
COMBINING SCRIPTING AND COMMERCIAL SIMULATION SOFTWARE TO
SIMULATE IN-PLANT LOGISITICS

Tim Govaert, Sven Neirynck, Sofie Van Volsem and Hendrik Van Landeghem
Department of Industrial Management

Ghent University
Technologiepark 903

BE-9052 Zwijnaarde, Belgium
e-mail: {Tim.Govaert,Sven.Neirynck,Sofie.VanVolsem,Hendrik.VanLandeghem}@UGent.be

KEYWORDS
simulation, automatic model generation, Python, Plant
Simulation

ABSTRACT

In this paper we describe the use of a commercial dis-
crete event simulation package (Siemens 2008) combined
with a custom program, written in the programming
language Python (Martelli 2006). Combining these two
makes it possible to automatically generate a model for
assembly line logistics simulation. The different stations
of the assembly line, their connections and the storage
near the assembly line were generated within seconds. A
huge amount of time was saved compared with manual
generation.

INTRODUCTION

In the truck assembly industry, in-plant transportation
should be handled in the most cost-efficient way. Taking
into account the fact that forklifts fail when it comes to
efficiency, the truck industry started investigating the
use of automatic transportation systems such as over-
head conveyors or Automated Guided Vehicles.
Implementing an automatic system on factory scale re-
quires extensive research. Cottyn et al. (2008) executed
a feasibility study to investigate the possible gains and
necessary investments. They suggested to build a sim-
ulation model to discover possible pitfalls of the system
and to be able to dimension more in detail the amount
of drop-off stations, pick-up points and carriers.
In the digital factory concept, the product and process
planning can be designed and improved on all levels, by
using various simulation processes. A broad overview of
applicable areas for simulation is given by Kühn (2006).
In order to create a simulation model that is easily
adaptable and flexible in use for the particular problem
of simulating the in-plant logistics processes for truck
assembly, two problems were encountered:

Modeling the assembly line A factory can contain
a huge amount of workstations, which can change

very often. Therefore, it was decided that the gen-
eration of the workstations in the model should be
automatic and very flexible. In this way, different
factories or subparts of one factory can be easily
generated and simulated. A big increase in model
flexibility can thus be obtained.

Modeling storage buffers at the border of line
The huge diversification of the customers needs
results in a huge variety of parts. These parts need
to be stored at the line, in order to be consumed
when the corresponding chassis passes the worksta-
tion. The parts can be bulk fed or brought at line
in kits (Limère and Van Landeghem 2009). In each
situation, the amount and configuration of buffers
will be different. An automatic generation of these
buffers could drastically decrease the modeling
time.

In the next paragraph, we present the solution method.
Thereafter, preliminary results results of a practical case
study in the truck industry, using the proposed method,
are given.

METHOD

Simulation environment

Two options exist for implementing simulations:

• develop a dedicated computer program that imple-
ments a specific simulation problem

• use a commercial simulation package to model the
simulation problem at hand

In an effort to try and combine the advantages of both
approaches, we propose to use a commercial simulation
package1 to simulate the plant (Siemens 2008), while
generating large parts of the model via a custom pro-
gram. This program is written in the programming lan-
guage Python (Martelli 2006); ASCII files are used to
interface between the two distinct environments.

1Tecnomatix Plant Simulation

Model Components

A production plant as described in the introductory sec-
tion can be divided into objects belonging to four cate-
gories:

• line supplier

• transportation system

• border of line (BOL) storage

• assembly line

Line supplier
A line supplier is an entity that delivers parts to the
transportation system. These entities can be ware-
houses, pre-assemblies or supermarkets. A supermarket
is a logistical area where kitting takes place.

Transportation system
The transportation system takes care of the transport of
“parts” between buffers. The origin buffer is always the
output buffer of a line supplier. The destination buffer
is the border of line. Identical parts, i.e. parts with the
same part number, are put in a container. The trans-
portation system transports this container over trans-
portation tracks.

Border of line storage
The border of line (BOL) is modeled as different buffers.
The parts stored in these buffers are ordered2 (FIFO
queues). On the transportation track inside the sta-
tion an “offload” point is present where the container
on transport can be moved to a buffer.

Assembly line
An assembly line is modeled as a series of connected
stations. A station is where the assembly of the trucks
takes place. A station receives a partially completed
chassis from the preceding station. At the station parts
are added on to this chassis. These parts are retrieved
from BOL buffers locally to that station. After a fixed
amount of time (the takt-time), the chassis is moved to
the next station.

Model generation

Two types of objects are automatically generated: sta-
tions and buffers. To automatically generate an assem-
bly line not only the stations need to be created but also
the connections.

Assembly line generation: creating stations
Added functionality can be programmed in Plant Sim-
ulation by using so-called “methods” Siemens (2008).

2Parts are ordered in a container, and containers are ordered
in the buffer.

Figure 1: Relation Buffers and Suppliers

Methods are like functions: they can have input, out-
put, program logic and can perform various tasks.
In Plant Simulation data objects exist such as tables and
queues. A table object called FactoryLayout is created.
This table is a database describing all stations. For each
station there is an entry with the following information:

• station name

• x and y coordinate of the station’s location center

• type of station, determined by number and place of
BOLs

• preceding station

• a boolean value indicating whether transportation
tracks have to be generated

A method was written which uses the FactoryLayout
table as input. For each entry in the FactoryLayout
table, a station at the given coordinates is created. If
necessary, transportation tracks are also created.

