
 

 

biblio.ugent.be 

 

The UGent Institutional Repository is the electronic archiving and dissemination platform for all 
UGent research publications. Ghent University has implemented a mandate stipulating that all 
academic publications of UGent researchers should be deposited and archived in this repository. 
Except for items where current copyright restrictions apply, these papers are available in Open 
Access. 

 

This item is the archived peer‐reviewed author‐version of: 

Title: Flexible distribution of complexity by hybrid predictive‐distributed video coding 

Authors: Jürgen Slowack, Jozef Škorupa, Stefaan Mys, Peter Lambert, Christos Grecos, and 
Rik Van de Walle 

In: Signal Processing: Image Communication, Volume 25 (2), pp. 94‐110, 2010. 

 

To refer to or to cite this work, please use the citation to the published version: 

Jürgen Slowack, Jozef Škorupa, Stefaan Mys, Peter Lambert, Christos Grecos, and Rik Van 
de Walle (2010). Flexible distribution of complexity by hybrid predictive‐distributed video 
coding. Signal Processing: Image Communication Volume 25 (2)  94‐110. DOI: 
10.1016/j.image.2009.12.002 

 



Flexible Distribution of Complexity

by Hybrid Predictive-Distributed Video Coding

Jürgen Slowacka, Jozef Škorupaa, Stefaan Mysa, Peter Lamberta,
Christos Grecosb, Rik Van de Wallea

aGhent University – IBBT, Department of Electronics and Information Systems –
Multimedia Lab, Gaston Crommenlaan 8 bus 201, B-9000 Ghent, Belgium

bSchool of Computing, University of the West of Scotland, Paisley, PA1 2BE, Scotland

Abstract

There is currently limited flexibility for distributing complexity in a video
coding system. While rate-distortion-complexity (RDC) optimization tech-
niques have been proposed for conventional predictive video coding with
encoder-side motion estimation, they fail to offer true flexible distribution
of complexity between encoder and decoder since the encoder is assumed to
have always more computational resources available than the decoder. On
the other hand, distributed video coding solutions with decoder-side motion
estimation have been proposed, but hardly any RDC optimized systems have
been developed.

To offer more flexibility for video applications involving multi-tasking or
battery-constrained devices, in this paper, we propose a codec combining
predictive video coding concepts and techniques from distributed video cod-
ing and show the flexibility of this method in distributing complexity. We
propose several modes to code frames, and provide complexity analysis illus-
trating encoder and decoder computational complexity for each mode. Rate
distortion results for each mode indicate that the coding efficiency is similar.
We describe a method to choose which mode to use for coding each inter
frame, taking into account encoder and decoder complexity constraints, and
illustrate how complexity is distributed more flexibly.

Key words: Distributed Video Coding, hybrid video coding, Wyner-Ziv
coding.

Preprint submitted to Elsevier



1. Introduction

In video coding systems, motion estimation is an essential but computa-
tionally complex task to exploit correlation between frames and achieve com-
pression. In conventional, predictive coding schemes such as H.264/AVC [1],
each macroblock is coded many times using several coding modes (e.g., in-
ter, intra and direct modes), and the mode with the lowest cost in the rate-
distortion sense is chosen. Many of these modes require computationally
intensive calculations through motion estimation and local reconstruction of
blocks, and as a result, the encoder is significantly more complex than the
decoder. This asymmetry is well suited for applications where video is coded
once and decoded many times or for streaming scenarios where the encoding
device has many computational resources available.

Recently, Distributed Video Coding (DVC) systems have been proposed,
where motion estimation is performed by the decoder instead of the encoder.
For each so-called Wyner-Ziv (WZ) frame, the decoder generates an esti-
mation using already decoded frames. This estimation – referred to as side
information – is merely an approximation of the original frame available at
the encoder. Hence, the encoder sends error correcting information allowing
the decoder to correct the side information. This paradigm enables inter-
esting applications featuring low-complexity encoders and complex decoders,
such as networked camcorders, wireless video cameras, and visual sensor net-
works [2].

One of the challenges of video streaming scenarios is coping with the
bandwidth requirements of the networks and the heterogeneity of the de-
vices. Devices with different characteristics are performing video compression
and streaming, ranging from high-end servers to PDA’s and mobile phones.
In addition, since almost every system is a multi-tasking system, available
computational complexity is often non static. Furthermore, some devices
are battery-constrained, and if computational complexity is decreased, tech-
niques such as dynamic voltage scaling (DVS) can be used to extend battery
lifetime [3].

As such, besides rate and distortion, available computational complex-
ity is considered an important parameter in a video coding system. This
prompted methods for rate-distortion-complexity (RDC) optimization, which
have been developed primarily for predictive video coding [3, 4, 5, 6]. In pre-
dictive video coding, motion estimation is a very computationally complex
task, due to the high number of coding modes and the high computational

2



complexity of many of these modes. Complexity is typically reduced by ap-
plying a suboptimal low-complexity motion search algorithm, or by selecting
only a subset of coding modes that need to be tested while maximizing the
probability that the best coding mode is in this subset. However, only com-
plexity reduction is considered, and there is no way for the decoder to take
over some of the workload1.

For DVC systems, only limited complexity analysis has been provided so
far, for example, for the DISCOVER codec [7].

We can summarize by stating that current solutions for RDC optimiza-
tion do not allow motion estimation to be shifted between encoder and de-
coder, but only allow complexity to be decreased. Dynamic aspects such as
multi-tasking, variable power-supply, and session mobility need systems that
adapt better to the changing conditions, by distributing complexity between
encoder and decoder according to the amount of resources available at both
devices. At one time instance, the encoder device could have more resources
available than the decoder device but at a later point in time this could be
the other way around.

In this paper we present a codec that combines techniques from predictive
video coding and DVC, to realize flexible distribution of complexity by shar-
ing the computationally complex task of motion estimation between encoder
and decoder. We firstly provide a brief overview of the state-of-the-art in
DVC (Sect. 2), and we describe interesting systems in the context of this pa-
per (Sect. 3). Next, the general operation of the proposed codec is described
(Sect. 4.1). This codec features several modes for coding inter frames, us-
ing either the predictive mode (Sect. 4.3), the DVC mode (Sect. 4.4) or one
of the hybrid modes (Sect. 4.5). Two variants for implementing the hybrid
modes are identified. A first approach is to apply a spatial partitioning tech-
nique and predict some of the macroblocks in a frame at the encoder while
estimating the remaining macroblocks at the decoder (Sect. 4.5.1). In the
second approach, the motion search algorithm is split in two parts, i.e., the
encoder calculates coarse motion vectors which are further refined by the
decoder (Sect. 4.5.2).

The main novelty of this paper is twofold. Firstly, we extend the codec
and the different modes proposed in our earlier work [8, 9], and compare them

1Remark: due to the use of a decoder loop at the encoder, the encoder remains more
complex than the decoder at any time.

3



(Sect. 5). Secondly, we use a theoretical model for describing the encoder
and decoder complexity in each of the modes (Sect. 4.2), which is validated
by practical measurements (Sect. 6). This analysis enables us to define an
optimization technique for meeting complexity constraints at both encoder
and decoder (Sect. 7). Final remarks (Sect. 8) and conclusions (Sect. 9) end
the paper.

2. State-of-the-art in Distributed Video Coding

Based on the theoretical work of Slepian and Wolf [10], and Wyner and
Ziv [11], practical DVC systems have been developed, firstly by Puri and
Ramchandran, and later on by Aaron and Girod.

Puri and Ramchandran proposed a system called PRISM: Power-efficient,
Robust, hIghcompression, Syndrome-based Multimedia coding [12]. In
PRISM, each frame consists of macroblocks which are either not coded (skip),
intra coded, or Wyner-Ziv (WZ) coded. Intra coding is performed using
traditional techniques used in for example, MPEG-x and H.26x. For each
macroblock X that is WZ coded, the decoder generates a prediction Y using
already decoded macroblocks. This prediction or side information can be
regarded as the original macroblock corrupted by noise: Y = X + N. This
dependency can be modeled as a noisy virtual channel which has X as input,
Y as output, and noise N. To correct errors induced by this virtual channel,
channel codes are used. More specifically, in PRISM, syndrome codes are
used.

