

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all

UGent research publications. Ghent University has implemented a mandate stipulating that all

academic publications of UGent researchers should be deposited and archived in this repository.

Except for items where current copyright restrictions apply, these papers are available in Open

Access.

This item is the archived peer-reviewed author-version of:

Format-independent and metadata-driven media resource adaptation using semantic web

technologies

Davy Van Deursen, Wim Van Lancker, Sarah De Bruyne, Wesley De Neve, Erik Mannens, and

Rik Van de Walle

In: Multimedia Systems, Volume 16, Number 2, March, 2010

http://www.springerlink.com/content/20434747039865n5/

To refer to or to cite this work, please use the citation to the published version:

D. Van Deursen, W. Van Lancker, S. De Bruyne, W. De Neve, E. Mannens, and R. Van de

Walle (2010). Format-independent and metadata-driven media resource adaptation using

semantic web technologies. Multimedia Systems 16(2) pp. 85-104. 10.1007/s00530-009-

0178-9

http://www.springerlink.com/content/20434747039865n5/

Noname manuscript No.
(will be inserted by the editor)

Format-independent and Metadata-driven Media
Resource Adaptation using Semantic Web Technologies

Davy Van Deursen · Wim Van Lancker · Sarah De Bruyne ·
Wesley De Neve · Erik Mannens · Rik Van de Walle

Received: date / Accepted: date

Abstract Adaptation of media resources is an emerg-

ing field due to the growing amount of multimedia con-

tent on the one hand and an increasing diversity in us-

age environments on the other hand. Furthermore, to

deal with a plethora of coding and metadata formats,

format-independent adaptation systems are important.

In this paper, we present a new format-independent

adaptation system. The proposed adaptation system re-

lies on a model that takes into account the structural

metadata, semantic metadata, and scalability informa-

tion of media bitstreams. The model is implemented

using the Web Ontology Language (OWL). Existing

coding formats are mapped to the structural part of the

model, while existing metadata standards can be linked

to the semantic part of the model. Our new adaptation

technique, which is called RDF-driven content adapta-

tion, is based on executing SPARQL Protocol And RDF

Query Language (SPARQL) queries over instances of

the model for media bitstreams. Using different cri-

teria, RDF-driven content adaptation is compared to

other adaptation techniques. Next to real-time execu-

tion times, RDF-driven content adaptation provides a

high abstraction level for the definition of adaptations

and allows a seamless integration with existing seman-

tic metadata standards.

D. Van Deursen ·W. Van Lancker · S. De Bruyne ·W. De Neve ·
E. Mannens · R. Van de Walle

Multimedia Lab, Departement of Electronics and Information

Systems
Ghent University – IBBT, Belgium

Gaston Crommenlaan 8, bus 201

B-9050 Ledeberg-Ghent, Belgium
Tel.: +32-9-33-14893

Fax: +32-9-33-14896

E-mail: {davy.vandeursen, wim.vanlancker, sarah.debruyne,
erik.mannens, rik.vandewalle}@ugent.be, wmdeneve@icu.ac.kr

Keywords Format-independency · Media content

adaptation · Multimedia model · Semantic Web

technologies

1 Introduction

The efficient delivery of multimedia content in today’s

world of ubiquitous multimedia consumption is an im-

portant technological challenge, due to the growth in

multimedia content on the one hand and an increas-

ing diversity in usage environments on the other hand

(e.g., in terms of device characteristics or network tech-

nologies). Therefore, the delivery of multimedia content

needs to occur in a transparent way in order to obtain

Universal Multimedia Access (UMA, [32]).

Multimedia content customization is an emerging

field due to the UMA paradigm. A multimedia content

customization system tries to meet the user needs by

customizing the content based on the usage environ-

ment and user preferences. To take into account the

restrictions of the usage environment, a wide variety

of multimedia customization approaches are available,

as described by Magalhães et al. in [18]. Basically, two

major approaches exist to perform multimedia content

customization:

– Content selection: corresponds to the identification

of the most adequate media bitstream from those

available to be sent to the end-user. Examples of

multimedia content selection technologies are Re-

alNetworks’ SureStream, Multiple Bit Rate (MBR)

profile used in the Windows Media Series, and the

alternative track selection mechanism used in Quick-

time. Further, the Synchronized Multimedia Inte-

gration Language (SMIL, [3]) provides support for

2

content selection based on the properties of the us-

age environment (e.g., language, device characteris-

tics, or available bandwidth).

– Content adaptation: tries to meet the constraints

of a usage environment by performing structural

adaptations (i.e., creating tailored versions of the

content) and semantic adaptations (i.e., extracting

specific fragments that are of interest to the user).

Three approaches can be distinguished:

– Transcoding: customizes multimedia content by

performing one ore more operations on the com-

pressed media bitstream, typically using signal-

processing techniques;

– Scalable coding: enables the extraction of multi-

ple (lower quality) versions of the same media

resource without the need of a complete recod-

ing process (examples of scalable coding formats

are H.264/AVC SVC and JPEG2000) [22];

– Transmoding: performs a modality transforma-

tion, for instance when the usage environment

conditions do not allow to consume the multi-

media content with its original media types.

In this paper, we introduce a novel media resource

customization method which primarily relies on scal-

able coding formats, but which also provides support

for content selection. Advantages of scalable coding are

the higher coding efficiency and a higher flexibility in

terms of the number of possible tailored versions of a

media resource. Advantages of content selection are the

lower complexity to create media resources and the pos-

sibility to switch between coding formats or even be-

tween media types (e.g., video or slideshow). Although

both scalable coding and content selection have their

pro’s and contra’s, they can be used as complementary

media customization techniques. More specifically, con-

tent selection could be applied first to obtain a version

of a media resource that is roughly suited for the us-

age environment. Next, scalability layers of the selected

media resource could be removed and semantic adap-

tations could be applied so that the resulting tailored

media resource is better suited for the targeted usage

environment.

Over the last few years, the number of multime-

dia coding standards has grown significantly. In order

to deal with current and future multimedia coding for-

mats, format-independent adaptation systems are im-

portant. In this paper, we present a new method for

the adaptation of media resources in a format-indepen-

dent way, called RDF-driven content adaptation. It is

inspired by the principles of XML-driven content adap-

tation techniques [1], while its final design is based on

a model describing structural, semantic, and scalabil-

ity information of media bitstreams. Existing coding

XML
generation

<Bitstream>
 <Picture start="0" length="10"/>
 <Picture start="10" length="15"/>
 <Picture start="25" length="9"/>
 <Picture start="34" length="6"/>
 <Picture start="40" length="10"/>
</Bitstream>

Bitstream
generation

XML
transformation

Transformed XML

XML description
Original media bitstream

<Bitstream>
 <Picture start="0" length="10"/>
 <Picture start="25" length="9"/>
 <Picture start="40" length="10"/>
</Bitstream>

Adapted media bitstream

Fig. 1 Performing video frame rate reduction using XML-driven

content adaptation.

and metadata formats are mapped to this model in

order to be supported. Hence, adaptation operations

(e.g., frame rate scaling or scene selection) can be ex-

pressed and implemented based on this model, in a

way that is independent of the underlying coding for-

mat. Instead of using XML, Semantic Web technologies

such as the Resource Description Framework (RDF,

[16]), the Web Ontology Language (OWL, [19]), and the

SPARQL Protocol And RDF Query Language (SPARQL,

[24]) are used to implement our adaptation technique.

This way, the interoperability between different meta-

data standards can be enhanced thanks to a more nat-

ural representation of objects and relationships, as re-

ported by the W3C Multimedia Semantics Incubator

Group (MMSem, [33]).

2 XML-driven Content Adaptation: Concepts

and Issues

In this section, the basic principles of XML-driven con-

tent adaptation are explained, together with its main

weaknesses.

2.1 XML-driven Content Adaptation

A format-agnostic adaptation framework can be real-

ized by relying on automatically generated XML de-

scriptions, called Bitstream Syntax Descriptions (BSDs).

These descriptions contain information about the high-

level structure of a media bitstream. The actual adap-

tation occurs in the XML domain, rather than in the

binary domain.

2.1.1 General Functioning

As shown in Fig. 1, an XML-driven content adaptation

framework typically consists of three main processes:

3

the generation of an XML description, the transfor-

mation of the XML description, and the creation of

an adapted bitstream using the transformed XML de-

scription. Such an XML description contains informa-

tion about the high-level structure of a compressed bit-

stream and is used to steer the adaptation process. In

particular, it describes how the bitstream is organized

in terms of layers or packets of data. Note that such

an XML description is not meant to replace the orig-

inal binary data; it rather acts as an additional layer

on top of the binary data, similar to metadata. Hence,

in the remainder of this paper, information regarding

the high-level structure of a compressed bitstream is

referred to as structural metadata.

The actual adaptation takes place in the XML do-

main during the transformation of the XML descrip-

tion (e.g., by dropping descriptions of layers or pack-

ets). This transformation process takes into account the

constraints of a given usage environment (e.g., avail-

able bandwidth and screen resolution). Thanks to the

use of XML, many already existing XML transforma-

tion tools can be used, such as eXtensible Stylesheet

Language Transformations (XSLT, [15]) or Streaming

Transformations for XML (STX, [5]).

The translation from the XML domain back to the

binary domain occurs in the last step, i.e., the creation

of the adapted bitstream. This process takes as input

the transformed XML description and the original bit-

stream in order to produce an adapted bitstream, which

is then suited for consumption in a given usage environ-

ment.

Using high-level XML descriptions for adapting mul-

timedia content enables the use of format-agnostic soft-

ware modules within an adaptation framework. Hence,

the software supports future coding formats without

having to be rewritten, is suited for hardware imple-

mentations, and can be used for the adaptation of still

images, audio, and video bitstreams.

2.1.2 Existing Technologies

In recent years, a number of XML-driven content adap-

tation technologies have been developed.

– The MPEG-21 Multimedia Framework [4] aims at

realizing the ‘big picture’ in the multimedia produc-

tion, delivery, and consumption chain. One impor-

tant part of the framework, Digital Item Adaptation

(DIA, [14]), provides several tools that can be used

for creating an interoperable and XML-driven adap-

tation framework: the Bitstream Syntax Description

Language (BSDL) and the generic Bitstream Syn-

tax Schema (gBS Schema, [29]).

– The Formal Language for Audio-Visual Object Rep-

resentation, extended with XML features (XFlavor,

[12]) is a declarative Java-like language. This tool

provides means for describing the syntax of a bit-

stream on a bit-per-bit basis. It enables the auto-

matic generation of a parser that is able to generate

an XML description for a given bitstream of a spe-

cific format.

2.1.3 Target Applications

The main application for XML-driven adaptation is the

exploitation of scalability in media bitstreams. As dis-

cussed in Sect. 1, scalable coding is an important tool to

realize a UMA environment. It enables the extraction of

multiple (lower quality) versions of the same media re-

source without the need of a complete recoding process.

The bitstream extraction process typically involves the

removal of particular data blocks and the modification

of the value of certain syntax elements. Such operations

can easily be executed using XML-driven adaptation.

Next to the exploitation of scalability, a number of

other applications can also make use of descriptions of

the high-level structure of a media bitstream.

