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Abstract

In historical claims for nativism, mathematics iparadigmatic example of innate
knowledge. Claims by contemporary developmentatpslogists of elementary
mathematical skills in human infants are a legadhis. However, the connection
between these skills and more formal mathematmatepts and methods remains
unclear. This paper assesses the current debatesursding nativism and
mathematical knowledge by teasing them apart wio distinct claims. First, in
what way does the experimental evidence from isfanbnhuman animals and
neuropsychology support the nativist hypothesis@oB&, granting that infants
have some elementary mathematical skills, doesnileian that such skills play an
important role in the development of mathematicadwledge?

1. Nativism and mathematical knowledge

Until the late 18th century, mathematical knowledgges a paradigmatic example
of innate knowledge. It often served a dual purp@seviding both a persuasive
reason why innate knowledge exists, and furnishimgvith an explanation of how
humans can have knowledge of mathematical objd2te to the increasing
importance of foundational issues and the exptajection of psychologism (i.e.,
the view that mathematics lies within the purviefvpsychology) by Frege and
others, nativism has lost its importance in reqantosophy of mathematics. By
contrast, contemporary developmental psycholodet., SpelkeKinzler, 2007;
Carey, 2004; Feigenson et al., 2004) propose tirate ideas are a naturalistic
source of mathematical knowledge. They have unewvezvidence for early-
developed mathematical skills in infants and yoahddren, such as the ability to
estimate and discriminate numerosities (Jordannmya, 2006), the capacity to
detect ordinal relationships between numerosif@arfnon, 2002), and the ability
to reason about spatial relationships in a Euchdéamework (see De Cruz,
2009, for a review).

This article examines the relevance of nativism floe philosophy of
mathematics. After providing a brief overview ofstarical claims for innate
mathematical knowledge, we focus on arithmetic as example of innate
mathematical knowledge in current developmentalcpsiogy. We examine in
detail the claim that infants are capable of prialic the outcomes of simple



addition and subtraction events, and look at readsjéctions to it. Then, we
examine to what extent this innate knowledge is artgmt for mathematical
practice. Focusing on number theory and arithmetie find that there are three
possible ways to explore the relationship betwesrate ideas and mathematical
practice.

1.1 Historical claims
Plato’sMeno(ca. 380 BC [2000]onstitutes one of the earliest direct treatmehts o
the innateness hypothesis, and interestingly, iawdr extensively on a
mathematical example. In this dialogue, Socratebgs the geometric intuitions
of an uneducated slave boy, leading him througaregs of questions to discover
relationships between the areas of squares drawithensand, including a
reiteration of the Pythagorean theorem. Given thatboy did not learn geometry
during his lifetime, Plato concluded that the slavest have always possessed this
knowledge, and that our learning of geometric cpiseas actually recollecting
(anamnesisof what we have always known as immortal souls.dages (1637
[1988], AT VI 135-137) proposed that our experiemsaoo limited to generate
mathematical concepts such aBIANGLE, as we are always confronted with
imperfect examples. He also believed mathematictlitions to underlie more
mundane forms of reasoning, for example, that et&@pic vision is possible
throughune géometrie naturell@n innate geometry that allows us to combine the
two-dimensional images from our eyes into a thrieeedsional representation of
space. Leibniz (1765 [2001]) argued that our exgrexe of the world is always of
contingent particulars, but that our knowledge &engeneral, and sometimes
necessary—this is especially the case for mathematie recognized that, while
our knowledge of numbers is learned, the cognitapacity that enables us to
learn them is innate: “And | cannot accept the psijon that whatever is learned
is not innate. The truths about numbers are ibusstill we learn them” (Leibniz,
1765 [2001], 85). The potential knowledge of neaegssnathematical truths is
thus innate, comparable to the veins of a marbde tutline a shape within it
before being uncovered by a sculptor, just likedeé®y can uncover our innate
knowledge (Leibniz, 1765 [2001], 52). Kant's argurhé&rom geometry presents
perhaps the most intricate classical philosophidaim for the innateness of
mathematical intuition. Kant (1781 [2005], A25/B4€)ecifies that our intuition
of space does not and cannot be derived from odtweaperience, since the
sensation of experiences outside of the self ajreaquires that one possesses the
conceptsPACE Then, he goes on to argue that it is preciselyittiigtion of space
that enables us to develop geometry as a scieri$icipline. Since Euclidean
geometry requires us to determine properties otesgynthetically and a priori,
the intuition of Euclidean principles must alreaglist within the subjects who
learn this discipline (Kant, 1781 [2005], B41).

The argumentative structure of historical accowitsnnate knowledge is
very similar to that of scientists working withirativist research programs today.
Like historical nativists, modern cognitive sciaigiinvoke poverty of the stimulus



arguments: given that our experience is too limitedgenerate mathematical
truths, our knowledge of those truths must alrebdycontained within us. Ever
since Chomsky’s seminal work on language developmmechildren, innateness is
a central concept in cognitive science. Yet theiomotof ‘innate’ remains ill
defined, such that some philosophers of scienge, (dameli, Bateson, 2006) have
argued that the innate/acquired distinction is Iegent and should be abandoned
altogether (for one thing, all traits are acquiratl some point during the
development of an organism from fertilized egg dellmature individual). By
contrast, others (e.g., Samuels, 2004) are noteroad with defining the meaning
of the term ‘innate’, but attempt to explain itsleroand significance within
scientific practice. Despite its lack of an unamimigs definition, cognitive
scientists continue to use the concept of innagnes their explanatory
frameworks, and, as we shall see, the case of maties continues to play a role
in current investigations of innate knowledge.

