The valuations of the near octagon \mathbb{G}_4

B. De Bruyn and P. Vandecasteele

Ghent University, Department of Pure Mathematics and Computer Algebra, Krijgslaan 281 (S22), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be, pvdecast@cage.ugent.be

Abstract

In [4] it was shown that the dual polar space DH(2n-1, 4), $n \geq 2$, has a sub near-2*n*-gon \mathbb{G}_n with a large automorphism group. In this paper, we classify the valuations of the near octagon \mathbb{G}_4 . We show that each such valuation is either classical, the extension of a non-classical valuation of a \mathbb{G}_3 -hex or is associated with a valuation of Fano-type of an \mathbb{H}_3 -hex. In order to describe the latter type of valuation we must study the structure of \mathbb{G}_4 with respect to an \mathbb{H}_3 -hex. This study also allows us to construct new hyperplanes of \mathbb{G}_4 . We also show that each valuation of \mathbb{G}_4 is induced by a (classical) valuation of the dual polar space DH(7, 4).

Keywords: near polygon, generalized quadrangle, dual polar space, valuation, hyperplane.

MSC2000: 51A50, 51E12, 05B25

1 Introduction

1.1 Basic definitions

Let S be a *dense near 2n-gon*, i.e. S is a partial linear space which satisfies the following properties:

(i) For every point p and every line L, there exists a unique point $\pi_L(p)$ on L nearest to p. Here, distances $d(\cdot, \cdot)$ are measured in the collinearity graph of S.

(ii) Every line of \mathcal{S} is incident with at least three points.

(iii) Every two points of \mathcal{S} at distance 2 from each other have at least two common neighbours.

(iv) The maximal distance between two points of S is equal to n.

A dense near 0-gon is a point, a dense near 2-gon is a line and a dense near quadrangle is a generalized quadrangle (Payne and Thas [17]).

For every point y of S and every non-empty set X of points, we define $d(y, X) := \min\{d(y, x) \mid x \in X\}$. If X is a non-empty set of points of S, then for every $i \in \mathbb{N}$, $\Gamma_i(X)$ denotes the set of points y of S at distance i from X. If X is a singleton $\{x\}$, we will also write $\Gamma_i(x)$ instead of $\Gamma_i(X)$.

One of the following two cases occurs for two lines K and L of S (see e.g. [5, Theorem 1.3]): (i) there exist unique points $k^* \in K$ and $l^* \in L$ such that $d(k, l) = d(k, k^*) + d(k^*, l^*) + d(l^*, l)$ for all $k \in K$ and $l \in L$; (ii) the map $K \to L; x \mapsto \pi_L(x)$ is a bijection and its inverse is equal to the map $L \to K; y \mapsto \pi_K(y)$. If the latter case occurs, then K and L are called *parallel*.

By Theorem 4 of Brouwer and Wilbrink [2], every two points x and y of Sat distance $\delta \in \{0, \ldots, n\}$ from each other are contained in a unique convex subspace $\langle x, y \rangle$ of diameter δ . These convex subspaces are called *quads*, respectively *hexes*, if $\delta = 2$, respectively $\delta = 3$. The lines and quads through a given point x of S define a linear space which is called the *local space at* x. If X_1, X_2, \ldots, X_k are non-empty sets of points, then $\langle X_1, X_2, \ldots, X_k \rangle$ denotes the smallest convex subspace containing $X_1 \cup X_2 \cup \cdots \cup X_k$. Clearly, $\langle X_1, X_2, \ldots, X_k \rangle$ is the intersection of all convex subspaces containing $X_1 \cup X_2 \cup \cdots \cup X_k$.

A point x of S is called *classical* with respect to a convex subspace F of S if there exists a (necessarily unique) point $\pi_F(x)$ in F such that $d(x, y) = d(x, \pi_F(x)) + d(\pi_F(x), y)$ for every point y of F. Every point of $\Gamma_1(F)$ is classical with respect to F. A convex subspace F of S is called *classical* (in S) if every point of S is classical with respect to F. Every line of S is classical. If every quad of S is classical, then S is a so-called *dual polar space* (Cameron [3]). The near polygon S is then isomorphic to a geometry Δ whose points and lines are the maximal and next-to-maximal singular subspaces of a given polar space Π (natural incidence). A proper convex subspace F of S is called *big* (in S) if every point of S has distance at most 1 from F. If F is big, then F is also classical. If F is big and if every line of S is incident with precisely 3 points, then we can define a *reflection* \mathcal{R}_F *about* F which is an automorphism of S: if $x \in F$, then we define $\mathcal{R}_F(x) := x$; if $x \notin F$, then $\mathcal{R}_F(x)$ is the unique point on the line $x\pi_F(x)$ different from x and $\pi_F(x)$.

Near polygons were introduced by Shult and Yanushka [18]. We refer to (Chapter 2 of) De Bruyn [5] for more background information on (dense) near polygons.

A function f from the point-set of S to \mathbb{N} is called a *valuation* of S if it satisfies the following properties:

(V1) $f^{-1}(0) \neq \emptyset;$

- (V2) every line L of S contains a unique point x_L such that $f(x) = f(x_L) + 1$ for every point x of L different from x_L ;
- (V3) every point x of S is contained in a (necessarily unique) convex subspace F_x such that the following properties are satisfied for every $y \in F_x$:
 - (i) $f(y) \le f(x)$;
 - (ii) if z is a point collinear with y such that f(z) = f(y) 1, then $z \in F_x$.

Valuations of dense near polygons were introduced in De Bruyn and Vandecasteele [11]. For many classes of dense near polygons, see [10], it can be shown that property (V3) is a consequence of property (V2).