– Adaptations based on semantic information about

the multimedia content: examples are the removal

of violent scenes or the selection of specific segments

that are of interest to the user. Hence, applications

such as video summarization, video skimming, and

scene selection are possible with XML-driven adap-

tation.

– Format-independent delivery of multimedia content:

streaming servers do no longer require additional

software modules for packetization purposes in or-

der to support new coding formats [27].

2.2 Problems with XML-based Format-independent

Adaptation Systems

Current content adaptation systems based on XML de-

scriptions of the high-level structure of media bitstreams

enable the use of format-independent engines. However,

a number of issues can still be identified:

– creators of XML filters have to implement low-level,

coding-format dependent algorithms that are needed

to obtain format-independent adaptation operations;

– the integration of semantic adaptation operations

and semantic metadata standards is realized in an

ad-hoc way.

We will illustrate these problems by means of simple

examples. Suppose we have video content encoded by

4

making use of MPEG-2 Video and H.264/AVC. A BSD

is created using BSDL for both sequences, as shown in

Fig. 2. Now suppose that we want to express the adap-

tation operation ‘remove the highest temporal layer’,

which will result in a decrease of the frame rate. In

Fig. 2, workflow diagrams are shown that correspond to

XML filters expressing the adaptation operation. Note

that for the H.264/AVC example, a simplified algorithm

is given; more information on the exploitation of tem-

poral scalability in H.264/AVC can be found in [8].

The actual adaptation engines in an XML-driven

content adaptation system are format-independent, while

the descriptions themselves are format-specific. Hence,

an XML filter implementing a particular adaptation op-

eration (e.g., removal of temporal layers in a scalable

video stream) needs to know the structure of these de-

scriptions, and is thus dependent on the coding format.

Therefore, multiple format-dependent XML filters need

to be created to implement the same adaptation oper-

ation for different formats, as illustrated in Fig. 2. The

functionality of these XML filters is the same: calcu-

late the temporal level for each video frame and decide

whether the frame should be dropped or not. However,

the calculation of the temporal levels is format-specific

and should therefore occur in the BSD generation step.

This allows making the XML filter independent of the

coding format and also avoids having to execute the

same calculations for each adaptation request.

The same observation can be made for semantic

adaptation operations, which typically express a selec-

tion of media fragments based on semantic metadata

(e.g., selection of sport fragments in a news sequence).

Semantic metadata are often linked to the multime-

dia content by means of timestamps, whereas structural

metadata use bit offsets. Therefore, a mapping between

the timestamp values of the semantic metadata and the

bit offsets of the structural metadata needs to be imple-

mented in the XML filter. Such a mapping is dependent

on the underlying coding format and should be avoided

during the BSD transformation step.

Hence, despite the use of an abstraction layer (i.e.,

a BSD) within XML-driven content adaptation, the

adaptation operations themselves are not abstracted.

More specifically, compared to format-specific adapta-

tion software, the format-dependency is shifted from

the software to the XML filters. Creators of these XML

filters cannot think in terms of high-level and format-in-

dependent adaptations but have to be aware of the un-

derlying coding formats. Hence, with the current XML-

driven approach, format-independency is obtained in an

ad-hoc manner.

The second problem regarding the integration of se-

mantic adaptation operations and semantic metadata

BSDL /
H.264/AVC

BSDL /
MPEG-2 Video

gBS Schema /
H.264/AVC

gBS Schema /
MPEG-2 Video

Exploitation of
temporal
scalability

Scene selection
using MPEG-7

metadata

Scene selection
using TV-Anytime

metadata

= XML filter

<H264AVC_bitstream>
<!-- ... -->
<bsnu>

<zero_byte>00</zero_byte>
<startcode>000001</startcode>
<nalu>

<fzb>0</fzb>
<nal_ref_idc>3</nal_ref_idc>
<nalu_type>7</nalu_type>
<raw_byte_sequence_payload>

<!-- slice header elements -->
 </raw_byte_sequence_payload>

</nalu>
</bsnu>
<!-- ... -->

</H264AVC_bitstream>

<MPEG2Video_bitstream>
<!-- ... -->
<GOP>

<GOP_header>
<!-- ... -->

</GOP_header>
<picture>

<picture_header>
<start>00000100</start>
<temp_ref>0</temp_ref>
<pict_type>1</pict_type>
<!-- ... -->

</picture_header>
<!-- ... -->

</picture>
<!-- ... -->

</GOP>
<!-- ... -->

</MPEG2Video_bitstream>

Match
picture

yes

pict_type == 3

Drop the
picture

Keep the
picture

no

Match
bsnu

yes

nal_ref_idc == 0 &&
(slice_type == 1 or 6)

Drop the
bsnu

Keep the
bsnu

no

BSDL / H.264/AVC

BSDL / MPEG-2 Video

Structural metadata Remove highest temporal layer

Structural metadata Remove highest temporal layer

<MediaBitstream>
<!-- ... -->
<DataBlock>

<start>5</start>
<length>85</length>
<scal_info>

<temp_level>2</temp_level>
</scal_info>

</DataBlock>
<!-- ... -->

</MediaBitstream>

Model for media streams Match
DataBlock

yes

temp_level == 2

Drop the
DataBlock

Keep the
DataBlock

no

Fig. 2 Implementing temporal scalability using XML-driven
content adaptation.

standards is related to the interoperability issues of

XML [33,9]. Metadata formats typically consist of an

XML Schema accompanied with plain text (e.g., MPEG-

7). The text usually describes the semantic meaning of

the XML tags specified in the XML Schema. The role

of XML Schema is to define a grammar for XML doc-

uments. However, when it comes to semantic interop-

erability and making data understandable, XML has

disadvantages. XML’s major limitation is that it only

describes grammars. It is impossible to recognize a se-

mantic unit from a particular domain because XML

aims at document structure and imposes no common

interpretation of the data contained in the document

[9]. For instance, taking into account different metadata

standards, the same tags can have a different meaning

while tags with the same meaning can occur in differ-

ent structures. Hence, expressing the semantic adap-

tation operation ‘select sport fragments’ in a scenario

where two different semantic metadata standards are

used (e.g., annotations are provided in both MPEG-7

and TV-Anytime), requires the development of two dif-

ferent XML filters (i.e., one that can interpret MPEG-7

and one that can interpret TV-Anytime). Note that the

previous observation also holds true for different struc-

5

BSDL /
H.264/AVC

BSDL /
MPEG-2 Video

gBS Schema /
H.264/AVC

gBS Schema /
MPEG-2 Video

Exploitation of
temporal
scalability

Scene selection
using MPEG-7

metadata

Scene selection
using TV-Anytime

metadata

= XML filter

Fig. 3 Problems with XML-driven content adaptation.

tural metadata standards. Examples of standardized so-

lutions for expressing structural metadata are BSDL

and gBS Schema; however, other representations such

as XFlavor are also possible. It is obvious that XML fil-

ters are also dependent on the technology used for the

representation of structural metadata.

Both problems are also illustrated in Fig. 3, where

video content is encoded by making use of MPEG-2

Video and H.264/AVC. Furthermore, semantic meta-

data regarding the different scenes in the video is avail-

able in both MPEG-7 and TV-Anytime. Finally, meta-

data regarding the high-level structure of the encoded

video bitstreams is provided by descriptions compliant

with both BSDL and gBS Schema. As can be seen in

this figure, XML filters performing the XML transfor-

mation step (discussed in Sect. 2.1.1) are depending

on the coding format (i.e., H.264/AVC and MPEG-2

Video), the metadata format of the structural meta-

data (i.e., BSDL and gBS Schema), and the metadata

format of the semantic metadata (i.e., MPEG-7 and

TV-Anytime).

Next to the two problems mentioned above, there is

also the problem of XML verbosity. XML descriptions

of the high-level structure of media bitstreams tend to

become verbose [10]. It is possible to efficiently com-

press the XML descriptions, but no generic solution

exists to perform the transformation of the XML de-

scription in the compressed domain, despite a number

of efforts being made in the past [28,31].

3 Modeling Media Bitstreams

In order to solve the problems discussed in Sect. 2.2

(i.e., format-specific XML filters and an ad-hoc inte-

gration of semantic adaptation operations and semantic

metadata standards), we propose the following solution.

As mentioned in Sect. 2.2, XML filters are dependent

on the underlying coding format because the descrip-

BSDL /
H.264/AVC

BSDL /
MPEG-2 Video

gBS Schema /
H.264/AVC

gBS Schema /
MPEG-2 Video

Exploitation of
temporal
scalability

Scene selection
using MPEG-7

metadata

Scene selection
using TV-Anytime

metadata

= XML filter

<H264AVC_bitstream>
<!-- ... -->
<bsnu>

<zero_byte>00</zero_byte>
<startcode>000001</startcode>
<nalu>

<fzb>0</fzb>
<nal_ref_idc>3</nal_ref_idc>
<nalu_type>7</nalu_type>
<raw_byte_sequence_payload>

<!-- slice header elements -->
 </raw_byte_sequence_payload>

</nalu>
</bsnu>
<!-- ... -->

</H264AVC_bitstream>

<MPEG2Video_bitstream>
<!-- ... -->
<GOP>

<GOP_header>
<!-- ... -->

</GOP_header>
<picture>

<picture_header>
<start>00000100</start>
<temp_ref>0</temp_ref>
<pict_type>1</pict_type>
<!-- ... -->

</picture_header>
<!-- ... -->

</picture>
<!-- ... -->

</GOP>
<!-- ... -->

</MPEG2Video_bitstream>

Match
picture

yes

pict_type == 3

Drop the
picture

Keep the
picture

no

Match
bsnu

yes

nal_ref_idc == 0 &&
(slice_type == 1 or 6)

Drop the
bsnu

Keep the
bsnu

no

BSDL / H.264/AVC

BSDL / MPEG-2 Video

Structural metadata Remove highest temporal layer

Structural metadata Remove highest temporal layer

<MediaBitstream>
<!-- ... -->
<DataBlock>

<start>5</start>
<length>85</length>
<scal_info>

<temp_level>2</temp_level>
</scal_info>

</DataBlock>
<!-- ... -->

</MediaBitstream>

Model for media streams Match
DataBlock

yes

temp_level == 2

Drop the
DataBlock

Keep the
DataBlock

no

Fig. 4 Expressing adaptation operations on top of format-

independent BSDs.

tions of the high-level structure of media bitstreams are

format dependent. As such, despite the fact that the

underlying adaptation engines are independent of the

coding format, the actual transformation logic is not.

Therefore, the transformations of the structural meta-

data should be shifted to a higher level. This can only

be realized if format-specific calculations (e.g., calcula-

tion of temporal levels or calculation of a timestamp

for a particular frame) can be avoided during the BSD

transformation step. Hence, we propose to shift these

format-specific calculations from the BSD transforma-

tion step to the BSD generation step. As a result, we

are able to obtain a fully format-independent BSD that

enables the expression of high-level adaptation opera-

tions (an example can be found in Fig. 4). We have de-

fined the structure and semantics of such a fully format-

independent BSD in the form of a model for media bit-

streams. That way, the adaptation operations can be

formulated in terms of transformations based on the

model; hence they are shifted to a higher level, inde-

pendent of the coding format. Our model for media

bitstreams is based on previous work regarding the def-

inition and implementation of a model for media bit-

streams [17,21,30]. However, the latter only provides

support for high-level structural adaptations and uses

XML as underlying technology.

