, the pairwise contrasts involving these genotypes have a low precision which in
turn makes their selection by the described procedure very unlikely. As a consequence,
the resulting genomic prediction model is likely to overestimate the capabilities of the
low-performing genotypes. To avoid this bias, the selection procedure should optimise two
objectives simultaneously: (1) maximising the minimum precision of all pairwise contrasts
in the selection and (2) maximising the genetic variance in the selection. Even if one
would succeed in finding an acceptable trade-off between these conflicting objectives, the
estimates of the genotypic value of low-performing genotypes will always suffer from large
standard errors which makes them unreliable training examples.
The second problem we discuss deals with the selection of exactly q molecular markers
from a set of t candidates for which the relative positions on a genetic map are known. To
guarantee that the selection has an optimal genome coverage, we maximise the minimum
intermarker distance. We show that this problem can be translated to a one-dimensional
discrete p-dispersion problem for which an exact algorithm is available.
The third problem is specific to hybrid breeding programmes and entails the selection of
exactly k parental inbred lines such that the number of single-cross hybrids in the selection
is maximised. If we represent the inbred lines as vertices of a graph and each single-cross
hybrid as an edge between its parental vertices, this problem can be translated to the
‘densest k-subgraph problem’ which we solve by using a greedy heuristic.
The presented solutions to the three selection problems are put into practice in a sim-
ulation study where the goal is to find the optimal number of training examples for the
construction of ε-SVR and BLP prediction models with maximal prediction accuracy under
a fixed genotyping budget. At each iteration of the simulation routine, inbred lines, hybrids
and their associated phenotypic data structure are sampled from actual genetic evaluation
data. The number of training examples is gradually reduced by putting constraints on the
data quality and the number of genotyped inbred lines. The results indicate that selections
of training examples containing disconnected genotypes are detrimental for the prediction
accuracy of both ε-SVR and BLP. More stringent data quality constraints are however not
necessary. ε-SVR performs best if the number of parental inbred lines (i.e. the number of
training examples) is maximised at the cost of a reduced genome coverage. BLP on the
other hand performs best when trained on a smaller set of training examples for which a
dense fingerprint is available.
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5.7 Appendix: Identifying disconnected pairs of genotypes

5.7.1 Examination of the PEV matrix

If we analyse the available genetic evaluation data with a linear mixed model according to
Eq. (5.1) where the variance structure is simplified to

Var

[

u

e

]

=

[

Iσ2
g 0

0 Iσ2
e

]

,

we can express the prediction error variance matrix as (Henderson, 1984)

PEV(û) = (Z ′MZ + Iλ)−1σ2
e ,

where λ = σ2
e

σ2
g

and M is the orthogonal projector on the column space of matrix X as
M = I −X(X ′X)−1X′. The matrix product Z ′MZ is in fact the information matrix
of the genotypic effects if we would consider both environments and genotypic effects as
fixed and analyse the data as a block design in a linear least squares setting. Chakrabarti
(1964) proves that if such a block design is fully connected (i.e. all elementary contrasts are
estimable in a least squares sense), the rank of this information matrix equals t− 1, where
t is the number of fitted genotypic effects. Furthermore, Heiligers (1991) proves that in
case the information matrix has a lower rank t−p, where p ≥ 2, the design is disconnected
and the symmetric matrix Z ′MZ can always be put in a block diagonal form with p

distinct blocks around the principal diagonal, by simply permuting the appropriate rows
and columns. Each of these blocks represents a set of fully connected genotypes that are
disconnected from all other genotypes that are not represented in that particular block.
If we assume that we are dealing with a disconnected design and that the columns of Z

(i.e. the genotypes) are ordered in such a way that Z ′MZ ′ is in block diagonal form, it
should be fairly obvious that also PEV(û) is block diagonal as inversion preserves this
matrix property. As most linear mixed model packages provide the PEV matrix, the
identification of disconnected genotype pairs can be performed by recovering this block
diagonal structure by appropriate row and column permutations.

5.7.2 Transitive closure

If Var(u) is not a diagonal matrix, the block diagonal structure of Z ′MZ is not preserved
in the PEV matrix. One could of course examine the structure of Z ′MZ instead, but
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this matrix is generally not available. It might therefore be easier to identify disconnected
genotype pairs by determining the transitive closure of their adjacency matrix. This is a
symmetric, Boolean t × t matrix where the element on row i and column j is set to 1 if
genotypes i and j have been evaluated in a common environment and 0 otherwise. For the
example in Figure 5.1, this adjacency matrix looks like

A =











1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1











The transitive closure of this matrix is again a symmetric, block-diagonalisable, Boolean
matrix which can be interpreted in a similar way as Z ′MZ. Warshall (1962) describes a
concise and efficient algorithm for computing the transitive closure of an adjacency matrix
which has a worst case complexity of O(t3). More advanced algorithms are described by
Naessens et al. (2002) and De Meyer et al. (2004).



CHAPTER 6

Marker-based estimation of

the coefficient of coancestry

in hybrid breeding programmes

6.1 Introduction

The coefficient of coancestry (CoC) between two individuals i and j is defined as the
probability that at an allele drawn from both i and j at the same locus is identical by
descent (IBD) from a recent common ancestor. This similarity measure is frequently used
for modelling the covariance between the genetic background of plants involved in breeding
programmes (Panter and Allen, 1995a,b; Bernardo, 1994, 1995, 1996a,c) or association
studies (Jannink et al., 2001; Yu et al., 2006). Piepho et al. (2008) recapitulates the
underlying quantitative genetic assumptions of incorporating a coancestry-based covariance
matrix in these models, such as gametic-phase equilibrium of the base population and
absence of epistasis, selection and drift. These assumptions are rarely or never honoured
in a plant breeding context and even explicitly violated when the genotypes under study
represent a set of highly selected inbred lines. However, in practice, despite the numerous
deviations from quantitative genetic theory, the CoC often results in an improved model

This chapter has been redrafted after

Maenhout S., De Baets B. and Haesaert G. (2009). Marker-based estimation of the coefficient of

coancestry in hybrid breeding programmes. Theoretical and Applied Genetics, 118:1181-1192.

Maenhout S., De Baets B. and Haesaert G. (2009). CoCoa: a software tool for estimating the

coefficient of coancestry from multilocus genotype data. Bioinformatics, 25:2753-2754.



62 CHAPTER 6

fit compared to alternative methods for structuring the covariance between the genetic
components of inbred lines.
If detailed pedigree information is available for all genotypes under study, one can calculate
the CoC by means of the tabular method (Emik and Terrill, 1949). The founding fathers
of this pedigree are assumed to be unrelated and therefore set the reference of a zero CoC.
Besides accurate pedigree information, the tabular method assumes an equal contribution
of both parents to each offspring. The obtained estimators are therefore only valid when
there is no selection or genetic drift in the population at hand. However, if inbred lines
are obtained through iterative cycles of inbreeding and selection, by doubling haploids or
the single seed descent method, the parental contributions are expected to deviate from
their theoretical expectations. Molecular marker information allows to circumvent the
assumption-burdened pedigree-based estimator, as the resulting allele identities reflect the
unequal parental contributions caused by the breeding process. However, deducing the
CoC from allele identities on marker loci results in an upwardly biased estimator, because
an alikeness in state (AIS) of alleles in different genotypes does not guarantee a shared
inheritance from a common ancestor (Cox et al., 1985; Lynch, 1988). Bernardo (1993)
shows how this bias can be reduced by taking into account the observed marker similarities
between unrelated inbred lines. An alternative approach consists of using marker-based
estimation procedures from population genetics, like the kinship coefficient of Loiselle and
Graham (1995) or the maximum likelihood estimator described by Thompson (1975), to
name but a few. These estimators have their foundations in population genetics but since
none of the initial assumptions are met when the genotypes at hand are selected inbred
lines, they reduce to the same level as Bernardo’s ad hoc method.
Irrespective of the estimation procedure used, the resulting pairwise CoC values are often
arranged in a symmetric relationship matrix A which is then used to model the covariance
structure between specific components involved in a linear mixed model analysis of genetic
evaluation data. This matrix should therefore be at least positive semi-definite (PSD)
which implies that all eigenvalues of the matrix are greater than or equal to zero, or
equivalently that

v′Av ≥ 0 , ∀v 6= 0 .

If we were to model the variance of a vector of random additive genetic effects u as
2σ2

gcaA (Lynch and Walsh, 1998), A would have to be PSD, as the variance of any linear
combination of the additive effects Var(v′u) = 2σ2

gcav
′Av must be positive or 0. A marker-

based CoC estimation procedure should therefore guarantee that any derived relationship



6.1 INTRODUCTION 63

matrix is PSD. Unfortunately, most published estimation procedures can result in a non-
PSD A matrix, while for those who seem empirically PSD, a formal proof of this property
has not been established. Trying to fit a non-PSD covariance structure in a linear mixed
model is however not without consequence. Most linear mixed model packages use the
PSD property to decompose the variance matrix of the model by means of a Cholesky
decomposition. If the variance matrix of the linear mixed model is not PSD, the linear
mixed model package either quits with an error message referring to a problem in the
initial likelihood calculation (SAS PROC MIXED, Wombat) or gives a warning message
and continues the analysis (ASReml). In the latter case, convergence problems of the
REML algorithm are frequently observed and the resulting BLUPs should be interpreted
with caution as the estimation procedure can now force certain BLUPs to expand away
from zero instead of shrinking them.
Several estimation procedures can possibly result in estimated CoC values that are greater
than 1 or smaller than 0. From a sheer model fit perspective, a negative covariance between
certain genetic components might be justifiable, but when a biological interpretation of the
estimated variance components or BLUPs according to Stuber and Cockerham (1966) is
needed, the CoC should be a probability and thus bounded by zero and one. To accommo-
date an interpretation of the CoC estimator according to its original definition, Bernardo
(1993) proposes to truncate the out of bound values at the boundaries of the parameter
space. As a consequence, even if the used CoC estimation procedure is proven to always
generate a PSD relationship matrix, the possibility of a post-hoc truncation of the out of
bound values results in a loss of this mathematical property.
If a non-PSD coancestry matrix should arise for whatever reason, it can always be bent
towards the closest PSD matrix. The term matrix bending was first coined by Hayes and
Hill (1981) for describing a procedure which shrinks the range of eigenvalues of a matrix
involved in selection index calculations. The authors indicate, rather as a side-effect, that
this procedure allows to make a non-PSD, genotypic or phenotypic variance matrix PSD.
More than 20 years later, Sørensen et al. (2002) used this procedure for bending estimated
CoC matrices and compared its performance to two other procedures based on spectral
decomposition. Unfortunately, all three described procedures allow to obtain CoC values
outside the parameter space. Henshall and Meyer (2002) published two programs which
focus on bending non-PSD covariance matrices which might arise in multi-trait genetic
evaluations. The iterative matrix bender described by Jorjani et al. (2003) focuses on
the same problem and allows to give different weights to each entry in the covariance
matrix, depending on its reliability. The described algorithm even allows to incorporate
the restrictions specific to correlation matrices but these obviously differ from coancestry
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matrices.
The main objective of our research was to develop a new marker-based CoC estimation
procedure for specific use in hybrid breeding programmes. This procedure should therefore
allow for a mix of heterozygous and inbred genotypes. All pairwise CoC values should
be interpretable as a probability and therefore lie in the unit interval [0, 1]. Any resulting
relationship matrix should be guaranteed to be PSD which avoids the need for any bending
procedure. In the next section we derive this new estimation procedure and give a formal
proof of its PSD property. In the two following sections we compare its behaviour to other
CoC estimation procedures by means of simulations and an application to actual maize
breeding data. We conclude this chapter by presenting the results of these calculations
and a general discussion.

6.2 Materials and methods

6.2.1 WAIS

A codominant molecular fingerprint of a diploid genotype i can be represented as an integer
row vector xi. Each position in this vector represents an allele at a certain locus that is
represented in the genotyped breeding pool. The vector position is set to 2 if the matching
allele is present at both homologous chromosomes of genotype i, 1 in case the allele is
present at only one of the two chromosomes and 0 in case of absence. xi therefore has
length p =

∑l

k=1 nk where l is the number of genotyped loci and nk is the number of
distinct alleles observed in the collection of genotypes at locus k. Using these vectors we
can calculate fAIS

ij between two genotypes i and j as

fAIS
ij =

1

4l
xixj

′ . (6.1)

If we arrange the row vectors xi of length p for all m genotyped individuals in an m × p

matrix X we can calculate the symmetric AIS (alikeness in state) matrix as

AAIS =
1

4l
XX ′ .

AAIS can be shown to be at least positive semi-definite (Gower, 1971) as

v′AAISv =
1

4l
v′XX ′v =

1

4l
(X ′v)′(X ′v) =

1

4l

p
∑

z=1

u2
z ≥ 0 ,
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for all m-sized vectors v 6= 0 where (u1, u2, . . . , up) is the transpose of the column vector
X ′v.
Despite being PSD, AIS is upwardly biased and therefore not the preferred similarity
measure for linear mixed modelling of breeding data. Therefore, we want to incorporate a
correction factor without loosing the PSD property. To calculate this correction factor, we
start from a normal hybrid breeding scenario which assumes that the inbred lines, for which
we want to estimate the pairwise relationships, all belong to the same heterotic group. We
also assume that we have a complementary heterotic group of genotyped inbred lines at
our disposal. All inbred lines from the first heterotic group are assumed to be completely
unrelated to the lines belonging to the second heterotic group. We are now able to define
several probabilities that are needed to introduce the correction factor. Imagine we draw
a random allele from individuals i and j, at the same locus and both alleles αi and αj turn
out to be allele z. We define the conditional probability ωz for two random individuals as

ωz = P(αi
ibd
= αj | αi = z, αj = z)

=
P(αi = z, αj = z)− P(αi = z, αj = z, αi

��ibd
= αj)

P(αi = z, αj = z)
, (6.2)

where P(αi = z, αj = z) is the probability that the two alleles, drawn from two random
individuals i and j of the same heterotic group at the locus to which z belongs, are equal
to z and therefore AIS. P(αi = z, αj = z, αi

��ibd
= αj) is the same probability but with the

additional constraint that the alikeness in state is not caused by a shared inheritance from
a nearby ancestor (i.e. an ancestor that is still unrelated to all lines in the complementary
heterotic group). P(αi = z, αj = z) can be estimated from the m(m−1)

2
possible pairs of

genotyped members of the heterotic group as

P(αi = z, αj = z) =

m
∑

i=1

m
∑

j>i

x(i,z)x(j,z)

2m(m− 1)
, (6.3)

where x(i,z) and x(j,z) represent the corresponding entries in matrix X for genotypes i and
j and the column corresponding to allele z. If we now assume that individual i belongs
to one heterotic group and j to another, we can estimate the probability of obtaining an
alikeness in state for allele z that did not originate from a shared inheritance from a nearby
ancestor. If we define m1 and m2 as the number of genotyped members in the first and
second heterotic group, respectively, then we can estimate P(αi = z, αj = z, αi

��ibd
= αj) for

both groups as
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P(αi = z, αj = z, αi
��ibd
= αj) =

m1
∑

i=1

m1+m2
∑

j=m1+1

x(i,z)x(j,z)

4m1m2
, (6.4)

where i and j now index over individuals from the first and second heterotic group, respec-
tively. Due to small sample size effects, it is possible that the estimator for P(αi = z, αj =

z, αi
��ibd
= αj) > P(αi = z, αj = z) in which case the conditional probability ωz should be

set to 0. For rare alleles P(αi = z, αj = z) might be 0 but in those cases the conditional
probability is not needed for the calculation of the coancestry. If we now arrange the
conditional probabilities ωz from Eq. (6.2) for each allele z on the diagonal of an all zero
square matrix W of size p, we can calculate fWAIS

ij for two individuals i and j belonging
to the same heterotic group as

fWAIS
ij =

1

4l
xiWxj

′ , (6.5)

where the index WAIS is shorthand for weighted alikeness in state. The procedure thus far
has assumed that i and j are different genotypes belonging to the same heterotic group.
For the calculation of the symmetric matrix AWAIS we also need to calculate fWAIS

ii for
each of the m individuals in the heterotic group. In this case, the conditional probability
of Eq. (6.2) underestimates the actual IBD probability and this is even more the case when
genotype i has been inbred for gi generations as is common in hybrid breeding. If we draw
two alleles αi1 and αi2 at the same locus of inbred line i, the conditional probability of
Eq. (6.2) should be corrected to

y′
i,z = P(αi1

ibd
= αi2 | αi1 = z, αi2 = z)

=
1

2
+

1

2

[

1−
(

1

2

)gi

+

(

1

2

)gi

ωz

]

=

[

1−
(

1

2

)(gi+1)
]

+ ωz

(

1

2

)(gi+1)

, (6.6)

where ωz is the entry in the diagonal of W corresponding to allele z. If we define

yi,z = y′
i,z − ωz

=

[

1−
(

1

2

)(gi+1)
]

(1− ωz) ,

we can see that yi,z can never be negative. In case all genotyped individuals i in the
heterotic group have the same level of inbreeding g we can drop the index i in this last
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equation and use the same value yz for all individuals. For each of the m genotyped
individuals in the heterotic group we calculate

qi =

p
∑

z=1

x2
(i,z)yi,z ,

and arrange these values on the diagonal of an all zero square matrix Q of size m. We can
now calculate the WAIS coancestry matrix as

AWAIS =
1

4l
(XWX ′ + Q) . (6.7)

The estimated matrix AWAIS is guaranteed to be PSD as the sum of two PSD matrices
XWX ′ and Q is always PSD. It is easy to show that XWX ′ is PSD as for any m-sized
vector v

v′XWX ′v = (X ′v)′W (X ′v) =

p
∑

z=1

u2
zωz ≥ 0 ,

where the last inequality follows from the fact that for all alleles z, ωz is always greater
than or equal to zero. Also matrix Q is PSD as it is a diagonal matrix and all entries qi

are greater or equal to zero.

6.2.2 Simulations

In population genetics, the statistical behaviour of marker-based coancestry estimators is
usually determined by repeatedly simulating pairs of genotypes for which the true related-
ness belongs to a discrete number of predefined classes (Ritland, 1996; Lynch and Ritland,
1999; Van de Casteele et al., 2001; Milligan, 2002). The mean, standard error, bias and
possibly other statistical features are examined with loci number, allele number and al-
lele frequency distributions as variables. All of the previously mentioned studies focus
on natural populations and therefore assume linkage equilibrium throughout the genome.
However, Stich et al. (2005) show the presence of significant linkage disequilibrium (LD)
between SSR marker loci of elite, European and US maize germplasm. In a later study,
Stich et al. (2007) demonstrate, by means of simulation studies, that selection and drift
are the major forces generating this LD. As we want to study the behaviour of different
relatedness estimators under realistic breeding circumstances, we must incorporate LD be-
tween marker loci. Therefore, each simulation tracks selection by means of several breeding
cycles from open-pollinated varieties (OPV) towards elite inbred lines.
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The simulations used in this study follow the approach of Stich et al. (2007) and therefore
indirectly mimic the breeding scheme of the University of Hohenheim. We assume that
the inbred lines are genotyped with 101 microsatellite loci, which are evenly distributed
over the maize genome according to a proprietary linkage map of the breeding company
RAGT R2n. We also generate 250 QTL loci of the selection trait (e.g. yield) which are
randomly positioned on the genetic map. The QTL effects and resulting phenotypic values
for line per se and testcross performance were calculated according to Stich et al. (2007).
An important difference in the presented simulations is the determination of the number
of alleles and the allele frequency distribution of all loci on the map. Stich et al. (2007)
use SSR allele frequencies obtained from five Central European OPVs and copy these on
the simulated QTLs. Other studies assume identical allele frequency distributions across
loci (Ritland, 1996; Lynch and Ritland, 1999) or allow independent draws from a Dirichlet
distribution for each locus (Milligan, 2002). We follow the latter approach but also allow
the number of alleles to differ between loci. We obtain the number of alleles for each locus
as an independent draw from a Poisson distribution plus two, where the parameter λ varies
between 0 and 12. This last upper bound was determined by observing little change in the
behaviour of the different CoC estimators at higher values of λ.
Each simulation starts by generating an initial base population in Hardy-Weinberg equi-
librium. Allele frequencies of each locus are drawn from a Dirichlet distribution with
all parameters set to one. From this base generation, we generate the allele frequencies
of two subpopulations which have diverged because of artificial selection or geographical
differentiation. We assume that on average individuals within each subpopulation share
more ancestry compared to individuals belonging to different subpopulations. Wright’s Fst
value (Wright, 1943, 1951) is a measure for this population stratification and we assume
this value to be constant over all loci. The allele frequencies in the subpopulations for
locus k are drawn from a Dirichlet distribution with parameters θpk where pk is the vec-
tor of allele frequencies at locus k in the base population and Fst = 1

1+θ
(Balding, 2003).