The architecture developed at Stanford by Aaron, Girod, and others, uses
a frame-based approach where the frame sequence is split up into key frames
and WZ frames. Key frames are intra coded using conventional techniques
such as H.264/AVC, while WZ frames are predicted at the decoder side
using techniques such as frame interpolation [13], or motion compensated
interpolation/extrapolation [14]. In contrast to PRISM, a turbo codec is used
in combination with a feedback channel, i.e., the decoder-side prediction (or
side information) is corrected using a turbo decoding procedure where parity
bits are requested from the encoder until the result is assumed to be reliable.

Many researchers proposed new techniques for DVC, in most cases using
the Stanford architecture. Some important contributions have been made in
the context of the DISCOVER project, such as improvements to the gener-
ation of the side information by using bidirectional motion refinement and
spatial smoothing, and adaptive GOP size control [15]. Other extensions

4



2n x 2n 2n x 2n

Current 
frame

Current 
frame (LR)

Reconstructed 
frame (LR)

Regular frame coder

+ -

Residual frame

Wyner-Ziv
coder

LR reference frames
Interpolated 

reconstructed 
frame

LR layer bitstream

WZ layer 
bitstream

+

Wyner-Ziv
decoder

Corrected 
residual

Motion based 
semi super-
resolution

2n x 2nRegular frame 
decoder

LR layer 
bitstream

Decoded 
frame (LR)

Interpolated 
decoded frame

Low resolution 
reference frames

Decoded 
NRWZ frame

+- +

+
+

Noisy 
residual

+

WZ layer 
bitstream

Figure 1: Spatially scalable encoding architecture proposed by Mukherjee [38].

or improvements have been proposed for side information generation, such
as exploiting both temporal and spatial correlation [16, 17], and using mul-
tiple side information streams [18]. Techniques for online modeling of the
correlation noise between the original and the side information have been
developed [19, 20], taking into account the quantization noise in the refer-
ence frames [21]. Rate-distortion analysis has been provided for motion ex-
trapolation [22], motion compensated interpolation [23] and hash-based side
information generation [24]. The feedback channel has been studied [25] and
practical request stopping criteria have been formulated [26][27] as well as
how to eliminate the feedback channel [28]. Alternative channel codes have
been studied such as LDPC codes [29, 30] and overlapped quasi-arithmetic
codes [31].

DVC techniques have been used in other scenarios, such as traditional
video coding with forward error correction using WZ coding [32, 33, 34] and
multi-view coding [35, 36, 37].

3. Related work

An important system in the context of this paper has been proposed by
Mukherjee [38]. A regular coder is used to code inter frames that are used by
the encoder as reference frames for motion estimation. The remaining inter
frames are referred to as non-reference Wyner-Ziv (NRWZ) frames, and they
are coded following a hybrid approach. At the encoder (Fig. 1), these frames
are subsampled with a factor 2n × 2n, where n can be chosen based on a
complexity reduction target. The resulting low-resolution (LR) frames are
coded using a regular coder (e.g. H.263+) which uses LR reference frames
for motion estimation, and the resulting LR bitstream is sent to the decoder.

5



2n x 2n 2n x 2n

Current 
frame

Current 
frame (LR)

Reconstructed 
frame (LR)

Regular frame coder

+ -

Residual frame

Wyner-Ziv
coder

LR reference frames
Interpolated 

reconstructed 
frame

LR layer bitstream

WZ layer 
bitstream

+

Wyner-Ziv
decoder

Corrected 
residual

Motion based 
semi super-
resolution

2n x 2nRegular frame 
decoder

LR layer 
bitstream

Decoded 
frame (LR)

Interpolated 
decoded frame

Low resolution 
reference frames

Decoded 
NRWZ frame

+- +

+
+

Noisy 
residual

+

WZ layer 
bitstream

Figure 2: Spatially scalable decoding architecture proposed by Mukherjee [38].

Next, the reconstructed (decoded) LR frame is interpolated to full resolution,
and the residual with the original frame is WZ coded.

At the decoder (Fig. 2), the LR frame is decoded by the regular frame
decoder. Subsequently, the frame is interpolated using the same interpolation
filter as the encoder, and the result is refined in a procedure called motion
based semi super-resolution. Next, the noisy residual between the refined
frame and the non-refined frame is corrected by the WZ decoder, using the
WZ layer bitstream. Finally, the decoded NRWZ frame is obtained by adding
the interpolated decoded frame to the corrected residual. It is unclear from
this work how to choose the subsampling factor n as well as how to adapt the
motion based semi super-resolution to changes in n. Intuitively, we would
expect more decoder-side calculations as n becomes larger.

4. Description of the proposed video codec

An alternative system has been proposed by the authors of this paper.
This system features several modes for coding frames, and each mode shares
the complex task of motion estimation differently between encoder and de-
coder. We proposed several modes for coding frames: the predictive mode
with motion estimation performed by the encoder, the DVC mode with mo-
tion estimation performed by the decoder, and the hybrid modes where mo-
tion estimation is shared. Two variants for the hybrid modes have been
developed, using a spatial partitioning technique on the one hand [8], and
a partitioning of the motion search algorithm on the other hand [9]. One
contribution in this paper is that we extend our previous work to residual
coding and subpixel refinement.

6



The widely-used Stanford architecture has been taken as a basis for devel-
oping our system (Fig. 3, Fig. 4). As such, the frame sequence is partitioned
into intra frames I and inter frames W . Motion estimation is performed for
the inter frames, at the encoder and/or decoder, depending on the mode.
Only the part involved in motion estimation operates differently for each
mode (denoted “mode-dependent” in Fig. 3 and Fig. 4), therefore, we split
our discussion into two parts.

Firstly, we discuss the modules that are functionally independent from
the coding mode used such as the WZ codec, the intra codec and the buffering
system; and we describe the interaction between these modules (Sect. 4.1).
The reason why the WZ codec is used even for the parts for which motion
estimation is performed at the encoder side, is because of the inherent error
robustness compared to conventional H.264-like solutions [39], which is a
major advantage in video streaming scenarios, for example.

Secondly, the motion estimation part is described in detail for each mode
(Sect. 4.3 to Sect. 4.5), and complexity is analyzed using a theoretical model
for complexity (Sect. 4.2).

4.1. General codec operation

At the encoder (Fig. 3), intra frames I are coded using H.264/AVC intra
coding. Decoded intra frames I ′ are available anyway after intra coding due
to mode decision and rate-distortion optimization, hence, I ′ frames are stored
in the decoded I frame buffer.

For each inter frame W , a prediction Z is generated (that will also be gen-
erated at the decoder side). The residual R between W and Z is calculated
and Z is stored in the prediction frame buffer.

R is WZ coded as follows. Firstly, R is transformed using a 4-by-4 DCT
and coefficients at the same position k are grouped into coefficient bands
Rk. For example, all DC coefficients will form band R0. Next, each band is
quantized using a uniform deadzone quantizer with 2Mk levels, and zero bin
width 1.5 times the width of the other bins. For each band, bits at identical
positions are grouped into bitplanes BP k

i . For example, all most significant
bits of all DC coefficients will form bitplane BP 0

0 . Finally, each bitplane is
turbo coded, and the resulting parity bits are stored in a buffer. These bits
will be punctured and sent to the decoder upon request.

At the decoder (Fig. 4), intra frames are decoded into I ′ and stored in
the decoded I frame buffer. For each inter frame W , side information Y is
generated as well as the mutual prediction Z. The residual Y R between Y

7



DCT Q Bitplane 
extraction

Turbo 
encoder Buffer

W +
-

R

MV coder

I H.264/AVC
Intra encoder

Decoded 
I Frame Buffer

Motion Estimation 
& generation of 

mutual prediction

MVs

Prediction 
Frame Buffer

Z

I’
Coded I frames

Coded 
MVs

WZ bits

request bits

Wyner-Ziv encoder

Mode-dependent

Rk qk
BPk

1

BPk
Mk

Z

... Turbo 
decoder

Side info generation

Recon-
struction

IDCT

DCT

W’

H.264/AVC
Intra decoder

I’

Decoded
W Frame Buffer

Y + - Z

+

R’

request bits

Prediction 
Frame Buffer

Z

MVs

+

Decoded
I Frame Buffer

MVs

Z

W’

I’

Bitplane 
multiplexing

Generation 
of mutual predictionCoded 

MVs

WZ bits

MV 
decoder

Coded I 
frames

Wyner-Ziv decoder

q’k R’k
BP’k

1

BP’k
Mk

...