To obtain a seamless integration between seman-

tic adaptation operations and semantic metadata stan-

dards, our model for media bitstreams needs to support

semantic adaptation operations. More specifically, it

has to enable the extraction of specific media fragments

from a media bitstream, independent of the coding for-

mat. Furthermore, the model has to provide hooks to

connect to existing semantic metadata standards. That

way, semantic adaptation operations can be expressed

by using concepts defined in existing semantic metadata

standards.

We have avoided XML Schema to describe our model

because the use of XML as underlying technology causes

interoperability problems between different metadata

6

standards, as discussed in Sect. 2.2. In contrast to XML,

Semantic Web technologies such as RDF and OWL en-

hance the interoperability among metadata standards

for multimedia content [33]. Therefore, our model for

media bitstreams is implemented by using OWL. The

instances of the model (i.e., the structural metadata or

BSDs) are expressed in RDF. The transformation of the

structural metadata is implemented by using SPARQL

queries, which are independent of the coding format.

3.1 Model for Media Bitstreams

As elaborated on above, a model for media bitstreams

is needed in order to abstract the transformation of the

structural metadata. In this section, we present such

a model covering structural, semantic, and scalability

information. As discussed above, we implemented the

model by using OWL. In Fig. 5, an overview is given

of the model. More detailed views on this model are

provided in the next subsections. Note that for figures

visualizing (parts of) the multimedia model, ellipses,

rectangles, and arrows represent OWL classes, literals,

and properties respectively.

3.1.1 Structural Metadata

The modeling of the high-level structure of a media

bitstream is shown in Fig. 6. The MediaBitstream class

corresponds to a particular compressed, elementary me-

dia bitstream. It contains a name and a description of

the underlying codec (e.g., H.264/AVC), i.e., the codec

property. Furthermore, it contains a reference to the

location of the media bitstream by means of the bit-

streamSource property.

A MediaBitstream consists of a number of Random-

AccessUnits. Random access refers to the ability of the

decoder to start decoding at a point in a compressed

media bitstream other than at the beginning and to re-

cover an exact representation of the decoded bitstream

[6,11]. A RandomAccessUnit contains a number of suc-

cessive DataBlocks, pointing to particular segments in

the media bitstream. More detailed information regard-

ing the modeling of DataBlocks is provided in Sect. 3.1.3.

The property hasStructure, which is used to con-

nect the classes in the structural metadata, is a tran-

sitive property. This means that if a pair (x, y) is an

instance of hasStructure, and the pair (y, z) is also an

instance of hasStructure, then we can infer that the pair

(x, z) is also an instance of hasStructure. Additionally,

it is possible that a MediaBitstream has DataBlocks not

occurring in RandomAccessUnits (e.g., a Sequence Pa-

rameter Set (SPS) in H.264/AVC).

Media
Bitstream

Random
Access

Unit

Datablock

hasStructure

hasStructure

bitstreamSource

name

codec

string

anyURI

string Media
Bitstream

Annotated
Multimedia

Random
Access

Unit

Temporal
Segment

hasStructure

isRepresentedBy

hasTemporalSegment

has
Temporal
Segment

hasBitstreamData

description

name

string

string

keyword

string

Multimedia
Bitstream

Scalability
Axis

Feature
Value

Feature has
Feature

hasFeatureValue

Scalability
AxisInfo

has
Scalability

Info

constrains

has
Value

name

string

typestring

name
string

nlevels
integer

levelinteger

Random
Access

Unit

Datablock Truncatable
Payload

StuffingBits

Syntax
Element

hasStructure

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

value integer
length start

long long

Scalability
AxisInfo

has
Scalability

Info

boundTo

nbytes integer

start time

duration

duration

hasStructure

Fig. 6 Model for the structural metadata.

Media
Bitstream

Random
Access

Unit

Datablock

hasStructure

hasStructure

bitstreamSource

name

codec

string

anyURI

string Media
Bitstream

Annotated
Multimedia

Random
Access

Unit

Temporal
Segment

hasStructure

isRepresentedBy

hasTemporalSegment

has
Temporal
Segment

hasBitstreamData

description

name

string

string

keyword

string

Media
Bitstream

Scalability
Axis

Feature
Value

Feature has
Feature

hasFeatureValue

Scalability
AxisInfo

has
Scalability

Info

constrains

has
Value

name

string

typestring

name
string

nlevels
integer

levelinteger

Random
Access

Unit

Datablock Truncatable
Payload

StuffingBits

Syntax
Element

hasStructure

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

value integer
length start

long long

Scalability
AxisInfo

has
Scalability

Info

boundTo

nbytes integer

start time

duration

duration

hasStructure

Fig. 7 Model for the scalability information.

3.1.2 Scalability Information

The scalability information part of the model provides

information regarding properties of the media bitstream

that are related to possible adaptation operations. It en-

ables the declaration of what types of adaptations may

or should be applied to the media bitstream in order

to optimally fit a given context [20]. The modeling of

the scalability information is depicted in Fig. 7. A Me-

diaBitstream contains a number of Features, each con-

taining a name and a type. An example of a feature is

‘frame rate’, having as type ‘fps’. Each Feature contains

one ore more FeatureValues. Futhermore, a Feature can

be bound to one or more ScalabilityAxes containing a

name and an amount of levels (e.g., a temporal scalabil-

ity axis containing four levels). A FeatureValue can be

linked to a ScalabilityAxisInfo class, which provides in-

formation regarding the relationship between the scala-

bility axes and the feature values. This is established by

constraining a ScalabilityAxis by means of a level (e.g.,

15 fps corresponds to the second level of the temporal

scalability axis).

7

Media
Bitstream

Annotated
Multimedia

Random
Access

Unit

Datablock

Scalability
Axis

Scalability
AxisInfo

Feature
Value

Temporal
Segment

Feature

Truncatable
Payload

StuffingBits

Syntax
Element

hasStructure

hasStructure

hasTemporalSegment

hasTemporal
Segment

hasBitstreamData

hasFeature

boundTo
hasFeatureValue

hasScalabilityInfo

hasScalabilityInfo

constrains

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

hasStructure

isRepresentedBy

Fig. 5 Overview of the multimedia model.

3.1.3 Data Blocks

As already mentioned above, DataBlocks point to par-

ticular segments in the media bitstream. In Fig. 8, the

modeling of a data block is shown in detail. A Data-

Block is always characterized by two properties: the

start and length of the datablock in terms of bits. Ad-

ditionally, a datablock can contain ScalabilityAxisInfo

(see Sect. 3.1.2), indicating to which scalability layers

the data block belongs.

Three possible subclasses exist for a DataBlock.

– TruncatablePayload: points to a bitstream segment

that can be truncated by a number of bytes, some-

thing that typically occurs within bitstreams en-

coded with Fine Granularity Scalability (FGS) tech-

niques.

– StuffingBits: allow to write padding bits to the out-

put bitstream until it is byte-aligned. The prop-

erty nbytes determines on how many bytes the bit-

stream is aligned. E.g., if nbytes is equal to four, then

padding bits are added until the output bitstream

is aligned on four bytes.

– SyntaxElement: represents a specific syntax element

of the media bitstream. The value property indicates

the value of the syntax element, i.e., the decimal rep-

resentation of the bits covered by the syntax element

(specified by the start and length property).

3.1.4 Semantic Metadata

A MediaBitstream can be annotated by means of Anno-

tatedMultimedia, which contains a semantic description

Multimedia
Bitstream

Random
Access

Unit

Datablock

hasStructure

hasStructure

bitstreamSource

name

codec

string

anyURI

string Multimedia
Bitstream

Annotated
Multimedia

Random
Access

Unit

Temporal
Segment

hasStructure

isRepresentedBy

hasTemporalSegment

has
Temporal
Segment

hasBitstreamData

description

name

string

string

keyword

string

Multimedia
Bitstream

Scalability
Axis

Feature
Value

Feature has
Feature

hasFeatureValue

Scalability
AxisInfo

has
Scalability

Info

constraints

has
Value

name

string

typestring

name
string

nlevels
integer

levelinteger

Random
Access

Unit

Datablock Truncatable
Payload

StuffingBits

Syntax
Element

hasStructure

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

value integer
length start

long long

Scalability
AxisInfo

has
Scalability

Info

boundTo

nbytes integer

start time

duration

duration

hasStructure

Fig. 8 Model for a data block.

of the content of the MediaBitstream. The semantic

metadata model is depicted in Fig. 9. AnnotatedMulti-

media consists of a number of TemporalSegments, each

pointing to a specific segment of the multimedia content

by means of a start and duration property. A Temporal-

Segment can in its turn contain a number of other Tem-

poralSegments, allowing to model a hierarchy of Tem-

poralSegments. Furthermore, a TemporalSegment has a

keyword property, allowing a simple annotation of the

multimedia content by means of keywords (i.e., a form

of tagging). More complicated semantic descriptions of

TemporalSegments can be obtained by linking existing

ontologies to our semantic metadata model. More in-

formation regarding the linking of other ontologies to

our multimedia model is provided in Sect. 3.2.2.

The connection between the media bitstream and

the TemporalSegments is established by means of the

hasBitstreamData property. Each RandomAccessUnit of

a media bitstream can belong to one or more Tempo-

ralSegments. This way, the TemporalSegments are con-

nected to the bits of particular media bitstreams. Note

8

Media
Bitstream

Random
Access

Unit

Datablock

hasStructure

hasStructure

bitstreamSource

name

codec

string

anyURI

string Media
Bitstream

Annotated
Multimedia

Random
Access

Unit

Temporal
Segment

hasStructure

isRepresentedBy

hasTemporalSegment

has
Temporal
Segment

hasBitstreamData

description

name

string

string

keyword

string

Multimedia
Bitstream

Scalability
Axis

Feature
Value

Feature has
Feature

hasFeatureValue

Scalability
AxisInfo

has
Scalability

Info

constrains

has
Value

name

string

typestring

name
string

nlevels
integer

levelinteger

Random
Access

Unit

Datablock Truncatable
Payload

StuffingBits

Syntax
Element

hasStructure

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

value integer
length start

long long

Scalability
AxisInfo

has
Scalability

Info

boundTo

nbytes integer

start time

duration

duration

hasStructure

Fig. 9 Model for the semantic metadata.

MediaBitstream_0

IDR sliceSPS PPS P slice B slice B slice B slice

RAU_0

DB_3DB_0 DB_1 DB_2 DB_4 DB_5 DB_6

: hasStructure

ScalabilityAxisInfo_0 ScalabilityAxisInfo_1 ScalabilityAxisInfo_2

ScalabilityAxis_0

name

Temporal

nlevels

3

constrains constrains constrains
level

0

level
1

level

2

: hasScalabilityInfo

MediaBitstream_0

hasFeature

: hasFeatureValue

ScalabilityAxisInfo_0 ScalabilityAxisInfo_1 ScalabilityAxisInfo_2

ScalabilityAxis_0

name

Temporal

nlevels

3

constrains constrains constrains
level

0

level
1

level

2

: hasScalabilityInfo

Feature_0

FeatureValue_0 FeatureValue_1 FeatureValue_2

hasValue

25

hasValue

12.5

hasValue

6.25

name

frame
rate

type fps

boundTo

Fig. 10 Describing an H.264/AVC bitstream with the multime-

dia model.

that AnnotatedMultimedia points to the multimedia con-

tent by means of timestamps, independently of the cod-

ing format, while a MediaBitstream points to specific
bitstream segments in terms of bits.