50 individuals are randomly drawn from each of the two populations as an entry point
for the first breeding cycle. Each breeding cycle consists of 6 generations of inbreeding
and subsequent phenotypical selection based on line per se or testcross performance as
described by Stich et al. (2007). This results in 28 almost homozygous inbred lines within
each heterotic group (former subpopulation) which are either intercrossed to produce 50
new genotypes for the next breeding cycle or used to compare the different relatedness
estimators. For each allele in the breeding pool we keep track of the original founder allele
from which it originated. This allows us to calculate the true pairwise CoC values between
pairs of inbred lines as an average of the actual IBD relationships over all genotyped loci.
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We also calculate the pedigree-based coefficient of coancestry (PED), AIS, WAIS and the
estimators described by Bernardo (1993) (BNO), Thompson (1975) (MLE) and Loiselle
and Graham (1995) (LOI). Some BNO values are negative while LOI admits to values
smaller than 0 or greater than 1. These values are consequently truncated to either 0 or 1
to obtain estimators within the biologically meaningful parameter space.

6.2.3 Maize breeding data

Besides simulations, we use the described relatedness estimators to determine the CoC
of the 197 selected inbred lines that are part of the RAGT R2n breeding programme as
described in Chapter 4. We slightly adjust one of the initial selection criteria by defining a
connected set of METs as a set for which each MET has at least one hybrid or check variety
in common with another MET in the selection. As a result, the number of hybrids used in
this study is 2367 instead of the original selection of 2361. By contrast, the actual number
of METs is reduced from 1284 to 1280 by adding a new selection constraint that requires
each MET to test at least three or more hybrids. Fitting an appropriate linear mixed model
to the resulting phenotypic data turned out to be problematic due to excessive memory
requirements for setting up and solving the mixed model equations. Therefore, the initial
selection of 33991 check varieties was reduced to 3022. Only checks that actually connect
two or more METs are retained altough METs having less than four checks are filled up with
randomly chosen, non-connecting check varieties. We consider all environmental factors as
fixed, while the genotypical components and G×E interactions are considered as random
effects. The full model for the mean of the vector of phenotypical measurements y can be
represented as

E[y] = µ + X(g)g + X(l)l + X(g.l)g.l + X(m)m (6.8)

+ X(m.l)m.l + X(m.l.t)m.l.t + X(m.l.t.b)m.l.t.b .

Here µ represents the global phenotypical mean, while g, l, m, t, b represent vectors
containing the effects for growing seasons, locations, METs, trials and blocks respectively.
The interaction terms in the model are represented as a listing of the appropriate vector
symbols, separated by a dot. The X(∗) matrices link the effects in each vector to the
phenotypical measurements in vector y. The effects in vector m are nested within growing
seasons, but the METs have received a unique identifier and therefore the notation g.m has
been replaced by m. We were not able to fit model terms containing treatment effects as
we have no information about the specific treatment (irrigation, fertilisation, . . . ) applied
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in each trial. The main effects for year and location are removed from the model for
the mean as all their levels are confounded with those of higher level interaction terms.
The term X(m.l)m.l was also dropped from Eq. (6.8) as 98% of the location/growing
season combinations contain only trials belonging to separate METs. Most of the effects in
vector m.l are therefore confounded with the effects in the higher interaction term m.l.t.
Furthermore, the data contains little or no information for the remaining effects in m.l, as
different treatments were applied in the few cases where two trials of the same MET were
placed within the same location/growing season combination.
The main effects of the random part of the mixed model can be represented as

Z(c)c + Z(s)as + Z(o)ao + Z(d)d + e . (6.9)

Vector c contains the total genotypical effects for all checks, and as and ao are vectors
containing GCA effects for the inbred lines belonging to the ISSS and Iodent heterotic
groups, respectively. Vector d contains the SCA effects for each of the 2367 hybrids and e

contains a residual error for each phenotypical measurement in y. The rows of the matrix
Z(c) corresponding to measurements on genotyped hybrids are set to 0, while all rows of
the remaining Z-matrices are set to 0 when their corresponding entries in vector y pertain
to check varieties.
Random G×E interaction terms are introduced in the full model for the variance by pair-
wise interacting the first four model terms in Eq. (6.9) with all the model terms in Eq. (6.8)
except m.l and m.l.t.b. Due to a software restriction in the maximum number of un-
known variance parameters and the prohibitively large computer memory requirements,
the possibly improved model fit of factor analytic and reduced rank variance structures
for the G×E interaction terms can not be verified. For the same reasons, heterogeneous
residual variances can not be fitted. Akaike’s information criterion is used to identify the
important variance components. At this stage, AIS is used to model the covariance be-
tween the general and specific combining abilities of the hybrids according to Stuber and
Cockerham (1966). The other random effects are assumed to have a diagonal variance ma-
trix. The described model selection procedure is repeated for the traits grain yield (q/ha at
15% moisture), grain moisture content and days until flowering. The logit transformation
is applied to the measurements of grain moisture content as to reduce the skewness in
the distribution of the residuals. To avoid convergence problems during REML iterations,
these transformed measurements are multiplied with a scaling factor of 100. For both yield
and grain moisture content, Akaike’s information criterion indicates that the full model for
the variance, containing 25 variance parameters, is to be preferred. For days until flowering
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on the other hand, the three interactions between the SCA effects and l, m and m.l.t are
dropped from the model for the variance. This reduces the number of variance parameters
for this trait to 22.
All variance components are estimated through REML optimisation by means of the Av-
erage Information algorithm as implemented in the software tool ASReml (Gilmour et al.,
2002). The model fit of the different CoC matrices, obtained by applying each of the
examined procedures, is determined by replacing them for the AIS-based matrices in the
covariance models of the vectors as, ao and d in Eq. (6.9) and evaluating the resulting
restricted log-likelihood at the end of the REML iteration. Both BNO and LOI produce
CoC values that are outside the biologically meaningful parameter space (0 ≤ fij ≤ 1 for
all genotypes i and j) and these values are therefore truncated at the boundaries. For
both heterotic groups the MLE and the bounded LOI numerator matrices are non-PSD
and therefore need bending towards the nearest PSD matrix.

6.2.4 Bending procedures

The first examined bending procedure applies a spectral decomposition of the non-PSD
matrix and replaces all negative eigenvalues with a small positive value as described in
Sørensen et al. (2002) and Jorjani et al. (2003). This procedure does however not con-
strain the elements of the bended matrix within the unit interval such that new boundary
infringements might arise during bending. To enforce these boundary constraints we im-
plemented an MCMC procedure, inspired by FLBEND (Henshall and Meyer, 2002), to
transform non-PSD coancestry matrices towards the closest PSD matrix within the pa-
rameter space. The idea behind FLBEND is to generate a symmetric matrix B by means
of an iterative Monte Carlo procedure such that the distance between the PSD matrix
product BB′ and the non-PSD input matrix A is minimised. Perturbations in B that
increase this distance are accepted at reduced probability. Our modified algorithm rejects
alterations in B that allow the elements of BB′ to stray outside the unit interval. To allow
for a faster convergence under this restricted setting, we continuously update the variance
of new perturbations by means of a Metropolis-Hastings step. We also allow the matrix
B to be non-symmetrical as this results in a better approximation of the input matrix,
at the cost of a higher computational demand. The pseudo-code for this MCMC bending
procedure is given in the appendix of this chapter.
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Figure 6.1: Average coefficient of coancestry between inbred lines at each breeding cycle
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6.3 Results

6.3.1 Simulated breeding populations

The first breeding cycle in each simulation produces 28 unrelated inbred lines. The selective
pairwise mating of these inbred lines produces 50 hybrids, which represent the starting
point for the next selection cycle. At the end of each breeding cycle we can calculate the
actual CoC between all pairs of inbred lines by averaging over the true IBD relationships
at the SSR marker loci. Figure 6.1 depicts this average CoC at each breeding cycle.
At the end of each breeding cycle, only the best performing inbred lines are retained,
regardless of their pairwise relatedness. This behaviour mimics a real hybrid breeding
programme where decisions are based on phenotypical performance data. Unfortunately
this implies that it is not possible to control the pairwise CoC between inbred lines at each
breeding cycle which would allow to quantify the standard error of the different estimators
at predefined levels of coancestry (parent-offspring, half-sibs,. . . ). Instead, we determine
for the 378 pairwise combinations of the 28 selected inbred lines within a heterotic group
the actual CoC based on the average IBD relationships at the SSR loci. This allows us to
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determine the average bias and root mean squared error (RMSE) of each CoC estimator.
Figure 6.2 visualises for each estimator this RMSE at different values of the Fst between
the initial OPVs and different values of λ. The presented RMSE values are averaged over
100 independent iterations of the simulation routine.
The AIS, WAIS and PED estimators are guaranteed to produce a PSD coancestry matrix,
while the other three estimators (BNO, MLE and LOI) are not. For every CoC estimator
the proportion of non-PSD numerator relationship matrices was determined by means of an
eigenvalue analysis. During simulations, BNO never resulted in a non-PSD ABNO matrix
despite the fact that several small truncations were necessary to confine the estimator
within the biologically meaningful parameter space. MLE and LOI are more likely to
produce a non-PSD coancestry matrix as can be seen from Figure 6.3.

6.3.2 Maize breeding data

AIS, PED, MLE and WAIS all produce CoC estimators within the unit interval. BNO
on the other hand can produce negative CoC values and the same holds for LOI which
also allows to obtain CoC values greater than one. Figure 6.4 shows the range of pairwise
CoC values between genotypes belonging to the same heterotic group for all examined
estimation procedures.
The covariance structure of the GCA and SCA effects of Eq. (6.9) is modelled by means
of the six examined coancestry estimators. We can compare the goodness-of-fit of these
coancestry estimators by means of the restricted log-likelihood at the final REML iteration,
as the fixed effects structure and the number of estimated variance components for each
model are constant. To allow for a fair comparison between estimators we restrict all CoC
values to lie within the unit interval. This decision only has a minor effect on the model fit
as the difference in restricted log-likelihoods between the bounded and unbounded variants
of BNO and LOI is negligible for all three traits under study. MLE is bounded by nature
but results in non-PSD CoC matrices for both the Iodent and the ISSS heterotic groups
and so does the bounded LOI variant. The MCMC bending procedure results in a smaller
distance between the original non-PSD matrix and the bended output matrix compared
to the spectral decomposition approach. For the MCMC bending procedure the maximum
element-wise average distance is only 0.00075, while it is 0.0015 for the spectral decompo-
sition approach. This superiority is however barely reflected in an improved model fit as
the restricted log-likelihoods of the LOI and MLE CoC matrices bended with the MCMC
procedure are usually identical or slightly higher than those bended with the spectral de-
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Figure 6.2: Root mean squared error of each CoC estimator at the different stages of a hybrid

breeding programme. Panels are sorted according to the Fst value of the two initial OPVs from

which the selection routine started and λ, the expected value of the Poisson distribution which was

used to draw the number of alleles at each locus. RMSE values are averaged over 100 iterations

of the simulation routine.
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Figure 6.3: Proportion of non-PSD coancestry matrices for MLE and LOI
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Figure 6.4: Pairwise CoC values between members of the same heterotic group, estimated by

means of the 6 examined procedures. For LOI and BNO both the unbounded (suffix u) and

bounded (suffix b) ranges are presented.
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Table 6.1: Restricted log-likelihoods for each of the six coancestry estimators that were used to

model the covariance for GCA and SCA effects in Eq. (6.9) for the traits yield, grain moisture

content and days until flowering. The number between brackets represents the relative ordering

of the estimators when sorted according to decreasing restricted likelihood. BNO and LOI values

were bounded within the unit interval. MLE and the bounded LOI matrices were bended towards

the closest PSD matrix using the MCMC algorithm.

yield moisture % flowering

PED −222740.1 (4) −194696.6 (1) −55339.6 (1)

AIS −222734.8 (2) −194710.8 (2) −55343.8 (2)

BNO −222734.8 (1) −194712.9 (3) −55344.1 (3)

WAIS −222739.2 (3) −194715.3 (4) −55347.7 (4)

MLE −222743.2 (6) −194716.2 (5) −55357.0 (5)

LOI −222741.0 (5) −194725.6 (6) −55361.9 (6)

composition approach. Table 6.1 gives an overview of the restricted log-likelihoods for each
of the examined CoC estimators and for each of the three traits under study.

6.4 Discussion

The CoC is often used to model the covariance between genetic components of genotypes
under selection, despite the inherent conflicts with the underlying quantitative genetic
theory. In hybrid breeding programmes and certain association studies the genotypes at
hand are highly selected inbred lines with little or no information concerning their selection
history. Analysing phenotypical data originating from such inbred lines or their pairwise
matings by means of a linear mixed model which uses a CoC estimator to model the covari-
ance between GCA or SCA components, should be considered as an approximation, since
the resulting variance components and BLUPs are biased. Nevertheless, good results have
been obtained in practice using different CoC estimators based on pedigree or molecular
marker information.
In this chapter we present a PSD, codominant marker-based relatedness estimator called
the weighted alikeness in state or WAIS estimator. This estimator is only applicable in
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the specific case that a reference set of genotyped individuals, unrelated to the genotypes
in the sample, is available. As hybrid breeders make extensive use of unrelated heterotic
groups, this estimator is particularly suited for this type of selection. It should be clear
that WAIS is not claimed to be assumption free as it for example relies on gametic phase
equilibrium. This assumption is surely not met in advanced breeding pools, so we study
the behaviour of WAIS and other CoC estimators under a typical hybrid breeding selection
scheme by means of simulations and actual breeding data.

6.4.1 Marker-based estimators

Bernardo (1993) uses the observed marker similarities between unrelated lines to correct
the AIS-based estimator for lines belonging to the same heterotic group. Besides the often
violated assumption of gametic-phase equilibrium between loci, there is also the problem
of obtaining negative values for BNO when the correction factor exceeds AIS.
Thompson (1975) demonstrates how the pairwise relationship between non-inbred individ-
uals can be estimated by means of a likelihood function that incorporates the three possible
identity by descent probabilities (Jacquard, 1974). Milligan (2002) compares the behaviour
of this estimator to 5 prominent, non-likelihood estimators (Queller et al., 1989; Li et al.,
1993; Ritland, 1996; Lynch and Ritland, 1999; Wang, 2002). He concludes that under all
simulated scenarios, the maximum likelihood estimator (MLE) exhibits a lower variation
compared to the other estimators. However, this reduction in standard error comes at a
price, as the likelihood estimator shows considerably more bias, especially at the boundary
of the parameter space. A second advantage lies in the fact that the likelihood maximisa-
tion procedure is constrained to produce biologically meaningful results (0 ≤ MLE ≤ 1),
but this property could in fact be enforced on the other estimators as well, again at the
cost of increasing the bias. Nevertheless, we consider the maximum likelihood estimator to
be the most appropriate candidate for use in breeding pools as it explicitly handles inbred
individuals. Other implicit assumptions like linkage equilibrium between marker loci and
exact knowledge of population allele frequencies are most likely to be violated when the
fingerprinted genotypes are all inbred lines but this is the case for all other estimators
as well. Anderson and Weir (2007) extended the maximum likelihood approach for the
case where the examined genotypes belong to subpopulations of a population with known
allele frequencies. However, we did not adopt this approach as its resulting coancestry
measures refer to the ancestral population, while all other examined estimators refer to the
subpopulation itself.
The problem of finding the most likely IBD relationship between two genotypes can be
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formulated as the maximisation of a function over a vector ∆ containing 9 single-locus,
identity by descent modes (Jacquard, 1974; Thompson, 1975). As the simulations in Mil-
ligan (2002) assume large, non-inbred populations, the parameter space can be reduced
to having 2 dimensions. Hepler (2005) explores the possibility of inbred individuals which
expands the parameter space to 8 dimensions. Both Milligan (2002) and Hepler (2005)
use the downhill simplex method (Nelder and Mead, 1965), a heuristic optimisation tech-
nique, because an algebraic solution of the maximisation problem is not feasible. The
original version of this heuristic neither allows the incorporation of the boundary con-
straints (0 ≤ ∆i ≤ 1) nor the linear constraint (

∑9
i=1 ∆i = 1). Hepler (2005) introduces

these constraints by rejecting solutions outside the parameter space during the optimisa-
tion process. This results in numerous lost iterations, especially when certain values of ∆

are near the boundary of the parameter space. To allow for simulations to be performed in
an acceptable time frame, we use a quasi-Newton nonlinear interior-point method (Meza
et al., 2007) for the maximisation of L(∆). This approach reduces the needed processor
time per genotype pair drastically, while the resulting estimators of ∆ are always nearly
identical compared to those of the constrained simplex algorithm. The resulting matrix
AMLE, containing all pairwise estimates of MLE, is not guaranteed to be PSD which limits
its use in a mixed model setting. If the AMLE happens to be non-PSD, the nearest PSD
matrix should be used instead.
Loiselle and Graham (1995) describe a marker-based coancestry estimator which quantifies
the correlation in allele frequencies between two individuals belonging to a population in
Hardy-Weinberg equilibrium. Despite the obvious violations of underlying theoretical as-
sumptions, this marker-based estimator is sometimes used to model the covariance between
genotypes originating from breeding programmes (Yu et al., 2006; Zhang et al., 2007; Casa
et al., 2008). LOI is not guaranteed to lie within the parameter space so truncations are
often necessary at the boundaries. The resulting coancestry matrix ALOI is not guaranteed
to be PSD.

6.4.2 Simulations

The simulated selection scheme follows the maize breeding programme of the University of
Hohenheim (Stich et al., 2007). Each breeding cycle consists of 6 generations of inbreeding
and selection after which the best performing inbred lines are mated to provide the initial
population for the next breeding cycle. The actual CoC, obtained as an average over SSR
loci, gradually increases as the number of subsequent breeding cycles rises. The trend
observed in Figure 6.1 is independent from the initial parameter selection (Fst, λ), which



80 CHAPTER 6

indicates that the number of breeding cycles can be used as an indirect measure for the
average relatedness within the heterotic groups.
From Figure 6.2 we can see that the pedigree-based estimator outperforms all marker-
based estimators by producing the lowest root mean squared error under all parameter
settings. The bias introduced by unequal parental contributions as a consequence of the
selection process seems to be negligible compared to the bias of the marker-based esti-
mators. The advantage of the pedigree-based estimator might not be so apparent under
practical breeding circumstances, as detailed and accurate pedigree records, tracing back
to the initial OPVs, are usually not available. Looking at the marker-based estimators we
see that the behaviour of MLE and that of LOI are nearly identical under all simulated
scenarios. The performance of these estimators deteriorates as the number of breeding
cycles increases which is probably caused by the increasing deviations from population
genetics assumptions on which they rely. AIS shows a rather reversed picture as it tends
to become more accurate as the number of breeding cycles increases. The overestimation
of AIS at low levels of selection is more pronounced when the expected number of distinct
alleles at each locus (λ) is small or the differentiation between the populations from which
the heterotic groups are developed (Fst) is large. The influence of the value of the Fst is
rather surprising as AIS makes no use of a reference population. A possible explanation
might lie in the constraints that are imposed on the allele frequencies as a consequence of
fixing the Fst value. This might have the same effect as lowering the effective number of
distinct alleles at each locus.
The RMSE of WAIS and BNO is usually at a considerably lower level compared to the other
marker-based estimators. When λ = 0, which is equivalent to fixing the number of distinct
alleles of each SSR or QTL locus at 2, WAIS has a higher RMSE compared to BNO. This
rather unrealistic scenario allows AIS to outperform WAIS when the number of breeding
cycles is high. As soon as λ increases to a more realistic setting, WAIS outperforms AIS
and can compete with BNO. Ho et al. (2005) estimate the Fst between Corn Belt dent
populations to be 0.142 which is somewhat similar to the 0.15 found earlier by Labate
et al. (2003). At this level of differentiation WAIS and BNO perform at a comparable
level, although WAIS performs slightly better when allelic diversity is high. WAIS also
outperforms BNO when the Fst value increases, except when λ is small and the number of
breeding cycles is high.
WAIS is specifically designed to guarantee a PSD coancestry matrix. This property is
necessary when this matrix is used to model the covariance between genetic components
in a linear mixed model. BNO, despite not being a PSD estimator, always produced
a PSD coancestry matrix for all simulated populations and the real hybrid maize data



6.4 DISCUSSION 81

set. Several truncations towards 0 were necessary but these were small in absolute value.
These arguments allow to conclude that BNO is a stable estimator which produces natural
coancestry measures under variable circumstances. This cannot be said for MLE and LOI
which both produced non-PSD coancestry matrices for a rather large proportion of the
simulated heterotic groups. This proportion is highly dependent on the number of distinct
alleles at each locus where a value of λ of 0 and 8 consecutive breeding cycles results in
a very high probability of obtaining a non-PSD matrix. LOI performs slightly worse than
MLE, but both estimators generally exhibit the same increase in proportion of non-PSD
matrices when the allelic diversity decreases.