1.2 Current positions in philosophy of mathematics

The question of how humans are able to get epistancess to mathematical
objects is still relevant today. Benacerraf (197@nously argued that causal
epistemic accounts of mathematical knowledge areblpmatic, because
mathematical objects are often characterized asgra@bsentities, which reside
outside of space-time, making it difficult for mathaticians to acquire knowledge
about them. Few contemporary philosophers of madtiesh are attracted to
innateness as a possible solution to this probleEontake but one example of a
recent response to Benacerraf, according to SHapi(@997) ante rem
structuralism, non-applied mathematics is concermgth structures that are
conceived of as abstract entities. The preciseraatithese abstract entities is left
unspecified, as it is not essential to mathematcattice. Just as one can talk
about a goal keeper’s function in soccer (i.e.,pkeg the ball out of the goal)
without going into detail about the precise projesrof the person in this position
(e.qg., hair color), a mathematician can talk altbetnatural number 2 as a position
within the structure of arithmetic without having tworry about which set-
theoretical conceptualization captures 2 best, sacld, {d}} or {{ F}}. If
mathematical knowledge can indeed be derived frioaoctiral properties, there is
no need to look for an experiential basis of mathgcal knowledge. However,
Shapiro still needs to explain how we can conceivstructures in the first place,
and how we can grasp what is true about them.dpamse to this, Shapiro (1997,
115) invokes our ability to recognize patterns daodabstract from particulars,
leading us to recognize, for example that “the fpaittern is the structure common
to all collections of four objects.” A similar aamot is Resnik’'s (1982)
‘experiencing something as patterned’, where mastes is conceived of as the
study of patterns. However, this capacity, patteznognition, remains to be
explained. Shapiro’s (1997, 115) explanation is psychologically satisfying:
“[the] child starts to learn about cardinal struew by ostensive definition. The
parent points to a group of four objects, says r'fothen points to a different



group of four objects and repeats the exercisentadly, the child learns to
recognize the pattern itself”. It remains to be laxged how the child can
recognize what it is that stays invariant in thiedent sets presented to her (i.e.,
cardinality). At some point, humans must be ablédiszriminate cardinality, and
it is not clear how children can accomplish thi@wHdo we learn to abstract the
four pattern from four notes played on a keybo&wvdr trucks passing by or four
TV commercials, without already having some notdrvhat cardinality is?

2. Innate mathematical knowledge in developmental gychology: the case of
arithmetic

Contemporary scientists working within a nativigtisearch program consider
mathematical knowledge as a paradigmatic examplaraite knowledge (e.g.,
Spelke,Kinzler, 2007). They rely on a special version b€ tpoverty of the

stimulus argument which Samuels (2002) calls ‘thgument from early

development’. According to this, a given concepeeges at a point when it could
not have been learned through experience.

The argument from early development

1. Under experimental conditions, it is observedt tmfants possess a certain
capacity, for example, infants from a few hourseafbirth can visually
discriminate between collections of two and thrbgots (Antell, Keating, 1983).

2. This capacity is seen as best explained byipgssibome conceptual capacity, in
this case, a rudimentary ability to discriminateafirsets.

3. Because the capacity arises so early in devedapmt could not have been
learned through experience, i.e., newborns, hawspgnt time in the dark
environment of the womb, did not have the oppotiurio learn to visually
discriminate sets with different numbers of items.

4. Hence, the structure in question (discriminatimin small numerosities) is
probably innate.

To give a focus to our discussion of innate matherabknowledge, we will look
at one case in detail, namely the question of wdrethr not infants possess an
innate capacity to perform arithmetic. In 1992, elepmental psychologist Karen
Wynn published an elegant study in which she arghad our ability to perform
the simple arithmetic operations of subtraction addition is already present in
five-month-old infants. Her experiment was basedhanviolation of expectation
paradigm, a procedure that is frequently used tbginfants’ knowledge. It relies
on the assumption that infants look longer at eveahat they do not expect
because these events are more interesting to theproperty of the human
perceptual system that magicians rely on to cagheattention of their audience.