Furthermore, since different MediaBitstreams can be

linked to one AnnotatedMultimedia, the model for me-

dia bitstreams provides support for multimedia content

selection (see Sect. 1). Indeed, it is possible to relate

multiple MediaBitstream instances (each corresponding

to a different version in terms of coding format, bit rate,

etc.) to one AnnotatedMultimedia instance.

3.2 The Multimedia Model in Practice

In this section, the relationship between the multimedia

model presented in Sect. 3.1 and existing coding and

metadata formats is illustrated.

3.2.1 Mapping H.264/AVC to the Multimedia Model

Existing multimedia coding formats need to be mapped

to the model defined in Sect. 3.1. As an example, we

MediaBitstream_0

IDR sliceSPS PPS P slice B slice B slice B slice

RAU_0

DB_3DB_0 DB_1 DB_2 DB_4 DB_5 DB_6

: hasStructure

ScalabilityAxisInfo_0 ScalabilityAxisInfo_1 ScalabilityAxisInfo_2

ScalabilityAxis_0

name

Temporal

nlevels

3

constrains constrains constrains
level

0

level
1

level

2

: hasScalabilityInfo

MediaBitstream_0

hasFeature

: hasFeatureValue

ScalabilityAxisInfo_0 ScalabilityAxisInfo_1 ScalabilityAxisInfo_2

ScalabilityAxis_0

name

Temporal

nlevels

3

constrains constrains constrains
level

0

level
1

level

2

: hasScalabilityInfo

Feature_0

FeatureValue_0 FeatureValue_1 FeatureValue_2

hasValue

25

hasValue

12.5

hasValue

6.25

name

frame
rate

type fps

boundTo

Fig. 11 Describing scalability information of an H.264/AVC bit-
stream with the multimedia model.

map the H.264/AVC coding format to the model. Fig. 10

provides a visual representation of the mapping of an

H.264/AVC encoded bitstream to the multimedia model.

Note that an excerpt of the resulting RDF triples is

shown in Fig. 12.

An H.264/AVC encoded bitstream is a succession of

Network Abstraction Layer Units (NALUs). Different

NALU types exist: a Sequence Parameter Set (SPS),

which contains information related to the whole se-

quence; a Picture Parameter Set (PPS), which contains

information related to a set of pictures; and a slice layer,

which contains the actual encoded data such as the mo-

tion vectors and the residual data.

As shown in Fig. 10, when mapping an H.264/AVC

encoded bitstream to the multimedia model, each NALU

is mapped to a DataBlock. The SPS and PPS Data-

Blocks are directly connected to the MediaBitstream.

Furthermore, the Instantaneous Decoding Refresh (IDR)

slices indicate the start of a new RandomAccessUnit.

Slice DataBlocks are provided with ScalabilityInfo

indicating in which scalability layer the data block is

located. In this case, only one ScalabilityAxis is present,

i.e., the temporal scalability axis containing three lev-

els. Since the example H.264/AVC bitstream is encoded

using hierarchical B-pictures, the first B-picture is lo-

cated in the second temporal layer, while the other two

B-pictures are located in the third temporal layer. I-

and P-pictures are located in the first temporal layer

[8].

Fig. 11 illustrates the description of the features of

the bitstream. For instance, a feature in this example is

‘frame rate’ with possible FeatureValues 6.25, 12.5, and

9

1 <rdf:RDF xmlns:rdfs="http ://www.w3.org /2000/01/ rdf -schema #"
xmlns:mmm="http ://www.foo.be/multimedia_model.owl#"
xmlns:xsd="http ://www.w3.org /2001/ XMLSchema #"
xmlns:owl="http ://www.w3.org /2002/07/ owl#"

5 xmlns:rdf="http ://www.w3.org /1999/02/22 -rdf -syntax -ns#"
>
<mmm:MediaBitstream rdf:about ="http ://www.foo.be/soccer.rdf#mb">

<mmm:bitstreamSource rdf:resource ="http ://www.foo.be/soccer .264"/ >
<mmm:hasFeature rdf:resource ="http ://www.foo.be/soccer.rdf#feat_frame -rate"/>

10 <mmm:codec >H.264/AVC </mmm:codec >
<mmm:name >soccer_avc </mmm:name >
<mmm:codecDescription >H.264/AVC </mmm:codecDescription >
<mmm:hasStructure rdf:resource ="http :// www.foo.be/soccer.rdf#db_0"/>
<mmm:hasStructure rdf:resource ="http :// www.foo.be/soccer.rdf#db_1"/>

15 <mmm:hasStructure rdf:resource ="http :// www.foo.be/soccer.rdf#rau_0"/>
<!-- ... other RAUs ... -->

</mmm:MediaBitstream >
<mmm:RandomAccessUnit rdf:about="http ://www.foo.be/soccer.rdf#rau_0">

<mmm:hasStructure rdf:resource ="http :// www.foo.be/soccer.rdf#db_2"/>
20 <mmm:hasStructure rdf:resource ="http :// www.foo.be/soccer.rdf#db_3"/>

<!-- ... other DBs ... -->
</mmm:RandomAccessUnit >
<mmm:DataBlock rdf:about ="http ://www.foo.be/soccer.rdf#db_2">

<mmm:start >3880 </ mmm:start >
25 <mmm:length >4800 </ mmm:length >

<mmm:hasScalabilityInfo rdf:resource ="http ://www.foo.be/soccer.rdf#si_temp_0"/>
</mmm:DataBlock >
<mmm:ScalabilityAxis rdf:about="http :// www.foo.be/soccer.rdf#sa_temp">

<mmm:name >temporal </mmm:name >
30 <mmm:nlevels >3</mmm:nlevels >

</mmm:ScalabilityAxis >
<mmm:ScalabilityAxisInfo rdf:about ="http :// www.foo.be/soccer.rdf#si_temp_0">

<mmm:constrains rdf:resource ="http ://www.foo.be/soccer.rdf#sa_temp"/>
<mmm:level >0</mmm:level >

35 </mmm:ScalabilityAxisInfo >
<mmm:Feature rdf:about="http ://www.foo.be/soccer.rdf#feat_frame -rate">

<mmm:boundTo rdf:resource ="http :// www.foo.be/soccer.rdf#sa_temp"/>
<mmm:hasFeatureValue rdf:resource ="http ://www.foo.be/soccer.rdf#featvalue_0 "/>
<!-- ... other featureValues ... -->

40 <mmm:name >frame rate </mmm:name >
<mmm:type >fps </mmm:type >

</mmm:Feature >
<mmm:FeatureValue rdf:about="http ://www.foo.be/soccer.rdf#featvalue_0">

<mmm:hasScalabilityInfo rdf:resource ="http ://www.foo.be/soccer.rdf#si_temp_0"/>
45 <mmm:value >6.25 </ mmm:value >

</mmm:FeatureValue >
<mmm:AnnotatedMultimedia rdf:about ="http :// www.foo.be/soccer.rdf#soccer_annotation">

<mmm:description >Soccer match </mmm:description >
<mmm:isRepresentedBy rdf:resource ="http ://www.foo.be/soccer.rdf#mb"/>

50 <mmm:hasTemporalSegment rdf:resource ="http ://www.foo.be/soccer.rdf#ts_0"/>
<mmm:hasTemporalSegment rdf:resource ="http ://www.foo.be/soccer.rdf#ts_1"/>
<!-- ... other temporal segments ... -->

</mmm:AnnotatedMultimedia >
<mmm:TemporalSegment rdf:about="http :// www.foo.be/soccer.rdf#ts_0">

55 <mmm:segmentStart >T00 :00:00:00F25 </mmm:segmentStart >
<mmm:segmentDuration >PT10S0N25F </mmm:segmentDuration >
<mmm:keyword >yellow card </mmm:keyword >
<mmm:hasBitstreamData rdf:resource ="http :// www.foo.be/soccer.rdf#rau_0"/>
<mmm:hasBitstreamData rdf:resource ="http :// www.foo.be/soccer.rdf#rau_1"/>

60 <!-- ... other RAUs -->
</mmm:TemporalSegment >

</rdf:RDF >

Fig. 12 Excerpt of RDF triples describing an H.264/AVC bitstream (RDF/XML notation).

25 fps. These values correspond to the first, second, and

third temporal layer respectively.

3.2.2 Linking the Semantic Multimedia Model to

Existing Ontologies

As discussed in Sect. 3.1.4, the multimedia model allows

to create simple annotations of the multimedia content

by adding keywords to AnnotatedMultimedia or Tempo-

ralSegment instances. However, more sophisticated se-

mantic descriptions are often needed. Therefore, the se-

mantic part of the multimedia model provides hooks

for existing ontologies. An example is shown in Fig. 13,

where a class Person, defined in the Friend-Of-A-Friend

(FOAF1) ontology, is connected with TemporalSegments

and AnnotatedMultimedia. A second example is shown

in Fig. 14, where concepts described in a soccer ontol-

1 http://xmlns.com/foaf/spec/

10

foaf:Person

Temporal
Segment

Annotated
Multimedia

hasTemporalSegment

isRelatedWith

Temporal
Segment

Annotated
Multimedia

hasTemporalSegment

SoccerMatchrdfs:subClassOf

Half

Scene

rdfs:subClassOf

rdfs:subClassOf

half

scene

isRelatedWith

Fig. 13 Linking domain-specific ontologies with the semantic
multimedia model.

Semantic
Annotation

semantic
annotation

Person

describes

Car

describes

Temporal
Segment

Annotated
Multimedia

hasTemporalSegment semantic
annotation

Temporal
Segment

Annotated
Multimedia

hasTemporalSegment

SoccerMatchrdfs:subClassOf

Half

Scene

rdfs:subClassOf

rdfs:subClassOf

half

scene

Fig. 14 Extending the semantic multimedia model with domain-

specific ontologies.

ogy are subclasses of AnnotatedMultimedia and Tem-

poralSegment. This way, media streams that are anno-

tated as illustrated above can be adapted based on the

concepts defined in the linked ontologies. For example,

fragments can be selected that are related with a spe-

cific person. The latter person corresponds to a URI

that is an instance of the class Person defined in the

FOAF ontology.

The semantic multimedia model discussed in Sect.

3.1.4 can also be linked to existing ontologies specify-

ing how to connect semantic multimedia descriptions

to parts of a media asset. Examples are MPEG-7 [13],

DIG352, Exif3 and the Core Ontology for MultiMedia

(COMM, [2]).

4 RDF-driven Content Adaptation

In order to cope with the problems of XML-driven con-

tent adaptation mentioned in Sect. 2.2, we present a

new technique for multimedia content adaptation in a

format-independent way, i.e., RDF-driven content adap-

tation. On the one hand, Semantic Web technologies are

used to represent the metadata for multimedia content.

On the other hand, a model for media bitstreams cov-

ering structural, semantic, and scalability information

(defined in Sect. 3) is used to abstract the transforma-

tion process.