6.4.3 Maize breeding data

Figure 6.4 shows that BNO and LOI both produce negative CoC estimates and that LOI
also allows the estimators to become greater than one. The infractions of BNO on the lower
bound are rather limited in frequency as well as in size as only 37 of all 9843 estimates are
smaller than zero with a mean negative deviation of 0.04. Truncation of BNO at the lower
bound therefore has little impact on the model fit. LOI on the other hand, ranges from
−0.41 to 1.83 and only 43 percent of the estimated CoC values fall within the biologically
meaningful parameter space. Truncation of LOI at the boundaries therefore cripples the
distribution of CoC values as more than half of the estimates are set to 0 or 1. The bounded
LOI distribution looks very similar to that of MLE, the other estimator from population
genetics. This is to be expected as MLE forces all estimates to lie within the unit interval
by means of the constrained optimisation algorithm. The other estimators produce more
natural looking distributions where AIS is generally at a higher level than PED and both
BNO and WAIS take more intermediate positions. The unbounded BNO and LOI result
in PSD CoC matrices for both the ISSS and Iodent heterotic groups while MLE produces
non-PSD matrices. After bounding of BNO and LOI only LOI results in non-PSD CoC
matrices for both heterotic groups such that bending needs to be applied.
For the non-PSD matrices produced by MLE and the bounded variant of LOI, two matrix
bending procedures were examined. The spectral decomposition approach is computation-
ally quite fast but does not allow to constrain the elements within the unit interval. The
application of this bending procedure to the bounded LOI estimator results for example in
2770 new boundary infringements, though it should be noted that these are rather small in
absolute value. The MCMC procedure is computationally quite demanding but allows to
constrain all CoC values within the aforementioned range and produces a PSD matrix that
is closer to the original input matrix than the matrix resulting from the spectral decom-
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position approach. This difference between both bending procedures is however negligible
when comparing restricted log-likelihoods of linear mixed models in which the bended CoC
matrices are used to model covariances between random GCA and SCA effects.
In Table 6.1 we can see that PED results in the highest restricted log-likelihood at the end
of the REML iterations for the traits grain moisture content and days until flowering, while
BNO, AIS and WAIS outperform the pedigree estimator for the trait yield. If we focus
on the marker-based estimators, we see that the uncorrected AIS results in the highest
restricted log-likelihood for the traits grain moisture content and days until flowering while
for yield the difference with BNO is negligible. Although surprising at first, this behaviour
of AIS is consistent with the simulations as it was shown that the RMSE of AIS decreases
to that of BNO and WAIS when the number of consecutive breeding cycles is high. Taking
into account that AIS always results in a PSD coancestry matrix, this estimator deserves a
revaluation when applied to highly selected breeding material. When summing over rank
scores, BNO takes third position while WAIS takes fourth. Constraining the resulting
coancestry matrix to be PSD comes at the price of a slightly reduced model fit. MLE and
LOI, both originating from population genetics, give the lowest log-likelihoods for all three
traits under study.
Results from this study indicate that the pedigree-based CoC estimator is superior to the
available marker-based alternatives when accurate and complete pedigree information is
available for a set of highly selected inbred lines. Comparisons between marker-based CoC
estimation procedures, for the specific case that the inbred lines are subdivided in unrelated
heterotic groups, indicate that procedures from population genetics like MLE or LOI should
generally be avoided as a considerable deviation from the actual IBD relationship can be
observed when the inbred lines have a long breeding history. Results also indicate that
in this specific case, the observed allele identities need little correction and therefore AIS
results in a good approximation of the true CoC. However, if the breeding history is not
that long or unknown, BNO and WAIS should be used. BNO generally results in a slightly
better model fit, but when the PSD property of the resulting CoC matrix needs to be
guaranteed, for example when used in a linear mixed model for breeding value estimation
or an association study, the new relatedness estimator WAIS should be preferred.

6.5 CoCoa

The software package CoCoa allows researchers to apply the newly developed WAIS coances-
try estimation procedure to their own panels of genotyped plants or animals. Besides WAIS,
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CoCoa also implements each of the four examined competitors namely AIS, BNO, LOI and
MLE. The molecular fingerprint of each genotyped individual can be provided in the exact
same file format as is needed by the software package “structure” (Pritchard et al., 2000).
All implemented estimation procedures work exclusively on multilocus genotype data so
there is no need to provide pedigree information. Similarly, all estimators assume that
the genotyped markers are in gametic phase equilibrium, so genetic map information is
not required. This latter assumption, however, implies that all implemented coancestry
estimators are most likely biased when applied to genotypes that are part of a breeding
program. In fact, under these circumstances, it is impossible to obtain exact, marker-
based coancestry estimates and one should try to identify the estimation procedure that
introduces the least amount of bias for the set of genotyped individuals at hand.
Besides implementing five different coancestry measures, CoCoa also provides a set of ma-
trix manipulation tools that are useful for dealing with marker-derived covariance matrices.
Matrix elements can be bounded within a predefined interval (e.g. the unit interval) and if
the estimated matrix is well-conditioned, a matrix inversion routine based on the singular
value decomposition allows to obtain a numerically stable inverse for use in linear mixed
model packages. The sensitivity to small perturbations, caused for example by round-off
errors, is expressed as the 2-norm condition number of the estimated coancestry matrix.
The larger this condition number, the less reliable the matrix inverse will be. To decrease
the matrix condition number, CoCoa allows to bend the estimated coancestry matrix by
means of the two described bending algorithms, based on spectral decomposition and Monte
Carlo sampling respectively. CoCoa allows to export the estimated coancestry matrices to
various file formats which are required by the most commonly used software packages for
linear mixed model analysis such as SAS Proc Mixed, ASReml and Wombat. More general
export formats such as a dense rectangular array or lower and upper triangular arrays are
also available.
The core components of CoCoa are written in C++, while the graphical user interface is
written in Java. CoCoa is published under the terms of the GNU General Public License
and can be downloaded free of charge at http://webs.hogent.be/cocoa. Source code, man-
ual, binaries for 32 and 64-bit Linux systems and an installer for Microsoft Windows are
provided.



84 CHAPTER 6

6.6 Appendix: pseudo-code for the MCMC bending algorithm

Function: A∗ ← BendIt(A, maxD, maxT )

Input: A, a symmetric, non-PSD matrix of size n

Input: maxD, allowed distance between input and output matrix
Input: maxT, maximum computation time
Output: A∗, a symmetric, PSD matrix of size n

sigma ← 0.1 ; probsigma ← minvalue ; lowestD ← maxvalue

B, C, A∗ ← DiagonalMatrixOfOnes(n)

D ← DistanceBetweenMatrices(A, A∗)

while ElapsedT ime < maxT and lowestD > maxD do
sigma∗ = sigma + RandomGaussian(0, 0.01)

numaccept ← 0

for l← 1 to n2 do
accept ← BendCycle(sigma∗,n,D,A,A∗,B)

if accept = true then
numaccept ← numaccept + 1

probsigma∗ =numaccept/n2

α = probsigma∗/probsigma

u = RandomUniform(0, 1)

if u < α then
sigma ← sigma∗ ; probsigma ← probsigma∗;

if D < lowestD then
lowestD ← D

C ← B

else
B ← C

A∗ ← BB′

D ← lowestD
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Function: accept← BendCycle(sigma∗,n,D,A,A∗,B)

Input: sigma∗, standard deviation
Input: n, size of A

Input: A, symmetric matrix of size n

Input / Output: A∗, symmetric matrix of size n

Input / Output: B, matrix of size n

Input / Output: D, current distance between A and A∗

Output: accept, boolean indicating acceptance of change

legal ← true

accept ← false

r ← SelectRandomInt(n)

c ← SelectRandomInt(n)

newvalue ← B(r, c) + RandomGaussian(0, sigma∗)

newD ← D

for k ← 1 to n do

if k = r then
newrow(k) = A∗(r, r)−B(r, c)2 + newvalue2

else
newrow(k)← A∗(r, k) + (newvalue−B(r, c)) ∗B(k, c)

if OutsideParamSpace(newrow(k)) then
legal← false

else
newD ← newD+ AbsValue(A(r, k)− newrow(k))−
AbsValue(A(r, k)−A∗(r, k));

if legal = true then
u = RandomUniform(0, 1)

if u < distance/newD then
accept = true

if accept = true then
D ← newD

B(r, c)← newvalue

for k = 1 to n do
A∗(r, k) = A∗(k, r) = newrow(k)





CHAPTER 7

Support vector machine regression for the

prediction of hybrid maize performance

7.1 Introduction

For several agronomically important plant species like maize (Zea mays L.), hybrid vari-
eties constitute a considerable part, if not all, of the commercial market. Maize breeding
programmes typically have a continuously evolving breeding pool at their disposal which is
loosely divided into several complementary heterotic groups. New inbred lines are created
by subsequent inbreeding of an initial cross or the use of doubled haploids. During their
selection, these candidate lines are crossed with tester lines from a complementary het-
erotic group and hybrid performance is evaluated in multi-location field trials. Bernardo
(1994, 1995, 1996a,c) uses linear mixed modelling to predict the performance of such an
untested cross based on field trial results of related hybrids and marker data. This ap-
proach performs well considering the upper limit in prediction accuracy that is imposed
by the heritability of each tested trait. Charcosset et al. (1998) show that this prediction
method is superior when hybrids originate from crosses between unrelated inbred lines,
which is most likely the case in commercial breeding programmes. Unfortunately, corre-

This chapter has been redrafted after

Maenhout S., De Baets B., Haesaert G. and Van Bockstaele E. (2007). Support vector machine re-

gression for the prediction of maize hybrid performance. Theoretical and Applied Genetics, 115:1003-

1013.

Maenhout S., De Baets B., Haesaert G. and Van Bockstaele E. (2008). Marker-based screening of

maize inbred lines using support vector machine regression. Euphytica, 161:123-131.



88 CHAPTER 7

lations between predicted and observed SCA values are too low to allow for an effective
selection towards high heterosis hybrids (Bernardo, 1995).
This chapter explores the use of ε-insensitive support vector machine regression (ε-SVR) to
predict the phenotypical performance of untested hybrids. The presented technique uses
linear mixed modelling to correct unbalanced phenotypical measurements for nuisance
parameters like trial, location and block effects. The corrected phenotypical values of all
hybrids are used as a training set for constructing an ε-SVR model in which the molecular
fingerprints of each hybrid serve as predictor variables. These models can subsequently
be used to predict the phenotypical values of unknown hybrids and inbred lines. The
advantage of ε-SVR lies in the use of kernel functions that allow to explore non-linear
models for hybrid prediction.

7.2 Materials and methods

7.2.1 Data description

The phenotypic data used in this study originate from field trials that were organised as
part of the grain maize breeding programme of RAGT R2n as described in Chapter 4.
The pedigree backgrounds of the 105 ISSS and 92 Iodent lines were reconstructed as far
as possible, which allowed to estimate the pairwise coefficients of coancestry fPED

ij between
inbred lines belonging to the same heterotic group by means of a tabular analysis with
corrections for inbreeding and backcrossing (Emik and Terrill, 1949).
The 197 selected inbred lines were fingerprinted using 101 co-dominant SSR markers. As
described in Chapter 4, only 75 SSR markers have complete profiles over all selected inbred
lines. In this study only information of these complete SSR loci was used. 2.6% of all
SSR locus/inbred line combinations was heterozygous, preventing an exact deduction of
the hybrid genotype when these lines are used as parents. The molecular coefficient of
coancestry fBNO

ij between two inbred lines i and j of the same heterotic group was calculated
from their SSR-based fingerprints as (Bernardo, 1993),

fBNO
ij =

fAIS
ij − 1

2
(f̄AIS

i. + f̄AIS
.j )

1− 1
2
(f̄AIS

i. + f̄AIS
.j )

, (7.1)

where fAIS
ij is the average allele identity over all SSR marker loci between inbred i and j

which can be calculated according to Eq. (6.1) or in a more classic notation as

fAIS
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where ikm
represents the maternal allele of inbred line i for locus k, while ikp

represents the
paternal allele. I(ikm

, jkm
) returns 1 if the maternal allele on locus k of individual i is equal

to the maternal allele of that same locus of individual j and 0 otherwise. P̄i. represents
the average allele identity between inbred line i and all inbred lines of the complementary
heterotic group. f̄AIS

i. represents the average allele identity between inbred line i and all
lines of its complementary heterotic group.
AFLP fingerprints were generated using 11 PstI-MseI and 4 EcoRI-MseI primer combina-
tions. These 15 primer combinations produced 569 polymorphic bands for the 197 selected
inbred lines. To calculate the molecular coefficient of coancestry f JAC

ij between two inbred
lines i and j of the same heterotic group based on dominant AFLP marker data, Eq. (7.1)
was used but the proportion of shared AFLP alleles fAIS

ij was calculated according to the
Jaccard similarity measure as

fAIS
ij =

aij

aij + bij + cij

, (7.2)

where aij represents the number of bands common to both individuals i and j while bij

represents the number of bands unique to i and cij those unique to j.

7.2.2 Linear mixed model analysis

As the data suffers from severe unbalancedness, a linear mixed model is the recommended
approach for correcting the phenotypical measurements for nuisance factors like trial, lo-
cation and block effects. The used model is quite similar to that proposed by Bernardo
(1994) but the actual plot measurements are used instead of averages over locations and
blocks:

y = µ+X(m)m+X(m.l.t)m.l.t+X(m.l.t.b)m.l.t.b+Z(c)c+Z(s)as+Z(o)ao+Z(d)d+e . (7.3)

This formulation follows the notation that was introduced in Chapter 6. y represents a
vector containing the trait responses for each plot in the data set and µ represents the
global phenotypical mean. m is a vector containing the fixed multi-location trial (MET)
effects, nested within growing seasons. m.l.t contains the fixed effects for each trial,
nested within a location and nested within a MET. m.l.t.b represents the fixed block
effects, nested within each trial. Vector c contains the random genotypical effects for all
checks. as and ao are vectors containing GCA effects for the inbred lines belonging to
the ISSS and Iodent heterotic groups respectively, while d contains the SCA effects for
each of the 2361 hybrids. e contains a random residual error for each plot in the data
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set. The coincidence matrices X(m), X(m.l.t), X(m.l.t.b), Z(c), Z(s), Z(o) and Z(d) link each
entry in the y vector with the appropriate effect. The levels of the nested trial, location
and block effects are sometimes confounded in which case the higher level effect is set to
0. No explicit G×E terms or heterogeneous residual variances were fitted into Eq. (7.3).
The expected improvements of these more elaborate models could not be verified because
of computational limitations caused by the size of the data set. Furthermore, these models
are not handled by the benchmark method described by Bernardo (1994, 1995, 1996a,c)
and would therefore exclude an objective comparison.
The covariance matrix G for the random effects in the model can be represented as

G =

















Iσ2
c 0 0 0 0
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s 0 0 0

0 0 Aoσ
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o 0 0

0 0 0 Dσ2
d 0

0 0 0 0 Iσ2
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(7.4)

The matrices As and Ao model the covariance between inbred lines of the ISSS and Iodent
heterotic group respectively. Usually the covariance between two hybrids hij and hi′j′,
where lines i and i′ belong to the ISSS group and lines j and j ′ belong to the Iodent group,
is modelled as (Stuber and Cockerham, 1966)

Cov(hij , hi′j′) = fii′σ
2
s + fjj′σ

2
o + fii′fjj′σ

2
d , (7.5)

where fii′ is the coefficient of coancestry between two inbred lines i and i′ of the ISSS
heterotic group and fjj′ between two inbred lines j and j ′ of the Iodent group. The
coefficient of coancestry can be calculated based on pedigree information (fPED), but also
from SSR (fBNO) or AFLP data (f JAC). The three components of Eq. (7.5) allow to
construct the matrices As, Ao and D using the described coefficients of coancestry. These
alternative formulations are compared by means of the restricted likelihood of the model
given the data, keeping the fixed effects structure constant. The covariance matrix for the
checks is assumed to be an identity matrix. If pedigree or marker data were available for
these checks, including this information in the covariance matrix G would improve the
model fit as proposed by Bernardo (1995). The variance parameters σ2

c , σ2
s , σ2

o , σ2
d and σ2

r

are estimated through REML optimisation by means of the Average Information algorithm
as implemented in the software tool ASReml (Gilmour et al., 2002).
The phenotypical value of each hybrid is estimated as the average of its measurements
in the data set, albeit with correction for trial, location and block effects. The vector of
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corrected phenotypical values is therefore obtained as (Bernardo, 1994, 1995, 1996a,c)

ŷc = (Z ′
(d)Z(d))

−1Z ′
(d)(y − µ−X(m)m−X(m.l.t)m.l.t−X(m.l.t.b)m.l.t.b) . (7.6)

The elements of ŷc are used as a training set for building the ε-SVR prediction model.
Apart from training an ε-SVR model we also implemented the prediction system proposed
by Bernardo (1994, 1995, 1996a,c) based on Best Linear Prediction (BLP). A validation
subset ŷcv of size l′ is predicted from the remaining entries ŷct as

ŷcv = CvtV
−1

t ŷct . (7.7)

Cvt is an l′ × (l − l′) matrix containing the covariances between validation and training
hybrids. Vt is the variance-covariance matrix of the l− l′ training hybrids. Elements of Cvt

and non-diagonal elements of Vt are computed using Eq. (7.5). The i-th diagonal element
of Vt is equal to σ2

s + σ2
o + σ2

d + σ2
r

ni
, where ni is the number of records of the i-th hybrid

in the training set. The prediction accuracy of BLP is established using a leave-one-out-
crossvalidation. This means that each of the 2361 hybrids are individually predicted using
a vector ŷct containing the corrected phenotypical effects of the 2360 remaining hybrids.
The algorithm was implemented in C++ using the matrix routines provided in the GNU
Scientific Library (Galassi et al., 2009).