Assembly line generation: creating connections
Two types of connections need to be created:

• Connections between output of one station to the
input of the next station to model the flow of the
chassis through the factory.

• Connections between the tracks of the transport
system:

– The tracks need to form a closed loop

– Junctions to reach the drop-off points inside
the stations need to exist

Not all connection information can be stored in the Fac-
toryLayout table. This table only stores the stations
predecessor. Examples of extra connections are: feeder
lines, merging of two lines, connectivity of the last sta-
tion to the exit of the factory. The remaining connec-
tions are put in another table called Connections. An-
other “method” uses this table to create the remaining
connections.

Input

Buffer layout

 Python program

Model

 Plant Simulation Method

Figure 2: Data flow

Buffer generation
The buffers from the border of line as well as the assign-
ment of these buffers to the different parts is dynamic.
It varies between different simulation runs.
One of the goals of the eventual model is to explore dif-
ferent “kitting” combinations. Each combination has its
impact on the buffers. A suitable model therefore needs
to be dynamic in buffer allocation. To assign buffers
to the stations we need to have the information about
what trucks need which parts at which station. We need
to process this information and calculate the buffer as-
signment. This buffer information is then fed into the
model.
Information about the trucks is needed. A Python pro-
gram transforms this into output which contains infor-
mation about the buffer layout. A Plant Simulation
“method” will use this buffer layout information to cre-
ate the model. (See Figure 2)
During the simulation, parts will be consumed at the
stations. As a consequence buffers need to be refilled.
Some parts will come from a pre-assembly, others will be
a kit from a supermarket and some can just be retrieved
from a warehouse. Thus, information is needed on the
in-plant origin of the different parts.

Input: The Python program requires the following in-
put:

• Parts Requirements List: A file describing for each
truck all the parts needed for assembly and the sta-
tion where the assembly takes place

• A file describing the in-plant origin for each part

Output: The external3 program written in Python
transforms this information into the layout of the
buffers. It generates the following output:

3External to Plant Simulation

Figure 3: Example tree

• for each station: the number of buffers;

• for each buffer: a partnumber, supplier and the
number of parts to be assembled for each truck.

Algorithm: The algorithm to calculate the buffer lay-
out consists of two phases. In phase 1 the input is parsed
into a tree. In phase 2 the tree is written out into indi-
vidual files which will serve as input for Plant Simula-
tion.

Algorithm 1 The two phases
Create empty tree
for Each Line in Parts Requirements List do

Parse station name
Add truck, station, part to the tree

end for
for Each station in the tree do

Count parts
Write number of parts to file
for Each part in the station do

Create buffer output file
for Each truck do

Write truck and number to the output file
end for

end for
end for

We use the following I/O files:

“Stationname”.“L/R”.txt contains the number of
buffers at this station. (Some stations have a left
and right side indicated by an extra character L or
R).

“Stationname”.“L/R”“buffernumber”.txt is the
table stating the quantity used for each different
truck.

“Stationname”“buffernr”.supplier.txt is a file
with the in-plant supplier’s address and the
partnumber for that buffer.

Inside the station there is a “method”, configure, which
configures the station. This method looks for the
files “Stationname”.“L/R”.txt and creates the necessary
number of buffers. For each buffer it reads the file “Sta-
tionname”.“L/R”“buffernumber”.txt. It also reads in
the partnumber and supplier. This information is needed
by the model during simulation.

CASE STUDY

We implemented these two techniques to create models
for the supply chain logistics for a large European truck
factory.

Assembly line layout

The FactoryLayout table consists of 300 entries. Three
different Plant Simulation station objects are used. The
connections table consists of 75 extra connections. Some
tracks and warehouses are manually placed in the model.
Generation of the model takes only a couple of seconds
on a standard desktop.

Buffer layout

Using the information of the last 10 trucks assembled at
the plant, the Python program created 8793 files in less
than a minute. The Python program creates a file for
each station and a file for each buffer in the stations.

CONCLUSIONS

We have successfully created an interface between a
commercial simulation package (Plant Simulation) and
a scripting language (Python).
Within Plant Simulation we are able to generate the
factory layout in a very flexible and cost effective way.
Using the scripting language Python we are able to dy-
namically create a model (buffer configuration) using a
few input files. This would have not been possible using
a conventional approach without resorting to an exter-
nal programming language.

REFERENCES

Cottyn J.; Govaert T.; and Van Landeghem H., 2008.
Alternative line delivery strategies support a forklift
free transition in a high product variety environment.
In Proceedings of the International Workshop on Har-
bor Maritime and Multimodal Logistics Modeling and
Simulation. Campora S. Giovanni, Italy.

Kühn W., 2006. Digital factory - simulation enhancing
the product and production engineering process. In
Proceedings of the 2006 Winter Simulation Confer-
ence. 1899–1906.

Limère V. and Van Landeghem H., 2009. Cost model for
parts supply in automotive industry. In Proceedings
of the 16th European Concurrent Engineering Con-
ference. Eurosis, Bruges, Belgium, 120–125.

Martelli A., 2006. Python in a Nuthsell. O’Reilly, 2nd
ed.

Siemens, 2008. Tecnomatix Plant Simulation 8.2 Step-
by-Step Help. Siemens.