2 http://www.w3.org/2005/Incubator/mmsem/

XGR-vocabularies/#formal-DIG35
3 http://www.w3.org/2005/Incubator/mmsem/

XGR-vocabularies/#formal-Exif

RDF repository

Media
encoder

Raw
media

bitstream

Encoded
media

bitstream

Feature
extraction /
Annotation

(1)

(3)

File server

(2)

bitstream

metadata

Fig. 15 Example architecture for the generation of metadata

compatible with the multimedia model.

4.1 Metadata Generation

Several possibilities exist to generate metadata com-

patible with the multimedia model defined in Sect. 3.1.

Fig. 15 shows an example of an architecture which takes

as input raw media bitstreams. The first step is to ex-

tract features (e.g., shot segmentation) and/or to man-

ually add annotations regarding the multimedia con-

tent. The resulting semantic metadata will consist of in-

stances of AnnotatedMultimedia and TemporalSegments

and is stored in an RDF repository (arrow (1) in Fig. 15).

Next, the raw media bitstream is encoded. The encoded

media bitstream is send to a file server. During the en-

coding process, the structural metadata is generated

(arrow (3) in Fig. 15). More specifically, a MediaBit-

stream instance is created accompanied by instances of

RandomAccessUnits, DataBlocks, Features, etc. The se-

mantic metadata, obtained during the feature extrac-

tion and/or annotation, is used by the multimedia en-

coder (arrow (2) in Fig. 15) in order to connect the

structural metadata with the semantic metadata (i.e.,

the bits of the encoded bitstream are linked to the

timestamps available in the semantic metadata). As dis-

cussed in Sect. 3.1.4, this is realized by linking Random-

AccessUnits to TemporalSegments by using the hasBit-

streamData property. Finally, the structural metadata

is also stored in an RDF repository.

It is important to remark that the scenario described

above is not applicable for already encoded media bit-

streams, possibly described by a specific metadata for-

mat (e.g., H.264/AVC encoded bitstreams annotated

with MPEG-7 metadata and described by BSDL). In

this case, software is needed to translate the available

metadata into metadata compliant with the multime-

dia model. In case no structural metadata is present,

coding-format specific parsers have to be created, tak-

ing as input an encoded media bitstream and produc-

ing structural metadata compliant with the multime-

dia model. Note that such coding-format specific par-

sers could be automatically generated by using a tech-

11

File serverRDF repository

Data block
selection

Data block
transformation

Data block
binarization

Resulting
bitstream

RDF triples
describing one

data block

Based on terminal and network characteristics
and user preferences

Fig. 16 The general workflow of RDF-driven content adapta-
tion.

nique similar to XFlavor [12], which is able to auto-

matically generate a coding-format specific parser pro-

ducing XML descriptions of the high-level structure of

the media bitstreams. The same approach could be fol-

lowed in the context of RDF-driven content adaptation.

More specifically, instead of producing XML descrip-

tions, such parsers could generate RDF triples compli-

ant with the multimedia model.

4.2 General Workflow

Having generated all the necessary metadata, it is now

possible to retrieve and adapt a specific media bitstream.

The general workflow is depicted in Fig. 16. There are

three main steps during RDF-driven content adapta-

tion: data block selection, transformation, and bina-

rization. RDF graphs describing data blocks are queried

during the data block selection step. These RDF graphs

can be adapted during the data block transformation

step. Finally, each selected and adapted RDF graph is

used to generate the resulting media bitstream. More

detailed information regarding the different steps in the

workflow is provided in the next subsections.

A comparison of the workflow of XML-driven con-

tent adaptation (discussed in Sect. 2.1.1) and RDF-

driven content adaptation can be made as follows. The

generation of an XML description, the transformation

of the XML description, and the creation of an adapted

bitstream using the transformed XML description cor-

respond to RDF metadata generation, data block se-

lection and transformation, and data block binarization

respectively.

4.2.1 Data Block Selection

Selecting data blocks is done by taking into account

terminal and network characteristics together with user

preferences. The preferred data blocks can be obtained

by performing the following sequence of steps.

(1) Semantic selection: an instance of AnnotatedMulti-

media is selected based on the user preferences (e.g.,

select a soccer match of a specific team). Further-

more, the semantic selection can be refined by se-

lecting only specific fragments that are desired by

the user (e.g., only select fragments where a specific

soccer player occurs). Moreover, fragments from dif-

ferent instances of AnnotatedMultimedia can be se-

lected. The result of the semantic selection is a list

of TemporalSegments corresponding with the frag-

ments selected based on the usage environment.

(2) Bitstream selection: given an instance of Annotated-

Multimedia, a MediaBitstream representing this mul-

timedia content is selected. Note that this selection

can be based on the usage environment (e.g., the de-

vice of the end-user only supports a limited amount

of coding formats).

(3) Semantic to structural mapping: the selected Tem-

poralSegments are used to obtain the DataBlocks

contained in the selected MediaBitstream. This is

possible by following the link between the Tempo-

ralSegments and the RandomAccessUnits.

(4) Structural selection: the subset of DataBlocks ob-

tained by the semantic selection is further restricted

by selecting only the DataBlocks occurring in spe-

cific scalability layers. For instance, if a video stream

with a frame rate of 15 fps is requested, only the

DataBlocks having ScalabilityInfo meeting this con-

dition are selected.

Note that it is not necessary to execute each step ev-

ery time. One could for instance avoid the structural

selection if there is no scalability information present.

The selection of data blocks can be performed by us-

ing the SPARQL Protocol and RDF Query Language

(SPARQL, [24]). This is a query language and data ac-

cess protocol for the Semantic Web, standardized by

the RDF Data Access Working Group (DAWG) of the

World Wide Web Consortium (W3C). SPARQL offers

querying based on triple patterns, conjunctions, dis-

junctions, and optional patterns; results of SPARQL

queries can be results sets or RDF graphs.

In order to demonstrate the data block selection

process, a number of SPARQL queries are discussed.

Since we want to obtain RDF graphs describing data

blocks, we need SPARQL CONSTRUCT queries, i.e.,

queries resulting in RDF graphs. Listing 1 shows a query

which selects data blocks occurring in the temporal base

12

Listing 1 Format-independent SPARQL query which selects

data blocks occurring in the temporal base layer.

1 PREFIX mmo: <multimedia_model.owl#>
CONSTRUCT {

?db rdf:type ?types.
?db mmo:start ?start.

5 ?db mmo:length ?length.
?db mmo:nBytes ?sb.
?db mmo:value ?value.

}
WHERE {

10 ?bitstream rdf:type mmo:MultimediaBitstream.
?bitstream mmo:name 'foo'.
?bitstream mmo:hasStructure ?db.
?db rdf:type ?types.
?db mmo:start ?start.

15 ?db mmo:length ?length.
OPTIONAL {

?db mmo:syntaxElementValue ?value.
}
OPTIONAL {

20 ?db mmo:nStuffingBytes ?sb.
}
OPTIONAL {

?db mmo:hasScalabilityInfo ?si_temp.
?si_temp mmo:hasScalabilityAxis ?sa_temp.

25 ?sa_temp mmo:name 'temporal '.
?si_temp mmo:level ?temp_level.

}
FILTER (!bound (? temp_level) || ?temp_level = 0)

}

layer. Lines 2–8 contain the triples needed to describe

one data block. The WHERE clause (lines 9–29) deter-

mines which data blocks are selected. In this example,

no semantic information is used to select the Media-

Bitstream, i.e., the bitstream is selected based on its

name (line 11). Lines 12-21 bind the variables defined

in the CONSTRUCT clause. Lines 22–28 specify that

only data blocks which occur in the temporal base layer

or which do not have scalability information (e.g., SPS

or PPS in an H.264/AVC bitstream) are selected.

An example of selecting datablocks based on seman-

tic information is provided in Listing 2. In this example,

data blocks belonging to the first half of a specific soccer

match are selected. Lines 3–8 contain the triples needed

to describe one data block, analogous to the previous

example. In the WHERE clause, the TemporalSegment

is selected which corresponds to the first half of the

soccer match (lines 13–16). Next, the data blocks are

determined by the RandomAccessUnits related to this

temporal segment (lines 17–19).

4.2.2 Data Block Transformation

The data block transformation step is in the first place

meant to make changes inside the selected RDF graphs

describing a data block. For instance, the value of a

SyntaxElement can be changed or the length of a Trun-

catablePayload can be shortened. In practice, data block

transformation is needed when a particular coding for-

Listing 2 Format-independent SPARQL query to obtain data

blocks belonging to the first half of a specific soccer match.

1 PREFIX mmo: <multimedia_model.owl#>
PREFIX so: <soccer.owl#>
CONSTRUCT {

?db rdf:type ?types.
5 ?db mmo:start ?start.

?db mmo:length ?length.
...

}
WHERE {

10 ?bitstream rdf:type mmo:MultimediaBitstream.
?bitstream mmo:name 'foo'.
?annoMM mmo:isRepresentedBy ?bitstream.
?annoMM rdf:type mmo:AnnotatedMultimedia.
?annoMM mmo:hasTemporalSegment ?segment.

15 ?segment rdf:type so:Half.
?segment so:number 1^^xsd:integer.
?segment mmo:hasBitstreamData ?rau.
?bitstream mmo:hasStructure ?rau.
?rau mmo:hasStructure ?db.

20 ?db rdf:type ?types.
?db mmo:start ?start.
?db mmo:length ?length.
...

}

Datablock

Syntax
Element

rdfs:subClassOf

Num_layers
_minus1

rdfs:subClassOf

value integer

Fig. 17 Extending the multimedia model for the scalability in-

formation located in an SVC bitstream.

mat requires, next to the selection of datablocks, certain

syntax element modifications in order to deliver a com-

pliant adapted bitstream. An example of such a coding

format is Scalable Video Coding (SVC). For instance,

the following approach needs to be followed to adapt

the SVC syntax element num layers minus1, which de-

notes the amount of scalability layers available in an

SVC bitstream. The structural part of the multime-

dia model needs to be extended with a coding-format

specific syntax element as illustrated in Figure 17. In

this figure, the class Num layers minus1 is created as a

subclass of SyntaxElement. When a data block of type

Num layers minus1 is detected during the data block

transformation step, the value of this syntax element is

changed according to the requested scalability proper-

ties.

A second use case for data block transformation is

the support for dynamic adaptations, i.e., when the

multimedia content is delivered during varying usage

13

environment conditions. In order to avoid the initializa-

tion and evaluation of a new query each time a struc-

tural adaptation property (e.g., amount of temporal

layers) changes, the structural selection is omitted dur-

ing the data block selection step. More specifically, the

semantic selection is established during the data block

selection step and the structural selection is performed

during the data block transformation step. For exam-

ple, during data block selection, all data blocks can be

selected belonging to the first half of a soccer match;

during data block transformation, the frame rate of

the video fragment can be scaled to 15 fps by drop-

ping the necessary temporal scalability layers. Hence,

when structural adaptation parameters change during

the adaptation process, the query does not need to be

re-executed.

Currently, no standardized solution exists to trans-

form RDF graphs. Next to ontology-specific software

(i.e., write an own RDF transformer based on a specific

ontology), the following solutions are available.

– XML transformation technologies: XPath and XSLT

can be used to access and transform an XML seri-

alization of RDF data. However, the main problem

with this approach is that the standard RDF/XML

serialization is non-deterministic (i.e., there are many

possible serializations for a given RDF model). Fur-

thermore, XPath expressions are not aware of the

semantics of the RDF model. Several approaches

such as Twig [34] and RxPath [26] define a set of

XPath/XSLT extension functions and/or provide a

mapping of RDF to the XPath data model, in order
to cope with the RDF/XML serialization problem.