7.2.3 ε-insensitive support vector machines regression

As described in Chapter 3, the construction of an ε-SVR prediction model requires a set of
training examples, each consisting of a vector of predictors x and an associated response
value y. In this case, we want to predict the agronomic performance of a hybrid maize
genotype so the elements of the vector ŷc of Eq. (7.6) are used as response values. For
each hybrid, a vector of predictors is constructed based on the molecular fingerprints of
its parents. Each element of x represents the expected frequency of a particular allele at
a particular locus of that hybrid. For the 75 complete SSR markers, this representation
result in a vector x containing 515 allele frequencies. The use of expected instead of actual
allele frequencies is necessary because some inbred lines are still heterozygous at one or
more loci which prevents the exact deduction of the molecular fingerprints of their children.
If for example a hybrid is created from two inbred lines which are both heterozygous at
a particular locus, the four elements of its vector x that pertain to the involved alleles
are set to 0.25, while the elements representing the other alleles of that particular locus
are set to 0. The AFLP markers introduce an additional 569 predictors. As AFLP is a
dominant marker type, we are forced to assume complete homozygosity of the inbred lines
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to calculate the expected allele frequencies of the marker alleles, which limits the number
of possible values for each AFLP-based predictor to 0, 0.5 or 1.
As explained in Chapter 3, the dual formulation of the ε-SVR framework allows to plug in
different kernel functions which map the original training examples in a different, generally
higher-dimensional space of predictors called the feature space. Not all symmetric functions
over X×X are kernels that can be used in a SVM. Since a kernel function K is related to an
inner product, it has to satisfy some conditions that arise naturally from the definition of
an inner product and are given by Mercer’s theorem: the kernel function has to be positive
semi-definite (PSD). A commonly used kernel function is the Gaussian kernel defined as

K(x, z) = exp(−γ‖x− z‖2) , (7.8)

where γ is a kernel specific parameter which allows to find a linear function in an infinitely
large feature space (Shawe-Taylor and Cristianini, 2004). Most all-round kernels like the
Gaussian or polynomial kernel require the knowledge of one or several additional kernel
parameters. The use of context specific kernel functions, however, can avoid the compu-
tationally exhausting grid searches needed to identify these parameter values that allow a
minimal generalisation error.
Dot products in feature space are in fact measures of similarity between cases, so the use of
PSD genetic similarity measures as kernel functions is a valid option. The Jaccard similarity
measure of Eq. (7.2) is commonly used when genotyping is based on dominant molecular
markers like AFLP. As this similarity measure is PSD (Gower and Legendre, 1986), it can
be used as a kernel function in the formulation of an ε-SVR-based prediction model. A
useful PSD genetic similarity measure for co-dominant markers is the complement of the
Modified Rogers’ distance (Rogers, 1972) or MRD defined as

sW
ij = 1− dW

ij with dW
ij =

1√
2l

√

√

√

√

l
∑

k=1

nk
∑

z=1

(pi
kz − pj

kz)
2 ,

where l is the number of genotyped loci, nk is the number of alleles for locus k and
pi

kz, pj
kz represent the allele frequency for the z-th allele of locus k for individual i and j

respectively. As demonstrated in Melchinger (1999), there is a linear relationship between
∆H , the panmictic-midparent heterosis and (dW

kl )
2 under the assumption of biallelism and

absence of epistasis. Therefore, this similarity measure should prove itself useful when used
as a kernel function for hybrid prediction.
The weighted sum of two PSD matrices produces a PSD matrix as long as the weights
are positive. Computing the weighted sum of different kernel functions therefore creates
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a new kernel function. Returning to the concept of a feature space, this operation has
the effect of augmenting the dimensions of the feature space related to the first kernel,
with the dimensions of the feature space related to the second kernel (Shawe-Taylor and
Cristianini, 2004). When we apply this to the Jaccard and MRD kernel functions we have a
way to combine SSR and AFLP data into a single regression function. We call the resulting
function the Jaccard-MRD kernel.

7.2.4 Cross-validation and grid search

To assess the generalisation error of each ε-SVR model, we rely on a leave-one-out cross-
validation procedure. It is, however, infeasible to redo the REML optimisation for each
reduced training set as removing records of a randomly chosen hybrid might further un-
balance or even disconnect the phenotypic data. In Chapter 5, it was demonstrated that
these connectivity issues can seriously bias the estimators and predictors obtained from
a linear mixed model analysis. It is therefore assumed that differences between the esti-
mators of the fixed nuisance parameters, calculated using only the data from the training
hybrids, and those estimated using all data, are negligible. The reported results therefore
do not account for the loss of prediction accuracy in the linear mixed model caused by
data reduction.
For each hybrid in the data set, a different ε-SVR model is trained using the corrected
phenotypical values (ŷc) of the remaining hybrids as a training set. As explained in Chap-
ter 3, the construction of an ε-regression model from a set of training examples requires
values for ε, C and γ when using the Gaussian kernel. Finetuning these variables can
greatly improve the generalisation capacity of the prediction system. To find the optimal
values for these parameters, a grid search was performed as described by Hsu et al. (2003).
During this grid search all combinations of ε, C and if necessary γ were tested for each
cross-validation routine, where ε and γ ranged from 2−15 to 24 and C ranged from 2−5 to
215. The software libSVM (Chang and Lin, 2006), which allows easy integration of non-
standard kernel functions, was used for all regressions. Calculations were performed on a
Linux cluster containing 8 nodes, each having 2 Dual-Core Intel R Xeon R CPU 3.00GHz
processors, 1Gb of RAM and running a 2.6.5 kernel.
When reporting prediction accuracies, several artificial measures could be used to compare
models and techniques. A commonly used measure of prediction accuracy is the root mean
squared error (RMSE) defined as the root of the summed squared differences between
the actual and the predicted values divided by the number of predictions. Although this
measure allows for easy comparison between different models and data sets, it is dependent
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on the unit of measurement of the response variable. Comparing accuracies of similar
techniques or models on traits measured in a different unit or scale is therefore not possible.
Interpreting a RMSE is also quite hard when the reader has no reference for comparing the
obtained results. Another commonly used measure is the squared Pearson correlation R2

between the actual and the predicted value. This coefficient of determination, expressed as
a number between 0 and 1, is however dependent on the variance of the predictor variable
and resulting predictions. The larger this variance, the larger the obtained correlation will
be. This means for example that the correlation between the actual and predicted value for
a regression on yield will be larger in natural populations compared to advanced breeding
pools with lower yield variance. This property makes it hard to compare published results
between prediction methods when different data sets are used. As both criteria seem to
cover each others’ weaknesses, we compare the different prediction systems by calculating
both the R2 and RMSE values.

7.3 Results

7.3.1 Linear mixed model fit

The average coefficient of coancestry calculated from pedigree data differs substantially
from the averages calculated from SSR or AFLP data as can be seen from Table 7.1.
Despite the apparent differences between the mean values for fPED, f JAC and fBNO, the
Spearman rank correlations between these estimators are moderately high. The AFLP-
based coefficients seem to represent an intermediate value between the high SSR- and
low pedigree-based coefficients. As can be seen from Table 7.2, the observed correlations
between the two marker-based coefficients of coancestry are higher than the correlations be-
tween a marker-based and a pedigree-based coefficient for both heterotic groups. However,
AFLP-based estimators are closer to the pedigree-based coefficients than the SSR-based
alternatives. Apparently all calculated correlations within the Iodent group are greater
than those of the ISSS group.
We use the restricted log-likelihood resulting from the REML optimisation process to
determine the best fitting covariance structure for Eq. (7.4). Table 7.3 gives an overview of
these restricted log-likelihoods for the linear mixed model of Eq. (7.3) where the matrices
As, Ao and D are either considered diagonal or constructed according to Eq. (7.5) using
pedigree, SSR or AFLP data for the calculation of the coefficients of coancestry. The
models with a non-diagonal covariance matrix for the SCA values always have a lower
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Table 7.1: Minimum, maximum and average coancestries based on pedigree (fPED), AFLP

(fJAC) and SSR (fBNO) for the two heterotic groups used in this study

fPED f JAC fBNO

Io
de

nt

avg 0.27 0.38 0.45

min 0 0.04 0.01

max 0.88 0.99 0.98

IS
SS

avg 0.17 0.23 0.31

min 0 0 0

max 0.78 0.94 0.95

Table 7.2: Spearman rank correlations between coefficients of coancestry based on pedigree

(fPED), AFLP (fJAC) and SSR (fBNO) data for the Iodent and ISSS heterotic groups

ρ Iodent ISSS

fPED ↔ f JAC 0.79 0.69

fPED ↔ fBNO 0.75 0.67

f JAC ↔ fBNO 0.90 0.77
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Table 7.3: Log likelihoods for the linear mixed model of Eq. (7.3) with fixed nuisance factors

but different formulations for G. The covariance matrices for GCA and SCA effects are either

diagonal, based on pedigree, SSR or AFLP data.

A D yield moisture % flowering

diagonal diagonal −588609 −201915 −158515

pedigree diagonal −588590 −201872 −158498

pedigree pedigree −588659 −202056 −158571

SSR diagonal −588585 −201879 −158504

SSR SSR −588681 −202142 −158600

AFLP diagonal −588583 −201855 −158487

AFLP AFLP −588639 −201961 −158537

likelihood than their diagonal counterparts. This means that the covariance between SCA
values should be modelled as 0 as it seems to fit better than the product of both coefficients
of coancestry as in Eq. (7.5).
The model with AFLP-based A matrices and an identity D matrix results in the highest
restricted log-likelihood for all traits under study. A model with SSR-based A matrices
and a diagonal D matrix gives the second highest restricted log-likelihood for yield, but
performs worse than the pedigree-based equivalent for moisture content and days until
flowering. These results indicate that the AFLP-based coefficient of coancestry approxi-
mates better the actual relatedness between hybrids compared to the pedigree-based and
even the SSR-based coefficient for this data set. All subsequent regressions and predictions
are therefore based on the results of the linear mixed models with AFLP-based A and
diagonal D matrices in Eq. (7.4).

7.3.2 ε-SVR

When testing new hybrid prediction algorithms, the main interest lies in the estimation of
the total genetic value of untested hybrids. We use the corrected phenotypical values in
vector ŷc from Eq. (7.6) as a training set for building a regression model. By means of the
standard leave-one-out cross-validation strategy, the predictive capabilities of the different
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kernels are compared to each other. Table 7.4 gives an overview of the obtained prediction
accuracy for the different combinations of trait, marker type and kernel functions. The last
column represents the leave-one-out cross-validation accuracy of the prediction by means
of Eq. (7.7) using marker based coefficients of coancestry to model Cvt and V t.
When the molecular information is restricted to microsatellite data, the ε-SVR-based mod-
els, albeit with a minimal difference, provide better prediction accuracies than BLP. Com-
paring the three kernel functions, we notice that the two non-linear kernel functions always
perform slightly better than the linear one. This observation demonstrates the advantage
of performing a linear regression in a kernel induced feature space. The similarity based
MRD kernel function performs just as good as the Gaussian kernel but does not require
the finetuning of an additional kernel parameter so using MRD to build an optimised pre-
diction model takes far less computation time. Prediction accuracies of ε-SVR and BLP
are also very similar when the molecular fingerprints of the inbred lines are restricted to
AFLP markers. For yield and days until flowering, ε-SVR is slightly superior, while BLP
is preferred for moisture content. Again the non-linear kernels perform better than their
linear counterpart and the parameter free Jaccard-based kernel function provides a valid
alternative to the Gaussian kernel.
When we need to decide between SSR- and AFLP-based features, we notice that for each
trait under study, the AFLP markers provide equal or slightly better prediction accuracies
than the SSR markers. Examining the restricted log-likelihood of the linear mixed model
revealed the same preference for the dominant AFLP marker data. In either case the
differences are minimal to say the least so these conclusions should not be generalised to
other data sets. For all three traits, combining the information of SSR and AFLP markers
provides the highest prediction accuracy over all applied methods but the gain in precision
is minimal as both sets of markers seem to be equally informative in this case.
The maximum obtained squared Pearson correlations using an ε-SVR based model are
0.34, 0.72 and 0.40 for yield, moisture content and days until flowering respectively while
these are 0.33, 0.71 and 0.38 for BLP. We can therefore conclude that ε-SVR predictions
are at least as accurate as the corresponding analyses using BLP. It should, however, be
clear that the reported accuracies for both prediction frameworks need much improvement
to allow for a reliable genomic selection, especially for the traits grain yield and days
until flowering. The flexibility of the ε-SVR framework provides several opportunities that
might enable such improvements, for example by means of feature selection methods. The
gradient descent based R2W2 technique described by Weston et al. (2000) and the greedy
Recursive Feature Elimination or RFE described by Guyon et al. (2002) are examples of
such methods that allow for the identification of markers that have little or no contribution
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Table 7.4: Standard leave-one-out prediction accuracies, expressed as squared Pearson correla-

tions and RMSEs (between brackets), on corrected phenotypical values for yield, moisture content

and days until flowering. The results are presented according to the type of features (SSR, AFLP

or both) and the type of kernel function used during the analysis. The last column represents the

accuracy of the predictions obtained with BLP (Bernardo, 1994, 1995, 1996a,c). The prediction

method with the highest correlation and lowest RMSE is typesetted in bold for each trait.

SSR

linear Gaussian MRD BLP

yield 0.31 (6.80) 0.33 (6.67) 0.33 (6.66) 0.33 (6.72)

moist. cont. 0.69 (1.19) 0.70 (1.16) 0.71 (1.14) 0.71 (1.16)

flowering 0.38 (1.18) 0.39 (1.16) 0.40 (1.16) 0.38 (1.18)

AFLP

linear Gaussian Jaccard BLP

yield 0.31 (6.79) 0.34 (6.66) 0.32 (6.76) 0.33 (6.72)

moist. cont. 0.69 (1.18) 0.71 (1.15) 0.70 (1.16) 0.71 (1.13)

flowering 0.38 (1.18) 0.40 (1.16) 0.38 (1.18) 0.38 (1.17)

AFLP+SSR

linear Gaussian Jaccard-MRD BLP

yield 0.31 (6.8) 0.34 (6.63) 0.33 (6.68) -

moist. cont. 0.69 (1.18) 0.71 (1.14) 0.72 (1.13) -

flowering 0.38 (1.18) 0.40 (1.15) 0.40 (1.16) -
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to the prediction model. Besides the advantage of identifying key markers which could be
used as a starting point for more detailed association studies, it is to be expected that
removing the useless features shall improve the obtained prediction accuracies; however,
further study is required to ascertain this point. Another possible road to improvement
is to design specific kernel functions for hybrid prediction. This allows to encode prior
knowledge of the learning task into the feature space in which the regression takes place.
The advantages of engineering a case-specific kernel function are exemplified by Zien et al.
(2000) who designed a kernel for the identification of translation initiation sites in DNA
code which resulted in a significantly improved recognition performance compared to the
standard kernel functions.

7.4 Discussion

BLP is currently one of the best known methods for the prediction of the phenotypical
performance of maize hybrids originating from crosses between unrelated lines, as is the
case for most of today’s commercial hybrids. We evaluated the use of ε-insensitive Support
Vector Machine Regression, as an alternative to BLP, on a real maize breeding data set
from the private breeding company RAGT R2n. The idea is to train the ε-SVR algorithm
to directly predict the phenotypical values of maize hybrids based on the molecular marker
scores of both parental inbred lines and compare the obtained prediction accuracies with
those of BLP. The field trial data resulting from a commercial breeding programme are
typically very unbalanced and therefore linear mixed modelling is used to adjust the phe-
notypical measures for location, trial and block effects. For each hybrid, the average of the
corrected plot measurements for yield, grain moisture contents and days until flowering are
used as predictands while the AFLP- and SSR-based molecular fingerprints of the parental
inbred lines serve as predictor variables.
We calculated the coefficients of coancestry based on pedigree, SSR and AFLP data for
all pairwise combinations of inbred lines within each of the two heterotic groups. The
Spearman rank correlations between the obtained similarity measures are moderately high
but the marker-based coefficients generally indicate a higher level of relatedness between the
individual lines. This discrepancy might be explained by the unequal parental contributions
that can occur after several generations of inbreeding during line development. A standard
pedigree analysis is not able to detect these shifts and assumes equal contributions from
both parents. Another possible cause of bias is the assumption of unrelated ancestor
individuals which is often impossible to verify. As the described deviations are higher for
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the ISSS lines, we can assume that these departures from theoretical assumptions are more
pronounced within this heterotic group.
The resulting likelihood of the REML procedure for estimating the variance components
of the linear mixed model allows to identify the best fitting covariance structure. For the
data set at hand, the likelihood of the model with a diagonal covariance matrix D for the
SCA effects is higher than the pedigree-, AFLP- and SSR-based alternatives. This result
has also been observed in other data sets (Piepho H.P., 2006 personal communication
at the session “BLUP in Plant Breeding”, XIII EUCARPIA Biometrics in Plant Breeding
Section Meeting, Zagreb, Croatia) and demonstrates that the base assumptions underlying
the derivation of Eq. (7.5) in Stuber and Cockerham (1966), in particular the absence of
linkage disequilibrium and different effects of the same alleles in the two populations, do
not hold in an advanced breeding pool. Moreover Eq. (7.5) is a simplification, leaving out
all interaction terms besides the dominance effect and therefore assuming that epistasis is
negligible. We also noticed that using products of coefficients of coancestry as entries in
D does not guarantee a positive definite covariance matrix for the SCA values which is
counterintuitive and can lead to convergence problems of the REML algorithm.
The AFLP-based coefficient of coancestry is preferred when modelling the covariance be-
tween the GCA effects of the parental inbred lines although the restricted log-likelihood
of a model using SSR-based coancestries is comparable. This observation seems to con-
tradict the results obtained in Chapter 6, where the pedigree-based coancestry estimator
resulted in the highest restricted log-likelihood for the traits grain moisture content and
days until flowering. Both studies, however, differ substantially with respect to the fitted
linear mixed model which might be sufficient to explain this observed discrepancy. Marker
similarities are corrected for the difference between identity in state and identity by descent
by means of the average marker similarity of each inbred line with all inbred lines of the
complementary heterotic group. As indicated by Bernardo (1996c), this approach assumes
homogeneous allele frequencies among these heterotic groups. As this was generally not the
case for the Iodent and ISSS group in this study, the presented coefficients of coancestry
are biased. It is to be expected that the model fit will improve when the marker-based
coefficients of coancestry are derived from estimators of parental contribution as described
in Bernardo et al. (2000). Unfortunately, the elaborate pedigree of the 197 selected inbred
lines does not allow the fingerprinting of all ancestral individuals to calculate these parental
contributions from SSR or AFLP similarities. This will generally be the case when working
with historically evolved heterotic groups.
By using the most likely linear mixed model, we can correct the phenotypical values for each
hybrid for nuisance factors and use these estimators as a training set for the construction of



7.4 DISCUSSION 101

an ε-SVR model. Correlations between real and predicted phenotypical values, obtained
by means of a leave-one-out cross-validation, show that the non-linear kernels perform
better than their linear counterpart for every combination of trait and marker type. This
demonstrates the advantage of performing a linear regression in a kernel induced feature
space. These non-linear kernels generally allow to match or slightly improve the accuracy
of the currently best performing prediction method for crosses between unrelated inbred
lines. The training of an ε-SVR model does, however, assume the knowledge of several
parameters like the width ε of the insensitivity tube, the error weighting variable C and
possibly one or several kernel function parameters. These parameters can be optimised
by a simple grid search in combination with cross-validation routines but this can be-
come computationally exhausting when the number of required kernel parameters is large.
Subject-specific kernel functions like the presented Jaccard measure, MRD and their linear
combinations can avoid the necessity of extra kernel parameters while allowing similar pre-
diction accuracies. Both the Jaccard measure and the complement of the modified Rogers’
distance are PSD similarity measures and therefore represent a dot product in some feature
space. In practice, the requirement of a kernel function to be PSD turns out to be a very
strict assumption. Several references can be found where a symmetric non-PSD similarity
function is used within the standard SVM framework as a heuristic approach (Bahlmann
et al., 2002; Decoste and Schölkopf, 2002; Haasdonk and Keysers, 2002). Problems like
nonconvexity of the optimisation problem can be handled by adding an additional term
to the objective function of Eq. (3.17) as described in Fan et al. (2005). This approach
guarantees that the optimisation process converges to a stationary point but only in the
case of a PSD kernel function this point is the unique optimal value. This information
leads one to suspect that several other similarity measures, PSD or not, and their linear
combinations could increase the prediction accuracy of ε-SVR models but further study is
obviously needed to ascertain this. Another advantage of the ε-SVR methodology is the
easy integration of different types of molecular and even descriptive morphological data
as features. As there is no straightforward way to incorporate all this information into
the covariance matrices of BLP, ε-SVR allows for a greater flexibility when the prediction
system has to be implemented into an existing breeding programme. Easy feature selection
heuristics like the greedy Recursive Feature Elimination (Guyon et al., 2002) should allow
for the identification of specific molecular markers and possibly parental morphological
properties that are crucial for the construction of the prediction model. When evaluating
new inbred lines one can make the trade-off between the cost of collecting a certain feature
and the increase in prediction accuracy that this feature represents.
To conclude we can state that, although further comparisons using other data sets are
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necessary, the presented ε-SVR models can generally compete with BLP. Parameter op-
timisation, feature selection algorithms and problem-specific kernel functions are several
promising aspects of this recent technique which need further investigation in the context
of hybrid prediction.