YR
k

YR

Mode-dependent

Figure 3: Encoder architecture consisting of a WZ encoder, an intra encoder, a mode-
dependent part and a mechanism for buffering frames.

and Z is transformed and used by the turbo decoder. The turbo decoder
requests as many bits as needed until Y R is corrected. When all bitplanes
are decoded by the turbo decoder, they are multiplexed and the unquantized
coefficients are reconstructed using centroid reconstruction, as in [40]. The
result is inverse transformed into R′, and Z is added to obtain the decoded
frame W ′. For future reference, W ′ is stored in the decoded W frame buffer.

The turbo decoder needs information about the reliability of the side
information. This reliability – more specifically, the correlation between the
original coefficient and the side information coefficient – is modeled online
using the method described by Brites and Pereira [19] (at coefficient-frame
level). This method estimates the correlation using the difference between
the reference blocks obtained after side information generation.

4.2. Modeling motion estimation complexity

The execution speed of a program depends on parameters such as the
number of operations to be executed, the speed of these operations (addi-
tions, multiplications, conditional expressions, etc.), the number of memory
requests and the delay associated with these requests (which depends on the
memory architecture, cache behavior, etc.). Modeling complexity theoreti-

8



DCT Q Bitplane 
extraction

Turbo 
encoder Buffer

W +
-

R

MV coder

I H.264/AVC
Intra encoder

Decoded 
I Frame Buffer

Motion Estimation 
& generation of 

mutual prediction

MVs

Prediction 
Frame Buffer

Z

I’
Coded I frames

Coded 
MVs

WZ bits

request bits

Wyner-Ziv encoder

Mode-dependent

Rk qk
BPk

1

BPk
Mk

Z

... Turbo 
decoder

Side info generation

Recon-
struction

IDCT

DCT

W’

H.264/AVC
Intra decoder

I’

Decoded
W Frame Buffer

Y + - Z

+

R’

request bits

Prediction 
Frame Buffer

Z

MVs

+

Decoded
I Frame Buffer

MVs

Z

W’

I’

Bitplane 
multiplexing

Generation 
of mutual predictionCoded 

MVs

WZ bits

MV 
decoder

Coded I 
frames

Wyner-Ziv decoder

q’k R’k
BP’k

1

BP’k
Mk

...

YR
k

YR

Mode-dependent

Figure 4: Decoder architecture consisting of a WZ decoder, an intra decoder, a mode-
dependent part and a mechanism for buffering frames.

cally by taking all these parameters into account is difficult and hardware
dependent. However, the performance of multimedia applications is mainly
determined by the transfer of data from and to memory, as illustrated by
e.g. Brockmeyer et al., who estimated that a software implementation of an
MPEG-4 video encoder (VM 7.0) typically requires about 5 · 109 memory
transfers per second to encode the simple profile level L2 [41].

Hence, as a complexity measure we propose to model the data transfers
performed during motion estimation in our system, by pixel read and pixel
write operations. The latter are defined by generalizing each step in the
motion estimation process as an operation that is performed on pixel2 data
(Fig. 5). To perform the operation (e.g. spatial interpolation, Lagrangian
cost calculation) a number of pixels need to be read, typically a macroblock.
These pixels are read from the original frame, from a past or future reference
frame, from a temporally stored frame such as the current version of the

2In the context of pixel read and write operations, the term “pixel” will be used to
indicate one particular luma or chroma value.

9



Operations
(interpolation,

Lagrangian cost 
calculation, etc.)

Pixel reads

Pixel writes (optional)

Frame store
(containing the original 
frame, the reference 
frames, the current 

prediction frame etc.)

Figure 5: Modeling complexity by pixel read and write operations.

side information, etc. If the end result of the operation is pixel data, pixel
write operations are performed. As a complexity measure, in the following
sections we will count the total number of such pixel read/write operations
performed at the encoder and the total number of pixel read/write operations
(or briefly referred to as “operations”) at the decoder, for each of the modes.
The results are listed in Tab. 1 as reference. The accuracy of this model is
evaluated in Sect. 6.

Frames are assumed to be YUV, and unless stated otherwise, motion esti-
mation is performed only on the luma component while motion compensation
is performed on both luma and chroma. 4:2:0 subsampling is used, so that
frames have a (spatial) luma resolution of H(orizontal) by V (ertical) pixels
whereas the chroma components are each H/2 by V/2.

4.3. Motion estimation in the predictive video coding mode

In the predictive video coding mode, motion estimation is performed
solely at the encoder. Each inter frame W is partitioned into macroblocks
of size M (e.g. M = 64 for 8-by-8 macroblocks), and motion vectors are
calculated for each of the HV/M (luma) blocks using bidirectional motion
estimation. More precisely, the prediction frame buffer and decoded I frame
buffer are consulted and the closest past frame P and future frame F are
retrieved. For each macroblock MBi in W , the best match of full pixel pre-
cision in P is determined using a search window of size S, where the size of
the search window indicates the number of macroblocks in the search space.
Hence, for each of the HV/M blocks S times 2M pixels are compared, re-
sulting in a total of 2SHV pixel read/write operations per inter frame, for
this step (Tab. 1).

The best match is found by minimizing a lagrangian cost function:

Costi(~v) = Di(~v) + λRi(~v) (1)

10



where the distortion metric Di(~v) is the Sum of Squared Errors (SSE) be-
tween MBi and the macroblock in P defined by the motion vector ~v. λ is a
Lagrange multiplier that has been determined offline using several sequences,
and which is set to 30, 65, 110, or 180 for quantization matrices Q0 to Q3

(which are defined further on in this paper). Ri(~v) represents the rate to code
~v. Motion vectors are coded by first predicting them from their neighbors
as in H.264/AVC and coding the residual between ~v and its prediction using
signed exponential Golomb coding, resulting in Ri(~v) bits.

After motion estimation between W and P , the averages between the
best block in P and each of the S candidate blocks in F are calculated.
Next, each block in W is compared against each of the averages using the
same cost function, and the block in F corresponding to the best match is
selected. This requires an additional SHV pixels to be read from P , so that
a total of 3SHV operations are required.

The result from the motion estimation process is that we have now two
motion vectors for each macroblock in W , i.e., one referring to a block in P
and one to a block in F . Since the motion vectors calculated at the encoder
will also be available at the decoder, they are used to generate the mu-
tual prediction Z through bidirectional motion compensated interpolation,
performed on all color components, resulting into 9/2HV pixel read/write
operations.

At the decoder, Z is constructed using the received motion vectors and
the reference frames P and F (retrieved from the prediction frame buffer
and/or decoded I frame buffer). Y is taken equal to Z so that the residual
Y R between Y and Z that is used by the turbo decoder contains only zeros.

4.4. Motion estimation in the DVC mode

In the DVC mode, no motion estimation is performed by the encoder.
The mutual prediction Z equals the closest frame, past or future, that can
be retrieved from the prediction frame buffer and decoded I frame buffer.

At the decoder, side information is generated for each frame W using the
closest past frame P and closest future frame F , retrieved from the decoded
W frame buffer and decoded I frame buffer only, since decoded frames have
better quality than mutual prediction frames.

The side information Y is generated based on the work of Artigas et
al. [15], implemented in the DISCOVER codec. Firstly, for better capturing
the true motion field, the luma component of P and F is low-pass (LP)

11



Table 1: Number of pixel read/write operations executed at encoder and decoder, per
W frame. Absolute numbers (expressed in ·106 operations) for: H = 352 and V = 288,
S = 1089, M = 64, L = 9, SDV C

R = 16, SSPAT
R = 25, SSUB1

R = 25, and SSUB2
R = 9.

Encoder-side Decoder-side

Pred. ME (W , P ) 2SHV 220.8 Constr. Z 9HV/2 0.5
mode ME (W , F ) 3SHV 331.2

Constr. Z 9HV/2 0.5
Total 552.4 Total 0.5

LP filtering 2HV (L + 1) 2.0
ME (F , P ) 2SHV 220.8

DVC Wiener interp. 115HV 11.7
mode Refin. (16x16) 512HV SDV C

R /M 7.3
Refin. (8x8) 128HV SDV C

R /M 1.8
Spat. smooth. 16HV 1.6
Bid. interp. 9HV/2 0.5

Total – Total 252.8

ME (S1) 5SHV/2 276.0 LP filtering 2HV (L + 1) 2.0
Hybrid Constr. Z 9HV/2 0.5 Wiener interp. 115HV 11.7
spatial Refin. (16x16) 256HV SSPAT

R /M 10.1
mode Refin. (8x8) 64HV SSPAT

R /M 2.5
Bid. interp. 9HV/2 0.5
Constr. Z 9HV/2 0.5

Total 276.5 Total 27.3

Subs. 15HV/4 0.4 LP filtering 2HV (L + 1) 2.0
Hybrid ME 5SHV/16 34.5 Wiener interp. 115HV 11.7
subs. Constr. Z 9HV/2 0.5 Refin. (16x16) 512HV SSUB1

R /M 20.3
mode Refin. (8x8) 128HV SSUB2

R /M 1.8
Bid. interp. 9HV/2 0.5
Constr. Z 9HV/2 0.5

Total 35.3 Total 36.7

12



filtered by replacing each pixel by the average of a group of L = 3-by-3 pixels
having this pixel as a center. This requires a total of 2HV (L+1) operations3.