– RDF transformation technologies: the non-determin-

istic character of RDF/XML serialization is caused

by the fact that XML is tree-based while RDF is

graph-based. Converting a graph-based model such

as RDF to a tree-based model such as XML is not

trivial. Therefore, a graph-oriented RDF access mech-

anism is needed. RDF Path [23] is one example of

an attempt to come to an RDF Path language. It

is triple oriented, tries as far as possible to mimic

XPath, and treats a graph as an extended tree with

no root.

– SPARQL/Update: in addition to SPARQL, which

provides a retrieval language for RDF, SPARQL/Up-

date (a.k.a. SPARUL, [25]) is proposed as an update

language for RDF graphs. It is a language to ex-

press updates to an RDF store and is intended to

be a standard mechanism by which updates to a (re-

mote) RDF Store can be described, communicated,

and stored.

4.2.3 Data Block Binarization

The final step in the workflow of RDF-driven content

adaptation is the binarization of the data blocks. More

specifically, based on the original media bitstream (present

in the file server as shown in Fig. 16) and the selected

and adapted data block graphs, an adapted media bit-

stream is created. The start and length properties of the

data block are used to copy a part of the original bit-

stream into the adapted bitstream. If the data block is

a Syntax Element, the syntax element value is written

to the adapted bitstream. In case the data block has as

type StuffingBits, stuffing bits are added to the adapted

bitstream until it is byte-aligned.

5 RDF-driven Content Adaptation versus

Other Techniques

In this section, a comparison is made between the pro-

posed RDF-driven content adaptation technique and

other techniques for multimedia content adaptation,

i.e., XML-driven content adaptation and dedicated soft-

ware approaches. The comparison is based on a number

of criteria that are listed below.

Criterion 1: Format-independency of the software.

The software modules used between the original com-

pressed bitstream and the adapted compressed bit-

stream are investigated in terms of their indepen-

dency of underlying coding and/or metadata for-

mats. The more software modules are format-agnos-

tic in the adaptation chain, the more extensible the

adaptation framework and the better the support

for new formats will be.

Criterion 2: Knowledge needed for adaptation op-

erations. This criterion examines the specific knowl-

edge needed to define adaptations. More specifically,

to what extent is knowledge needed regarding a spe-

cific coding format in order to define a specific adap-

tation. Within format-independent content adapta-

tion systems, it is important to avoid coding-format

specific calculations when defining adaptation oper-

ations. Otherwise, format-independency is obtained

in an ad-hoc way, as discussed in Section 2.2.

Criterion 3: Semantic metadata integration. In or-

der to perform adaptations based on semantic in-

formation (e.g., indication of violent video scenes),

a straightforward integration between the adapta-

tion logic and the semantic metadata is desired.

Criterion 4: Adaptation possibilities. The differ-

ent kinds of adaptations that are possible with a

specific content adaptation technique are examined

in this criterion. Furthermore, prerequisites of the

14

compressed bitstreams are investigated in order to

enable certain kinds of adaptations.

Criterion 5: Performance. The performance of ad-

aptation techniques is measured in terms of execu-

tion speed, memory consumption, and overhead in

terms of disk usage.

The first four criteria are discussed below, while

the performance measurements are provided in Sect. 6.

A summarizing table is provided in Sect. 7. The first

four criteria are applied to RDF-driven content adap-

tation, XML-driven content adaptation, and dedicated

software approaches.

Criterion 1: Format-independency of the software

It is clear that dedicated software approaches do not

provide format-agnostic software modules. Hence, sup-

port for new coding and/or metadata formats requires

the development of new software modules.

Both XML- and RDF-driven content adaptation are

able to deliver format-agnostic software modules for the

content adaptation chain. The transformation and bi-

narization steps are driven by coding-format and meta-

data agnostic software modules (i.e., modules for trans-

formation and binarization). The generation of struc-

tural metadata can also be performed by using format-

agnostic software modules; BSDL even provides a stan-

dardized solution taking the form of the BintoBSD par-

ser.

Criterion 2: Knowledge needed for adaptation opera-

tions

Developing dedicated software for particular multime-

dia content adaptation operations requires knowledge

of the high-level structure of the coding formats that

will be supported by the dedicated software (to be able

to parse the compressed bitstream), knowledge of the

supported semantic metadata formats, and the coupling

(i.e., the mapping) of the structure of the compressed

bitstream and the semantic metadata.

XML-driven content adaptation requires the same

knowledge as the dedicated software approach. The tech-

nique claims to rely on high-level descriptions of the

media bitstreams. However, as discussed in Sect. 2.2,

these descriptions are just a textual representation of

the coding-format specific structures and syntax ele-

ments. Coding-format specific algorithms to implement

coding-format independent adaptation operations such

as ’lower the frame rate’ have to be used within the BSD

transformation step. Therefore, an XML filter is depen-

dent on the coding format and the metadata formats

used. Furthermore, the mapping between the structure

of the compressed bitstream and the semantic metadata

is also defined inside the XML filter. In comparison to

the dedicated software approach, XML-driven content

adaptation requires less implementation effort since I/O

operations are abstracted by the format-agnostic soft-

ware modules.

RDF-driven content adaptation also requires knowl-

edge regarding the high-level structure of the coding

formats, metadata formats, and mapping between struc-

tural and semantic metadata; however, this knowledge

is obtained during the metadata generation and is sep-

arated from the actual adaptation operations. Indeed,

the high-level structure of coding formats is mapped to

the structural multimedia model (see Sect. 3.1.1) and

is independent of possible adaptations. The same holds

true for the semantic multimedia model (see Sect. 3.1.4),

which contains a description of the semantic informa-

tion of the multimedia content. Hence, defining adapta-

tions within an RDF-driven content adaptation system

is purely based on the multimedia model.

Criterion 3: Semantic metadata integration

As discussed in Sect. 2.2, integrating semantic and struc-

tural metadata is obtained in an ad-hoc way in case

of XML-driven content adaptation. This is due to the

lack of semantic interoperability of XML, resulting in

a metadata-format dependency of the XML filters. Fur-

thermore, coding-format specific mappings between struc-

tural and semantic metadata need to be created during

the adaptation process. The same holds true for the
dedicated software approach, since the semantic meta-

data needs to be mapped to the coding-format specific

bitstream structures.

By the definition of a multimedia model, RDF-driven

content adaptation provides a seamless integration of

structural and semantic metadata. More specifically,

the structural part of the model can be seen as a layer

on top of media bitstreams, providing support for easy

access to the high-level structures and syntax elements

of the media resource. Based on a subset of the struc-

tural metadata (i.e., a subset of the data blocks), an

adapted media resource is generated. Because we are

working with an additional layer on top of the media

resource (i.e., the structural metadata), it is possible to

link these metadata to semantic descriptions of the me-

dia resource (i.e., the semantic metadata). Moreover,

Semantic Web technologies, which solve the semantic

interoperability problem of XML, are inherently present

since the multimedia model is implemented by making

use of Semantic Web technologies.

15

Criterion 4: Adaptation possibilities

All adaptation operations are possible by using dedi-

cated software. Both semantic and structural adapta-

tions are possible and do not require any prerequisites

of the compressed bitstream, except that the bitstream

needs to be encoded in a coding format that is sup-

ported by the software. In particular cases, the com-

pressed bitstream can be completely decoded and re-

encoded in order to perform the necessary adaptations.

XML-driven content adaptation is mainly focussed

on the adaptation of scalable bitstreams as discussed in

Sect. 2.1.3. Hence, when structural adaptations need to

be established, the compressed bitstreams need to be

encoded in such a way that it is possible to perform the

adaptations without the need of a complete recode pro-

cess. For example, efficiently exploiting temporal scala-

bility using the H.264/AVC coding format requires the

presence of a hierarchical coding structure [8]. The same

observation can be made for semantic adaptations: the

encoded bitstreams need to provide several random ac-

cess points in order to extract specific segments of the

bitstream.

The adaptation possibilities of RDF-driven content

adaptations are equal to the ones of XML-driven con-

tent adaptation. They both operate on compressed bit-

streams and do not perform any decoding and/or re-

encoding of the bitstream.

6 Performance Measurements

In this section, the fifth criterion is discussed in the con-

text of XML- and RDF-driven content adaptation. We

do not discuss the dedicated software approach since

it is clear that the performance of dedicated software

in terms of execution speed and memory consumption

will generally be better or equal to the performance

of format-independent approaches such as XML- and

RDF-driven content adaptation. Also, no overhead in

terms of disk usage is present in case of dedicated soft-

ware solutions since no structural metadata is present.

We assume that the metadata generation step is

done in advance, i.e., the XML descriptions and RDF

triples are present. Previous work has shown that the

generation of XML descriptions of the high-level struc-

ture of a media bitstream can be performed in real time

by making use of BFlavor [7], which is able to automat-

ically generate a coding-format specific parser produc-

ing XML descriptions compliant to BSDL. In our re-

search, the same approach was followed in the context

of RDF-driven content adaptation, i.e., automatically

generated parsers can produce RDF triples compliant

with the multimedia model presented in Sect. 3.1. The

semantic metadata was obtained by manually annotat-

ing the multimedia content.

6.1 Application Scenario

In order to evaluate and compare XML- and RDF-

driven content adaptation, the following application sce-

nario is used. A video fragment of a part of a soc-

cer game is present as test sequence, together with the

appropriate audio fragment. Furthermore, information

regarding the level of importance of specific scenes is

present. Each scene was annotated by a number equal

to 0 (everything except game interruptions), 1 (goals,

chances, and faults), or 2 (only goals).

The video fragment is encoded using four different

video codecs (i.e., H.264/AVC, the scalable extension

of H.264/AVC (SVC), H.263+, and MPEG-2 Video);

the appropriate audio fragment is encoded with two

audio codecs (i.e., Advanced Audio Coding (AAC) and

MPEG-1 Audio Layer 3 (MP3)). The user selects spe-

cific parts of the test sequence based on the level of im-

portance (i.e., semantic adaptation). Furthermore, ex-

ploitation of scalability properties of the encoded bit-

streams is performed (i.e., structural adaptation). The

latter can vary dynamically during the adaptation, im-

plying that the adaptation parameters regarding the

scalability properties need to be adjustable in an on-

the-fly fashion.

6.2 Experimental Results

6.2.1 Bitstream Characteristics

The video fragment contains a length of 100 s, a frame

rate of 25 fps, and a resolution of 720x576 pixels. Se-

lecting scenes with a level of importance of 0, 1, or 2

results in an adapted bitstream of 2484, 1503, or 855

frames respectivily. An overview of the properties of

the encoded bitstreams can be found in Table 1. The

sizes of the XML descriptions and the amount of RDF

triples corresponding to the structural metadata4 are

also shown in this table. Note that the overhead of

format-agnostic content adaptation (i.e., the XML de-

scriptions and RDF triples) is dependent on the number

of parse units present in the bitstream. The number of

parse units will also have an impact on the execution

times regarding the adaptation of the bitstreams (see

4 The amount of RDF triples to represent the scalability in-

formation and semantic metadata is in this case negligible in

comparison with the amount of triples needed for the structural
metadata. Note that in our configuration, one triple took approx-

imately 90 bytes of disk usage.