CHAPTER 8

Support Vector Machine regression

versus Best Linear Prediction

8.1 Introduction

The prediction of phenotypic performance from molecular marker data receives increasing
attention from plant breeders, as the cost of phenotyping is gradually overtaking the cost
of genotyping (Bernardo, 2008). In this field of research, plant species for which it is
relatively easy to create and cross almost fully homozygous inbred lines, are particularly
useful as they allow to study the effect of a single gamete in different genetic backgrounds.
In Chapter 7, data from a commercial maize breeding programme was used to compare
the phenotypic prediction accuracy of ε-insensitive Support Vector Machine Regression
(ε-SVR) to that of the method advocated by Bernardo (1994, 1995, 1996a,c) based on
Best Linear Prediction (BLP). The reported prediction accuracies, determined by means
of a leave-one-out cross-validation routine, indicate that both methods are equally good
at predicting phenotypes for three important agronomic traits. In this chapter, we further
examine several key aspects of hybrid prediction by means of ε-SVR and BLP which allows
to clarify the strengths and weaknesses of both methods.
Field trial data originating from commercial hybrid breeding programmes is typically very
unbalanced. Tester lines are parents of many hybrids, while other inbred lines may appear
only once in the company’s pedigree. Furthermore, there is usually quite a substantial

This chapter has been redrafted after Maenhout S., Haesaert G. and De Baets B. (2010). Prediction

of maize single-cross hybrid performance: support vector machine regression versus best linear prediction

Theoretical and Applied Genetics, 120:415-427.
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difference in the number of field trials in which a promising hybrid is tested compared to
the often single trial results of the lesser candidates. Both ε-SVR and BLP require a set
of hybrids for which a molecular fingerprint and a single response value for each trait are
available. Such a phenotypic response value or score can be obtained by means of a linear
mixed model analysis of the unbalanced phenotypic data, but different model assumptions
and prediction approaches can lead to very different results. We study the impact of
these assumptions by comparing three different data preparation methods. In the linear
mixed models described by Bernardo (1994, 1995, 1996a,c) and used in Chapter 7, the
non-genetic effects of growing seasons, locations and blocks are assumed to be fixed while
the genotypic and G×E effects are assumed to be random. Bernardo (1994, 1995, 1996a,c)
obtains a single phenotypic score for a particular hybrid by taking the average of all its
phenotypic measurements, after correcting them by means of the estimated fixed effects.
One could, however, just aggregate the BLUPs of the genotypic components directly to
obtain a single score for each hybrid. Besides these two data preparation methods, we also
study a third approach in which the genotypic effects are assumed to be fixed while the
non-genetic nuisance parameters are treated as random.
In Chapter 7, we used all hybrids that are represented in the available unbalanced pheno-
typic data and the entire set of genotyped molecular markers to compare the prediction
accuracy of ε-SVR and BLP. The sensitivity of both methods to a reduction in the number
of training examples or genotyped molecular markers is however left unexamined. To assess
the impact of the training sample size and marker information content on the prediction
accuracy, we apply both methods to selected subsets of the training sample and molecular
marker fingerprint. The results allow to identify minimum sample size requirements of
ε-SVR and BLP models that are trained using comparable, unbalanced data sets.
The accuracy of hybrid prediction techniques is generally measured by some form of cross-
validation strategy (Bernardo, 1994, 1995, 1996a,c; Charcosset et al., 1998; Schrag et al.,
2007, 2009). Schrag et al. (2007) argue that an assessment of prediction accuracy by means
of a leave-one-out cross-validation routine does not reflect practical breeding circumstances
where a new inbred line would be crossed with only a few tester lines from the opposite
heterotic group. They propose a modified cross-validation sampling scheme that requires a
mating design in which every inbred line from one heterotic group is crossed with all lines
belonging to the complementary heterotic group. To allow for such a realistic assessment
of prediction accuracy in an unbalanced setting, Bernardo (1996c) uses cross-validation
schemes that simulate a lack of prior information on one or both parental inbred lines of
a newly created hybrid. Although these schemes represent an improvement, they do not
solve the fundamental problem of cross-validation-based accuracy measures. As the train-
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ing examples are predicted marginal to the effects of growing seasons, test locations and
possibly fertiliser or irrigation treatments, the resulting cross-validation-based prediction
accuracy measures do not take into account the extra level of uncertainty that is caused by
G×E effects (Welham et al., 2004). This implies that the observed correlation between the
predicted marginal genotypic values and those estimated conditional on a specific level of
the environmental factors (i.e. in an additional field trial in a specific year and geographical
region) might differ substantially from the cross-validation-based prediction accuracy. To
quantify this expected discrepancy, we performed a validation field trial using 49 hybrids
which were created by crossing 7 Iodent lines with 7 lowa Stiff Stalk Synthetic (ISSS) lines.
The phenotypic performance of these hybrids was measured in a multi-environment trial
at three locations in the South of France. Prediction accuracy is determined by correlating
the resulting estimates for total genotypic value and SCA to the predictions of ε-SVR and
BLP models, constructed from the unbalanced training data.

To summarise, we recapitulate the three main objectives of the research presented in this
chapter: (1) to identify the best method for distilling a single phenotypic score for each
hybrid in an unbalanced data set, (2) to compare the prediction accuracy of ε-SVR and
BLP when the sample size and information content of the molecular marker fingerprint are
reduced and (3) to compare the prediction accuracy measures obtained through various
cross-validation schemes with those obtained by means of a validation field trial.

8.2 Material and methods

To achieve the three objectives, this study investigates the impact of changing the levels
of the factors influencing them which are summarised in Table 8.1 and discussed below.

8.2.1 Training data analysis

The data used in this study is a subset of the genotypic and phenotypic information
generated by the grain maize breeding programme of the private company RAGT R2n,
and is described in detail in Chapter 4. We use a slightly different data subset selection
procedure resulting in 40432 phenotypic measurements on 2354 hybrids originating from
unbalanced crosses between 92 Iodent and 105 ISSS lines. We study the traits grain
yield, grain moisture content and days until flowering, which were measured in 1280 multi-
environment trials representing 110 locations spread over Europe from 1989 to 2005. The
197 parental inbred lines are genotyped with 101 SSR markers, which are evenly distributed
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Table 8.1: Overview of the different traits, training data preparation methods, molecular marker-

based predictors, prediction methods, sampling schemes and methods for prediction accuracy

measurement that are combined in this chapter.

factor levels

trait

grain yield

grain moisture content

days until flowering

training data preparation

(ŷrp
T ) random phenotypes

(ŷrg
T ) random genotypes

(ŷfg
T ) fixed genotypes

(d̂rs
T ) random SCA

predictor
AFLP

SSR

prediction method
ε-SVR

BLP

sampling scheme

random sampling

test-cross sampling

new-cross sampling

random marker reduction

prediction accuracy measurement

cross-validation

validation field trial:
(ŷrg

V ) random genotypes

(d̂rs
V ) random SCA
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over the maize genome according to the proprietary linkage map of RAGT R2n. Due to
problems identifying some SSR alleles (null alleles), only 75 markers, which have a complete
profile over all inbred lines, are used. AFLP fingerprints are generated using 11 PstI-MseI
and 4 EcoRI-MseI primer combinations producing 569 polymorphic bands in total.
The construction of an ε-SVR or BLP prediction model for a specific quantitative trait
requires a single response value for each training example representing the genetic potential
of each genotype at each location and year. We consider three methods of constructing
such a response value based on linear mixed modelling of the trial data. We also predict
SCA values from a mixed model analysis.

Random phenotypes

In the first approach, we consider the environmental effects (e.g. year, location, block,
. . . ) as fixed effects, while we consider GCA, SCA and all G×E interactions as random
effects. A detailed description of this linear mixed model for the three traits under study
can be found in Chapter 6. The variance structures of GCA and SCA effects are modelled
according to Stuber and Cockerham (1966) where we use the AFLP fingerprints to obtain
estimators for the pairwise coefficient of coancestry between inbred lines i and j belonging
to the same heterotic group as (Bernardo, 1993)

fij =
f JAC

ij − 1
2
(f̄ JAC

i. + f̄ JAC
j. )

1− 1
2
(f̄ JAC

i. + f̄ JAC
j. )

, (8.1)

where f JAC
ij is the Jaccard similarity coefficient between the AFLP fingerprints of lines i

and j. f̄ JAC
i. is the average Jaccard similarity coefficient between inbred line i and all lines

belonging to the opposite heterotic group. As shown in Chapter 7, this estimator for the
coefficient of coancestry resulted in the highest restricted log-likelihood, when compared
to several other estimators that use pedigree, AFLP or SSR marker information. The
genotypic estimate is obtained by averaging over all measurements of a single hybrid in
the response vector y after correction for the estimated fixed environmental effects as

ŷ
rp
T = (Z ′Z)−1Z ′(y −Xβ̂) ,

where Z is a design matrix linking the phenotypic measurements in vector y to each hybrid
in vector ŷ

rp
T . Vector β̂ contains the estimated effects for the levels of each nuisance factor

and these are linked to the response vector y by means of the design matrix X. Bernardo
(1994, 1995, 1996a,c) calls the entries in vector ŷ

rp
T phenotypes, as these are not corrected

for G×E interaction effects or residual error. The superscript rp is shorthand for random
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phenotypes, while the subscript T indicates that this vector was obtained from the training
data.

Random genotypes

The second method is to sum the appropriate GCA and SCA BLUPs obtained from the
afore mentioned linear mixed model analysis as

ŷ
rg
T = Zsâs + Zoâo + d̂rs

T , (8.2)

where âs and âo are vectors containing BLUPs of the GCA values of lines belonging to
the ISSS and Iodent heterotic groups, respectively. The design matrices Zs and Zo link
each hybrid to the appropriate parental inbred lines. Vector d̂rs

T contains a BLUP of the
SCA value for each hybrid. As we treat the GCA and SCA effects as random model
factors, we use the superscript rg to indicate this random nature of the genotypic values
in vector ŷ

rg
T . This approach implicitly produces genotypic scores that are marginal to all

environmental factors in the model such as growing seasons and locations. These marginal
scores have larger standard errors compared to estimators that are conditional on one or
more environmental factors (Welham et al., 2004), but we prefer them here as they do not
require knowledge of the future environmental conditions in which the predicted hybrids
will be grown.

Fixed genotypes

The third method of forming a genotypic response is from a linear mixed model with
genotypes fixed and non-genetic effects fitted as random. This approach allows to obtain
a vector of estimated genotypic fixed effects ŷ

fg
T without making prior assumptions on the

covariance structure of the GCA and SCA components.

Random SCA

Besides training on genotypic or phenotypic scores, we also construct prediction models
for the SCA values in vector d̂rs

T of Eq. (8.2).

8.2.2 Validation data

Data description

7 ISSS and 7 Iodent lines were selected from the initial set of 197 inbred lines and pairwise
intermated to produce 49 cross-heterotic hybrids. For these hybrids and an additional
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6 check varieties, the traits grain yield, grain moisture content and days until flowering
were measured in a balanced field trial at three locations in the South of France during
the growing season of 2008. The initial selection of 14 parental inbred lines was based on
the ε-SVR and BLP predictions of all 9660 possible hybrids between the 105 ISSS and 92
Iodent lines. A greedy search heuristic was used to approach the optimal selection of 14
parental inbred lines such that the ε-SVR and BLP predictions of the 49 hybrids show
the largest variance in grain yield. However, several lines in this initial selection were
replaced by other lines so that all hybrids had a comparable maturity index. Only 11 of
the 49 hybrids were in fact new combinations, while the other 38 already had phenotypic
records in the training data. Regardless of potential seed availability, each of the 49 crosses
were (re)created under the exact same circumstances, as to avoid non-genetic seed quality
differences. At each location of the trial, the 55 hybrids are laid out as a two-replicate
resolvable row-column design with 22 rows and 5 columns.

Data analysis

A linear mixed model analysis is performed assuming location effects as fixed and all genetic
components and G×E interactions as random. The description of the statistical model
follows the notation of Smith et al. (2001) where the vector of phenotypic measurements
y is decomposed as

y = Xτ + Zgg + Zuu + e , (8.3)

and τ is a vector of fixed effects containing main location effects and location-specific
effects correcting for extraneous field variation. g = (g′

1, g
′
2, g

′
3)

′ is a vector containing the
random effects of the 55 hybrids in each of the 3 locations with an associated design matrix
Zg. u is also a vector of random effects modelling for location-specific blocking factors.
The vector of residuals e = (e′

1, e
′
2, e

′
3)

′ is partitioned in three subvectors corresponding to
the three locations. For the trait grain moisture contents, the values in vector y were logit
transformed.
The vector of genetic effects g is partitioned as

Zgg = Zcc + Zsas + Zoao + Zdd , (8.4)

where c = (c′
1, c

′
2, c

′
3)

′ represents a vector containing the genetic effects of the 6 check
varieties at each of the three locations, vectors as and ao contain the GCA effects of the
parental inbred lines belonging to the ISSS and Iodent heterotic groups respectively and
vector d contains the SCA effects of the 49 hybrids at each location. The design matrices
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Zc, Zs, Zo and Zd separate check and non-check entries and matrices Zs and Zo have
the additional function of linking the appropriate parental inbred lines to each non-check
hybrid in vector g. The four random vectors c, as, ao and d are assumed to be mutually
independent. Furthermore, for each of these vectors h ∈ {c, as, ao, d} we assume that the
variance has the separable form

Var(h) = Ge ⊗Gv , (8.5)

where ⊗ denotes the Kronecker product. Ge represents a 3 × 3 symmetric matrix con-
taining the covariance between environments while Gv represents the covariance between
the specified genetic components of the validation trial entries. We start by fitting a com-
pletely unstructured variance matrix for Ge while assuming an identity matrix for Gv.
In subsequent steps, the number of REML estimated variance components is reduced by
fitting more parsimonious variance models for Ge using restricted maximum likelihood ra-
tio tests in case of comparisons between nested models, or Akaike’s Information Criterion
(AIC) otherwise. We attempt to fit a first-order factor analytic variance model such that
Ge = λλ′+Ψ where λ is a vector of factor loadings and the matrix Ψ is a diagonal matrix
containing three location-specific variances (Smith et al., 2001). To obtain a more parsi-
monious model, the specific variances were sometimes made equal or zero (giving perfect
correlation), and/or the loadings made equal (giving a common covariance (Cullis et al.,
1998)). In a subsequent reduction, the variances on the diagonal are set equal which results
in a compound symmetry model. The simplest model for Ge assumed zero covariance and
equal variances.
Once the most parsimonious model for Ge is determined, we try different formulations for
Gv. We fit an identity matrix for the variance model of the six check varieties in vector
c as no molecular marker or pedigree information is available for these varieties. For the
vectors as and ao, containing the GCA effects of the inbred lines, we try to fit the different
coefficient of coancestry derived matrices A described in Chapter 6 or an identity matrix.
In a similar way, we compare the different coefficient of fraternity-based matrices D for the
variance matrix Gv pertaining to the vector d. Sometimes, the most parsimonious model
is obtained by not using the separable form of Eq. (8.5) but directly fitting a common GCA
or SCA effect for all three locations.
The variance of each vector of residuals ei that make up vector e in Eq. (8.3) is modelled as a
separable process in the direction of rows and columns so we can write Var(ei) = Σic⊗Σir

where ⊗ denotes the Kronecker product. The matrices Σic and Σir are either identity
matrices or contain first order autoregressive correlations to account for spatial variation
as described in A. Gilmour and Verbyla (1997), Smith et al. (2001) and Oakey et al. (2007).
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Table 8.2 gives an overview of the final model for the variance structure of vectors g and
e for each trait.

Table 8.2: Summary of the variance structures fitted on the measurements of the validation

data set for the traits grain yield, grain moisture content and days until flowering.

component yield moisture content flowering

Var(c) (λλ′)⊗ I6 (λλ′)⊗ I6 CS
Var(as) CS CS (ΛΛ

′ + Ψ)⊗ I7

Var(ao) I3 ⊗Ao Ao (λλ′)⊗ I7

Var(d) D (λλ′ + Ψ)⊗D D

Var(e1) I5⊗ AR1 I5 ⊗ I11 I5 ⊗ I11

Var(e2) I5⊗ AR1 AR1 ⊗I11 AR1 ⊗I11

Var(e3) I5⊗ AR1 I5⊗ AR1 AR1 ⊗I11

λ: loadings of a first order factor analytic covariance model
Il: identity matrix of size l

CS: compound symmetry, common genetic covariance over locations
Ψ: site specific variances of a factor analytic covariance model
AR1: first order autoregressive covariance
Ao: matrix containing coancestry coefficients of Iodent lines according to
Eq. (8.1). In case Ao is not part of a Kronecker product, a common Iodent
GCA effect for all three locations was fitted
D: matrix containing fraternity coefficients for the 49 hybrids according to
Stuber and Cockerham (1966). In case D is not part of a Kronecker product,
a common SCA effect for all three locations was fitted

The linear mixed model analysis of the validation trial data provides BLUPs for the GCA
and SCA components which are summed according to Eq. (8.2) to obtain an estimate of
the genotypic value for each of the 49 hybrids. These estimates are grouped in the vector
ŷ

rg
V where the subscript V indicates their validation trial origin. The vector d̂rs

V contains
the BLUPs of the 49 SCA values.
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8.2.3 Prediction methods

ε-Insensitive Support Vector Machines Regression

In Chapter 7, it was shown how ε-SVR can be used to predict the phenotypic performance
of new hybrids using unbalanced phenotypic training data and AFLP or SSR marker fin-
gerprints as predictors. Cross-validation results indicated that solving the linear regression
problem in an infinite-dimensional space by means of a Gaussian kernel function results
in a higher prediction accuracy compared to a linear solution in the original input space.
Using the Gaussian kernel function requires a value for the kernel parameter γ and the
optimisation function that is minimised during the construction of an ε-SVR prediction
model requires two additional parameters C and ε. In this study, optimal values for C,
ε and γ are found by an expensive grid-search over this three-dimensional space with a
v-fold cross-validation prediction accuracy as optimisation criterion. To reduce the com-
putational effort, the ε-SVR parameter searches in the present study were guided by the
Efficient Global Optimisation or EGO algorithm reported by Jones et al. (1998). The cri-
terion to be optimised was the squared Pearson correlation coefficient obtained by a v-fold
cross-validation where v = 20.

Best Linear Prediction

Bernardo (1994, 1995, 1996a,c) makes predictions for a set of single crosses as

ŷP = CPT V −1
T ŷT , (8.6)

where CPT is the genetic covariance matrix between the hybrids in the training set ŷT and
the hybrids to be predicted and VT = Var(ŷT ) is the variance matrix of the hybrids in
the training set. The genetic covariances in the matrices CPT and VT are obtained from a
simplification of the covariance model described in Stuber and Cockerham (1966)

Cov(hij, hi′j′) = θii′σ
2
s + θjj′σ

2
o + θii′θjj′σ

2
d ,

where hij and hi′j′ are two hybrids for which the parental inbred lines i and i′ belong to
the ISSS heterotic group and the lines j and j ′ belong to the Iodent group. θii′ and θjj′

are the coefficients of coancestry estimated from SSR (Bernardo, 1993) or AFLP marker
information, the latter based on Eq. (8.1). The additive variance parameters σ2

s and σ2
o

and the dominance variance σ2
d are obtained from the REML analysis of the training data.

We obtain ŷP from Eq. (8.6) by solving the system of linear equations

VT xT = ŷT (8.7)
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for xT through a Cholesky decomposition of VT . The vector xT then allows to calculate
ŷP as

ŷP = CPT xT .

8.2.4 Reduction of the training data

Previous reports on ε-SVR and BLP hybrid prediction have assumed the availability of
phenotypic measurements on a large number of hybrids. For both prediction methods, a
reduction in prediction accuracy is to be expected if the size of the training set is decreased.
A large sample size does, however, not necessarily imply a high prediction accuracy as the
relevance of the training examples with respect to the future cross predictions, is of equal
importance. Also the size and information content of the molecular fingerprints has an
impact on the reliability of the prediction model as a smaller marker resolution implies
a reduced chance of detecting marker-trait associations and less precise estimates of the
genetic covariance between relatives.

Training sample size

In an attempt to assess the impact of the size of the training sample on the prediction
accuracy of both ε-SVR and BLP, we employ three sampling schemes to obtain subsets
of the original RAGT data set. For each sampling scheme, the prediction accuracy is
determined in two ways: (1) by means of cross-validation on the training vectors ŷ

rg
T

and d̂rs
T for predictions on total genotypic value and SCA respectively (2) by correlating

against the validation vectors ŷ
rg
V and d̂rs

V . The 38 hybrids that are common to training
and validation data, are removed from the vectors ŷ

rg
T and d̂rs

T when the second prediction
accuracy measure is used.