If f is a valuation of S, then we denote by O_f the set of points with value 0. A quad Q of S is called *special (with respect to f)* if it contains two distinct points of O_f , or equivalently (see [11]), if it intersects O_f in an ovoid of Q. We denote by G_f the partial linear space with points the elements of O_f and with lines the special quads (natural incidence).

Proposition 1.1 (Proposition 2.12 of [11]) Let S be a dense near polygon and let $F = (\mathcal{P}', \mathcal{L}', I')$ be a (not necessarily convex) subpolygon of S for which the following holds: (1) F is a dense near polygon; (2) F is a subspace of S; (3) if x and y are two points of F, then $d_F(x, y) = d_S(x, y)$. Let fdenote a valuation of S and put $m := \min\{f(x) \mid x \in \mathcal{P}'\}$. Then the map $f_F : \mathcal{P}' \to \mathbb{N}; x \mapsto f(x) - m$ is a valuation of F.

Definition. The valuation f_F of F defined in Proposition 1.1 is called the valuation of F induced by f.

Examples. Let $\mathcal{S} = (\mathcal{P}, \mathcal{L}, I)$ be a dense near 2*n*-gon, $n \geq 2$.

(1) For every point x of S, the map $\mathcal{P} \to \mathbb{N}; y \mapsto d(x, y)$ is a valuation of S which we call a *classical valuation*.

(2) Suppose O is an *ovoid* of S, i.e. a set of points meeting each line in a unique point. For every point x of S, we define $f_O(x) = 0$ if $x \in O$ and $f_O(x) = 1$ otherwise. Then f_O is a valuation of S which we call an *ovoidal valuation*.

(3) Let x be a point of S and let O be a set of points at distance n from x having a unique point in common with every line at distance n-1from x. For every point y of S, we define f(y) = d(x, y) if $d(x, y) \le n-1$, f(y) = n - 2 if $y \in O$ and f(y) = n - 1 otherwise. Then f is a valuation of S which we call a *semi-classical valuation*.

(4) Suppose $F = (\mathcal{P}', \mathcal{L}', \mathbf{I}')$ is a convex subspace of \mathcal{S} which is classical in \mathcal{S} . Suppose that $f' : \mathcal{P}' \to \mathbb{N}$ is a valuation of F. Then the map $f : \mathcal{P} \to \mathbb{N}$; $x \mapsto f(x) := d(x, \pi_F(x)) + f'(\pi_F(x))$ is a valuation of \mathcal{S} . We call f the *extension* of f'.

In the literature, valuations have been used for the following important applications: (i) classification of dense near polygons ([9], [16]); (ii) constructions of new hyperplanes of dense near polygons, in particular of dual polar spaces ([8], [12]); (iii) classification of certain hyperplanes of dense near polygons, in particular of dual polar spaces ([6]); (iv) study of isometric full embeddings between dense near polygons, in particular between dual polar spaces ([7], [14], [15]).

We will now define two classes of dense near polygons which will be important throughout this paper.

(I) Let X be a set of size 2n+2, $n \ge 2$, and let $\mathbb{H}_n = (\mathcal{P}, \mathcal{L}, \mathbb{I})$ be the following point-line geometry:

(i) \mathcal{P} is the set of all partitions of X in n+1 subsets of size 2;

(ii) \mathcal{L} is the set of all partitions of X in n-1 subsets of size 2 and one subset of size 4;

(iii) a point $p \in \mathcal{P}$ is incident with a line $L \in \mathcal{L}$ if and only if the partition determined by the point p is a refinement of the partition determined by L.

By Brouwer, Cohen, Hall and Wilbrink [1], see also De Bruyn [5, Section 6.2], \mathbb{H}_n is a dense near 2*n*-gon with three points per line. The near polygon \mathbb{H}_n has $\frac{(2n+2)!}{2^{n+1}\cdot(n+1)!}$ points and each point is incident with $\binom{n+1}{2}$ lines. Every quad of \mathbb{H}_n is isomorphic to either the (3×3) -grid or the generalized quadrangle W(2). Every W(2)-quad is classical in \mathbb{H}_n . By De Bruyn [10, Corollary 1.4], a map $f : \mathcal{P} \to \mathbb{N}$ is a valuation of \mathbb{H}_n if and only if it satisfies properties (V1) and (V2).

The near hexagon \mathbb{H}_3 will be of interest in this paper. Every W(2)-quad of \mathbb{H}_3 is big. Every local space of \mathbb{H}_3 is isomorphic to the Fano-plane in which a point has been removed. Hence, every point of \mathbb{H}_3 is contained in three grid-quads and these grid-quads partition the set of lines through x. If x is a point of \mathbb{H}_3 at distance 2 from a grid-quad Q, then $\Gamma_2(x) \cap Q$ is an ovoid of Q. Moreover, the three quads through x which meet Q are grids.

(II) Let H(2n-1,4), $n \ge 2$, denote the Hermitian variety $X_0^3 + X_1^3 + \cdots + X_{2n-1}^3 = 0$ of PG(2n-1,4) (with respect to a given reference system). The

number of nonzero coordinates (with respect to the same reference system) of a point p of PG(2n - 1, 4) is called the *weight* of p. With the Hermitian variety H(2n - 1, 4), there is associated a dual polar space which is denoted by DH(2n - 1, 4). The points and lines of DH(2n - 1, 4) are the maximal and next-to-maximal subspaces of H(2n - 1, 4) (natural incidence). Let $\mathbb{G}_n = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ be the following subgeometry of DH(2n - 1, 4):

(i) \mathcal{P} is the set of all maximal subspaces of H(2n-1,4) containing n points with weight 2;

(ii) \mathcal{L} is the set of all (n-2)-dimensional subspaces of H(2n-1,4) containing at least n-2 points of weight 2;

(iii) incidence is reverse containment.