Next, unidirectional block-based motion estimation is performed between
the filtered versions of P and F . The candidate motion vectors are scaled
with the distance ∆P,F between P and F , with ∆P,F = 1 if the frames are
adjacent to each other. This is performed for compensating for possible larger
motion as the distance between the reference frames increases. Matching is
performed using the following cost function (CF):

CF (vx, vy) = (1 + 0.05
√
v2
x + v2

y) ·MAD(vx, vy), (2)

where (vx, vy) indicates the motion vector from F to P , and MAD is the
Mean Absolute Difference between the corresponding blocks in F and P ,
defined by (vx, vy).

After obtaining the motion vectors from F to P , for each macroblock
in Y the motion vector intersecting the block closest to the block center is
chosen and treated as a bidirectional motion vector (Fig. 6).

Next, the LP-filtered versions of P and F are upsampled to half pixel
precision using a 6-tap Wiener interpolation filter (only the luma), as well
as the full quality reference frames P and F (all color components, for mo-
tion compensation). For each luma component, HV values are copied to a
frame at higher resolution, requiring 2HV operations. The remaining 3HV
values are calculated using 6-tap Wiener interpolation, where each value is
constructed by reading 6 luma values and writing one, resulting in a total
of 23HV pixel read/write operations for the luma component. Likewise, we
need 11.5HV operations for both chroma components together. Hence, for
two luma only frames and two YUV frames, we need 115HV operations.

Using the half pixel LP-filtered reference frames, the motion vector of
each block in Y is refined in two passes: first using reference blocks of size
16x16 and next using reference blocks of size 8x8. At all times, we assume
that the motion vector is linear between P and F , and that it goes through
the block center. The refinement window for a certain block is defined by the
motion vectors of the neighboring blocks. As such, we define the refinement
process as finding the vector that minimizes the MAD between past and

3From here on, we will only provide complexity analysis for steps that are not similar
to techniques analyzed earlier in this work. We refer to Tab. 1 for a complete overview.

13



future blocks, with the additional constraint that the backward motion vector
(vx, vy) should satisfy:

min(vBx , v
D
x ) ≤ vx ≤ max(vBx , v

D
x ), (3)

min(vAy , v
C
y ) ≤ vy ≤ max(vAy , v

C
y ), (4)

where A is the top neighbor, B the left neighbor, C the bottom neighbor,
and D the right neighbor.

Due to the fact that the refinement window size SDV CR is calculated using
the neighboring motion vectors, it is not constant. SDV CR will be small (on
average) if the motion vector field is smooth. On the other hand, SDV CR will
be large if there are a lot of discontinuities in the motion vector field. We
obtained a value for SDV CR to use in our complexity analysis experimentally,
using the setup described in the results section (Sect. 5). By averaging over all
sequences and rate points, a value of SDV CR = 16 has been obtained. Hence,
each of the HV/M motion vectors is refined by reading SDV CR candidate pairs
of 16-by-16 blocks in the first pass and reading SDV CR candidate pairs of 8-
by-8 blocks in the second pass. This results in a total of SDV CR · 512HV/M
for the first pass and a total of SDV CR · 128HV/M operations for the second
pass.

After motion refinement, the motion vectors are spatially smoothed by
weighted vector median filtering of the motion vector for MBi and the motion
vectors of neighboring macroblocks applied to MBi. For each of the HV/M
macroblocks, applying the (approximately) eight neighboring motion vectors
for calculating the weights used in median filtering results in eight times two
blocks of size M to be read (one from the past reference frame and one from
the future reference frame), which is a total of 16HV operations per frame
for this step.

Finally, the calculated motion vectors are used for bidirectional motion
compensation to obtain the side information frame Y .

4.5. Motion estimation in the hybrid video coding modes

In the hybrid modes, motion estimation is shared between encoder and
decoder. Two variants for sharing motion estimation can be identified, based
on spatial partitioning on the one hand and splitting of the motion estimation
algorithm on the other hand.

14



P FY

...
P,FS

P FY

P FY

P,F

Figure 6: For each macroblock in Y , the closest intersecting motion vector is chosen and
treated as a bidirectional motion vector.

4.5.1. Spatial partitioning

Motion estimation can be shared between encoder and decoder by par-
titioning the macroblocks in an inter frame W into two subsets S1 and S2,
for which motion estimation will be performed at the encoder or decoder,
respectively. At the encoder, we can directly apply the techniques developed
in the predictive mode to the elements in S1, resulting in an encoder com-
plexity equal to the complexity in the predictive mode multiplied by the ratio
of the number of elements in S1 to the total number of blocks. In the DVC
mode, however, the first step in motion estimation is unidirectional motion
estimation between the reference frames P and F . This step is performed to
enable generating an initial motion vector estimate for the blocks in W , after
which this estimate is further refined on a subpixel level and finally spatially
smoothed. In other words, in this first step, calculations are performed for
all macroblocks in W at once, which does not directly allow us to leave out
S1, for which calculations have already been performed at the encoder side.

Hence, we eliminate the unidirectional motion search between the (LP-
filtered) reference frames by choosing a checkerboard partitioning strategy for
defining S1 and S2, so that initial motion vector estimates for each element
in S2 can be generated from its (maximum) four immediate neighbors in
S1. Consider for example a non-border block H (Fig. 7). We approximate
the motion between the reference frames as being linear, as in the DVC
mode, and we obtain an initial motion vector estimate for H by treating
the backward and forward motion vector of each neighbor in S1 (e.g. A in
Fig. 7) separately. As such, the bidirectional vector ((vFx , v

F
y ), (vBx , v

B
y )) is

split into two bidirectional vectors describing linear motion: ((vFx , v
F
y ),

∆P,Y

∆Y,F
·

(−vFx ,−vFy )) and ((vBx , v
B
y ),

∆Y,F

∆P,Y
· (−vBx ,−vBy )). This is done for all neighbors

A, B, C, and D, resulting into eight vectors. Each of these motion vectors
is applied to H, and the one minimizing the Sum of Squared Errors (SSE) is

15



Y

A

B

C

DH
S1

S2

Figure 7: The hybrid spatial mode using a checkerboard pattern.

chosen.
This initial estimate is then used as a starting point for half-pixel motion

refinement, as in the DVC mode (but refinement is obviously only applied
to S2). In this case a refinement window of fixed size 5-by-5 (SSPATR = 25)
showed better results.

Subsequent to half-pixel refinement, bidirectional motion compensation is
performed to construct the side information frame Y . No spatial smoothing
is performed, since information from neighboring blocks is already taken into
account during initialization of the motion vector.

To construct the mutual prediction frame Z, each block in S2 is assigned
the motion vector of its left neighbor or if it does not exist, the vector of
its right neighbor. This technique adds very little complexity but it enables
constructing a mutual prediction frame Z through bidirectional motion com-
pensated interpolation.

4.5.2. Splitting the motion estimation algorithm

A second way to combine predictive video coding techniques and DVC
is to split up the motion search algorithm, i.e., restrict the encoder search
space for each macroblock instead of restricting the number of macroblocks
for which encoder-side motion estimation needs to be performed. In other
words, the encoder calculates coarse motion vectors which are further refined
by the decoder. Due to the generality of this definition, hybrid modes can be
constructed in several ways. In this paper we use a subsampling approach.

Each frame W and its reference frames are subsampled by averaging four
pixel values at full resolution for calculating one pixel value at low resolution.
Next, bidirectional motion search is performed on blocks of size M , as in
the predictive mode, but using a down-scaled search window of size S/4.
Since the number of blocks of size M is reduced with a factor four, as well

16



as the number of candidate vectors to consider, the encoder computational
complexity is reduced drastically. Subsequently, the low resolution motion
vectors are coded and sent to the decoder. To create the mutual prediction
frame Z, the motion vectors are upscaled and used for bidirectional motion
compensation.