16

Table 1 Overview of the bitstream characteristics.

Coding Size Bit rate Parse # Parse # Temp. # Spat. # Qual. XML descr. # RDF RDF
format (MB) (kbit/s) unit units levels levels levels size (MB) triples gen. (s)

H.264/AVC 35.9 2942 NALU 5004 3 1 1 4.4 47330 54.6

SVC 40.8 3343 NALU 15008 3 2 4 18.5 147506 282.5

H.263+ 45.2 3705 Picture 5000 3 2 1 7.7 54492 121.6
MPEG-2 Video 77.3 6332 Picture 2500 3 1 1 9.6 29830 67.6

AAC 1.5 128 Frame 4691 - - - 3.0 60729 54.8

MP3 2.3 192 Frame 4170 - - - 1.9 54136 50.9

Sect. 6.2.3). However, it is clear that both XML- and

RDF-driven content adaptation introduce a significant

amount of overhead in terms of disk usage due to the

occurrence of the structural metadata.

The last column of Table 1 shows the execution

times for the generation of RDF triples describing struc-

tural metadata and scalability information. These RDF

triples can be generated in the same way as XML de-

scriptions suitable for XML-driven content adaptation.

More specifically, a modified version of BFlavor [7] was

used to automatically create format-specific parsers that

are capable of outputting RDF triples (in its original

form, BFlavor was only able to automatically create

format-specific parsers producing XML descriptions com-

pliant to the BSDL standard). As can be seen in Ta-

ble 1, the execution times depend on the number of

parse units and the bit rate. Note that each parse unit

corresponds to an RDF data block graph. SVC and

H.263+ perform less than real-time as the length of the

test sequences used is 100 seconds. This is due to the

use of multiple scalability layers (resulting in a higher

amount of parse units) and a higher bit rate.

6.2.2 Implementation Details

In our experiments, BSDL and STX5 were used to per-

form XML-driven content adaptation. Bitstream Syn-

tax Schemas6 (BS Schemas) for the six codecs were de-

signed, together with ten STX stylesheets (six style-

sheets to implement the scene extraction (one for each

codec) and four stylesheets to implement the exploita-

tion of scalability (one for each video codec)). The STX

engine transforms the XML descriptions based on a

STX stylesheet. The BSDtoBin parser is a standard-

ized parser from BSDL taking as input the transformed

XML description and the original bitstream and which

produces the adapted bitstream. The STX engine and

the BSDtoBin parser are connected through SAX events.

More specifically, no intermediate (transformed) XML

description is generated, since the transformed SAX

5 Version 1.3.1 of the BSDL reference software and version
2008-03-09 of the STX engine Joost were used.

6 A Bitstream Syntax Schema describes the high-level struc-

ture of a specific coding format.

events are immediately transferred to the BSDtoBin

parser. This will significantly speed up the XML-driven

adaptation process because I/O operations regarding

intermediate XML descriptions are avoided.

The data block selection, transformation, and bina-

rization modules of our RDF-driven content adaptation

framework are built on top of Sesame7, which is an open

source RDF database with support for RDF Schema

inferencing and querying. The built-in SPARQL engine

of Sesame is used for the evaluation of queries during

the data block selection step. The native store facilities

of Sesame were used for our RDF repository, implying

that the RDF data is retrieved directly from disk. Us-

ing a native store provides better scalability since it is

independent of the available system memory. However,

when generic RDF storage solutions such as the native

store facilities of Sesame become insufficient in terms of

scalability due to a high amount of RDF triples (i.e., the

structural metadata), other solutions should be consid-

ered to store the structural metadata.

For example, one solution for this problem is to

store the structural metadata and scalability informa-

tion in an RDF store which is specifically designed for

the model for media bitstreams. More specifically, the
structural metadata and scalability information can be

stored in a highly scalable Relational Database Man-

agement System (RDBMS), using a database scheme

based on the structural and scalability part of the model

for media bitstreams. Hence, such a RDBMS can be

seen as an efficient RDF store specifically designed for

our model for media bitstreams. This way, SPARQL

queries can be translated into SQL queries. The results

of these SQL queries can then be converted back to

RDF graphs corresponding to the selected data blocks.

RDBMSs should be capable of dealing with a large

amount of structural metadata since they are mature,

stable, and scalable, while also providing a high perfor-

mance in terms of query execution speed.

In contrast to the combination of BSDL and STX

where a lot of BS Schemas and STX stylesheets need

to be developed, only one SPARQL statement and a

7 Version 2.0.1 of Sesame was used.

17

domain-specific ontology8 was needed for RDF-driven

content adaptation. In order to build this SPARQL

statement, knowledge of the multimedia model is needed

together with the concepts of the domain-specific on-

tology which is coupled with the semantic metadata

model. Note that the exploitation of scalability was in-

cluded during the data block selection step (i.e., scala-

bility options are static during the adaptation). Addi-

tionally, an implementation where the exploitation of

scalability was performed during the data block trans-

formation step (i.e. scalability options can dynamically

vary during the adaptation) was used to compare the

static and dynamic exploitation of scalability.

Performance measurements were done on a PC hav-

ing an Intel Pentium D 2,8 GHz CPU and 1 GB of sys-

tem memory at its disposal. The operating system used

was Windows XP Pro SP2, running Java 2 Runtime

Environment (SE version 1.5.0 09). The memory con-

sumption of the Java programs was measured by relying

on JProfiler 4.2.1. All time measurements were executed

six times, whereupon an average was calculated over

the last five runs to avoid startup effects (the standard

deviation was 0.05 s).

6.2.3 Results

An overview of the execution times and resulting file

sizes of the adapted bitstreams is given in Table 2.

The names of the resulting sequences correspond to

CCC iI tT sS qQ, with CCC equal to the coding format;

I corresponds to the level of importance; and T, S, and Q

respectively correspond to the number of temporal, spa-

tial, and quality scalability layers present in the adapted
bitstream.

In general, both XML- and RDF-driven content adap-

tation perform well and are able to adapt bitstreams of

various coding formats in real time. As can be seen from

Table 2, the coding format (more specifically the num-

ber of parse units per frame and the bit rate) has a sig-

nificant impact on the execution times. For instance, in

case of RDF-driven content adaptation, the higher the

number of parse units per frame, the higher the number

of data blocks that need to be selected, optionally trans-

formed, and serialized. Furthermore, a high bit rate of

the adapted bitstream results in a high amount of I/O

operations during the binarization of the data blocks.

The same observations can be made for XML-driven

content adaptation. In Fig. 18, this is illustrated by

plotting the execution times together with the adapted

file sizes for the video coding formats.

8 In our case, a simple soccer ontology was used, including con-
cepts such as SoccerMatch and SoccerScene, as well as properties

such as levelOfImportance.

Table 2 Overview of the execution times and resulting file sizes.

Sequence STX + RDF-driven Adapted

BSDtoBin adaptation file size

(s) (s) (MB)

avc i0 t2 18.0 9.3 35.5
avc i0 t0 12.8 7.7 20.3

avc i1 t2 13.2 5.9 22.8

avc i1 t0 9.9 4.9 12.6
avc i2 t2 10.0 3.7 14.4

avc i2 t0 8.1 3.1 7.8

svc i0 t2 s1 q3 47.1 42.3 40.4

svc i0 t2 s1 q0 36.7 31.1 38.7
svc i0 t2 s0 q0 28.9 27.1 3.7

svc i0 t0 s1 q3 31.7 39.0 23.3

svc i0 t0 s1 q0 28.9 28.9 22.8
svc i0 t0 s0 q0 25.5 26.2 2.6

svc i1 t2 s1 q3 32.7 25.7 25.8

svc i1 t2 s1 q0 26.5 18.9 24.8
svc i1 t2 s0 q0 21.6 16.7 2.3

svc i1 t0 s1 q3 23.4 23.5 14.5

svc i1 t0 s1 q0 21.7 17.6 14.1
svc i1 t0 s0 q0 19.6 16.1 1.6

svc i2 t2 s1 q3 23.3 14.8 16.2
svc i2 t2 s1 q0 19.8 11.0 15.6

svc i2 t2 s0 q0 16.8 9.7 1.4

svc i2 t0 s1 q3 17.9 13.6 8.9
svc i2 t0 s1 q0 16.9 10.9 8.7

svc i2 t0 s0 q0 15.6 9.3 1.0

m2v i0 t2 23.1 7.8 76.6

m2v i0 t0 13.5 5.3 25.0
m2v i1 t2 14.7 5.3 48.4

m2v i1 t0 8.8 3.6 15.6

m2v i2 t2 9.6 3.3 29.2
m2v i2 t0 6.1 2.4 9.4

263 i0 t2 s1 20.2 12.4 44.8

263 i0 t2 s0 13.9 8.6 9.6

263 i0 t0 s1 13.6 10.7 22.8
263 i0 t0 s0 11.9 8.1 4.9

263 i1 t2 s1 14.1 7.6 25.1

263 i1 t2 s0 10.5 5.5 5.4
263 i1 t0 s1 10.3 6.8 12.6

263 i1 t0 s0 9.4 5.2 2.7

263 i2 t2 s1 10.2 4.6 13.5
263 i2 t2 s0 8.2 3.4 2.9

263 i2 t0 s1 8.1 4.1 6.7

263 i2 t0 s0 7.6 3.3 1.4

aac i0 4.5 3.9 1.5
aac i1 3.4 2.6 0.9

aac i2 2.7 1.8 0.5

mp3 i0 3.9 3.6 2.3

mp3 i1 3.0 2.5 1.4
mp3 i2 2.4 1.4 0.6

In most of the cases, RDF-driven content adapta-

tion has lower execution times than XML-driven con-

tent adaptation, but both techniques have a compa-

rable performance. This is for instance illustrated in

Fig. 19, where the execution times for the H.264/AVC

coding format are plotted. There are two reasons why

RDF-driven content adaptation performs slightly bet-

ter than XML-driven content adaptation. First, coding-

format specific algorithms need to be executed during

18 file sizes

Page 1

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

0,0

5,0

10,0

15,0

20,0

25,0

F
il
e
 s

iz
e

 (
M

B
)

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
)

STX + BSDtoBin

RDF-driven adaptation

Adapted file size

Fig. 18 Execution times and file sizes for the video coding for-

mats. avc_ET

Page 1

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

avc_i0_t2 avc_i0_t0 avc_i1_t2 avc_i1_t0 avc_i2_t2 avc_i2_t0

F
il
e

 s
iz

e
 (

M
B

)

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
)

STX + BSDtoBin

RDF-driven adaptation

Adapted file size

Fig. 19 Execution times for the H.264/AVC coding format.

the transformation step in case of XML-driven content

adaptation. As discussed in Section 3, these coding-

format specific algorithms are already executed during

the structural metadata generation step in case of RDF-

driven content adaptation. Second, descriptions com-

pliant to the model for media bitstreams only contain

information that is really necessary for the adaptation

operation. On the contrary, XML-driven content adap-

tation needs to process BSDs containing coding-format

specific structures and syntax elements necessary to ex-

ecute these coding-format specific algorithms. Hence,

the processing of these BSDs will take longer than the

processing of a description compliant with the model for

media bitstreams. Further, both XML- and RDF-driven

content adaptation have a low and constant memory

consumption (approximately 2 MB).