By De Bruyn [4], see also De Bruyn [5, 6.3], \mathbb{G}_n is a dense near 2n-gon with three points on each line and its above-defined embedding in DH(2n-1,4)is isometric, i.e. preserves distances. The near polygon \mathbb{G}_n has $\frac{3^{n} \cdot (2n)!}{2^{n} \cdot n!}$ points and each point of \mathbb{G}_n is contained in precisely $\frac{n(3n-1)}{2}$ lines. Every quad of \mathbb{G}_n is isomorphic to either the (3×3) -grid, W(2) or the generalized quadrangle Q(5,2). Every Q(5,2)-quad is classical in \mathbb{G}_n . By De Bruyn [10, Corollary 1.4], a map $f : \mathcal{P} \to \mathbb{N}$ is a valuation of \mathbb{G}_n if and only if it satisfies properties (V1) and (V2).

1.2 The main result

The near octagon \mathbb{G}_4 has hexes isomorphic to \mathbb{G}_3 and \mathbb{H}_3 . Every \mathbb{G}_3 -hex F is big in \mathbb{G}_4 and hence every valuation f of F will give rise to a valuation of \mathbb{G}_4 , namely the extension of f. No \mathbb{H}_3 -hex is big in F. We will later show (Propositions 5.1 and 6.10) that if f is a valuation of an \mathbb{H}_3 -hex F such that G_f is a Fano-plane, then there exists a unique valuation \overline{f} of \mathbb{G}_4 such that $O_{\overline{f}} = O_f$. We will call \overline{f} a valuation of Fano-type of \mathbb{G}_4 . In this paper, we classify all valuations of \mathbb{G}_4 . We will show the following.

Theorem 1.2 (Section 6) If f is a valuation of \mathbb{G}_4 , then f is one of the following:

- (1) f is a classical valuation of \mathbb{G}_4 ;
- (2) f is the extension of a non-classical valuation of a \mathbb{G}_3 -hex of \mathbb{G}_4 ;
- (3) f is a valuation of Fano-type of \mathbb{G}_4 .

Each of these valuations is induced by a unique (classical) valuation of DH(7, 4).

Notice that all valuations of DH(7,4) are classical by Theorem 6.8 of De Bruyn [5]. In order to describe the valuations of Fano-type of \mathbb{G}_4 (see Section 5), we must study the structure of \mathbb{G}_4 with respect to an \mathbb{H}_3 -hex (Section 4). This study allows us to construct a class of hyperplanes of \mathbb{G}_4 (Proposition 4.14).

2 The valuations of the near hexagons \mathbb{G}_3 , \mathbb{H}_3 , $Q(5,2) \times \mathbb{L}_3$ and $W(2) \times \mathbb{L}_3$

The valuations of the near hexagons \mathbb{G}_3 , \mathbb{H}_3 , $Q(5,2) \times \mathbb{L}_3$ and $W(2) \times \mathbb{L}_3$ were determined in De Bruyn and Vandecasteele [13].

There are two types of valuations in \mathbb{G}_3 : the classical valuations and the non-classical valuations. In the following lemma, we collect some known facts about non-classical valuations of \mathbb{G}_3 .

Lemma 2.1 ([13]) Suppose f is a non-classical valuation of \mathbb{G}_3 . Then:

(i) G_f is isomorphic to W(2), the linear space obtained from the generalized quadrangle W(2) by adding its ovoids as extra lines.

(ii) $|O_f| = 15$ and every two distinct points of O_f lie at distance 2 from each other.

(iii) Every point with value 1 is contained in a unique special quad.

(iv) Every Q(5,2)-quad Q of \mathbb{G}_3 contains a unique point with value 0. Moreover, $f(y) = d(y, Q \cap O_f)$ for every point y of Q.

(v) Every point x of O_f is contained in three special grid-quads and two special W(2)-quads. These five quads determine a partition of the set of lines through x.

If f is a valuation of \mathbb{H}_3 , then any two distinct points of O_f lie at distance 2 from each other. There are four types of valuations in the near hexagon \mathbb{H}_3 : the classical valuations, the extensions of the ovoidal valuations of the W(2)-quads (valuations of extended type), the valuations f for which G_f is a line of size 3 (valuations of grid-type) and the valuations f for which G_f is a Fano-plane (valuations of Fano-type). In the following two lemmas, we collect some known facts about valuations of grid-type and Fano-type.

Lemma 2.2 ([13]) Let f be a valuation of grid-type of \mathbb{H}_3 . Then O_f is an ovoid of a grid-quad Q of \mathbb{H}_3 . If $d(x, O_f) \leq 2$, then $f(x) = d(x, O_f)$. If $d(x, O_f) = 3$, then f(x) = 1.

Lemma 2.3 ([13]) Let f be a valuation of Fano-type of \mathbb{H}_3 . Then:

(i) Every W(2)-quad R contains a unique point of O_f and $f(y) = d(y, O_f \cap R)$ for every $y \in R$.

(ii) Every grid-quad intersects O_f in either the empty set or an ovoid of the grid-quad. If a grid-quad Q is disjoint from O_f , then Q intersects the set of points with value 1 in an ovoid of Q.

(iii) For every $x \in O_f$, the three grid-quads through x are special.

(iv) Every point with value 1 is contained in a unique special quad.

Lemma 2.4 Let f be a valuation of Fano-type of \mathbb{H}_3 . Let Q be a W(2)-quad of \mathbb{H}_3 and let G_2 and G_3 be two grid-quads of \mathbb{H}_3 such that (i) Q, G_2 and G_3 are mutually disjoint, and (ii) $\mathcal{R}_Q(G_2) = G_3$. Put $G_1 := \pi_Q(G_2) = \pi_Q(G_3)$. Then one of the following cases occurs:

(1) There exists precisely one $i \in \{2,3\}$ such that $|G_i \cap O_f| = 3$ and $|G_{5-i} \cap O_f| = 0$. Moreover, the unique point in $O_f \cap Q$ is not contained in G_1 .