Infants are first habituated to a given event, Wwhgrepeated over and over until
their attention wanes. Then, during the test itsibjects are randomly assigned
to a control condition, or to a condition in whitlte event is slightly modified so
that it violates expectations. With appropriate tcols, evidence that infants look
reliably longer at the unexpected than at the etgueevent is taken to indicate
that they (1) possess the expectation under irgadsin; (2) detect the violation in
the unexpected event, and (3) show an increasegesit for this violation. In
Wynn’'s experiments, infants witnessed how a puppet placed on a stage. A
screen was lowered, hiding the puppet, and they lsaw a second doll was
placed behind the screen. If infants can perforenattidition 1 + & 2, they should
expect to see two objects once the screen is lalvéndeed, Wynn (1992) found
that infants looked longer when only one puppet waible (1 + 1= 1). Similarly,
infants who saw two puppets on the stage, a squesered in front of them, and
one of the puppets being taken away, looked loagére event 2 — £ 2 than at 2
— 1 =1, which Wynn interpreted as evidence that they parform simple
subtractions. More recently, McCrink and Wynn (2D@gpeated this experiment
with larger numbers: infants were either presemtgth possible arithmetic
operations 5 6 =10 and 10 — 5 5, or impossible results 55=5, 10 — 5= 10.
Again, the five-month-olds looked longer at the ompible results.

These experiments can be mapped onto the argumoentdevelopment as
outlined earlier. First, a difference in lookingng between correct and incorrect
outcomes is observed (premise 1). This differendeaking time is attributed to a
capacity of the infants to discriminate betweenrecr and incorrect arithmetic
operations (premise 2). The time span of five memshdeemed to be insufficient
to enable infants to learn to perform arithmetiem@ions through experience
(premise 3). Hence, the capacity is attributedht ihnate ability to discriminate
between correct and incorrect arithmetic operatigosnclusion). “[l|nfants
possess true numerical concepts—they have accdbe tordering of numerical
relationships between small numbers and can matguhese concepts in a
numerically meaningful way [...] The existence of ghearithmetical abilities so
early in infancy suggests that humans innately ggsthe capacity to perform
simple arithmetical calculations, which may provithe foundations of further
arithmetical knowledge” (Wynn, 1992, 750). Thu&elin the early philosophical
arguments, mathematical knowledge is taken to bat&) and to serve as a basis
for the development of further mathematical skillhe argument from early
development relies on a chain of inductions. Thaliguof each element in this
chain determines the validity of the arguments#sal nature also means that one
flaw can potentially undermine the entire argumehd. examine whether the
conclusion is cogent, we will now look at some chbns that have been raised
against each step in the chain.

2.1 Premise 1: infants’ looking time differs betwee correct and incorrect
arithmetic operations
One possible way to call experiments like thes® iguestion is to doubt the



experimental procedure on which they are basedelixents with infants and
animals are susceptible to the so-called CleversHdfect, named after an early
20™-century horse that could allegedly solve arithmefperations by tapping the
correct answer with its hoof. After careful exantian, psychologists found that
Hans was sensitive to unconscious cuing of theesnedi or its trainer. Ever since
then, many precautions are taken to eliminate Clehams effects in animal studies
and developmental psychology. Infants are eithateskin a car seat, or placed on
the lap of their parents who wear dark goggles so@ to see the experimental
conditions. The looking times of infants are codgdtwo independent observers
who cannot see the experimental procedure, iey, do not know when it switches
from habituation to test, and they do not know Wwkethe infants are watching the
unexpected or the expected event. Statistical mmeasaf interobserver agreement
are made; only results with a high interobserveeagent are taken into account.
Thus it is unlikely that the experimenters or pasanfluence the judgments of the
infants. The experimental setup, and the observiéerehces in looking time are
therefore usually accepted, also by opponents tofisia.

2.2 Premise 2: this success is best explained bytimfants’ conceptual knowledge

of number

This step is the most hotly debated by psycholegisho prefer alternative
empiricist explanations. For example, Haith (198@)siders a simpler perception-
based alternative: in the case where L=1, infants are surprised because one of
the objects disappears. If infants still have Immge perceptual information about
the one doll prior to the screen being raised, nexhat of the doll that is being
placed behind it, they should expect 2 dolls. Tdasses a mismatch between the
subjects’ purely perception-based expectation dred dctual situation (1 doll).
Hence, longer looking-times are caused by extretoslg-term sensory persistence
of each object prior to its occlusion—the infantsl ook longer at 1 +1 =1
without any arithmetic skills. A problem with thadternative explanation is that it
invokes a novel mechanism, long-term sensory gergis. As there is no empirical
evidence of its existence, it would seem that thechanism is invoked with the
sole purpose of providing a non-cognitive accourit tbese experiments.
Nonetheless, some replications of Wynn (1992) hattempted to eliminate this
alternative account. Koechlin et al. (1998), fommyple, replicated the experiment
with the puppets on rotating platforms; the constamolving of the puppets across
the stage excludes the possibility of extreme sgngersistence. Even under these
conditions, infants looked longer when they witmessmpossible outcomes of
subtractions and additions.