At the decoder, P and F are retrieved from the buffers with decoded
frames and LP filtered. The decoded motion vectors are upscaled and used
as a starting point for motion refinement. As in the DVC mode, half pixel
motion refinement is performed in two passes, operating on blocks of size
16-by-16 in the first pass and 8-by-8 in the second pass. We set the half pixel
refinement window to a fixed size of 5-by-5 (SSUB1

R = 25) for the first pass
and 3-by-3 (SSUB2

R = 9) for the second pass. As such, the vector is never
refined more than three half pixels (which is less than two pixels, i.e., the
accuracy of encoder-side motion estimation). No spatial smoothing step is
performed afterward, but bidirectional motion compensation follows directly.

Instead of using a subsample approach, other techniques can be used. For
example, a heuristic motion search algorithm such as a Three Step Search
(TSS) can be split up in executing one or two steps at the encoder side while
executing the remaining steps at the decoder.

5. Rate-distortion performance

The rate-distortion performance of our system is compared to a number of
different configurations. Firstly, the coding efficiency of the different modes
is analyzed (Sect. 5.1). Next, we compare the DVC mode of our system
to the state-of-the-art found in the literature, i.e. the DISCOVER codec
(Sect. 5.2). Subsequently, the predictive mode is compared to H.264/AVC
(Sect. 5.3), and finally the gain of the extended hybrid modes compared to
our previous work is analyzed (Sect. 5.4).

For all these results, tests have been conducted on three video sequences:
the Mother and Daughter sequence, the Foreman sequence, and the Table
Tennis sequence, containing very little, moderate, and relatively high mo-
tion respectively. A GOP of length four is used, and for each sequence the
maximum number of GOP’s is coded (i.e. 297 frames: 75 GOP’s plus one
closing frame) at a frame rate of 30 Hz. Inter frames are hierarchically coded,
meaning that the sequence I1W1W2W3I2 is coded and decoded in the follow-
ing order: I1I2W2W1W3. Four different quantization patterns are used Q0

to Q3, quantizing each coefficient from 6 to 3 bits respectively. Quantization

17



of intra and inter frames is chosen in such a way so that the quality of the
decoded frames is constant. Unless stated otherwise, rate distortion plots
indicate the PSNR of the luma component as a function of the total rate of
all color components.

5.1. Rate-distortion performance of the different modes

The rate-distortion results for the different modes are depicted in Fig. 9.
We observe that the coding efficiency of the different modes is comparable
in most cases, especially for the Table Tennis sequence and the high rate
and low rate regions of Mother and Daughter and Foreman, respectively.
Having similar performance is an advantage, because this means that we
can choose the coding mode for a particular frame independently from the
rate-distortion performance of each mode.

The differences in performance, particularly at low rates and high rates,
can be explained as follows. Remark that there is typically a switch between
the DVC mode and the predictive mode, in the sense that the DVC mode
outperforms the predictive mode at low rates while this is the other way
around at high rates. This difference is due to the coding of motion vectors
in predictive mode. In predictive mode, motion vectors are used at the
decoder side to generate the prediction Y , which is of better quality than
the one obtained in the DVC mode. However, sending these motion vectors
from encoder to decoder introduces a rate penalty that is not present in
the DVC mode. At high rates, the rate of the motion vectors is negligible
compared to the number of WZ bits spent. At low rates, however, sending
the motion vectors to the decoder is an important penalty, especially for
sequences that can be well predicted at the decoder-side (such as Mother
and Daughter). This explains why the DVC mode outperforms the predictive
mode for Mother and Daughter significantly for low rates.

We can draw the same conclusions for the hybrid modes, which lie more
or less in between the predictive mode and the DVC mode.

5.2. Rate-distortion performance compared to DISCOVER

The executable of the DISCOVER codec is available online [42], and the
codec architecture has been described in detail [15]. As for our system, we
perform experiments with the DISCOVER codec using a fixed GOP of size
four, and we choose the intra quantization parameters so that the quality of
the intra decoded frames and WZ decoded frames are the same. Results are
generated using WZ quantization patterns 1, 3, 6, 7, and 8. The results in

18



COMPARISON OF THE DIFFERENT MODES

27

28

29

30

31

32

33

34

35

36

37

38

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

PSNR (dB)

Rate (kbps)

Predictive mode

Spatial mode

Subs. mode

DVC mode

Foreman

38

39

40

41

42
PSNR (dB) Mother and Daughter

27

28

29

30

31

32

33

34

35

36

37

38

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

PSNR (dB)

Rate (kbps)

Predictive mode

Spatial mode

Subs. mode

DVC mode

Foreman

34

35

36

37

38

39

40

41

42

0 100 200 300 400 500 600 700 800 900

PSNR (dB)

Rate (kbps)

Predictive mode

Spatial mode

Subs. mode

DVC mode

Mother and Daughter

27

28

29

30

31

32

33

34

35

36

37

38

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

PSNR (dB)

Rate (kbps)

Predictive mode

Spatial mode

Subs. mode

DVC mode

Table tennis

Figure 8: Rate-distortion plots for the different modes of the proposed codec.

19



this section are limited to the luma component only, since the DISCOVER
codec does not take into account the chroma.

We expect similar performance between the DVC mode of our system and
the DISCOVER codec, because motion estimation and virtual noise estima-
tion is similar in both systems. An important difference in our system is the
use of residual coding, which is expected to increase the coding efficiency [30],
especially for sequences with low motion content (and a static camera) such
as the Mother and Daughter sequence. This explains why the DVC mode of
our codec outperforms the DISCOVER codec significantly for Mother and
Daughter, while the performance for Foreman and Table are rather similar
(Fig. 9). Another difference is that the DISCOVER codec uses LDPC codes
which are reported to perform slightly better than turbo codes [42].

5.3. Rate-distortion performance compared to H.264/AVC

The H.264/AVC reference software (JM 13.2) is used to create two refer-
ence RD curves for each sequence: one with an IBBB GOP structure, and
one with only intra-coded frames (IIII). The extended profile is used, RDO
enabled, one slice per picture, CAVLC entropy coding, and the sequences
were coded using a fixed QP (the same for I and B frames).

The results (Fig. 10) indicate that there is a significant gap between
H.264/AVC inter coding and the predictive mode of our system. This is
due to the fact that the H.264/AVC codec uses advanced techniques such as
adaptive block sizes, skip modes, etc.

5.4. Rate-distortion performance compared to our previous work

The hybrid modes developed in our previous work have been extended in
this paper by residual coding and subpixel motion refinement. Some other
techniques are included, such as online correlation noise modeling between
the original and the side information. As such, significant improvements can
be observed (Fig. 11).

6. Validation of complexity analysis

The complexity for each of the modes has been calculated using the num-
ber of pixel read/write operations (Tab. 1). How these results should be
mapped to the number of CPU cycles or milliseconds spent for coding each
inter frame W depends on hardware details such as calculation speed, cache
behavior etc. However, the scaling factor used to convert the number of pixel

20



COMPARISON WITH DISCOVER

27

28

29

30

31

32

33

34

35

36

37

38

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

PSNR (dB)

Rate (kbps)

DVC mode

DISCOVER

38

39

40

41

42
PSNR (dB)

Foreman

Mother and Daughter

27

28

29

30

31

32

33

34

35

36

37

38

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

PSNR (dB)

Rate (kbps)

DVC mode

DISCOVER

34

35

36

37

38

39

40

41

42

0 100 200 300 400 500 600 700 800 900 1000 1100

PSNR (dB)

Rate (kbps)

DVC mode

DISCOVER

27

28

29

30

31

32

33

34

35

36

37

38

0 500 1000 1500 2000 2500

PSNR (dB)

Rate (kbps)

DVC mode

DISCOVER

Foreman

Mother and Daughter

Table tennis

Figure 9: Rate-distortion plots comparing the DVC mode of our codec to the DISCOVER
system.