(2) $|G_2 \cap O_f| = |G_3 \cap O_f| = 0$ and the unique point in $O_f \cap Q$ is contained in G_1 .

Proof. Let x^* denote the unique point of $O_f \cap Q$. Recall that $f(y) = d(y, x^*)$ for every $y \in Q$. We distinguish two cases.

(1) Suppose x^* is not contained in G_1 . Put $\Gamma_1(x^*) \cap G_1 = \{x_1, x_2, x_3\}$ and let L_i , $i \in \{1, 2, 3\}$, denote the unique line through x_i meeting G_2 and G_3 . Since $x^* \notin G_1$, we have $d(x^*, G_2) = d(x^*, G_3) = 2$. Hence, each of the three quads through x^* meeting $G_2(G_3)$ is a grid. So, $\langle x^*x_1, L_1 \rangle$, $\langle x^*x_2, L_2 \rangle$ and $\langle x^*x_3, L_3 \rangle$ are the three grid-quads through x^* meeting $G_2(G_3)$ in a point. By Lemma 2.3(iii) these three grid-quads are special with respect to the valuation f (recall $x^* \in O_f$). Hence, $|L_1 \cap O_f| = 1$. Choose $i \in \{2,3\}$ such that $G_i \cap L_1 \cap O_f \neq \emptyset$. Then again by Lemma 2.3(iii), $|G_i \cap O_f| = 3$. Since every point of $G_1 \setminus \{x_1, x_2, x_3\}$ has value 2, no point of $(G_2 \cup G_3) \setminus (L_1 \cup L_2 \cup L_3)$ belongs to O_f by property (V2) in the definition of valuation. It follows that $G_i \cap O_f = (G_i \cap L_1) \cup (G_i \cap L_2) \cup (G_i \cap L_3)$. For every $j \in \{1, 2, 3\}, L_j \cap G_i$ has value 0 and $L_j \cap Q$ has value 1. Hence, $L_j \cap G_{5-i}$ has value 1 by property (V2). Together with $(G_{5-i} \setminus (L_1 \cup L_2 \cup L_3)) \cap O_f = \emptyset$, this implies that $G_{5-i} \cap O_f = \emptyset$.

(2) Suppose that the unique point x^* in $O_f \cap Q$ is contained in G_1 . Suppose y^* is a point of $O_f \cap G_2$. Then $d(x^*, y^*) = 2$. Hence, the unique point z^* of G_2 collinear with x^* is also collinear with y^* . It follows that $\langle x^*, y^* \rangle$ and G_2 are two special grid-quads meeting in the line y^*z^* , a contradiction. Hence, $G_2 \cap O_f = \emptyset$. In a similar way, one shows that $G_3 \cap O_f = \emptyset$.

The near hexagon $Q(5,2) \times \mathbb{L}_3$ is obtained by taking three isomorphic copies of the generalized quadrangle Q(5,2) and joining the corresponding points to form lines of size 3. There are two types of valuations in $Q(5,2) \times \mathbb{L}_3$: the classical valuations and the extensions of the ovoidal valuations of the grid-quads.

The near hexagon $W(2) \times \mathbb{L}_3$ is obtained by taking three isomorphic copies of the generalized quadrangle W(2) and joining the corresponding points to form lines of size 3. There are four types of valuations in $W(2) \times \mathbb{L}_3$: the classical valuations, the extensions of the ovoidal valuations of the gridquads, the extensions of the ovoidal valuations of the W(2)-quads and the semi-classical valuations.

3 Properties of the near octagon \mathbb{G}_4

We start with some properties of the near 2n-gon \mathbb{G}_n , $n \geq 3$, whose proofs can be found in the book [5]. Let U denote the set of points of weight 1 and 2 of $\operatorname{PG}(n-1,4)$ (with respect to a certain reference system) and let \mathcal{L}_U denote the linear space induced on the set U by the lines of $\operatorname{PG}(n-1,4)$. Then every local space of \mathbb{G}_n is isomorphic to \mathcal{L}_U . Every quad of \mathbb{G}_n , $n \geq 3$, is isomorphic to either the (3×3) -grid, W(2) or Q(5,2). The near polygon \mathbb{G}_n , $n \geq 3$, has two types of lines:

(i) SPECIAL LINES: these are lines which are not contained in a W(2)-quad.

(ii) ORDINARY LINES: these are lines which are contained in at least one W(2)-quad.

There are two possible grid-quades in \mathbb{G}_n , $n \geq 3$.

(i) GRID-QUADS OF TYPE I: these grid-quads contain three ordinary and three special lines; the lines of each type partition the point set of the grid.

(ii) GRID-QUADS OF TYPE II: these grid-quads contain six ordinary lines. If n = 3, then every grid-quad is of type I. If $n \ge 4$, then both types of grid-quads occur.

The automorphism group of \mathbb{G}_n , $n \geq 3$, acts transitively on the set of special lines, the set of ordinary lines, the set of Q(5,2)-quads, the set of W(2)-quads, the set of grid-quads of type I and the set of grid-quads of type II.

In the following lemma, we collect some properties of the near octagon \mathbb{G}_4 .

Lemma 3.1 (1) The near octagon \mathbb{G}_4 has 8505 points, each line of \mathbb{G}_4 contains 3 points and each point of \mathbb{G}_4 is contained in 22 lines.

(2) Every quad of \mathbb{G}_4 is isomorphic to either the (3×3) -grid, W(2) or Q(5,2). Every Q(5,2)-quad is classical in \mathbb{G}_4 .