Random sampling For the random sampling scheme, the hybrids in the full training set
are successively split at random to form smaller data sets from which ε-SVR and BLP
prediction models are constructed. Initially, the prediction accuracy of both methods using
all but one training examples is determined by means of a leave-one-out cross-validation
(1). Predictions on the 49 hybrids that were tested in the validation field trial are obtained
from ε-SVR and BLP models that were constructed from the 2316 non-validated hybrids
(2). In the next step, the number of training examples made available to ε-SVR and BLP
is cut in half and the cross-validation-based prediction accuracy is determined by making
predictions on the other half of the training examples (1). The set of 2316 non-validated
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hybrids is also randomly split in half and used to make ε-SVR and BLP-based predictions
on the 49 validation hybrids (2). In subsequent steps, the number of training examples
made available to ε-SVR and BLP is reduced further by randomly splitting the training
data in 2p pieces for p = 1, . . . , 6. The whole process is repeated 100 times resulting in
100

∑6
p=1 2p = 12600 distinct ε-SVR and BLP prediction models.

Test-cross sampling The test-cross sampling scheme simulates the prediction of a hybrid
formed by crossing a newly created inbred line with a well-known tester line. For each of
the 197 inbred lines in the original data set, a separate ε-SVR and BLP prediction model
is constructed using only information from hybrids that are not a child of that particular
inbred. The resulting prediction models are used to predict the performance of the left-out
hybrids and those hybrids in the validation data set that also have that particular inbred
line as a parent. This sampling scheme therefore results in two predictions for each hybrid
as both parental inbred lines function once as tester and once as newly developed line. In a
balanced mating design (i.e. all 9960 distinct crosses between the Iodent and the ISSS lines
are made), this sampling scheme would allow to assess the obtained prediction accuracy
for Type 1 hybrids as defined by Schrag et al. (2009, 2010).

New-cross sampling The third sampling scheme simulates the prediction of a hybrid formed
by crossing two newly developed inbred lines. Although this situation is rather uncommon
in hybrid breeding programmes, it allows to compare ε-SVR and BLP in a worst-case
scenario. For each hybrid in the dataset, a specific ε-SVR and BLP prediction model is
constructed by removing all hybrids from the training set that have a parental inbred line
in common with the selected hybrid. This sampling scheme relates to the Type 0 hybrids
of Schrag et al. (2009, 2010).

Molecular marker information content

The impact of the information content of the molecular fingerprints is examined by taking
random subsets of the available SSR or AFLP markers and subsequent construction of the
ε-SVR and BLP prediction models. Again, prediction accuracy is determined by means of
(1) cross-validation and (2) correlating against the estimates obtained from the validation
trial. The size of the set of predictor markers is reduced in steps of 10% of the original
fingerprint size and at each step, 100 iterations of the sampling routine are performed.
Reducing the set of molecular markers often results in a singular coancestry matrix which
prevents its inversion during the construction of a BLP prediction model. This situation
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occurs if the marker-based estimate of the variance matrix of the training hybrids is rank
deficient and therefore does not allow for a unique solution of the system of linear equations
in Eq. (8.7). Any estimated variance matrix should be at least positive semi-definite as
explained in Chapter 6 but in the present case, the marker-based estimate of the genetic
covariance matrix VT should be strictly positive definite as its Cholesky decomposition is
used to make predictions on new hybrids. If the estimated covariance matrix, obtained
from the reduced set of molecular markers, is singular, we obtain the minimum norm,
least squares solution to Eq. (8.7). Other solutions might result in higher correlations but
without relying on the validation data, there is no biological justification for preferring
these solutions over the least squares solution.

8.3 Results

8.3.1 Unbalanced data handling

Three quarters of the hybrids in the validation field trial have measurements in the un-
balanced training data set. These 38 hybrids therefore allow to identify the best way
of obtaining a single hybrid score from unbalanced phenotypic data. Table 8.3 gives an
overview of the observed correlations between the different types of hybrid scores and the
genotypic estimates obtained from the validation field trial measurements. The latter were
collected during one growing season at three locations in the South of France and as such,
represent only a small part of the G×E space spanned by the training data. The corre-
lations presented are therefore susceptible to environmental changes but should, however,
allow for a relative comparison between the different data handling methods.

8.3.2 Reduction of the training data

Training sample size

Random sampling Figure 8.1 shows the prediction accuracy obtained by ε-SVR and BLP
prediction models that were constructed by reducing the initial set of the training examples
in the vectors ŷ

rg
T and d̂rs

T . p = 0 indicates that a leave-one-out cross-validation is performed
and predictions for the validation trial hybrids are obtained from ε-SVR and BLP models
that are trained on the full vector ŷ

rg
T or d̂rs

T , minus the entries of the 38 common hybrids.
For each of the 100 iterations at p = 1, . . . , 6, the training hybrids are randomly assigned
to one of 2p subsets and for each of these subsets, an ε-SVR and BLP prediction model is
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Table 8.3: Squared Pearson correlation coefficients between the different types of training scores

(ŷrp
T , ŷ

rg
T , ŷ

fg
T ) and SCA BLUPs (d̂rs

T ) obtained from the unbalanced phenotypic data set and

the scores (ŷrg
V ) and SCA estimates (d̂rs

V ) obtained from measurements taken in the balanced

validation field trial for the 38 common hybrids. For each trait, the combination of scores with

the highest correlation is set in bold.

score vector validation data ŷ
rg
V / d̂rs

V

yield moist. cont. flowering

tr
ai

ni
ng

da
ta ŷ

rp
T 0.04 0.61 0.43

ŷ
rg
T 0.19 0.79 0.72

ŷ
fg
T 0.05 0.59 0.43

d̂rs
T 0.03 0.15 0.17

constructed. These models are subsequently used to make predictions on (1) all hybrids
that are not included in the training subset and (2) the 49 hybrids tested in the validation
field trial. Despite the promising cross-validation results for SCA values, the observed
correlations for the SCA predictions of the 49 validation hybrids, indicate that predicting
SCA values by training on this set of unbalanced phenotypic data, is well beyond the
capabilities of both ε-SVR and BLP.

Test-cross and new-cross sampling Table 8.4 gives an overview of the BLP and ε-SVR
prediction accuracies when the training set is reduced in a non-random fashion to simulate
predictions on hybrids for which one or both parental inbred lines are new and therefore
untested. Squared Pearson correlation coefficients between the entries in vector ŷ

rg
T and

their SSR or AFLP-based cross-validation predictions are presented for both sampling
schemes as well as the squared correlations between the entries of the validation set vectors
ŷ

rg
V and their predictions.

Molecular marker information content

The sensitivity of both ε-SVR and BLP to a reduction in the size of the molecular finger-
print is shown in Figure 8.2 by means of box and whisker plots. The set of SSR and AFLP
markers is reduced in steps of 10%. For each step, a random subset of markers is selected
and used to construct an ε-SVR and BLP prediction model by training on all entries of the
vector ŷ

rg
T minus the 38 hybrids that are tested in the validation set. Prediction accuracy
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Figure 8.1: ε-SVR and BLP prediction accuracies obtained by training on subsets of the vector of

genotypic values ŷ
rg
T and the vector of SCA BLUPs d̂rs

T . At p = 0, a leave-one-out cross-validation

is performed on the training data and predictions on the 49 hybrids are made by training on all

2316 training hybrids. At p = 1, . . . , 6, an ε-SVR and BLP prediction model are constructed from

the 2p subsets of the original vectors and AFLP or SSR predictor information. For each of these

models, predictions are made for all training hybrids that are not in the particular subset and all

49 hybrids of the validation data set. This subset assignment procedure is replicated 100 times.

Accuracy is expressed as the median of the squared Pearson correlation coefficient between the

predictions for all hybrids and their corresponding entries in the training vectors ŷ
rg
T , d̂rs

T (suffix

cross), and the validation vectors ŷ
rg
V and d̂rs

V (suffix valid). The error bars indicate the 0.25 and

0.75 quantiles of each sampling distribution.
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Table 8.4: Prediction accuracies, expressed as squared Pearson correlation coefficients, obtained

from two sampling schemes simulating predictions on hybrids where one (Test-cross sampling) or

both parents (New-cross sampling) are newly developed inbred lines. Cross-validation correlations

on the vector ŷ
rg
T (cross) as well as correlations for predictions of the validation vector ŷ

rg
V (valid)

are presented for the three traits grain yield, grain moisture content and days until flowering.

predictor trait predictand Test-cross sampling New-cross sampling
ε-SVR BLP ε-SVR BLP

A
F

L
P

m
ar

ke
rs yi
el

d cross (ŷrg
T ) 0.72 0.78 0.48 0.58

valid (ŷrg
V ) 0.09 0.10 0.09 0.11

m
oi

st
.

cross (ŷrg
T ) 0.80 0.85 0.63 0.71

valid (ŷrg
V ) 0.53 0.67 0.31 0.58

flo
w

er cross (ŷrg
T ) 0.80 0.84 0.62 0.69

valid (ŷrg
V ) 0.30 0.43 0.04 0.22

SS
R

m
ar

ke
rs yi

el
d cross (ŷrg

T ) 0.62 0.66 0.32 0.39

valid (ŷrg
V ) 0.10 0.05 0.07 0.03

m
oi

st
.

cross (ŷrg
T ) 0.77 0.72 0.57 0.51

valid (ŷrg
V ) 0.41 0.38 0.15 0.14

flo
w

er cross (ŷrg
T ) 0.67 0.70 0.41 0.45

valid (ŷrg
V ) 0.31 0.41 0.02 0.18
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is expressed as squared Pearson correlation coefficients between the predictions of the 49
validation hybrids and their corresponding entries in the vector ŷ

rg
V .

8.4 Discussion

8.4.1 Unbalanced data handling

Predicting the phenotypic performance of untested hybrids by means of an ε-SVR or BLP
model requires a training set of considerable size. Each training example should be repre-
sented by a single response value and a set of molecular marker-based predictors. A typical
commercial hybrid breeding programme tests hundreds of new inbred combinations in a
vast number of multi-location field trials on a yearly basis. The resulting data sets contain
phenotypic measurements on numerous hybrids and would therefore allow for the construc-
tion of an ε-SVR or BLP prediction model at a low cost. However, the unbalanced nature
of this kind of breeding data makes it hard to distill a single response value that allows
to rank all hybrids on the same scale. We examined three mixed model-based methods to
obtain such a score from unbalanced phenotypic data: (1) random phenotypes introduced
by Bernardo (1994, 1995, 1996a,c), (2) random genotypes and (3) fixed genotypes. Besides
these three types of genotypic scores, we also obtain an estimate of the SCA value for each
hybrid in the training data.
The random genotypes approach results in the highest correlations for all three traits
under study. The fixed genotypes approach seems to result in the lowest correlations and
Bernardo’s random phenotypes perform only slightly better. The inadequacy of the fixed
genotypes is not unexpected because the assumption of fixed genotypic effects is likely
to increase the standard error of the estimators of commercially uninteresting hybrids,
as these have few records in the data set and no strength can be borrowed from records
on related hybrids.The assumption of random nuisance effects on the other hand seems
justified for this kind of breeding data as the number of levels of these factors is usually
quite high.
Comparing the prediction accuracies of the three traits under study, we see that grain
moisture content is the most promising trait for the construction of a reliable prediction
model. The large contribution of the main genotypic effects (i.e. GCA and SCA) to the
total variance (74%) and the low impact of the G×E components (14.3%) in the linear
mixed model analysis with a random genotype assumption, explains these results. For
the number of days until flowering, this partition is 44.5% versus 20% which results in
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Figure 8.2: ε-SVR and BLP prediction accuracies obtained by constructing ε-SVR and BLP

prediction models from the 2316 entries in vector ŷ
rg
T using subsets of the AFLP or SSR marker

information as predictors for each of the three traits under study. Box and whisker plots show

the range of squared Pearson correlation coefficients between the 49 entries in vector ŷ
rg
V and

their predictions over 100 iterations of the marker sampling routine.
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the somewhat lowered correlations observed for this trait. The trait grain yield, although
of great interest to breeders, looks the least eligible candidate for the construction of a
prediction model. This low correspondence between training and validation data estimates
can be explained by the fact that the contribution of the G×E factors (38%) exceeds
the contribution of the main genotypic factors (30.7%) to the total variance. The training
examples are constructed marginal to the environmental factors such as growing season and
geographical region while the validation data was collected at exactly one specific level of
these factors. If a trait is subject to a large G×E variance, one can expect a genotypic effect,
estimated over a large range of environments, to deviate substantially from an estimate
obtained at one particular level of these environmental factors. A similar reasoning can
explain the observed lack of correlation for the SCA effects although other aspects like the
increased prediction error variance of the SCA BLUPs, the limited predictive value of a set
of random SSR or AFLP markers with respect to a complex phenomenon like heterosis,
and possibly reciprocal differences, also have their detrimental influence.
For the two promising traits moisture content and days until flowering the actual prediction
accuracies obtained by ε-SVR and BLP models, when trained on the vectors of random
genotypes, are quite close to the theoretical upper bounds presented in Table 8.3. This can
be seen from the SVR_valid and BLP_valid lines in Figure 8.1 at p = 0. These specific
points are obtained by correlating the ε-SVR and BLP predictions of the 49 validation
hybrids with their random genotypic estimates in vector ŷ

rg
V .

Our results indicate that the random genotypes approach is the best way to obtain a sin-
gle genotypic score for each hybrid in the training data. By contrast, Bernardo (1994,
1995, 1996a,c) makes predictions on new hybrids by fitting the vector of random pheno-
types ŷ

rp
T in Eq. (8.6). The entries in the resulting vector ŷP are sensu stricto not best

linear predictions as the procedure does not take into account the covariance structure
that originated from the measurement adjustments involving estimated fixed effects. This
observation seems of minor importance as cross-validation results indicate a superior pre-
diction accuracy compared to several other methods (Charcosset et al., 1998). However,
a more straightforward approach would be to simply fit a number of additional parame-
ters for the missing GCA and SCA components of the untested hybrids into the variance
structure of the linear mixed model. As there are no phenotypic measurements linked to
these effects, the additional columns in the random design matrix can all be set to zero.
The estimated values for these additional effects are true best linear unbiased predictions
or BLUPs and allow to reconstruct the predicted genotypic value of an untested hybrid by
means of Eq. (8.2). The downside of this approach is that for each new prediction, the full
set of mixed model equations needs to be solved. Moreover, an assessment of prediction
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accuracy by means of cross-validation routines is not only computationally exhausting, but
often just not sensible as leaving out the phenotypic measurements on one or more hybrids
might divide the training data in two or more disconnected subsets. In this scenario, each
of the disconnected subsets contains measurements on a different, non-overlapping set of
hybrids which are tested in a different set of environments. Contrasts involving random
genotypic effects of hybrids that belong to different, disconnected data subsets are usu-
ally estimable but do not conform to the usual interpretation as they rely on the implicit
assumption that the genetic levels among the different environmental subsets are equal
(Laloé, 1993). To avoid these pitfalls, a BLP prediction based on the random genotypic
scores of the training hybrids is the next best option.

8.4.2 Reduction of the training data

Training sample size

In the previous section we indicated that using random genotypes to train our ε-SVR and
BLP prediction models should result in superior prediction accuracies compared to the
alternatives examined. For this reason, we continue to work with the random genotypes to
evaluate the impact of the training sample size on the prediction accuracy of both ε-SVR
and BLP.

Random sampling In Figure 8.1 we see that the behaviour of ε-SVR is quite similar to
that of BLP when the size of the training set is reduced in a random fashion. For both
methods, it is very clear that the cross-validation-based prediction accuracies consistently
overestimate their validation trial counterparts. This is more explicit for the low heritability
trait grain yield than for the traits moisture content and days until flowering. The observed
disparity can be explained by the specific set of G×E effects that affect the validation data
while the estimates derived from the training data are marginal to all environmental effects.
If G×E effects explain a large portion of the observed variance for a trait, the observed
heritability will be reduced correspondingly, as is the case for grain yield.
If we focus on the prediction of total genotypic value, the accuracy of ε-SVR and BLP
shares a similar downward trend when the size training set is reduced, although ε-SVR
usually performs slightly worse than BLP. The fall in prediction accuracy starts somewhere
between p = 2 and p = 3, which is the equivalent of using 25% and 12.5% of the original
training data respectively. If the training set is further reduced, the sampling variance of
the validation trial-based prediction accuracies increases, as indicated by the widening of
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the interquantile ranges. This increase in sampling error is less pronounced for the cross-
validation-based prediction accuracies, giving a false indication of confidence for these
favourable estimates. For the three traits under study, there is little difference between the
behaviour of prediction models based on SSR markers and those using AFLP markers as
predictors when the set of training hybrids is reduced by random selection.
If we focus on the prediction of SCA, we see that neither ε-SVR or BLP succeed in raising
the median validation prediction accuracy, expressed as a squared Pearson correlation
coefficient, above 0.13. Most striking is that the prediction accuracy estimates obtained
through cross-validation give the impression that both ε-SVR and BLP are quite capable
of making SCA predictions with a reasonable accuracy, especially if the full training set
is used. The more pronounced impact of G×E effects on SCA measurements is again the
most likely culprit here.

Test-cross and new-cross sampling If a non-random selection of training hybrids is per-
formed, the superiority of the AFLP predictors becomes apparent, as can be seen from
Table 8.4. In all but 2 scenarios, the prediction models based on AFLP markers have a
greater prediction accuracy compared to those based on SSR markers. Table 8.4 again
demonstrates the upward bias of the cross-validation-based prediction accuracy estimates.
The ε-SVR prediction models are generally inferior to BLP when it comes to predicting
the phenotypic performance of hybrids for which at least one of the parental inbred lines
has no offspring in the training set. If both parents are unknown, neither ε-SVR nor BLP
succeeds in making reliable predictions as the highest validation trial prediction accuracy
is 0.58 for a BLP model trained on the trait grain moisture content using AFLP markers
as predictors. The combination of a high heritability for grain moisture content and the
more informative AFLP markers as predictors should allow this BLP model to be used for
screening purposes.

Molecular marker information content

Reducing the set of predictors, by randomly selecting a subset of markers, has a negative
effect on the prediction accuracy of both ε-SVR and BLP as can be deduced from Figure 8.2.
The effect of the number of genotyped markers on the prediction accuracy appears to be
subject to the law of diminishing marginal returns and little improvement is to be expected
by further saturating the molecular fingerprint with additional AFLP or SSR markers. In
this respect, Frisch et al. (2010) even observe a decline in prediction accuracy when the
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number of genes for which expression data is incorporated in their transcriptome-based
prediction models, is increased beyond a certain optimum.
The difference in behaviour between ε-SVR and BLP is most apparent for the traits grain
moisture content and days until flowering in combination with the less informative SSR
markers as predictors. As soon as 30% of the SSR markers are removed from the set of
predictors, certain samples generate a substantially lower prediction accuracy of the BLP
model while the accuracy of the equivalent ε-SVR model is nearly identical to that of the
full marker set. Reducing the set of SSR predictors beyond this level, further inflates the
sampling error of the BLP prediction accuracies, while at the same time the median of
the distribution starts its steep descent. ε-SVR handles a reduction of the SSR predictors
better than BLP as the sampling error starts to increase at lower values of the fingerprint
size, while the median of the prediction accuracy shows a gentle decline as the number
of predictors is reduced. The median ε-SVR prediction accuracy is for instance always
superior to that of BLP as soon as 40% of the markers is removed. This observed superiority
of ε-SVR over BLP is less pronounced if we use the AFLP markers as predictors. Both
methods retain a good and comparable prediction accuracy for the traits grain moisture
content and days until flowering, even when the set of AFLP predictors is reduced to
20% of its original size. Beyond this level, the prediction accuracy rapidly declines, while
the sample variance increases. Even if 90% of the AFLP markers are removed, which is
equivalent to a predictor set size of 57 dominant markers, several samples allow ε-SVR
and BLP to obtain good prediction accuracies. Moreover, several samples of AFLP and
SSR markers result in prediction accuracies that are greater than that of the equivalent
model using the full set of markers. These observations indicate that an ε-SVR or BLP
prediction model that uses only a specific subset of markers, might possibly improve the
presented prediction accuracies but further study is needed to ascertain this point.