21



COMPARISON OF PREDICTIVE MODE

27

28

29

30

31

32

33

34

35

36

37

38

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

PSNR (dB)

Rate (kbps)

H.264/AVC inter

Predictive mode

H.264/AVC intra

38

39

40

41

42

43
PSNR (dB)

Foreman

Mother and Daughter

27

28

29

30

31

32

33

34

35

36

37

38

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

PSNR (dB)

Rate (kbps)

H.264/AVC inter

Predictive mode

H.264/AVC intra

33

34

35

36

37

38

39

40

41

42

43

0 200 400 600 800 1000 1200 1400 1600 1800 2000

PSNR (dB)

Rate (kbps)

H.264/AVC inter

Predictive mode

H.264/AVC intra

26
27
28
29
30
31
32
33
34
35
36
37
38

0 500 1000 1500 2000 2500 3000

PSNR (dB)

Rate (kbps)

H.264/AVC inter

Predictive mode

H.264/AVC intra

Foreman

Mother and Daughter

Table tennis

Figure 10: Rate-distortion results for the predictive mode of our codec, compared to
H.264/AVC.

22



COMPARISON WITH PREVIOUS WORK

27

28

29

30

31

32

33

34

35

36

37

38

0 500 1000 1500 2000 2500 3000

PSNR (dB)

Rate (kbps)

Spatial mode

Subs. mode

[9]

[8]

38

39

40

41

42
PSNR (dB)

Foreman

Mother and Daughter

27

28

29

30

31

32

33

34

35

36

37

38

0 500 1000 1500 2000 2500 3000

PSNR (dB)

Rate (kbps)

Spatial mode

Subs. mode

[9]

[8]

33

34

35

36

37

38

39

40

41

42

0 250 500 750 1000 1250 1500 1750 2000

PSNR (dB)

Rate (kbps)

Spatial mode
Subs. mode
[9]
[8]

27

28

29

30

31

32

33

34

35

36

37

38

0 500 1000 1500 2000 2500 3000 3500

PSNR (dB)

Rate (kbps)

Spatial mode

Subs. mode

[9]

[8]

Foreman

Mother and Daughter

Table tennis

Figure 11: Rate-distortion results for the hybrid modes, compared to our earlier work.

23



Table 2: Comparing calculated and measured complexity of the motion estimation process
shows that our model is fairly accurate.

Calculated Measured

Encoder Decoder Encoder Decoder

Predictive mode >99.5% <0.5% 99% 1%

DVC mode <0.5% 46% <0.5% 48%

Hybrid spat. mode 50% 5% 50% 8%

Hybrid subs. mode 6% 7% 7% 8%

Table 3: Specifications of the test system used.

CPU QC CLOVERTOWN XEON X5355

2.66Ghz 8M 1333FSB 120W

Memory
4 × DDR II 4048MB

(DDR2-667 ECC FB-DIMM FMHS LP)

Operating sytem Microsoft Windows Server R2,

Standard X64 edition

Service Pack 2

read/write operations to the specific metric desired should be more or less the
same for each mode. Hence, theoretical and practical metrics should show the
same relationships between encoder and decoder complexity. In other words,
if theoretical analysis indicates that the encoder in the predictive mode is
twice as complex as the encoder in the spatial mode, then this should be ob-
served in practice also. Therefore, we normalize theoretical complexity and
measured complexity to the total complexity in the predictive mode (encoder
and decoder) (Tab. 2). Practical measurements have been performed on our
test system (Tab. 3), measuring the execution time of the motion estimation
process, and averaging values for all sequences and rate points. The results
show that our model for measuring complexity using the number of pixel
read/writes is reasonably accurate. Some inaccuracies can be observed for
the modes that have the lowest complexity (e.g. spatial mode, decoder-side).
This is due to not modeling the complexity of operations, function calls, etc.

24



7. Video coding with controllable complexity

The previous sections illustrated how several modes can be constructed
with different distributions of complexity between encoder and decoder, with
comparable rate-distortion performance of the modes. In this section we will
develop a strategy for choosing which coding mode to use for coding each
inter frame, in order to meet encoder and decoder complexity constraints
(Sect. 7.1). An example is provided to illustrate the different configurations
that can be achieved by combining modes (Sect. 7.2).

7.1. Controlling complexity using encoder and decoder complexity constraints

We assume that techniques are available to estimate or calculate the com-
plexity available at encoder and decoder, and that these values are accurate
for coding the following K inter frames W . Denote the available complex-
ity per frame at the encoder (decoder) as CE (CD), respectively. We will
define a method to calculate the optimal linear combination of modes that
meets this constraint. The method will be optimal in the sense that the total
complexity of the system is minimized.

To code one frame using mode mi, a complexity budget of ME
i is needed

at the encoder, and a budget of MD
i is needed at the decoder. From the K

inter frames, αi frames will be coded using mode i. Hence, this optimization
problem can be formulated as follows:

Minimize: ∑
i

αi(M
E
i +MD

i )

subject to: ∑
i

αi = K,

∑
i

αiM
E
i ≤ K · CE,∑

i

αiM
D
i ≤ K · CD,

0 ≤ αi ≤ K , ∀i. (5)

Remark also that one could favor encoder or decoder complexity decrease,
by introducing a weighing factor δ in the cost function:∑

i

αi(M
E
i + δMD

i ). (6)

25



This problem can be solved, for example, exhaustively or by using integer
linear programming techniques (ILPs). In the following section, we will use
a graphical exhaustive method to find a solution.

7.2. Example

We will illustrate how to choose coding modes by means of an example for
a particular set of parameters (K, CE, CD, and δ). While this is only one out
of many configurations, similar reasoning can be used for other parameters.

As an example, we will decide which coding modes to use for coding
the following K = 3 inter frames. We use the results from our complexity
analysis (Tab. 1), and express available complexity in terms of the number of
pixel read/write operations that can be performed for coding these K frames.
Assume for example that CE = 325 · 106, CD = 225 · 106, and δ = 1.

Each out of K inter frames can be coded using one out of N modes,
resulting into (K + N − 1, K) possible ways to code the GOP. In this case
(K = 3, N = 4) the binomial resolves to 20. Each of these 20 solutions
can be described by the tuple (α0, α1, α2, α3) indicating how the three inter
frames are coded: using α0 times the predictive mode, α1 times the spatial
mode, α2 times the subsample mode, and α3 times the DVC mode. Given
the complexity of each mode (Tab. 1), each tuple has an associated average

encoding complexity per frame
∑

i αiM
E
i

K
and an average decoding complexity

of
∑

i αiM
D
i

K
. We can use these two values as coordinates for representing the

20 solutions in a plane (Fig. 12). It is easily verified that solutions featuring
only two modes i and j lie on a straight line connecting the solutions where
i is used exclusively and where j is used exclusively.

From these 20 points, some are suboptimal in the sense that there exists
always a better way to code the GOP, i.e., with lower or at most equal encoder
and decoder complexity. These points are indicated in gray. The other points
(indicated in black) are so-called pareto-optimal. These 12 pareto-optimal
points provide the range for distributing complexity between encoder and
decoder. We can see that (1, 0, 0, 2) and (2, 0, 0, 1) are not pareto-optimal,
which indicates that using the hybrid modes enables more efficient distribu-
tion of complexity than combining only the DVC mode and the predictive
mode. In addition, since all modes are present in the optimal set, this figure
shows that no mode is redundant.

Given the encoder and decoder constraints, illustrated by the gray rect-
angle, from the pareto-optimal points the point minimizing the cost function

26



is chosen. This means that in this case all three frames should be coded
using only the hybrid subsample mode (0, 0, 3, 0). Other solutions satisfying
the complexity constraints are suboptimal in this context, since they do not
minimize the cost function.

From this example several advantages for using our system can be iden-
tified. Firstly, our system provides a solution in case neither encoder nor
decoder have enough resources to perform all motion estimation (in our ex-
ample, neither the predictive mode (3, 0, 0, 0) nor the DVC mode (0, 0, 0, 3)
satisfy CE and CD). Secondly, due to the fact that there is no dependency
between the modes, any frame can be coded using any mode at any time.
As a consequence, it is possible to adapt rapidly (with a maximum delay of
K frames) to varying complexity constraints that can be imposed by devices
with variable power supply, or by systems featuring multi-tasking. In case
encoder complexity constraints are drastically reduced, motion estimation is
shifted to the decoder side yielding a different solution for coding the GOP
(Fig. 13). On the other hand, if decoder complexity constraints are reduced
(Fig. 14), motion estimation is shifted to the encoder side.

In this example we assumed a very short time during which encoder
and decoder complexity constraints remain constant. In practice, however,
complexity constraints are likely to be constant over a larger period of time.
As K becomes larger, distribution of complexity can be performed more
subtle, since the pareto-optimal set will contain more solutions. This is
illustrated by Fig. 15, where K = 10 results into 40 pareto-optimal solutions.