(3) Every hex of \mathbb{G}_4 is isomorphic to either \mathbb{G}_3 , \mathbb{H}_3 , $W(2) \times \mathbb{L}_3$ or $Q(5,2) \times \mathbb{L}_3$. \mathbb{L}_3 . Every \mathbb{G}_3 -hex is big in \mathbb{G}_4 .

(4) If x is a point of \mathbb{G}_4 , then every Q(5,2)-quad through x contains precisely two special lines through x. Conversely, every two distinct special lines through x are contained in a unique Q(5,2)-quad.

(5) If x is a point of \mathbb{G}_4 , then every \mathbb{G}_3 -hex through x contains precisely three special lines through x. Conversely, every three distinct special lines through x are contained in a unique \mathbb{G}_3 -hex.

(6) Every point is contained in 4 special lines, 18 ordinary lines, 36 gridquads of type I, 27 grid-quads of type II, 36 W(2)-quads, 6 Q(5,2)-quads, 4 \mathbb{G}_3 -hexes, 18 Q(5,2) × \mathbb{L}_3 -hexes, 36 W(2) × \mathbb{L}_3 -hexes and 27 \mathbb{H}_3 -hexes.

(7) Every special line is contained in 9 grid-quads of type I, 0 grid-quads of type II, 0 W(2)-quads, 3 Q(5,2)-quads, 0 \mathbb{H}_3 -hexes, 3 \mathbb{G}_3 -hexes, 9 Q(5,2)× \mathbb{L}_3 -hexes and 9 W(2) × \mathbb{L}_3 -hexes.

(8) Every ordinary line is contained in 2 grid-quads of type I, 3 gridquads of type II, 6 W(2)-quads, 1 Q(5,2)-quad, 9 \mathbb{H}_3 -hexes, 2 \mathbb{G}_3 -hexes, 4 $Q(5,2) \times \mathbb{L}_3$ -hexes and 6 $W(2) \times \mathbb{L}_3$ -hexes.

(9) Every W(2)-quad is contained in precisely 1 \mathbb{G}_3 -hex, 1 $W(2) \times \mathbb{L}_3$ -hex, 0 $Q(5,2) \times \mathbb{L}_3$ -hexes and 3 \mathbb{H}_3 -hexes.

(10) Every Q(5,2)-quad is contained in precisely 2 \mathbb{G}_3 -hexes, 3 $Q(5,2) \times \mathbb{L}_3$ -hexes, 0 $W(2) \times \mathbb{L}_3$ -hexes and 0 \mathbb{H}_3 -hexes.

(11) Every grid-quad of type I is contained in 1 \mathbb{G}_3 -hex, 0 \mathbb{H}_3 -hexes, 1 $Q(5,2) \times \mathbb{L}_3$ -hex and 3 $W(2) \times \mathbb{L}_3$ -hexes.

(12) Every grid-quad of type II is contained in 0 \mathbb{G}_3 -hexes, 3 \mathbb{H}_3 -hexes, 2 $Q(5,2) \times \mathbb{L}_3$ -hexes and 0 $W(2) \times \mathbb{L}_3$ -hexes.

(13) Suppose the point x of \mathbb{G}_4 is contained in a Q(5,2)-quad Q and a hex H, then $Q \cap H$ is either Q or a line of Q.

(14) Suppose the point x of \mathbb{G}_4 is contained in a \mathbb{G}_3 -hex H and an \mathbb{H}_3 -hex H'. Then $H \cap H'$ is a W(2)-quad.

Proof. Claims (1), (2), (3) (as well as parts of Claims (4), (5), (6), (7) and (8)) were proved in De Bruyn [5, Section 6.3] in a more general context, namely that of the near 2n-gon \mathbb{G}_n , $n \geq 3$. Claims (4)–(14) readily follow from information on the local spaces which we will now provide.

Let x be an arbitrary point of \mathbb{G}_4 . Then the local space of \mathbb{G}_4 at the point x is isomorphic to \mathcal{L}_U where U is the set of all points of weight 1 or 2 of PG(3, 4) with respect to a certain reference system $(\bar{e}_1, \bar{e}_2, \bar{e}_3, \bar{e}_4)$ of V(4, 4). A convex subspace F through x corresponds to a certain subspace of \mathcal{L}_U and hence to a certain set X_F of points of PG(3, 4). If F_1 and F_2 are two convex subspaces through x, then $F_1 \subset F_2$ if and only if $X_{F_1} \subset X_{F_2}$. We discuss all the possibilities for the lines, quads and hexes. (i) If F is a special line, then $X_F = \{\langle \bar{e}_i \rangle\}$ for some $i \in \{1, 2, 3, 4\}$.

(ii) If F is an ordinary line, then $X_F = \{\langle \bar{e}_i + \lambda \bar{e}_j \rangle\}$ for two distinct $i, j \in \{1, 2, 3, 4\}$ and a $\lambda \in \mathbb{F}_4^* := \mathbb{F}_4 \setminus \{0\}.$

(iii) If F is a Q(5,2)-quad, then $X_F = \{\langle \bar{e}_j \rangle, \langle \bar{e}_i + \lambda \bar{e}_j \rangle | \lambda \in \mathbb{F}_4\}$ for two distinct $i, j \in \{1, 2, 3, 4\}$.

(iv) If F is a W(2)-quad, then $X_F = \{ \langle \bar{e}_i + \lambda \bar{e}_j \rangle, \langle \bar{e}_i + \mu \bar{e}_k \rangle, \langle \lambda \bar{e}_j + \mu \bar{e}_k \rangle \}$ for three mutually distinct $i, j, k \in \{1, 2, 3, 4\}$ and some $\lambda, \mu \in \mathbb{F}_4^*$.