Explaining the results in terms of a familiarityepgrence might be a more
promising non-cognitive explanation. According toh&n and Marks (2002),
infants look longer at 1 ¥ = 1 because they see only one doll at the beginring o
the experiment, when they are familiarized with sle¢up by being seated in front
of the theatre and watching one doll. Similarlyeyttprefer 2 — & 2 because during
these familiarization trials they more frequentlgestwo dolls. To test this



alternative explanation, Cohen and Marks (2002)gtesl a series of experiments
in which infants were shown O, 1, 2, and 3 as auepof 1 +1 and 2 — 1
operations. The results were consistent with timérpretation of the evidence: the
infants looked much longer at 1+= 1 and 2 — 1= 2 than at the other incorrect
outcomes (1 4 =0o0r 3 and 2 — £ 0 or 3). To control for this bias, Kobayashi et
al. (2004) replicated Wynn’s experiment across ritiega (visual and auditory). In
their experiments, five-month-olds were shown a gotar-animated version of
Wynn's experimental setup. Familiarizations corsistf 1, 2 or 3 dolls falling onto
a platform, producing a distinctive thud with eafefi. In the 1 +1 =2 or 1
condition, infants watched a doll falling from tteg of the display onto a platform,
making a distinct thud. After this, a screen appdan front of the doll, and the
subjects heard a second, similar thud. After threest was lowered, they looked
longer when only one doll was present. Similar ltsswere obtained for the
subtraction condition. Since this study controlléor possible familiarity
preferences, it indicates that familiarity alonenmat explain the experimental
results. Berger et al. (2006) replicated Wynn'gioal setup: six- to nine-month-
olds saw incorrect and correct outcomes while theain activity was measured
by electrodes placed on the scalp (a procedure knaw Event Related
Potentials). In the adult human brain, there ard-described patterns of brain
activation associated with error detection. Themt$’ brains, like those of adults,
showed the same characteristic pattern of errareien during the incorrect
outcomes. This provides additional support for dognitive interpretation of
Wynn's experiments. It appears that there is culyemo rival empiricist
explanation that accounts for the results of treegeeriments.

2.3 Premise 3: because the capacity arises early development, it cannot have
been learned through experience

One can never state with absolute certainty thadaaty-developed skill is not the
result of experience, except for skills that arstedd immediately after birth, like
face recognition. After all, as Haith (1998) obsatyinfants of a few months old
have had over 1000 hours of waking time, correspmndo millions of eye
movements, which could have provided plenty of aoppoty to benefit from
visual experience. However, in the case of aritimmetsual experience alone
seems insufficient. Five-month-old infants cannotuntarily grasp and release
objects: grasp is present at 4 to 5 months, buintaty release only at 9 months
due to persistence of the grasp reflex. Empiriastounts of the acquisition of
arithmetical skills such as that by Piaget (195®ppse that young children learn
the outcomes of arithmetic operations by placingats together, or taking some
away, and observing the resulting number of objdatfants of five months old,
who can barely grasp and not release, cannot ewpatiin this way by adding or
taking away objects to predict the results of add# and subtractions. Of course,
this does not rule out other possible empirical svaywhich infants could have
learned to predict the outcome of arithmetic openst It may well be that
whether one takes an empiricist or nativist perspedo interpret a given body of



evidence depends on the judgméint the Kuhnian sense) of the experimenter,
rather than an unambiguous reading of the evidenhout a detailed empiricist
rival explanation, nativist developmental psychadtgy may be justified in
claiming that these experiments provide evidencenimate arithmetic knowledge,
without excluding the possibility of a future enipist rival account.

2.4 Conclusion: the property in question is probahyt innate

What does ‘innate’ mean? Long before innatenessansasentific concept, it was
a philosophical and a folk concept. The historieghmple of the folk concept of
FORCE that was imported into physics illustrates thatlsaltered folk concepts
can and do play a legitimate role in science (ManBdteson, 2006, 156). The
folk concept of innateness is currently being intedrinto sciences as diverse as
cognitive science, embryology and palaeoanthropgloghere it gradually
changes to fit the purposes of these disciplinescaBse innateness has been
imported into many diverging disciplines, the exyaltory role it assumes within
these differs. As a result, there is no generahdefn of ‘innateness’ that covers
all disciplines. Evolutionary psychologists, foraemple, regard an innate trait as
an evolutionary adaptation. They place an emphasis universality and
developmental invariance, e.g., cross-culturaluiest of human mate selection
are seen as evidence for evolved preferences farathde traits in mates. By
contrast, developmental psychologists do not useliaix evolutionary
frameworks to reason about knowledge in infantgh&a they consider cognitive
traits to be innate if there is no correct develeptal psychological account to
explain how the infants could have learned thems Thprecisely the motivation
behind the argument from early development. Becatle explanation of
innateness depends on the discipline in which usied, Samuels (2002) regards
an innate idea as one for which there is no comsentific account within that
discipline. In the case of innate arithmetic, ivdlpmental psychologists cannot
explain this ability as a result of learning, itcbenes ‘innate’ by default within
that discipline. This is not to say that there ascorrect scientific account for this
ability in another discipline, such as geneticsagnitive neuroscience.

3 From intuitive to formal mathematical knowledge

If nativist claims for mathematical principles tuomt to be sound, how can we
assert that these skills are important for the kigreent of mathematical
knowledge? Although both claims (i.e., mathematgialls are innate, and these
innate skills form the basis of mathematical knalgle) are logically independent,
they are often conflated. Until recently, developma¢ psychologists assumed
almost without question that the rudimentary nucsdricapacities exhibited by
infants and nonhuman animals lie at the basis ofemmmmplex mathematical
knowledge. Nevertheless, the question of how themsgacities give rise to
mathematical theory remains unresolved.