8. Final remarks

The complexity analysis has been limited to the part involved in motion
estimation because only this part is functionally different for each mode.
It should be noted however that also the complexity of the turbo decoding
process varies between the modes. This is due to the fact that the number of
decoding iterations that need to be executed by the turbo decoder, depends
on the quality of YR compared to the original R available at the encoder.
When shifting the motion estimation from the encoder to the decoder, the
quality of YR will typically decrease due to the absence of the original at the
decoder. As a result, less bitplanes will be skipped by the turbo decoder
and more decoding iterations will be needed per bitplane, as illustrated in
Table 4. To avoid evaluating a possibly non optimal rate request strategy,

27



0

50

100

150

200

250

300

0 100 200 300 400 500 600

Only DVC

Only pred.

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,0,3)

(3,0,0,0)

(0,0,3,0)
(0,3,0,0) (CE ,CD)

Only spat.Only subs.

325

30

Only DVC

Only pred.

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,0,3)

(3,0,0,0)

(0,0,3,0)
(0,3,0,0)

(CE ,CD)

Only spat.
Only subs.

225

55

Only DVC

Only pred.

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,0,3)

(3,0,0,0)

(1,0,0,2)

(2,0,0,1)

(0,0,3,0)
(0,3,0,0)

(CE ,CD)

Only spat.
Only subs.

325

225

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,10,0)
Only subs. (10,0,0,0)

Only pred.

(0,10,0,0)
Only spat.

(0,0,0,10)
Only DVC

0

50

100

150

200

250

300

0 100 200 300 400 500 600

0

50

100

150

200

250

300

0 100 200 300 400 500 600

0

50

100

150

200

250

300

0 100 200 300 400 500 600

Figure 12: Encoder and decoder complexity constraints define a set of possible combi-
nations for coding the GOP (indicated by the gray rectangle). From this set the point
minimizing the cost function can be selected. In this case, coding all three inter frames
using the subsample mode is optimal.

0

50

100

150

200

250

300

0 100 200 300 400 500 600

Only DVC

Only pred.

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,0,3)

(3,0,0,0)

(0,0,3,0)
(0,3,0,0) (CE ,CD)

Only spat.Only subs.

325

30

Only DVC

Only pred.

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,0,3)

(3,0,0,0)

(0,0,3,0)
(0,3,0,0)

(CE ,CD)

Only spat.
Only subs.

225

55

Only DVC

Only pred.

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,0,3)

(3,0,0,0)

(1,0,0,2)

(2,0,0,1)

(0,0,3,0)
(0,3,0,0)

(CE ,CD)

Only spat.
Only subs.

325

225

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,10,0)
Only subs. (10,0,0,0)

Only pred.

(0,10,0,0)
Only spat.

(0,0,0,10)
Only DVC

0

50

100

150

200

250

300

0 100 200 300 400 500 600

0

50

100

150

200

250

300

0 100 200 300 400 500 600

0

50

100

150

200

250

300

0 100 200 300 400 500 600

Figure 13: If encoder complexity constraints are reduced, motion estimation complexity
is shifted to the decoder side, yielding (0, 0, 1, 2) as the optimal solution. As such, for two
out of three frames the decoder will perform all motion estimation.

28



0

50

100

150

200

250

300

0 100 200 300 400 500 600

Only DVC

Only pred.

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,0,3)

(3,0,0,0)

(0,0,3,0)
(0,3,0,0) (CE ,CD)

Only spat.Only subs.

325

30

Only DVC

Only pred.

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,0,3)

(3,0,0,0)

(0,0,3,0)
(0,3,0,0)

(CE ,CD)

Only spat.
Only subs.

225

55

Only DVC

Only pred.

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,0,3)

(3,0,0,0)

(1,0,0,2)

(2,0,0,1)

(0,0,3,0)
(0,3,0,0)

(CE ,CD)

Only spat.
Only subs.

325

225

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,10,0)
Only subs. (10,0,0,0)

Only pred.

(0,10,0,0)
Only spat.

(0,0,0,10)
Only DVC

0

50

100

150

200

250

300

0 100 200 300 400 500 600

0

50

100

150

200

250

300

0 100 200 300 400 500 600

0

50

100

150

200

250

300

0 100 200 300 400 500 600

Figure 14: If decoder complexity constraints are reduced, motion estimation complexity
is shifted to the encoder side, yielding (1, 0, 2, 0) as the optimal solution.

0

50

100

150

200

250

300

0 100 200 300 400 500 600

Only DVC

Only pred.

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,0,3)

(3,0,0,0)

(0,0,3,0)
(0,3,0,0) (CE ,CD)

Only spat.Only subs.

325

30

Only DVC

Only pred.

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,0,3)

(3,0,0,0)

(0,0,3,0)
(0,3,0,0)

(CE ,CD)

Only spat.
Only subs.

225

55

Only DVC

Only pred.

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,0,3)

(3,0,0,0)

(1,0,0,2)

(2,0,0,1)

(0,0,3,0)
(0,3,0,0)

(CE ,CD)

Only spat.
Only subs.

325

225

Encoder complexity 
(*106 operations)

D
ec

od
er

 c
om

pl
ex

ity
 

(*
10

6
op

er
at

io
ns

)

(0,0,10,0)
Only subs. (10,0,0,0)

Only pred.

(0,10,0,0)
Only spat.

(0,0,0,10)
Only DVC

0

50

100

150

200

250

300

0 100 200 300 400 500 600

0

50

100

150

200

250

300

0 100 200 300 400 500 600

0

50

100

150

200

250

300

0 100 200 300 400 500 600

Figure 15: Complexity can be distributed more subtle if K is large. For example, K = 10
results in 40 points being part of the pareto-optimal set, providing a wide range of coding
options between maximum encoder complexity and maximum decoder complexity.

29



Table 4: Average number of turbo decoding iterations per bitplane, for the Foreman
sequence under the same test conditions as described in the results section.

Pred. mode Hybrid subs. Hybrid spat. DVC mode
Q5 0.2 0.8 1.3 1.7
Q4 1.6 2.9 3.1 4.2
Q3 4.0 6.1 5.8 7.6
Q2 8.0 9.9 9.7 11.5

only the final decoding pass is considered (i.e. when the correct number of
WZ bits is received from the encoder).

Hence, when going from the predictive mode to the DVC mode over the
hybrid modes, the complexity of the decoder is not only increased by motion
estimation, but also by turbo decoding. Taking this into account is part of
future work.

9. Conclusions and future work

In this paper we presented a video codec where motion estimation is
shared flexibly between encoder and decoder. Several modes for coding inter
frames have been defined with different distributions of complexity between
encoder and decoder, and complexity analysis allowed to define a scheme for
choosing which coding modes to use for coding a group of frames. As such,
the video codec is able to adapt to varying complexity constraints imposed
by the encoder as well as by the decoder.

Apart from extending the complexity analysis, future work includes im-
proving the coding efficiency of the different modes. Distributed video cod-
ing systems are still not able to achieve a coding performance comparable to
state-of-the-art video coding with encoder-side motion estimation, such as
H.264/AVC. New insights in the domain of distributed video coding can be
used to improve the hybrid modes as well, by clever partitioning of the motion
estimation performed at the encoder and the motion estimation performed
at the decoder.

Acknowledgements

The research activities that are described in this paper were funded by
Ghent University, the Interdisciplinary Institute for Broadband Technol-
ogy (IBBT), the Institute for the Promotion of Innovation by Science and

30



Technology in Flanders (IWT-Flanders), the Fund for Scientific Research-
Flanders (FWO-Flanders), and the European Union.

References

[1] ITU-T and ISO/IEC, Text of committee draft of Joint Video Specifica-
tion, 2002. ITU-T Recommendation H.264 – ISO/IEC 14496-10 AVC
(MPEG-4 Part 10).

[2] F. Pereira, L. Torres, C. Guillemot, T. Ebrahimi, R. Leonardi, and
S. Klomp, “Distributed Video Coding: Selecting the most promising
application scenarios,” in Signal Processing : Image Communication,
pp. 339–352, 2008.

[3] Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu, “Power-rate-distortion
analysis for wireless video communication under energy constraints,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 15, pp. 645–658, May 2005.

[4] E. Kaminsky, D. Grois, and O. Hadar, “Dynamic computational com-
plexity and bit allocation for optimizing H.264/AVC video compression,”
Journal of Visual Communication and Image Representation, pp. 56–74,
January 2008.