8.4.3 Conclusions

To construct an ε-SVR or BLP model for the prediction of phenotypic response based
on a hybrid’s molecular fingerprint, training data that contains a vector of marker scores
and a single response value for every hybrid is needed. The best prediction accuracy is
achieved by constructing these hybrid response values by summing the appropriate GCA
and SCA BLUPs, obtained from a linear mixed model analysis with a random genotypic
effects assumption.
If prediction accuracy is determined by means of a validation trial, both ε-SVR and BLP
perform close to the theoretical limit for the traits grain moisture content and days until
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flowering while they both fall short for grain yield, a trait with a low heritability in advanced
breeding pools. The accuracy of SCA predictions is similarly insufficient for all three traits.
This lack of predictive power is not reflected in the prediction accuracy measures obtained
through cross-validation procedures, as these do not take into account the uncertainty
introduced by G×E effects. Furthermore, if only a limited set of training examples is
available but the genotyped markers are either numerous or very informative, BLP is more
accurate than ε-SVR. If on the other hand the set of molecular markers is either restricted
in size or information content, ε-SVR is the preferred prediction method.
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General conclusions and future prospects

The research presented in this dissertation was focused on the prediction of the agronomic
performance of maize hybrids. The goal was to develop a methodology that would al-
low hybrid breeders to construct a prediction model using the phenotypic data that has
resulted from earlier genetic evaluation trials. The proposed prediction models should
use the molecular fingerprints of the parental inbred lines as explanatory variables. In
Chapter 1, four research objectives were defined which are basically reformulations of the
problems that were encountered while developing the ε-SVR-based prediction models. In
this chapter, each of these research objectives is revisited and confronted with the conclu-
sions reached in the different chapters of this dissertation. Current shortcomings and ideas
for future improvements of the presented methods are discussed.

9.1 Data selection

The first research objective is related to the unbalanced nature of the genetic evaluation
data that is generated in commercial breeding programmes. The higher the level of un-
balancedness, the lower the actual information content of the available set of phenotypic
measurements which in turn reduces the accuracy of the resulting prediction model. It is a
fair assumption that the total genotyping budget for the construction of a hybrid prediction
model will always be restricted in some way. This assumption implies that the accuracy
of the final prediction model depends on finding the optimal trade-off between the number
of genotyped inbred lines and the density of their molecular fingerprint. However, finding
this optimal number of inbred lines is somewhat pointless if one cannot identify the most
informative set of inbred lines of that particular size. In a similar reasoning, the deduction
of the optimal number of molecular markers is inherently associated with the problem of
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finding the subset of markers which has a maximal genome coverage. The first research
objective therefore aims at finding a solution for these highly related problems which is
basically the topic of Chapter 5.
In this chapter, algorithms from the field of graph theory are described which allow to
solve the described optimisation problems. The problem of finding the maximally infor-
mative subset of unbalanced phenotypic data is handled by iteratively solving the ‘discrete
p-dispersion problem’ by means of a means of a maximum clique-based algorithm. The
described procedure makes use of the generalised coefficient of determination (CD) of pair-
wise contrasts which can be obtained as a by-product of a linear mixed model analysis of
the available phenotypic data. It is shown that this approach allows to select a fixed set of
hybrids for which the available phenotypic measurements are both highly replicated and
balanced. It should, however, be clear that the described selection procedure is still open
to improvement. For instance, the CD of pairwise contrasts is strongly associated with the
quality of the experimental design (Bueno and Gilmour, 2003), but this does not necessar-
ily imply that the data subset with the highest minimum CD of pairwise contrasts is also
identified as the maximally informative subset according to any of the other documented
measures of experimental design quality. The CD itself, as a measure of contrast quality,
has several flaws. If two genotypes are disconnected, the CD of their pairwise contrast does
not necessarily equal zero. This shortcoming can be compensated by post-correcting the
CD of disconnected genotypes but this obviously requires the identification of all discon-
nected subsets which can be computationally expensive. Furthermore, the CD is claimed
to make a trade-off between data quantity (i.e. replication) and data quality (i.e. balance)
(Laloé et al., 1996) but the actual properties (e.g. monotonicity) of this trade-off principle
are unclear and require further study.
However, the biggest problem of the described procedure is the bias towards good per-
forming genotypes. Newly developed hybrids which demonstrate a competitive level of
agronomic performance will be evaluated many times more than bad performing geno-
types. This means that contrasts involving good performing hybrids will generally have
high CD values which makes them more attractive for selection. As a result, the final pre-
diction model is likely to be positively biased as the majority of the training examples will
have a good track record. The only cure for this disease is to abandon the CD and develop
a new selection criterion that tries to maximise the variance of the genotypic BLUPs whilst
ensuring that both the data quality and data quantity are taken into account. It should be
clear that the construction of such a criterion that needs to find a balance between these
three competing objectives, is a non-trivial task. Furthermore, the described optimisation
procedure, based on the discrete p-dispersion graph theory problem, requires this criterion
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to quantify the quality of each individual pairwise contrast. This requirement will make
it very hard, if not impossible, to introduce some measure of total BLUP variance in the
selection criterion.
The CD-based data selection procedure selects hybrids, while the genotyping budget puts
constraints on the number of inbred lines. Obviously, selecting hybrids based on data
information content indirectly selects parental inbred lines but this procedure does not
necessarily maximise the number of training examples. This problem setting was translated
to the k-densest subgraph problem from graph theory for which several efficient heuristics
are available. The data quality and quantity constraints are enforced by a CD-based
preselection of hybrids. However, the results described in Chapter 5 indicate that the
avoidance of disconnected genotypes is the only important issue. It might therefore be
worthwile to identify the most productive parents (in terms of progeny size) first, and
then subsequently remove any disconnected hybrids in this selection. Although this might
seem like a promising strategy to explore, this approach does not provide an escape from
the non-optimal nature of sequentially performing two separate selection procedures. The
integration of both selection procedures in a single, multi-objective optimisation problem
is a topic which will require extensive study. Furthermore, it might not even be that
beneficial to maximise the number of progeny from a fixed set of parents as this might
handicap the generalising capabilities of the final prediction model due to the relatedness
of the training examples. Again, further study is needed to clarify these issues.

9.2 Marker-based coancestry estimation

The second research objective entails the development of a marker-based coancestry es-
timation procedure that is PSD, always produces estimates within the unit interval and
is specifically designed for use in hybrid breeding programmes. The Weighted Alikeness
in State or WAIS estimator, discussed in Chapter 6, meets all these requirements. The
behaviour of WAIS is compared to that of other CoC estimators under a typical hybrid
breeding selection scheme by means of simulations and the RAGT R2n maize breeding
data. It is clear that WAIS can compete with other popular CoC estimators although
it generally does not take first prize when it comes to producing a superior linear mixed
model fit or a minimal mean squared error. This is most likely an unfortunate result of
constraining the CoC estimator to be PSD and comparing it against a set of unconstrained
alternatives. The WAIS estimator is nevertheless a valuable asset for hybrid breeders
as it allows for the carefree modelling of the covariance between hybrids in linear mixed
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model settings encountered in breeding value estimation, association studies and genomic
selection. Besides this WAIS estimator, Chapter 6 also introduces an MCMC-based ma-
trix bending procedure, which allows to transform non-PSD CoC matrices to their nearest
PSD neighbour which can be used to model the covariance between specific genetic compo-
nents in a linear mixed model analysis. The examined CoC estimators and matrix bending
procedures are made available in the form of a free software package named CoCoa.
The use of the WAIS estimator is restricted to hybrid breeding programmes as the esti-
mation of allelic weights requires an unrelated reference set of genotypes. Expanding the
target audience therefore requires a modification of the WAIS formulation to allow for
mixed breeding pools. Two strategies towards handling these mixed breeding pools have
in fact already been explored. The first strategy assumes the availability of accurate and
detailed pedigree information which allows to identify unrelated genotypes which in turn
allow for the estimation of the required allelic weights. This approach is obviously only
valid if there are many unrelated genotypes in the breeding pool, which is generally not the
case. Furthermore, if pedigree information is available, one might be better off by simply
calculating the pedigree-based CoC estimator as it is shown in Chapter 6 to perform bet-
ter than the examined marker-based alternatives. The second strategy assumes that the
origin of each allele in a mixed breeding pool can be reconstructed by means of a Bayesian
algorithm like implemented in the popular software package “structure” (Pritchard et al.,
2000). Reformulation of the WAIS estimator to incorporate these estimates of allelic ori-
gin was rather straightforward but the actual performance of the resulting CoC estimator
was quite disappointing. By means of simulations, it was discovered that these gloomy
results were not caused by the reformulation of the WAIS estimator but were due to the
imprecision of the structure-based population origin estimates. This is not unexpected as
the Bayesian algorithm used for inference of the population structure relies heavily on the
assumption of Hardy-Weinberg equilibrium, which is generally subject to gross violations
in commercial breeding pools. These two reformulations of WAIS, corresponding to the
two described expansion strategies are not presented in this dissertation.
An interesting but still unexplored strategy to expand the applicability of the WAIS esti-
mator is inspired by the work presented by Stich et al. (2008). The idea is to incorporate
the WAIS formulation (i.e. Eq. (6.7)) directly in the variance structure of the linear mixed
model that is being fitted on the available phenotypic data. The required weights in matrix
W can, for example, be parametrised to originate from a zero centred normal distribution
for which the variance can be estimated by means of (restricted) maximum likelihood. This
approach would effectively allow to use the WAIS CoC estimator in mixed breeding pools
without the need for pedigree data.



9.3 ε-SVR FOR GENOMIC PREDICTION 131

9.3 ε-SVR for genomic prediction

In Chapter 7, the selected subset of phenotypic data is analysed by means of a linear mixed
model. The levels of the nuisance factors like METs, locations and blocks are modelled as
fixed effects and these estimates are subsequently used to correct each of the phenotypic
measurements to obtain what are called ‘random phenotypes’ in Chapter 8. These random
phenotypes serve as training examples for the construction of ε-SVR prediction models
for the traits yield, grain moisture content and days until flowering. By means of a leave-
one-out cross-validation strategy it was established that a kernel-induced non-linear ε-SVR
function generally provides a better prediction accuracy than its linear counterpart. The
genetic distance-based kernel functions can generally compete with the popular Gaussian
kernel. More astonishing however, is the competitive performance of the BLP approach,
an intrinsically linear function which does not require a computationally expensive grid-
search for finding appropriate values for model parameters. At this point, the only real
advantage that ε-SVR has to offer over BLP is its flexibility towards combining different
types of molecular markers as predictors.
The reported prediction accuracies in Chapter 7 leave much room for improvement. The
idea of performing a feature selection by means of the Recursive Feature Elimination strat-
egy (Guyon et al., 2002), specifically adapted and implemented for the regression frame-
work, turned out to provide little or no consolation. In a similar way, the development of
problem-specific kernel functions did not bring about large improvements in the reported
prediction accuracies. These observations fastened the suspicion on the preprocessing step,
more specifically the linear mixed model specification. The observant reader might have
noticed that the linear mixed models used in Chapter 6 are more elaborate than the model
used in Chapter 7 which, for example, does not fit any G×E effects. The reason for this
deliberate simplification of the preprocessing step is purely technical. The various linear
mixed model analyses described in Chapter 7 were performed on a computer with a limited
memory size (1 Gb to be precise). This memory limitation restricts the number of mixed
model equations that ASReml can handle which basically means that only simplified mod-
els can be fitted to a data set of such size. A year later, it was decided to buy a dedicated
64-bit workstation having a total memory size of 32 Gb which allowed to fit more appropri-
ate mixed models, incorporating additional fixed nuisance effects and various G×E terms.
Furthermore, non-essential check varieties that do not connect the different METs were
dropped which reduced the number of checks from 33991 to 3022. The research presented
in Chapter 7 was performed before that of Chapter 6, explaining the apparent discrepancy
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in the various mixed model specifications.
In Chapter 8, the data preprocessing step was examined more thoroughly. Several strategies
based on an appropriate linear mixed model analysis were explored, allowing to conclude
that the ‘random genotypes’ approach results in superior estimates of the agronomic per-
formance of the maize hybrids. The improvement in leave-one-out cross-validation-based
prediction accuracy of both ε-SVR and BLP is astonishing, approaching R2 values of 0.99

for all traits and marker types. In fact, these cross-validation-based prediction accuracies
are so good that even the most gullible reader should start questioning their reliability. To
examine the accuracy of these models without relying on cross-validation, a specific field
trial was designed measuring the agronomic performance of 49 inter-heterotic hybrids in
three locations in the South of France. The results were less favourable but still optimistic
for the traits moisture content and days until flowering. Unfortunately, the obtained pre-
diction accuracy for grain yield, the most important trait from a commercial perspective,
left little hope for the routine application of ε-SVR or BLP in a commercial breeding pro-
gramme. A similar conclusion was reached for all examined traits concerning the prediction
of the specific combining ability, an estimator for the heterosis effect.
The validation field trial-based prediction accuracies differ substantially between the exam-
ined traits. This can be explained by noticing that the linear mixed model analysis of the
RAGT R2n data predicts hybrid performance marginal to the effects of growing seasons,
locations, METs,. . . . The analysis of the validation field trial on the other hand, predicts
conditional on one specific year and geographical region. It is therefore well within expec-
tations that these two type of predictions differ, where the level of discrepancy depends
on the relative impact of the different G×E components on the total phenotypic variance.
Compared to grain yield, the traits grain moisture content and days until flowering have a
reasonably high heritability which can be attributed at least partially to the small contri-
bution of the G×E components to the variance. For grain yield, the high impact of G×E
variance components explains why the marginal and conditional predictors differ so much.
In this situation, both the ε-SVR and BLP prediction models are constructed from train-
ing examples that deviate considerably from their validation trial equivalents, evidently
resulting in a low estimates for prediction accuracy.
An interesting idea is therefore to construct ε-SVR or BLP prediction models that are
conditional on a specific geographical region. The methods presented by Welham et al.
(2004) allow to obtain training examples that are conditional on a particular level of one or
more factors. These conditional predictors of hybrid performance allow to construct ε-SVR
and BLP prediction models that are specific for that particular environment. Although
these environment-dependent prediction models are likely to demonstrate an improved
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prediction accuracy, this idea has not been pursued further. The biggest hurdle is the
definition of an environment. We can base this definition on the proximity of the field trials
in time and/or space or the similarity of their phenotypic measurements or environmental
conditions. The exploration of these possibilities is a promising research topic on its own,
worthy of the undivided attention that can be provided by a ‘fresh’ Ph.D. study.
In an attempt to identify both the strengths and weaknesses of ε-SVR and BLP, several
data reduction scenarios were also examined in Chapter 8. The conclusions are reasonably
straightforward, BLP performs best when the inbred lines are genotyped with large and
informative molecular fingerprints and is not very sensitive to a reduction in the number of
training examples. ε-SVR on the other hand, requires a large number of training examples
but performs well even if the molecular fingerprints are small or not very informative. This
conclusion confirms the findings on optimal data selection strategies in Chapter 5.
It is to be expected that fingerprinting the inbred lines by means of a large number of
SNP markers will not substantially improve the reported prediction accuracies of ε-SVR or
even BLP. This statement might be somewhat counterintuitive as it is generally assumed
that saturating the genetic map facilitates the detection of marker-trait associations. How-
ever, Remington et al. (2001) demonstrate that in maize, LD between SNPs declines very
rapidly with distance while at the same time they provide strong evidence of substantial
genomewide LD between a set of SSR markers. Stich et al. (2006) also find extensive LD
blocks using both SSR and AFLP markers in a collection of elite maize inbreds while a more
recent study of Yan et al. (2009) confirms the fast LD decay of SNP markers in a highly
diverse global maize collection. Remington et al. (2001) explain these contrasting results
by suggesting that most SNP alleles predate the domestication of maize while the highly
variable SSR alleles, being much more sensitive to mutation, have predominantly arisen
during the domestication process. Despite the rather speculative nature of this claim, it
should be clear that further research is required to assess the added value of high density
SNP arrays with respect to the prediction of hybrid maize performance.
The results of the random marker reduction procedures do, however, indicate that the
development of more intelligent feature reduction strategies might allow to improve the
reported prediction accuracies of both ε-SVR and BLP. This research opportunity leans
towards the currently very active topic of genomewide association studies and as such,
might fill the gap between two of today’s most auspicious directions of quantitative genetic
research.
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9.4 Conclusions

The methodology presented in this dissertation allows to predict the agronomic perfor-
mance of possibly non-existing maize hybrids from the phenotypic measurements that were
collected on other hybrids in past evaluation trials. The approach consists of two distinct
steps: first, a linear mixed model analysis is performed to obtain training examples from
the unbalanced phenotypic data and in the second step, these training examples are used
to construct a prediction model by means of ε-SVR. This two-step approach is obviously
suboptimal and in this respect, the direct integration of a RKHS regression function in
a linear mixed model framework is a very exciting development that has recently been
published by Gianola and van Kaam (2008). Although RKHS regression does not provide
the sparsity of an ε-SVR function, it should be clear that is a particularly promising direc-
tion of research, which might allow to improve the prediction accuracies reported in this
dissertation. The further development and exploration of this unified framework will very
likely turn out to be a long, but nevertheless interesting journey, filled with the numerous
detours, roundabouts and dead-ends that lie at the heart of true scientific endeavour.