A wealth of empirical evidence suggests that thpacdies to represent



numerosities, to perform elementary arithmetic apens, and to detect ordinal
relationships between different collections of ige@mre present in infants and
nonhuman animals (see Feigenson et al. 2004, forowarview). It seems
reasonable to suppose that such capacities formprédwairsors of formalized ways
of reasoning about number and arithmetic. Butmams difficult to pinpoint the
causal arrow between intuitive and formal mathecahtconcepts. It is quite
possible that both domains are independent, hat,there is no overlap between
intuitive and formal mathematical concepts, andt ttiee similarities are only
superficial. In order to reconcile intuitive andrmal numerical competence, three
possible ways are open to us. One strategy coneistdempting to characterize
preverbal numerical representations in terms of memtheory. If intuitive number
concepts are in some way isomorphic to theoreticamhber concepts, then it is
conceivable that children can go from their initimbmerical skills to a
understanding of natural numbers, negative numbieastions and so on. A
second strategy examines the process of naturabeumcquisition in young
children, and attempts to spot parallels betwees pinocess and properties of
number theory—if such parallels exist, it is ralaty unproblematic to explain the
emergence of formal number concepts in childrenth&kd strategy is more
indirect, and attempts to show that intuitive numbencepts are important for the
acquisition of more formalized arithmetic skillshi$ approach can be situated
within philosophical positions that emphasize mathgcal practice, rather than
the theoretical foundations of mathematics. We avilically discuss each position
in turn.

3.1 Characterizing intuitive numbers formally
How can intuitive numerical representations be abimrized? Several
mathematicians (e.g., Kronecker and Brouwer) aambral privileged position to
the natural numbers in their attempt to find a fation for arithmetic: they
thought that natural numbers were given througtition, and that from these we
can construct all other numbers. However, theeensgsmatch between the natural
numbers and the representations of cardinality dayhaman animals and human
infants. The latter are imprecise; this imprecisimereases rapidly with the
magnitude of the numerosities. For example, whikwlborns can reliably
discriminate between collections of two and threams, they fail to see the
difference between four and six, although the rdiiference is identical (Antell &
Keating, 1983). Likewise, in a classical study (MeChurch, 1983) in which rats
were trained to press a levartimes (with n ranging between 4 and 24), the
animals became less and less accurate as the @gequimber of lever-presses
increased. The same increasing imprecision is als®erved in adults who are
required to make a number of key presses or tmattithe number of light flashes
at a rate that makes counting impossible (Whaleth. £1999).

To date, no nonhuman animal has mastered the apedestructure of
natural numbers in a way that four-year-old humiaildcen in many cultures have.
Typically, chimpanzees and other animals can bghiato remember numerosities



by learning each magnitude separately. In one stadgmale chimpanzdearned
to associate arabic digits with cardinal valuebhyte association. In the initial training
of the number 2, she apparently assumed that ‘Ziningnore than one’, eventually
learning to apply the arabic numerals ‘1’, ‘2’ aid correctly. Instead of generalizing
this procedure to numbers greater than 3, she mlydevent on to assume that ‘3’
meant more than two, which brought her competerncassigning ‘4’ correctly to
chance level until she eventually also learnednd, this up to YBiro, Matsuzawa,
2001). The insight that this property can be gdimad, i.e., that for every natural
numbern there is a numban + 1, appears to be restricted to humans.

Interestingly, several human cultures seem to la@kural number
representations. For example, tAgaha,a Brazilian indigenous culture, do not
possess words that denote natural numbers (Go&(®¥). ThePirahd language
has only three standardized words to denote cdityinaften translated as ‘one’
(h6i), ‘two’ (hoi) and ‘many’ (baégiso). In one diu(Frank et al. 2008), Piraha
subjects were presented with arrays of objectsi@neasing order (from 1 to 10)
and asked to denote how many items they saw. Subés#y, the items were
presented in decreasing order (from 10 to 1). Tdeeaf the terms *héi’, ‘hoi’ and
‘baagiso’ was not consistent, but depended on thderan which the items were
presented: when objects were presented in incrgasder, most subjects said that
6 items were ‘baagiso’ (many), whereas in decregasimder, most subjects said
‘hoi” (two) when presented with the same 6 objeElsnce, the authors concluded
that the Pirahd language has no words that comelspm our concept of natural
numbers, not even in an approximate sense. Givanndtural numbers are not
present in infants and nonhuman animals, and rent @vall human cultures, they
are unlikely candidates to describe our innate migakskills.

Gallistel and Gelman (2000) proposed that magnguda the mental
number line could be conceptualized as real numb®eal numbers differ from
natural numbers in several interesting respectstatter are countable and discrete,
whereas the former (e.gV2 or n) are uncountable and densigey cannot be put
into a one-to-one correspondence with a list ahgeGallistel and Gelman chose
reals, because they are non-discrete like the septations of number in infants
and nonhuman animals. As shown in figure 1a, tlvesebe illustrated by tuning
curves, which are normally distributed around givgumantities. In the rhesus
monkey brain, individual neurons that respond tomerosity show this
approximation: neurons optimally responding to éms also exhibit some
activation for values between 2 and 6 (Tudusciuedbr, 2007). However, there is
no evidence that nonhuman animals would be camdbiepresenting real numbers
such az or 1.01001000100001. Moreover, as natural numlzers & subset of the
real numbers, this account fails to explain whynaals are not able to master
natural numbers. It remains unclear how humansrgm fthis kind of numerical
concept to counting: in contrast to natural nump#rsre is no definite next tag
within real numbers, e.g., for 1, any number gnetitan 1 such as 1.00000000001
could be a next tag (Laurence, Margolis, 2005).