A comparison between static and dynamic exploita-

tion of scalability is shown in Fig. 20. In case of static

adaptation, the proper data blocks are already present

static_vs_dynamic

Page 1

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

F
il

e
 s

iz
e

 (
M

B
)

E
x
e

c
u

ti
o

n
 t

im
e
 (

s
)

RDF-driven adaptation
(static)
RDF-driven adaptation
(dynamic)
Adapted file size

Fig. 20 Execution times for the SVC coding format, comparing
static versus dynamic exploitation of scalability.

Table 3 Overview of the discussed criteria.

Criterion Dedicated XML- RDF-
software driven driven

adaptation adaptation

Format- No Yes Yes

independency

Knowledge

needed for High High Low
adaptation

Semantic

metadata Low Low High

integration

Adaptation Coding Coding-
possibilities All format format

dependent dependent

Execution Real Real Real

speed time time time

Memory Low Low Low

consumption

Metadata None Structural Structural
overhead metadata metadata

after the data block selection step. On the contrary,

dynamic adaptation implies that during the data block

selection step, only a selection is made based on seman-

tic preferences (and not regarding scalability options).

Hence, more data blocks are selected during the data

block selection step. The actual structural adaptation

is then performed during the data block transformation

step. This declares why the execution times for the dy-

namic adaptation process are almost constant (between

11 and 12 s in Fig. 20), since the same amount of data

blocks are selected, regardless of the scalability prefer-

ences. The little variations in execution times are due

to the varying file sizes of the adapted bitstreams.

19

7 Conclusions and Future Work

In this paper, we have introduced the concept of RDF-

driven content adaptation, a multimedia content adap-

tation technique that operates independent of coding

and metadata formats. It is based on the definition of

a multimedia model describing and coupling structural

metadata, semantic metadata, and scalability informa-

tion. Existing coding and metadata formats are mapped

to our multimedia model. An implementation of the

model is realized using Semantic Web technologies such

as RDF, OWL, and SPARQL. The adaptation of media

bitstreams is performed by selection, transformation,

and serialization of the structural metadata, based on

the semantic metadata and scalability information.

We have compared RDF-driven content adaptation

with dedicted multimedia content adaptation software

and XML-driven content adaptation. The latter is an-

other coding-format independent adaptation technique.

A summarization of the evaluation of different criteria

is provided in Table 3. The most significant advantages

of RDF-driven content adaptation are the low amount

of knowledge needed to define adaptation operations

and the seamless integration with semantic metadata.

On the other hand, disadvantages are the coding-format

dependency of the adaptation possibilities and the over-

head in terms of file size.

Future work consists of solving a number of remain-

ing challenges for RDF-driven content adaptation. First

of all, the overhead in terms of file sizes should be re-

duced; for instance, by performing queries over com-

pressed RDF triples. Secondly, the semantic multime-

dia model could be extended with support for spatial

segments. This will enable the extraction of Region of

Interests (ROIs), on condition that the coding format

does have support for this. Finally, the relation be-

tween RDF-driven content adaptation, which focusses

on high-level adaptations, and low-level adaptations (e.g.,

adaptations where partial decoding operations are needed)

should be investigated.

Acknowledgements The research activities that have been de-
scribed in this paper were funded by Ghent University, the In-

terdisciplinary Institute for Broadband Technology (IBBT), the

Institute for the Promotion of Innovation by Science and Technol-
ogy in Flanders (IWT-Flanders), the Fund for Scientific Research-

Flanders (FWO-Flanders), and the European Union.

References

1. Amielh, M., Devillers, S.: Multimedia Content Adaptation
with XML. In: Proceedings of 8th International Confer-
ence on Multimedia Modeling, pp. 127–145. Amsterdam, The
Netherlands (2001)

2. Arndt, R., Troncy, R., Staab, S., Hardman, L., Vacura, M.:

COMM: Designing a Well-Founded Multimedia Ontology for

the Web. In: 6th International Semantic Web Conference
(ISWC 2007). Busan, Korea (2007)

3. Bulterman, D., Grassel, G., Jansen, J., Koivisto, A., Layäıda,
N., Michel, T., Mullender, S., Zucker, D. (eds.): Synchronized

Multimedia Integration Language (SMIL 2.1). W3C Rec-

ommendation. World Wide Web Consortium (2005). URL
http://www.w3.org/TR/SMIL2/

4. Burnett, I., Pereira, F., Van de Walle, R., Koenen, R. (eds.):
The MPEG-21 book. John Wiley & Sons (2006)

5. Cimprich, P., et al.: Streaming Transformations for

XML (2004). Available on http://stx.sourceforge.net/

documents/spec-stx-20040701.html

6. De Bruyne, S., De Schrijver, D., De Neve, W., Van Deursen,
D., Van de Walle, R.: Enhanced Shot-Based Video Adapta-

tion using MPEG-21 generic Bitstream Syntax Schema. In:

Proceedings of the 2007 IEEE Symposium Series on Compu-
tational Intelligence, pp. 6 pp on CD–rom. Honolulu, Hawai

(2007)

7. De Neve, W., Van Deursen, D., De Schrijver, D., De Wolf, K.,

Lerouge, S., Van de Walle, R.: BFlavor: a Harmonized Ap-

proach to Media Resource Adaptation, inspired by MPEG-21
BSDL and XFlavor. Signal Processing: Image Communica-

tion 21(10), 862–889 (2006)

8. De Neve, W., Van Deursen, D., De Schrijver, D., De Wolf, K.,

Van de Walle, R.: Using Bitstream Structure Descriptions

for the Exploitation of Multi-layered Temporal Scalability
in H.264/MPEG-4 AVC’s Base Specification. Lecture Notes

in Computer Science, Advances in Multimedia Information

Processing 3767, 641–652 (2005)

9. Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein,

M.C.A., Broekstra, J., Erdmann, M., Horrocks, I.: The Se-
mantic Web: The Roles of XML and RDF. IEEE Internet

Computing 4(5), 63–74 (2000)

10. Devillers, S., Timmerer, C., Heuer, J., Hellwagner, H.: Bit-

stream Syntax Description-Based Adaptation in Streaming

and Constrained Environments. IEEE Trans. Multimedia
7(3), 463–470 (2005)

11. Hannuksela, M.M., Wang, Y.K., Gabbouj, M.: Isolated Re-
gions in Video Coding. IEEE Trans. Multimedia 6, 259–267

(2004)

12. Hong, D., Eleftheriadis, A.: XFlavor: Bridging Bits and Ob-

jects in Media Representation. In: Proceedings of IEEE In-

ternational Conference on Multimedia and Expo, pp. 4 on
CD–rom. Lausanne, Switzerland (2002)

13. Hunter, J.: Adding Multimedia to the Semantic Web - Build-
ing an MPEG-7 Ontology. In: First Semantic Web Working

Symposium (SWWS), Proceedings, pp. 261–281. Stanford,

USA (2001)

14. ISO/IEC: 21000-7:2004 Information technology – Multime-

dia framework (MPEG-21) – Part 7: Digital Item Adaptation
(2004)

15. Kay, M.: XSLT Programmers’s Reference, 2nd Edition. Wrox

Press Ltd., Birmingham, UK (2001)

16. Klyne, G., Carroll, J.J. (eds.): Resource Description Frame-

work (RDF): Concepts and Abstract Syntax. W3C Rec-
ommendation. World Wide Web Consortium (2004). URL

http://www.w3.org/TR/rdf-concepts/

17. Lerouge, S., Lambert, P., Van de Walle, R.: Multi-criteria
Optimization for Scalable Bitstreams. Lecture Notes in Com-

puter Science, Visual Content Processing and Representation
2849, 122–130 (2003)

18. Magalhães, J., Pereira, F.: Using MPEG standards for mul-
timedia customization. Signal Processing: Image Communi-

cation 19(5), 437–456 (2004)

20

19. McGuinness, D., van Harmelen, F. (eds.): OWL Web On-
tology Language: Overview. W3C Recommendation. World

Wide Web Consortium (2004). URL http://www.w3.org/

TR/owl-features/

20. Mukherjee, D., Delfosse, E., Kim, J.G., Wang, Y.: Optimal

Adaptation Decision-Taking for Terminal and Network Qual-
ity of Service. IEEE Trans. Multimedia 7(3), 454–462 (2005)

21. Mukherjee, D., Said, A.: Structured Scalable Meta-formats

(SSM) for Digital Item Adaptation. In: Internet Imaging IV,
Proceedings of SPIE, vol. 5018 (2003)

22. Ohm, J.R.: Advances in Scalable Video Coding. Proceedings

of the IEEE 93(1), 42–56 (2005)
23. Palmer, S.B.: Pondering RDF Path (2003). URL http://

infomesh.net/2003/rdfpath

24. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query
Language for RDF. W3C Recommendation. World Wide

Web Consortium (2007). URL http://www.w3.org/TR/

rdf-sparql-query/

25. Seaborne, A., Manjunath, G.: SPARQL/Update: a language

for updating RDF graphs (2008). URL http://jena.hpl.

hp.com/~afs/SPARQL-Update.html

26. Souzis, A.: RxPath: a mapping of RDF to the XPath Data

Model. In: Extreme Markup Language 2006. Montreal,
Canada (2006)

27. Thomas-Kerr, J., Burnett, I., Ritz, C.: Format-Independent

Multimedia Streaming. In: Proceedings of 2006 IEEE Inter-
national Conference on Multimedia and Expo (ICME), pp.

1509–1512 (2006)

28. Timmerer, C., Frank, T., Hellwagner, H.: Efficient processing
of MPEG-21 metadata in the binary domain. In: Proceedings

of SPIE International Symposium ITCom 2005 on Multime-

dia Systems and Applications VIII. Boston, Massachusetts,
USA (2005)

29. Timmerer, C., Panis, G., Kosch, H., Heuer, J., Hellwagner,
H., Hutter, A.: Coding Format Independent Multimedia Con-

tent Adaptation using XML. In: Proceedings of SPIE In-

ternational Symposium ITCom 2003 on Internet Multime-
dia Management Systems IV, vol. 5242, pp. 92–103. Orlando

(2003)

30. Van Deursen, D., De Schrijver, D., De Bruyne, S., Van de
Walle, R.: Fully Format Agnostic Media Resource Adapta-

tion Using an Abstract Model for Scalable Bitstreams. In:

Proceedings of the 2007 IEEE International conference on
Multimedia and Expo, pp. 240–243. Beijing, China (2007)

31. Van Lancker, W., De Sutter, R., De Schrijver, D., Van de

Walle, R.: A Framework for Transformations of XML within
the Binary Domain. In: Proceedings of the IASTED in-

ternational conference on Internet and Multimedia Systems
and Applications, pp. 29–34 on CD–rom. Innsbruck, Austria
(2006)

32. Vetro, A., Christopoulos, C., Ebrahimi, T.: Universal Multi-
media Access. IEEE Signal Processing Mag. 20(2), 16 (2003)

33. W3C Multimedia Semantics Incubator Group: Available on

http://www.w3.org/2005/Incubator/mmsem/

34. Walsh, N.: RDF Twig: accessing RDF graphs in XSLT. In:
Extreme Markup Language 2003. Montreal, Canada (2003)