(v) If F is a grid-quad of type I, then $X_F = \{\langle \bar{e}_i \rangle, \langle \bar{e}_j + \lambda \bar{e}_k \rangle\}$ for three mutually distinct $i, j, k \in \{1, 2, 3, 4\}$ and some $\lambda \in \mathbb{F}_4^*$.

(vi) If F is a grid-quad of type II, then $X_F = \{\langle \bar{e}_i + \lambda \bar{e}_j \rangle, \langle \bar{e}_k + \mu \bar{e}_l \rangle\}$ for some $\lambda, \mu \in \mathbb{F}_4^*$ and some i, j, k, l satisfying $\{i, j, k, l\} = \{1, 2, 3, 4\}$.

(vii) If F is a \mathbb{G}_3 -hex, then $X_F = \langle \bar{e}_i, \bar{e}_j, \bar{e}_k \rangle \cap U$ for three mutually distinct $i, j, k \in \{1, 2, 3, 4\}$.

(viii) If F is an \mathbb{H}_3 -hex, then $X_F = \alpha \cap U$ where α is a plane of PG(3, 4) disjoint from $\{\langle \bar{e}_1 \rangle, \langle \bar{e}_2 \rangle, \langle \bar{e}_3 \rangle, \langle \bar{e}_4 \rangle\}$. So, $|X_F| = 6$ and X_F contains a unique point of each of the lines $\langle \bar{e}_i, \bar{e}_j \rangle, i, j \in \{1, 2, 3, 4\}$ with $i \neq j$.

(ix) If $F \cong Q(5,2) \times \mathbb{L}_3$, then $X_F = \{\langle \bar{e}_i + \lambda \bar{e}_j \rangle\} \cup \{\langle \bar{e}_l \rangle, \langle \bar{e}_k + \mu \bar{e}_l \rangle \mid \mu \in \mathbb{F}_4\}$ for some $\lambda \in \mathbb{F}_4^*$ and some i, j, k, l satisfying $\{i, j, k, l\} = \{1, 2, 3, 4\}$.

(x) If $F \cong W(2) \times \mathbb{L}_3$, then $X_F = \{ \langle \bar{e}_i + \lambda \bar{e}_j \rangle, \langle \bar{e}_i + \mu \bar{e}_k \rangle, \langle \lambda \bar{e}_j + \mu \bar{e}_k \rangle, \langle \bar{e}_l \rangle \}$ for some $\lambda, \mu \in \mathbb{F}_4^*$ and some i, j, k, l satisfying $\{i, j, k, l\} = \{1, 2, 3, 4\}$.

4 Structure of \mathbb{G}_4 with respect to an \mathbb{H}_3 -hex

In this section, H denotes a given \mathbb{H}_3 -hex of \mathbb{G}_4 .

Lemma 4.1 Let $x \in \Gamma_2(H)$ and Q a quad of H such that $\Gamma_2(x) \cap Q$ is an ovoid of Q. Then:

- (1) $\langle x, Q \rangle$ is a hex of \mathbb{G}_4 ;
- (2) if Q is a W(2)-quad, then $\langle x, Q \rangle \cong \mathbb{G}_3$;
- (3) if Q is a grid-quad, then Q is a grid-quad of type II and $\langle x, Q \rangle \cong \mathbb{H}_3$.

Proof. (1) Let x_1 and x_2 be two distinct points of $\Gamma_2(x) \cap Q$ and let x_3 be a common neighbour of x_1 and x_2 . Then $x_3 \in Q \setminus \Gamma_2(x)$ has distance 3 from x and $\langle x, x_3 \rangle$ is a hex. Now, x_1 and x_2 are two points on a geodesic path from x_3 to x. Hence, $\langle x, x_1, x_2 \rangle \subseteq \langle x, x_3 \rangle$. On the other hand, since x_3 is a common neighbour of x_1 and x_2 , we also have $\langle x, x_3 \rangle \subseteq \langle x, x_1, x_2 \rangle$. Hence, $\langle x, x_1, x_2 \rangle = \langle x, x_3 \rangle$. Since x_1 and x_2 are two points of Q at distance 2 from each other, $Q = \langle x_1, x_2 \rangle$. It follows that $\langle x, Q \rangle = \langle x, x_1, x_2 \rangle = \langle x, x_3 \rangle$ is a hex. (2) Since $x \in \Gamma_2(Q)$, the W(2)-quad Q is not big in the hex $\langle x, Q \rangle$. Among the near hexagons which can occur as hex in \mathbb{G}_4 , only \mathbb{G}_3 has nonbig W(2)-quads (recall Lemma 3.1(3)). It follows that $\langle x, Q \rangle \cong \mathbb{G}_3$.

(3) The grid-quad Q is contained in the \mathbb{H}_3 -hex H. Hence, by Lemma 3.1(11), Q is a grid-quad of type II. Since $x \in \Gamma_2(Q)$, the grid-quad Q of type II is not big in the hex $\langle x, Q \rangle$. Among the near hexagons which can occur as hex in \mathbb{G}_4 , only \mathbb{G}_3 and \mathbb{H}_3 have non-big grid-quads. By Lemma 3.1(12), a \mathbb{G}_3 -hex cannot contain grid-quads of type II. Hence, $\langle x, Q \rangle \cong \mathbb{H}_3$.

Remark. If (x, Q) is a point-quad pair of a dense near hexagon such that d(x, Q) = 2, then $\Gamma_2(x) \cap Q$ is an ovoid of Q since every line of Q contains a unique point nearest to (and hence at distance 2 from) x.

Proposition 4.2 It holds that |H| = 105, $|\Gamma_1(H)| = 3360$, $|\Gamma_2(H)| = 5040$ and $|\Gamma_i(H)| = 0$ for every $i \ge 3$. If $x \in \Gamma_2(H)$, then there are two possibilities:

- (a) $\Gamma_2(x) \cap H$ is an ovoid of a W(2)-quad Q of H and $\langle x, Q \rangle \cong \mathbb{G}_3$;
- (b) $\Gamma_2(x) \cap H$ is an ovoid of a grid-quad of type II of H and $\langle x, Q \rangle \cong \mathbb{H}_3$.