Whereas the set of natural numbers can be mappedaolinear scale, it
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remains unclear whether or not animals and infegpsesent numerosities in this
way. Their representations appear to be comprdssdarger magnitudes such that
the perceived distance between 2 and 3 is largan the perceived distance
between 22 and 23. This effect of decreasing disngbility with increasing size is
very robust, and has been documented in nonhumaraBn(Meck, Church, 1983),
preschoolers (Siegler, Booth, 2004), and in pedpben cultures with inexact
number words (Dehaene et al., 2008). Hence, sotherauhave proposed that such
estimations of numerosities conform to the natdoagarithms [n) of these
the variability of responses follows the same ndmingtribution. As the logarithmic
curves overlap increasingly with their neighborgghler numerosities are more
difficult to tell apart—this explains why it is @asto tell 3 items from 4 than it is to
discriminate 23 from 24.
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Fig. 1: Two competing hypotheses on how intuitivenerosities are represented (a)
logarithmic with fixed variability, and (b) lineavith scalar variability

However, several psychologists (e.g., Le Co@arey, 2007) disagree with this
interpretation, and contend that intuitive numbepresentations, both in young
children and nonhuman animals, can be more acdyreéptured using a linear
representation with scalar variability (Figure 18kalar variability means that the
standard deviation of the estimate of some quamsity linear function of its
absolute value, i.e., the larger the value, thédrnighe standard deviation, and the
broader the tuning curves. Therefore, represematd small collections up to 3 or
4 are reasonably accurate, whereas those of langabers become increasingly
imprecise and noisy. It remains difficult to decidetween logarithmic and scalar
variable representations because they yield simpiadictions in most (but not all)
circumstances. For example, they both predict thanice effect, namely the fact
that smaller numerosities are discriminated faated more accurately. In sum,
the evidence taken together suggests that intuittveber representations do not
correspond to any well-established set in numbeorh (such as natural numbers
or reals), and there is currently no consensusoasiow they can be best
represented (logarithmic or linear). Given the eantrstate of affairs, attempts to
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characterize preverbal number concepts in termeuafiber theory reveal little
about the relationship between intuitive and formakthematical ideas.

3.2 Learning natural numbers through axiomatic sys¢ms

Some philosophers of mathematics focus on how idnldearn the natural
numbers. If this learning process captures somaifgignt properties of
axiomatizations of arithmetic, such an approach hiigighlight important
psychological continuities between intuitive andnfal concepts. According to
one account, children learn the natural numbersabgpting the successor
function, which is central to the Dedekind-Pean@muapatizations of arithmetic.
The successor function is a primitive function, evhstates that if a given is a
natural number, so is its successor, i¥l) = 2, §2) = 3, and so on. Many
psychologists (e.g., Le Corre, Carey, 2007) reghedl successor function as a
crucial building block in the understanding of nuowmties. According to one
popular account (e.g., Carey, 2004), children ledarrmap the meanings of the
words for ‘one’, ‘two’ and ‘three’ onto their pre<sting intuitive representations
of these quantities. This seems sensible, as noahuanimals can also easily
discriminate between these small collections (dJjer et al., 2003). Children
then recognize the successor function within th& fivords of their counting list,
and, through induction generalize this principlehigher number words (four,
five, and so on): if a numeral refers to cardinal value and p immediately
follows n in the count list them refers ton + 1. A problem with this account is
that the Dedekind-Peano axioms do not charactenzesveryday use of number
words. Some authors (e.g., Rips et al., 2008) leeptc about the assumption that
children can make the inductive step from small atosities to a list of counting
words. For one thing, why would children conclubatt'two’ refers to collections
of exactly two objects, rather than approximatelp bbjects, as thBiraha doAs
we have seen, nonhuman animals, even our clodaiveethe chimpanzee, seem
to be unable to do so, even after extensive trgifiiro, Matsuzawa, 2001).
Decock (2008) provides an alternative account inctwvrequinumerosity (also
known as Hume’s principle) rather than the sucaefsuaction is conceptualized
as the basis for learning natural numbers. Accartinthis notion, if humans have
the concept o€EOLLECTION, they can discover that two collections have theesam
number of items by putting their members into a-t;mene correspondence,
either physically or by means of a stably orderetbal list of counting words or
body parts. Indeed, in many cultures, one-to-orreespondence is used to denote
guantities in this way. The Loboda, for exampleg ar Papua New Guinean
aboriginal culture where gift exchange plays an amgnt role in the local
economy. To judge whether a gift is fairly distribd or reciprocated, objects of a
specific category (e.g., yams, bunches of toba@re) piled up or placed in
baskets, and these collections are compared toaheh Once the collections are
of equivalent size, the Loboda know that the dsition is fair, even though they
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do not know the exact cardinality (Thune, 1978)sdAlsome experiments (e.g.,
Jordan, Brannon, 2006) suggest that infants can spontaheouetect
equinumerosity: they can match the number of tgltieads they see on a screen
to the number of voices they hear. Still, Hume’'sm@ple, as Rips et al. (2008)
note, is not sufficient to specify the natural narsh It is consistent, for example,
with systems containing only a finite set of nundgeand with systems that
contain cardinals beyond the natural numbers (drgctions). To get positive
integers only, one needs to invoke some additiaefinitions that require
successor series.