Summary

Genomic selection is a breeding strategy in which superior genotypes are identified based
on a direct analysis of their molecular fingerprints, therefore making phenotypic records
redundant. This is a promising and very active topic of research as genotyping costs
are steadily decreasing and next-generation sequencing technology holds the promise of
making complete sequence information available at a reasonable cost. At the heart of
every genomic selection approach lies a genomic prediction model. This genomic prediction
model is provided with a molecular fingerprint of one or several candidate genotypes and
produces some form of output which allows the breeder to identify the most promising
genotypes. Such marker-based prediction models are particularly useful in hybrid breeding
programmes as the homozygosity of the parents allows to assess the agronomic performance
of their offspring before these are even conceived. A reliable genomic prediction model
is therefore expected to have a considerable impact on the cost-effectiveness of hybrid
breeding programmes. This is particularly the case for maize breeding programmes where
the development of in-vivo haploid inducer lines allows to obtain fully homozygous inbred
lines in a single generation.
If the trait under study is regulated by a small number of genes, admitting to a Mendelian
inheritance pattern, the genotyping of a limited number of associated markers is generally
sufficient to identify the desired genotypes without additional phenotyping efforts. Un-
fortunately, the traits with agronomic importance are generally of a more quantitative
nature, exhibiting a continuous distribution of phenotypic values over the set of candidate
genotypes. The prediction of these traits requires some form of regression modelling. The
classical approaches to linear and non-linear regression are however not suited for han-
dling the large number of predictors that are provided by dense molecular fingerprints and
stepwise model selection techniques suffer from inflated family-wise type I errors.
The basic objective of this dissertation is to explore the capabilities of kernel-based tech-
niques, more specifically ε-insensitive support vector machine regression (ε-SVR), for ge-
nomic prediction in hybrid maize. The presented research uses the phenotypic and molecu-
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lar information that was routinely generated between 1984 and 2005 as part of the the grain
maize breeding programme of the private company RAGT R2n. Using available breeding
data has the obvious advantage of allowing for a low-budget research, but also ensures
that the resulting prediction models can effectively be implemented on top of existing
commercial or non-commercial (hybrid) breeding programmes.
The available breeding data is unfortunately very unbalanced. Some parental lines are
reused many times in different inbred line combinations while others only appear once in
the company’s pedigree. Furthermore, some hybrids are tested many times under various
environmental conditions while others only have a single phenotypic record. For these
reasons, the available phenotypic data is preprocessed by means of a linear mixed model
analysis which allows to obtain a single phenotypic score for every hybrid. These scores
can be used to construct an ε-SVR-based prediction model. Besides being unbalanced, the
RAGT R2n data set is also very large, containing records on thousands of inbred lines and
hybrids. As the genotyping budget is limited, only a restricted set of inbred lines can be
included in the study. Given a fixed genotyping budget, one still needs to find the optimal
trade-off between the number of genotyped inbred lines and the density of their molecular
fingerprint, where optimal refers to the prediction accuracy of the resulting ε-SVR-based
prediction model.
In this dissertation it is shown, by means of a simulation study, how the optimal number
of inbred lines and molecular markers can be determined when confronted with a fixed
genotyping budget, a genetic map and a set of unbalanced phenotypic measurements on
hybrid genotypes. It is demonstrated how efficient algorithms for solving the ‘discrete p-
dispersion problem’ from the field of graph theory, allow to select the set of hybrids with
predefined cardinality that has the most informative phenotypic measurements, where
informative refers to both the level of balance and level of replication. It is also shown how
to select a fixed-size subset of molecular markers with maximal genome coverage, a problem
that can be translated to a one-dimensional variant of the discrete p-dispersion problem.
Efficient algorithms that solve the ‘densest k-subgraph problem’ from graph theory, allow
to maximise the number of training examples by selecting parental inbred lines that have
produced the maximum number of offspring amongst themselves. The combination of these
graph-based algorithms, solving different types of selection problems, allows to identify the
most promising data subset for the construction of an ε-SVR-based genomic prediction
model.
A linear mixed model analysis allows to obtain a single phenotypic score for every hybrid in
an unbalanced (sub)set of phenotypic measurements. In these models, nuisance factors like
trial, location and blocks are generally modelled as fixed effects while genetic components
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like GCA and SCA values are fitted as random variables. The covariance of these random
variables is often assumed to be a function of the coefficients of coancestry (CoC) between
pairs of inbred lines. The CoC between two inbred lines can be estimated from detailed
and accurate information concerning their pedigree backgrounds. However, if the selection
history of these inbred lines is no longer available or has become too complex for a classical
pedigree analysis, CoC estimates can also be obtained from their molecular fingerprints.
The field of population genetics has several CoC estimation procedures at its disposal,
but if the genotyped individuals are highly selected inbred lines, their application is not
warranted as the theoretical assumptions on which these estimators were built, usually
linkage equilibrium between marker loci or even Hardy-Weinberg equilibrium, are not met.
An alternative approach requires the availability of a genotyped reference set of inbred
lines, which allows to correct the observed marker similarities for their inherent upward
bias when used as a coancestry measure. However, this approach does not guarantee
that the resulting coancestry matrix is at least positive semi-definite (PSD), a necessary
condition for its use as a covariance matrix.
In this dissertation, a new CoC estimator named the weighted alikeness in state or WAIS
estimator is presented. This marker-based coancestry estimator is compared to several
other commonly applied relatedness estimators under realistic hybrid breeding conditions
in a number of simulations. We also fit a linear mixed model to the RAGT R2n data
and compare the likelihood of the different variance structures. WAIS is shown to be
PSD, which makes it suitable for modelling the covariance between genetic components
in linear mixed models involved in breeding value estimation or association studies. Re-
sults indicate that it generally produces a low root mean squared error under different
breeding circumstances and provides a fit to the data that is comparable to that of several
other marker-based alternatives. Recommendations for each of the examined coancestry
measures are provided.
Fitting the WAIS estimator in the variance structure of a linear mixed model does not
always produce the best model fit. Sometimes, another CoC estimator might fit better
to the available data, despite it not being a PSD measure. In this case, a matrix bend-
ing routine can be used to bend the matrix towards its nearest PSD equivalent. In this
dissertation, a new MCMC-based bending procedure is presented and compared with a
more classic bending procedure based on a singular value decomposition. WAIS and four
other CoC estimation procedures, the two examined matrix bending routines and several
other matrix manipulation tools were implemented in the software package CoCoa, which
is made freely available under the conditions of the GNU General Public License.
Initially, a very basic linear mixed model is fitted to the selected subset of phenotypic
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measurements and estimates for the effects of each of the fitted nuisance effects are ob-
tained. These estimates allow to correct each of the phenotypic measurements and to
obtain a single score, denoted as a ‘random phenotype’ for every hybrid. These random
phenotypes are subsequently used to construct genomic prediction models based on ε-SVR
and Best Linear Prediction (BLP). The use of kernel functions allows ε-SVR to fit a lin-
ear model in a high-dimensional feature space, which becomes a non-linear model in the
original input space. The performance of all-rounder kernel functions like the Gaussian
kernel are examined and it is shown how PSD CoC measures can also be used as kernel
functions. Initial results using the RAGT R2n data, indicate that ε-SVR and BLP match
each other’s prediction accuracies for several combinations of marker types and traits. The
ε-SVR framework, however, allows for a greater flexibility in combining different kinds of
predictor variables. At this stage, the reported cross-validation-based accuracy measures
for the prediction of grain yield are insufficient to allow for an efficient genomic selection.
In an attempt to improve the prediction accuracy, the preprocessing step by means of a lin-
ear mixed model analysis is further examined. Additional fixed nuisance factors and G×E
terms are introduced in the model formulation, resulting in more appropriate models for the
mean and the variance. It is shown that a simple summation of BLUPs provides much bet-
ter training examples for the construction of ε-SVR or BLP prediction models, compared
to the random phenotypes approach. These modifications result in cross-validation-based
prediction accuracy measures that are extremely good, even when predicting SCA values.
Therefore, the results of a specifically designed validation field trial, which consist of test-
ing 49 hybrids in three locations in the South of France, are to give a definitive judgement
on the predictive capabilities of both ε-SVR and BLP.
These results indicate a considerable discrepancy between prediction accuracies obtained
by cross-validation procedures and those obtained by correlating the predictions with the
results of the validation field trial. The reason for this is fairly obvious, the training
examples are predicted marginal to the effects of growing seasons and locations, while the
validation hybrids are predicted conditional on specific levels of these factors. The amount
of discrepancy depends on the trait under study. For grain yield, the reported correlations
between predicted and measured phenotypic values leave little hope for a reliable genomic
selection. This trait has a low heritability in advanced breeding pools, which is mainly a
result of the high contribution of G×E effects to the total phenotypic variance which in
turn is responsible for the poor correlations between marginal and conditional predictions.
The other two examined traits, namely grain moisture content and days until flowering,
have a higher heritability and are therefore predicted more accurately by ε-SVR and BLP.
The limits of the predictive capabilities of these two methods are further examined by
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reducing the number of training hybrids and the size of the molecular fingerprints. The
prediction accuracy of BLP turns out to be less sensitive to a reduction of the number of
training examples compared to that of ε-SVR. The latter is, however, better at predicting
hybrid performance when the size of the molecular fingerprints is reduced, especially if the
initial set of markers has a low information content.





Samenvatting

Genomische selectie is een veredelingsstrategie waarbĳ de superieure genotypes geïdentifi-
ceerd worden door een rechtstreekse analyse van hun moleculaire vingerafdrukken, hetgeen
fenotypische waarnemingen overbodig zou moeten maken. Dit is een zeer actief en veelbe-
lovend onderzoeksdomein, onder meer als gevolg van de dalende kostprĳs van moleculaire
merkers en de recente ontwikkelingen op het gebied van ‘next-generation sequencing’. Deze
laatste zouden het in de nabĳe toekomst mogelĳk moeten maken om de volledige DNA
sequentie te bepalen van de kandidaat-genotypes tegen een economisch realistische prĳs.
De kern van elke genomische selectie is de ontwikkeling van een genomisch predictiemodel.
Een dergelĳk predictiemodel moet, aan de hand van een moleculaire vingerafdruk, een quo-
tatie opleveren waardoor de veredelaar de meest beloftevolle genotypes kan identificeren.
Deze, op moleculaire merkers gebaseerde predictiemodellen, zĳn vooral nuttig in hybride
veredelingsprogramma’s aangezien de homozygotie van de ouders toelaat om de agronomi-
sche prestaties van hun nakomelingen in te schatten alvorens deze verwekt worden. Een
betrouwbaar genomisch predictiemodel zal ongetwĳfeld een grote impact hebben op het
rendement van hybride veredelingsprogramma’s. Dit is zeker het geval bĳ maïs, waar de
ontwikkeling van specifieke lĳnen die in-vivo haploïdie induceren, het toelaat om in één
enkele generatie volledig homozygote inteeltlĳnen te bekomen.
Als het te voorspellen kenmerk gereguleerd wordt door één of enkele genen die Mendeliaans
overerven, dan is het meestal mogelĳk om de gewenste genotypes te identificeren aan de
hand van een beperkt aantal moleculaire merkers die geassocieerd zĳn met dit kenmerk.
Helaas zĳn de agronomisch belangrĳke kenmerken eerder van kwantitatieve aard, waardoor
er een continue verdeling van de fenotypische waarnemingen over de kandidaat-genotypes
wordt waargenomen. De voorspelling van dit soort kenmerken vereist een vorm van regres-
sie. De klassieke methodes voor lineaire en niet-lineaire regressie zĳn echter niet geschikt
voor de verwerking van het grote aantal predictoren die een uitgebreide moleculaire vin-
gerafdruk beschikbaar maakt. Stapsgewĳze modelleertechnieken hebben dan weer te lĳden
onder een verlaagde specificiteit die wordt veroorzaakt door het grote aantal statistische
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toetsen dat noodzakelĳk is.
Het belangrĳkste doel van deze doctoraatsthesis is dan ook het verkennen van kernel-
gebaseerde methodes, meer specifiek ε-insensitive support vector machine regression (ε-
SVR), voor het ondersteunen van genomische selectie bĳ maïshybriden. Het voorgestelde
onderzoek maakt gebruik van gegevens die gegenereerd werden tussen 1984 en 2005 als
onderdeel van het korrelmaïsveredelingsprogramma van de private onderneming RAGT
R2n. Het gebruik van deze kant-en-klare fenotypische gegevens heeft het voordeel dat dit
onderzoek met een zeer bescheiden budget kan worden uitgevoerd en verzekert bovendien
dat de resulterende predictiemodellen kunnen geïmplementeerd worden in commerciële en
niet-commerciële (hybride) veredelingsprogramma’s.
De beschikbare veredelingsgegevens zĳn echter weinig gebalanceerd. Bepaalde ouderlĳnen
worden herhaaldelĳk gebruikt in verschillende kruisingen, terwĳl andere slechts éénmalig
voorkomen in de stamboom van het veredelingbedrĳf. Bovendien worden sommige hybri-
den veelvuldig getest onder variërende omgevingsomstandigheden terwĳl andere hybriden
slechts één enkele fenotypische meting hebben. Om deze redenen wordt de beschikbare
fenotypische informatie eerst geanalyseerd aan de hand van een gemengd lineair model dat
toelaat om een enkele fenotypische score te berekenen voor elke hybride. Vervolgens kun-
nen deze scores gebruikt worden bĳ het opstellen van een ε-SVR-gebaseerd predictiemodel.
De beschikbare gegevens van RAGT R2n zĳn naast ongebalanceerd ook zeer omvangrĳk
aangezien het gaat over de metingen van duizenden inteeltlĳnen en hybriden. Gegeven het
beperkte budget voor genotypering, wordt er dus een selectie gemaakt van de inteeltlĳnen
die opgenomen worden in deze studie. Bovendien moet men bĳ een vast genotyperings-
budget de optimale afweging kunnen maken tussen het aantal genotypes dat gescoord zal
worden en de dichtheid van hun moleculaire vingerafdruk, waarbĳ het de bedoeling is om
de accuraatheid van het resulterende ε-SVR-gebaseerde predictiemodel te maximaliseren.
In deze doctoraatsthesis wordt aan de hand van een simulatiestudie aangetoond hoe het
optimaal aantal inteeltlĳnen en moleculaire merkers kan bepaald worden, wanneer men
geconfronteerd wordt met een vast genotyperingsbudget, een genetische kaart en een set
ongebalanceerde fenotypische metingen van hybride genotypes. Deze studie toont aan hoe
efficiënte algoritmes voor het oplossen van het ‘discrete p-dispersie probleem’ uit het ge-
bied van de grafentheorie, kunnen aangewend worden om de meest informatieve subset
van hybriden met vooraf gedefinieerde kardinaliteit te identificeren. Het informatief zĳn
slaat hier zowel op de gebalanceerdheid van de metingen alsook het aantal metingen zelf.
Er wordt ook aangetoond hoe men op een genetische kaart een vast aantal moleculaire
merkers kan selecteren zodat deze het genoom maximaal bedekken. Dit selectieprobleeem
kan namelĳk vertaald worden naar een eendimensionale versie van het discrete p-dispersie
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probleem. Het aantal trainingsvoorbeelden kan men maximaliseren door het identificeren
van de set van inteeltlĳnen die onderling het meeste nakomelingen hebben geproduceerd
en dit door gebruik te maken van efficiënte algoritmes die specifiek ontwikkeld werden
voor het ‘dichtste k-subgraaf probleem’. De combinatie van deze algoritmes uit de gra-
fentheorie, die verschillende types van selectieproblemen oplossen, maakt het mogelĳk om
de meest beloftevolle data subset te identificeren voor het opstellen van een genomisch
predictiemodel.
Een analyse aan de hand van een gemengd lineair model laat toe om één enkele fenotypische
score te bekomen voor elke hybride in een ongebalanceerde dataset met fenotypische waar-
nemingen. In deze modellen worden omgevingsfactoren zoals proef, locatie en replicatie
meestal als vaste effecten gemodelleerd, terwĳl de genetische componenten als willekeurige
variabelen worden ingepast. De covariantie van deze willekeurige variabelen wordt meestal
verondersteld een functie van de verwantschapscoëfficiënt (CoC) tussen paren van inteelt-
lĳnen te zĳn. Men kan deze CoC schatten aan de hand van gedetailleerde en accurate
informatie over de stamboom van de betrokken inteeltlĳnen. Indien deze stamboominfor-
matie niet meer beschikbaar is of dermate complex wordt dat een klassieke stamboom-
analyse niet meer tot de mogelĳkheden behoort, dan kunnen CoC-schatters ook verkregen
worden door gebruik te maken van de moleculaire vingerafdrukken van de inteeltlĳnen. In
de populatiegenetica heeft men verschillende merkergebaseerde procedures om de CoC te
schatten, maar deze lĳken weinig geschikt als de gegenotypeerde individuen sterk geselec-
teerd en ingeteeld zĳn. In dergelĳk geval zĳn de theoretische veronderstellingen waarop
deze procedures steunen, meestal linkage equilibrium of zelfs Hardy-Weinberg evenwicht,
namelĳk helemaal niet voldaan. Een alternatieve aanpak veronderstelt de beschikbaarheid
van een referentieset van onverwante, gegenotypeerde inteeltlĳnen. Een dergelĳke set laat
toe om de gemiddelde merkersimilariteit tussen twee inteeltlĳnen te corrigeren, aangezien
dit anders een vertekende schatter voor verwantschap vormt. Deze aanpak garandeert ech-
ter niet dat de resulterende verwantschapsmatrix op zĳn minst positief semi-definiet (PSD)
zal zĳn, een noodzakelĳke voorwaarde als deze gebruikt wordt als een variantiematrix in
een gemend lineair model.
In deze thesis wordt dan ook een nieuwe CoC-schatter voorgesteld, namelĳk de ‘Weigh-
ted Alikeness In State’ of WAIS-schatter. Deze merkergebaseerde verwantschapsschatter
wordt vergeleken met verschillende andere schatters door gebruik te maken van simulaties
die de omstandigheden nabootsen die zich voordoen in een hybride veredelingsprogramma.
De geselecteerde gegevens van RAGT R2n worden onderworpen aan een analyse met een
gemengd lineair model waarbĳ de verschillende verwantschapsschatters in het model van
de variantie worden ingepast. Dit laat toe de verschillende schatters te rangschikken op
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basis van de probabiliteit van het resulterende lineaire model. Er wordt aangetoond dat
WAIS altĳd een PSD verwantschapsmatrix oplevert, hetgeen toelaat om deze schatter te
gebruiken om de covariantie tussen genetische componenten te modelleren in gemengde
lineaire modellen voor het schatten van kweekwaardes of associatiestudies. De resultaten
van de simulatiestudie geven aan dat WAIS-schatters in het algemeen een lage standaard-
fout hebben en dit onder verschillende omstandigheden. Bovendien is de probabiliteit van
de op WAIS-gebaseerde modellen vergelĳkbaar met deze van modellen die gebruik maken
van alternatieve CoC-schatters. Er worden ook aanbevelingen gegeven over het gebruik
van de verschillende CoC-schatters.
Het inpassen van WAIS in de variantiestructuur van een gemengd lineair model levert niet
noodzakelĳk het best passende model op. Een andere CoC-schatter past soms beter, on-
danks het feit dat deze misschien niet PSD is. In dit geval kan een matrixombuigingsroutine
gehanteerd worden die toelaat om de matrix om te buigen naar de dichtstbĳzĳnde PSD ma-
trix. In deze thesis wordt een nieuwe MCMC-gebaseerde ombuigingsmethode voorgesteld
en vergeleken met een meer klassieke aanpak die steunt op de singuliere-waardenontbinding
van een matrix. Vĳf CoC-schatters, waaronder WAIS, de twee bestudeerde matrixombui-
gingsprocedures en verscheidene andere methodes voor matrixmanipulatie werden geïm-
plementeerd in het softwarepakket CoCoa, dat gratis ter beschikking wordt gesteld onder
de gebruiksvoorwaarden van de GNU Algemene Publieke Licentie.
Initieel worden de geselecteerde fenotypische gegevens geanalyseerd aan de hand van een
eenvoudig gemengd lineair model. Dit laat toe om schatters te bekomen voor de omgevings-
effecten die gebruikt worden om elke fenotypische meting te corrigeren, zodat een enkelvou-
dige score voor elke hybride wordt bekomen. Deze scores worden ‘willekeurige fenotypes’
genoemd en worden vervolgens gebruikt voor het opstellen van een genomisch predictiemo-
del gebaseerd op ε-SVR en Best Linear Prediction (BLP). Het gebruik van kernelfuncties
stelt ε-SVR in staat om een linear model te bepalen in een hoog-dimensionale feature ruim-
te hetgeen een niet-lineair model vormt in de oorspronkelĳke ruimte. De prestaties van de
veelzĳdige Gaussiaanse kernelfunctie worden onderzocht en er wordt aangetoond dat PSD
CoC schatters ook gebruikt kunnen worden als kernelfuncties. De initiële resultaten, die
gebruik maken van de RAGT R2n data, geven aan dat ε-SVR en BLP een vergelĳkba-
re accuraatheid van predictie hebben voor verschillende combinaties van merkertypes en
agronomische kenmerken. De ε-SVR aanpak laat wel toe om meerdere types predictoren
te combineren in hetzelfde model, hetgeen een grotere flexibiliteit oplevert. Desalniettemin
is, de via cross-validatie bepaalde accuraatheid van korrelopbrengstpredictie, ontoereikend
voor een efficiënte genomische selectie.
In een poging om de accuraatheid te verbeteren, wordt de analyse aan de hand van een
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gemengd lineair model herbekeken. Het gebruikte model wordt uitgebreid met additionele
vaste omgevingsfactoren en willekeurige G×E-effecten hetgeen betere modellen voor het
gemiddelde en de variantie oplevert. Er wordt aangetoond dat een eenvoudige sommatie
van BLUP’s veel betere trainingsvoorbeelden oplevert in vergelĳking met de aanpak die
steunt op willekeurige fenotypes. Deze aanpassingen resulteren in cross-validatiegebaseerde
accuraatheid die uitzonderlĳk hoog is, zelfs wanneer geprobeerd wordt om SCA-waarden
te voorspellen. Daarom werd een specifieke veldproef aangelegd waarin de agronomische
prestaties van 49 hybriden werden opgemeten in drie locaties in Zuid-Frankrĳk. Deze proef
laat toe om een definitief oordeel te vellen over de predictiecapaciteit van zowel ε-SVR als
BLP.
De resultaten van deze proef tonen aan dat er een aanzienlĳke discrepantie is tussen de
bepalingen van predictieaccuraatheid door middel van cross-validatie en een effectieve veld-
proef. De oorzaak van deze discrepantie is echter vrĳ duidelĳk. De trainingsvoorbeelden
worden marginaal voorspeld op de effecten van groeiseizoenen en locaties, terwĳl de hy-
briden in de validatieproef conditoneel op een specifiek niveau van deze factoren worden
voorspeld. De afwĳking tussen beide voorspellingen hangt af van het kenmerk dat onder-
zocht wordt. Voor korrelopbrengst zĳn de correlaties tussen beiden dermate laag dat er
weinig hoop is om een betrouwbare genomische selectie uit te voeren. Dit kenmerk heeft
dan ook een erg lage heritabiliteit in geavanceerde veredelingsprogramma’s wat voorname-
lĳk wordt veroorzaakt door de hoge bĳdrage van G×E-effecten tot de totale fenotypische
variantie. Deze hoge G×E-variantie zorgt voor de lage correlatie tussen de marginale en
conditionele predicties. De twee andere onderzochte kenmerken, namelĳk het vochtgehalte
van de korrel en het aantal dagen alvorens de bloei, hebben een hogere heritabiliteit en kun-
nen daardoor beter worden voorspeld door ε-SVR en BLP. De uitersten van de predictieve
capaciteiten van deze beide methodes worden verder geanalyseerd door het reduceren van
het aantal trainingshybriden en de omvang van de moleculaire vingerafdruk. De accuraat-
heid van BLP blĳkt minder gevoelig aan een reductie van het aantal trainingsvoorbeelden
in vergelĳking met ε-SVR. Deze laatste is wel beter in het voorspellen van de agrono-
mische resultaten van hybriden wanneer een kleinere of minder informatieve moleculaire
vingerafdruk wordt gebruikt.
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