Proof. Suppose $y \in \Gamma_i(H)$ with $i \geq 3$. For every line L of H, we have $d(y,L) \leq 3$ since L contains a unique point nearest to y. Hence i = 3 and $|\Gamma_3(y) \cap L| = 1$ for every line L of H. It follows that $\Gamma_3(y) \cap H$ is an ovoid of H. But this is impossible since H has no ovoids by [13, Lemma 5.5]. Hence, $|\Gamma_i(H)| = 0$ for every $i \geq 3$. Clearly, |H| = 105, $|\Gamma_1(H)| = |H| \cdot (22 - 6) \cdot 2 = 3360$ and $|\Gamma_2(H)| = 8505 - |H| - |\Gamma_1(H)| = 5040$.

Suppose $x \in \Gamma_2(H)$. Applying Proposition 1.1 to the classical valuation f of \mathbb{G}_4 with $O_f = \{x\}$, we find that the map $g: H \to \mathbb{N}; y \mapsto d(x, y) - 2$ is a valuation of H. The valuation g is not classical since each of its values is at most 2. (A classical valuation of a dense near hexagon has maximal value equal to 3.) By Section 2, there are three possibilities:

- (a) $O_g = \Gamma_2(x) \cap H$ is an ovoid in a W(2)-quad Q of H;
- (b) $O_g = \Gamma_2(x) \cap H$ is an ovoid in a grid-quad Q of H;
- (c) $O_g = \Gamma_2(x) \cap H$ is a set of 7 points and G_g is a Fano-plane.

If case (a) occurs, then $\langle x, Q \rangle \cong \mathbb{G}_3$ by Lemma 4.1(2). If case (b) occurs, then Q is a grid-quad of type II and $\langle x, Q \rangle \cong \mathbb{H}_3$ by Lemma 4.1(3).

We will now prove that case (c) cannot occur. Suppose the contrary. Let u denote an arbitrary point of O_q and let Q_1 , Q_2 and Q_3 denote the three grid-quads of H through u. These grid-quads are special with respect to g by Lemma 2.3(iii). Hence, $\Gamma_2(x) \cap Q_i$ is an ovoid of Q_i for every $i \in \{1, 2, 3\}$. By Lemma 4.1(3), the grid-quads Q_1, Q_2 and Q_3 have type II and $\langle x, Q_1 \rangle \cong \langle x, Q_2 \rangle \cong \langle x, Q_3 \rangle \cong \mathbb{H}_3$. In the near hexagon $\langle x, Q_1 \rangle \cong \mathbb{H}_3$, the quad $\langle x, u \rangle$ is one of the three quads through x which meet Q_1 . It follows that $\langle x, Q \rangle$ is a grid-quad. By Lemma 3.1(11), $\langle x, u \rangle$ is a grid-quad of type II. By Lemma 3.1(7), every line of $\langle x, u \rangle$ is an ordinary line. Let L be one of the two (ordinary) lines of $\langle x, u \rangle$ through u. By Lemma 3.1(8), L is contained in a unique Q(5, 2)-quad Q. By Lemma 3.1(13), $Q \cap H$ is a line L'. Since Q_1, Q_2 and Q_3 determine a partition of the lines of H through u, we have $L' \subseteq Q_i$ for precisely one $i \in \{1, 2, 3\}$. Now, the \mathbb{H}_3 -hex $\langle x, Q_i \rangle$ contains L' and $L \subseteq \langle x, u \rangle$. So, the Q(5, 2)-quad $Q = \langle L, L' \rangle$ would be contained in the \mathbb{H}_3 -hex $\langle x, Q_i \rangle$, clearly a contradiction, since \mathbb{H}_3 has only grid-quads and W(2)-quads.

Definition. A point x of $\Gamma_2(H)$ is said to be of type (a), respectively (b), if case (a), respectively case (b), of Proposition 4.2 occurs.

Lemma 4.3 Let H' be a hex meeting H in a quad Q. Then $\Gamma_2(H) \cap H' = \Gamma_2(Q) \cap H'$.

Proof. Suppose $x \in \Gamma_2(H) \cap H'$. Then x has distance at least 2 from Q. Since x and Q are contained in H', every point of Q has distance at most 3 from x. Hence, for every line L of Q, $d(x, L) \leq 2$ since L contains a unique point nearest to x. It follows that $x \in \Gamma_2(Q) \cap H'$.

Conversely, suppose that $x \in \Gamma_2(Q) \cap H'$. Then $x \notin H$ since $H \cap H' = Q$. Suppose $x \in \Gamma_1(H)$. Then x is classical with respect to H and $d(x, y) = 1 + d(\pi_H(x), y)$ for every point $y \in H$. It follows that the point $\pi_H(x)$ is collinear with every point of the ovoid $\Gamma_2(x) \cap Q$ of Q. This implies that $\pi_H(x) \in Q$. But this is in contradiction with $\pi_H(x) \sim x \in \Gamma_2(Q)$. It follows that $x \in \Gamma_2(H) \cap H'$.

Lemma 4.4 In $\Gamma_2(H)$, there are 3360 points of type (a) and 1680 points of type (b).

Proof. In a given \mathbb{G}_3 -hex, there are 120 points at distance 2 from any of its W(2)-quads. There are 28 W(2)-quads in H and each such quad is contained in a unique \mathbb{G}_3 -hex by Lemma 3.1(9). Lemma 4.3 now implies that the total number of points of type (a) in $\Gamma_2(H)$ is equal to $28 \cdot 1 \cdot 120 = 3360$.