Both approaches share a similar problem. Evereifsticcessor function or
equinumerosity can provide a basis of arithmetienfra formal point of view, this
does not guarantee that either actually lies atliagis of numerical abilities.
These axiomatizations were never meant to conckpguaveryday numerical
skills, but rather to provide a consistent founalatfrom which arithmetic could
be derived. As Dedekind (cited in Greiffenhagenargétck, 2006) remarked:
“...many a reader will scarcely recognize in the siveyl forms which | bring
before him his numbers which all his life long haaeompanied him as faithful
and familiar friends.” Conflating number theory witeveryday practices of
counting may be a category mistake.

3.3 The importance of innate numerical skills for mathematical practice

Everyday mathematical practice suggests a distindietween the foundational
work of axiomatizing mathematical theory and thdydavork of mathematicians.
Dedekind noted that axiomatizations of arithmetie aot meant to capture our
everyday use of number; it is also interesting lisesve that mathematicians rely
to an important extent on informal, intuitive mod#geasoning, especially in the
early stages of creativity. In their description tbe mathematical experience,
Davis and Hersh (1981, 399) stress the importanceantuitive, everyday
mathematical practice, and go as far as to sayhg Etudy of mental objects with
reproducible properties is called mathematics.ifioiu is the faculty by which we
can consider or examine these (internal, mentgBotdy'. In this way, everyday
numerical practice, such as arithmetic or companogierosities, is continuous
with formal mathematics. Indeed, the emphasis om#&b aspects of mathematics,
such as proofs, is a recent phenomenon of westdtare that seems absent in
other cultures with a rich mathematical traditibke the medieval Islamic world
or imperial China. Even in western mathematics wp the 18 century
mathematicians were primarily concerned with ggttiesults, and their successes
were many. It is doubtful whether these successeddihave been achieved had
Euler and his contemporaries been burdened bytamelards of rigor of todayn
the early 19 century, this situation changed dramatically: reathticians such as
Cauchy and Bolzano demanded rigorous proofs ofthkeerems about concepts
that had hitherto been understood mainly intuiyivdfor example, as early as
1629, Girard wrote that angth degree equation has real roots—a first step
towards what later became known as the Fundamditabrem of Algebra.
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However, it was not until 1806 that Argand publidhee rigorous proof of it, for
the first time specifying that the theorem holdsswhhe coefficients are complex,
rather than real (Grabiner, 1986). Still, the ra& nonformal mathematical
practice has not disappeared in current mathemadthes initial belief that a proof
may be correct, such as Wiles’ proof of Fermat& kaeorem, usually does not
depend on thorough scrutiny, but on concurrencé \wigh-level ideas (some
might say, gut feeling) long before the details @recked (Thurston, 2006).

Another reason to think that informal mathematmalctice is important for
the development of mathematics as a formal dis@pls historical. Whenever
accurate historical accounts of mathematical pradre available, we can observe
that mathematical techniques develop in respongeaictical needs. The elaborate
mathematical tools developed in Han dynasty Chi@2 (BC-220 AD), which
involved solutions to simultaneous linear equatianth several unknowns, was
concerned with the needs of the early developingiemnand provided solutions
for calculating taxes, dividing inheritance, andamizing large-scale public works.
Medieval Islamic geometry was applied to prestigehiéecture (e.g., the
construction of a round cupola on the square hafsisausoleums), seafaring and
the calculation of the q’ibla, the relative positiof Mecca. If it can be shown that
innate mathematical abilities are indeed esserfal the development of
mathematical practice, then we have reason toumelieat these are in some way
foundational for mathematics as a formal sciensdha early nativist philosophers
like Plato, Descartes, Leibniz and Kant origingdhpposed.

To illustrate this line of reasoning, we again drem the domain of
arithmetic. As we have argued in section 2, infaméesable to predict the outcomes
of very simple arithmetic operations, but this doed imply that this ability
underpins the later development of more complethaetic skills. Yet several
lines of evidence suggest that innate arithmetitisskre constitutive of later
arithmetic competence. Gilmore et al. (2007) askie-year-olds to solve
symbolic arithmetic tasks in verbal format or wiabic digits. The problems
involved large numbers, such that the preschoatetdd not have learned the
outcomes yet, for example “Sarah has fifteen canadiel gets nineteen more, John
has fifty-one candies. Who has more candies?” @mldhad about 7% of the
answers correct, significantly above chance, whiths out guessing as a strategy.
The authors then examined possible reasons fartildren’s successes. First, they
looked at the possibility that they might have teat some symbolic arithmetic
facts by heart (e.g., $9 = 14) and drew on these as a basis for other problems
However, the subjects failed to provide correctiBohs to exact problems of this
form. Next, they examined whether or not childrerevd on approximate
arithmetic. They found that the accuracy dependedth® ratio between the
numbers, a clear signature of approximate numedcaipetence, which has also
been found in monkeys—when rhesus monkeys perfoithmezetic tasks, they also
become increasingly imprecise as the ratio diffeeedrops (Flombaum et al.,
2005). In agreement with the view that approxinatthmetic skills underlie exact
arithmetic performance, Halberda et al. (2008) stubthat teenagers who do well
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on approximate arithmetic tasks are more likelpéoform well on mathematics at
school.