[5] H. Ates, B. Kanberoglu, and Y. Altunbasak, “Rate-distortion and com-
plexity joint optimization for fast motion estimation in H.264 video
coding,” in Proc. IEEE International Conference on Image Processing
(ICIP), pp. 37–40, October 2006.

[6] J. Stottrup-Andersen, S. Forchhammer, and S. Aghito, “Rate-distortion-
complexity optimization of fast motion estimation in H.264/MPEG-4
AVC,” in Proc. IEEE International Conference on Image Processing
(ICIP), vol. 1, pp. 111–114, October 2004.

[7] C. Brites, J. Ascenso, J. Q. Pedro, and F. Pereira, “Evaluating a feed-
back channel based transform domain wyner-ziv video codec,” Signal
Processing: Image Communication, pp. 269–297, 2008.

[8] S. Mys, J. Slowack, J. Škorupa, P. Lambert, and R. Van de Walle,
“Dynamic complexity coding: Combining predictive and Distributed

31



Video Coding,” in Proc. Picture Coding Symposium (PCS), November
2007.

[9] J. Škorupa, S. Mys, J. Slowack, P. Lambert, and R. Van de Walle,
“Heuristic dynamic complexity coding,” in Proc. SPIE, April 2008.

[10] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 471–480, 1973.

[11] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans. Inf. Theory, vol. 22,
no. 1, pp. 1–10, 1976.

[12] R. Puri and K. Ramchandran, “PRISM: A new robust video coding ar-
chitecture based on distributed compression principles,” in Proc. Aller-
ton Conference on Communication, Control and Computing, October
2002.

[13] A. Aaron and B. Girod, “Compression with side information using turbo
codes,” in Proc. IEEE Data Compression Conference (DCC), pp. 252–
261, April 2002.

[14] A. Aaron, S. Rane, E. Setton, and B. Girod, “Transform-domain Wyner-
Ziv codec for video,” in Proc. SPIE Visual Communications and Image
Processing, January 2004.

[15] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov, and M. Ouaret,
“The DISCOVER codec: Architecture, techniques and evaluation,” in
Picture Coding Symposium, 2007.

[16] M. Tagliasacchi, A. Trapanese, S. Tubaro, J. Ascenso, C. Brites, and
F. Pereira, “Exploiting spatial redundancy in pixel domain Wyner-Ziv
video coding,” in Proc. IEEE International Conference on Image Pro-
cessing (ICIP), October 2006.

[17] A. Adikari, W. Fernando, H. Arachchi, and W. Weerakkody, “Wyner-
Ziv coding with temporal and spatial correlations for motion video,”
in Canadian Conference on Electrical and Computer Engineering,
pp. 1188–1191, May 2006.

32



[18] A. Adikari, W. Fernando, H. Arachchi, and W. Weerakkody, “Multiple
side information streams for Distributed Video Coding,” IEEE Electron-
ics Letters, vol. 42, pp. 1447–1449, December 2006.

[19] C. Brites, and F. Pereira, “Correlation noise modeling for efficient pixel
and transform domain Wyner-Ziv video coding,” IEEE Trans. Circuits
Syst. Video Technol., vol. 18, pp. 1177–1190, September 2008.

[20] J. Škorupa, J. Slowack, S. Mys, P. Lambert, and R. Van de Walle, “Ac-
curate Correlation Modeling for Transform-Domain Wyner-Ziv Video
Coding,” in Proc. Pacific-Rim Conference on Multimedia (PCM), pp. 1-
10, December 2008.

[21] J. Slowack, S. Mys, J. Škorupa, P. Lambert, C. Grecos, and R. Van
de Walle, “Accounting for quantization noise in online correlation noise
estimation for Distributed Video Coding,” in Proc. Picture Coding Sym-
posium (PCS), May 2009.

[22] Z. Li, L. Liu, and E. J. Delp, “Rate distortion analysis of motion side
estimation in Wyner-Ziv video coding,” IEEE Transactions on Image
Processing, vol. 16, pp. 98–113, January 2007.

[23] M. Tagliasacchi, L. Frigerio, and S. Tubaro, “Rate-distortion analysis of
motion-compensated interpolation at the decoder in Distributed Video
Coding,” IEEE Signal Processing Letters, vol. 14, pp. 625–628, Septem-
ber 2007.

[24] M. Tagliasacchi and S. Tubaro, “Hash-based motion modeling in Wyner-
Ziv video coding,” in Submitted to IEEE International Conference on
Acoustics Speech and Signal Processing, April 2007.

[25] J. Pedro, C. Brites, J. Ascenso, and F. Pereira, “Studying the feedback
channel in transform domain Wyner-Ziv video coding,” in 6th Confer-
ence on Telecommunications - ConfTele, May 2007.

[26] M. Tagliasacchi, J. Pedro, F. Pereira, and S. Tubaro, “An efficient re-
quest stopping method at the turbo decoder in Distributed Video Cod-
ing,” in EURASIP European Signal Processing Conference, September
2007.

33



[27] Jozef Škorupa and Jürgen Slowack and Stefaan Mys and Peter Lam-
bert and Christos Grecos and Rik Van de Walle, “Stopping criterions
for turbo coding in a Wyner-Ziv video codec,” in Proc. Picture Coding
Symposium (PCS), May 2009.

[28] M. Morbée, J. Prades-Nebot, A. Pizurica, and W. Philips, “Feedback
channel suppression in pixel-domain Distributed Video Coding,” in An-
nual Workshop on Circuits, Systems and Signal Processing (ProRISC),
pp. 154–157, November 2006.

[29] L. Liu and E. J. Delp, “Wyner-Ziv video coding using LDPC codes,”
in Proc. IEEE Nordic Signal Processing Symposium (NORSIG 2006),
June 2006.

[30] A. Aaron, D. Varodayan, and B. Girod, “Wyner-Ziv residual coding of
video,” in Proc. Picture Coding Symposium (PCS), April 2006.

[31] X. Artigas, S. Malinowski, C. Guillemot, and L. Torres, “Overlapped
quasi-arithmetic codes for Distributed Video Coding,” in Proc. IEEE
International Conference on Image Processing (ICIP), September 2007.

[32] R. Bernardini, M. Fumagalli, M. Naccari, R. Rinaldo, M. Tagliasacchi,
S. Tubaro, and P. Zontone, “Error concealment using a dvc approach for
video streaming applications,” in EURASIP European Signal Processing
Conference, September 2007.

[33] P. Baccichet, S. Rane, and B. Girod, “Systematic lossy error protec-
tion based on H.264/AVC redundant slices and flexible macroblock or-
dering,” Journal of Zheijang University, Science A, pp. 727–736, may
2006.

[34] S. Rane and B. Girod, “Analysis of error-resilient video transmission
based on systematic source-channel coding,” in Proc. Picture Coding
Symposium (PCS), December 2004. Invited Paper.

[35] M. Flierl and B. Girod, “Coding of multi-view image sequences with
video sensors,” in IEEE International Conference on Image Processing
(ICIP), October 2006.

[36] F. Yang, Q. Dai, and G. Ding, “Multi-view images coding based on
multiterminal source coding,” in Proc. IEEE International Conference

34



on Acoustics, Speech and Signal Processing (ICASSP), pp. I–1037–I–
1040, April 2007.

[37] I. Tosic and P. Frossard, “Wyner-Ziv coding of multi-view omnidirec-
tional images with overcomplete decompositions,” in IEEE International
Conference on Image Processing (ICIP), September 2007.

[38] D. Mukherjee, “A robust reversed-complexity Wyner-Ziv video codec
introducing sign-modulated codes,” Tech. Rep. HPL-2006-80, HP Lab-
oratories Palo Alto, May 2006.

[39] C. Tonoli, P. Migliorati, and R. Leonardi, “Error resilience in current
distributed video coding architectures,” EURASIP Journal on Image
and Video Processing,vol. 2009, article ID 946585, 2009.

[40] D. Kubasov, J. Nayak, and C. Guillemot, “Optimal reconstruction in
Wyner-Ziv video coding with multiple side information,” in IEEE Mul-
tiMedia Signal Processing Workshop, October 2007.

[41] E. Brockmeyer, L. Nachtergaele, F. V. M. Catthoor, J. Bormans, and
H. J. De Man, “Low Power Memory Storage and Transfer Organization
for the MPEG-4 Full Pel Motion Estimation on a Multimedia Proces-
sor,” IEEE Transactions on Multimedia, vol. 1, No. 2, June 1999.

[42] www.discoverdvc.org

35


	referentie_Biblio.pdf
	article.pdf