Studies that measure differences in brain actima(eng., Venkatraman et
al., 2005) indicate that nonsymbolic arithmetiates brain regions that are very
similar to those involved in symbolic arithmeticedfardless of whether subjects
solve additions by looking at collections of dolsatt are added together or by
adding up arabic digits, the intraparietal sulecgas of the brain involved in a
wide variety of numerical tasks, show increasedvation. Previous studies that
measured the individual activation in neurons ofstis monkeys (Tudusciuc,
Nieder, 2007) indicate that the intraparietal sut@ntain number-sensitive
neurons, which are sensitive to the cardinalityaofollection of items, but not
sensitive to other properties, such as size oreshalphough these studies do not
demonstrate a direct, causal link between innatd #rmal mathematical
knowledge, they suggest that innate abilities aseetial for the development of
mathematical skills.

If approximate numerical competences are importanthe development
of formal mathematics, one would expect that pe@olen cultures without formal
arithmetic can spontaneously figure out arithmptiaciples. The Yupno, a Papua
New Guinean aboriginal people, do not perform amgkic operations, possibly
because it has little practical value for them.tih¢ market, for example, objects
are placed in piles of a value of 10 toea; if omenterested in the product, one
simply picks up a heap and leaves a coin of 10, tetaéch obviates the need for
calculations. Wassmann and Dasen (1994) probed ¢&ugnowledge of
arithmetic, amongst others by asking subtractianghe form of bride price
problems, e.g., 17 — 9 became “you need 17 pigsatoa bride price, and you
have already given 9 pigs to your prospective fathdaw. How many pigs do
you still need?” Subjects could calculate the saditons by recasting them into
additions, in this case, by adding up from 9 angkiheining how much is needed
to reach 17—in other words, they spontaneously réiguout a relationship
between addition and subtraction. In another erpemt, monolingual children
who spoke either Warlpiri or Anindilyakwa, two Auwslian aboriginal languages
lacking exact number words, were asked to divide ® discs among three toy
bears. Despite their unfamiliarity with division,ost children successfully solved
the problem by using a one-to-one correspondemategly, giving each toy a disc
until all were divided (Butterworth et al., 2008everal Oksapmin adolescents
from a Papua New Guinean culture with a 29-partybmait counting system
spontaneously developed an ingenious method fowringpl additions and
subtractions by slightly modifying their body-padunting system. To calculate 7
+ 5, they started counting at the body part thatotles 7, i.e., ‘right lower arm’.
While counting, they used the words from 1 to 8,,ithe words from ‘right
thumb’ to ‘right pink’. Once this count was comm@dt they could check where
they ended up, which in this case was ‘right edghoting 12 (Saxe, 1985). These
examples, while far from a systematic cross-cultamamparative study, suggest
that intuitions about basic arithmetic operatiome ahared across cultures. Of
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course, there are many cross-cultural differenodbe way arithmetic operations
are solved, in the base-sizes that are used, atiteiway numerals are denoted.
Yet to date, no culture has been found where asatltndeviates widely, e.g.,
where 2 +2 is consistently taken to equal 5. Across cultusasple arithmetic
operations like addition and subtraction have @e underlying structure, even
though the manner in which results are obtainedveay widely.

4 Concluding remarks

In the history of philosophymathematics has often served as a paradigmatic
example of innate ideas. Although nativism doesfigutre in current philosophy
of mathematics, it is an Iimportant guiding prineiplin developmental
psychological investigations of mathematical knayge. In this paper, we
provided a detailed analysis of the claim by Wyh@92)and other developmental
psychologists that knowledge of some principlesaothmetic operations is
innate, by spelling out the argumentative structuredetail and by examining
some responses to objections against this claint. é€amination of possible
relationships between intuitive and formal arithimétdicates that there are good
reasons to think that innate numerical abilitieayph significant role in the
development of arithmetic competence, even thoaghtive number concepts do
not correspond to any established set in numbeoryheand even though
children’s learning of number does not clearly dallaxiomatizations of number.
This proposal does not solve the problem of howctyachildren go from
intuitive numerical skills to arithmetic. A satisfig account of this likely involves
both internal and external cognitive factors, sumh the use of symbolic
representation systems or finger counting as epistéols (De Cruz2008).Our
discussion of arithmetic corroborates the view, edded by early nativist
philosophers, that mathematical skills have a dognibasis, and that this
provides a foundation for more formalized matheoatknowledge.
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