In a given \mathbb{H}_3 -hex, there are 24 points at distance 2 from any of its gridquads. Now, there are 35 grid-quads (of type II) in H and each of these grid-quads is contained in precisely 2 \mathbb{H}_3 -hexes distinct from H (see Lemma 3.1(11)+(12)). Lemma 4.3 now implies that the number of points of type (b) in $\Gamma_2(H)$ is equal to $35 \cdot 2 \cdot 24 = 1680$.

(CHECK: The total number of points of $\Gamma_2(H)$ is indeed equal to 3360 + 1680 = 5040 as shown in Proposition 4.2).

Lemma 4.5 (Chapter 7 of [5]) Suppose one of the following cases occurs: (i) Q is a grid-quad of $S \cong \mathbb{H}_3$; (ii) Q is a W(2)-quad of $S \cong \mathbb{G}_3$. Let x be a point of S at distance 2 from Q. Then every line of S through x has a unique point in common with $\Gamma_1(Q)$.

Let S denote the set of lines of \mathbb{G}_4 contained in $\Gamma_2(H)$.

Lemma 4.6 Let x be a point of $\Gamma_2(H)$ and let Q be the quad $\langle \Gamma_2(x) \cap H \rangle$. Then the lines through x contained in S are precisely the lines through x not contained in the hex $\langle x, Q \rangle$. If x has type (a), then precisely 10 lines through x are contained in S. If x has type (b), then precisely 16 lines through x are contained in S.

Proof. If x is a point of type (a), then $Q \cong W(2)$ and $\langle x, Q \rangle \cong \mathbb{G}_3$. If x is a point of type (b), then Q is a grid-quad and $\langle x, Q \rangle \cong \mathbb{H}_3$. By Lemmas 4.3 and 4.5, every line through x contained in $\langle x, Q \rangle$ contains a point of $\Gamma_1(H)$. Conversely, suppose that L is a line through x containing a point $y \in \Gamma_1(H)$. Then y is classical with respect to H and the point $\pi_H(y)$ lies at distance 2 from x. Hence, $\pi_H(y) \in Q$ and $L \subseteq \langle x, \pi_H(y) \rangle \subseteq \langle x, Q \rangle$.

So, the number of lines through x contained in S is equal to the number of lines through x not contained in the hex $\langle x, Q \rangle$. If x is a point of type (a), then x is contained in 22 - 12 = 10 lines of S. If x is a point of type (b), then x is contained in 22 - 6 = 16 lines of S.

From Lemmas 4.4 and 4.6, we readily obtain:

Corollary 4.7 $|S| = \frac{1}{3}[3360 \cdot 10 + 1680 \cdot 16] = 20160.$

Lemma 4.8 Let $L = \{x_1, x_2, x_3\}$ be a line of S. For every $i \in \{1, 2, 3\}$, put $Q_i := \langle \Gamma_2(x_i) \cap H \rangle$ and $H_i := \langle x_i, Q_i \rangle$. Then H_1 , H_2 and H_3 are mutually disjoint hexes.

Proof. By symmetry, it suffices to show that $H_1 \cap H_2 = \emptyset$. Suppose to the contrary that u is a point of $H_1 \cap H_2$. Every point on a shortest path between $u \in H_1 \cap H_2$ and $x_1 \in H_1$ belongs to H_1 . If $x_1 \notin H_2$, then since x_1 is classical with respect to H_2 , the point $x_2 = \pi_{H_2}(x_1)$ lies on such a shortest path. Hence, $x_1 \in H_2$ or $x_2 \in H_1$. So, the line x_1x_2 is contained in H_1 or H_2 .

Lemma 4.5 then implies that L contains a point of $\Gamma_1(H)$. This contradicts the fact that $L \in S$.

Lemma 4.9 Let $L = \{x_1, x_2, x_3\}$ be a line of S, put $Q_i = \langle \Gamma_2(x_i) \cap H \rangle$ and $H_i = \langle x_i, Q_i \rangle$. If x_1 is of type (a), then x_2 and x_3 have the same type and $\mathcal{R}_{H_1}(H_2) = H_3$.

Proof. By Proposition 4.2, $Q_1 \cong W(2)$ and $H_1 \cong \mathbb{G}_3$. So, H_1 is big in \mathbb{G}_4 . By Lemma 4.8, H_1 and H_2 are mutually disjoint. Let H'_3 be the reflection of H_2 about H_1 (in the near octagon \mathbb{G}_4) and let Q'_3 denote the reflection of Q_2 about Q_1 (in the near hexagon H). Then $Q'_3 \cong Q_2$, $H'_3 \cong H_2$ and $Q'_3 \subset H_3$. Since x_2 is a point of H_2 at distance 2 from the quad Q_2 of H_2 , $x_3 = \mathcal{R}_{H_1}(x_2)$ is a point of $H'_3 = \mathcal{R}_{H_1}(H_2)$ at distance 2 from $Q'_3 = \mathcal{R}_{H_1}(Q_2)$. So, $\Gamma_2(x_3) \cap Q'_3$ is an ovoid of Q'_3 . This implies that $Q_3 = Q'_3$ and $H_3 = H'_3$. Since $H'_3 \cong H_2$, x_3 is of the same type as x_2 .

Lemma 4.10 Every point x of type (a) of $\Gamma_2(H)$ is contained in precisely 6 lines of S which only contain points of type (a).

Proof. Put $Q := \langle \Gamma_2(x) \cap H \rangle$.

Let $\{x, x_1, x_2\}$ be a line of S through x which only contains points of type (a) and let $Q_i = \langle \Gamma_2(x_i) \cap H \rangle$, $i \in \{1, 2\}$. Then by Lemmas 4.8 and 4.9, the W(2)-quades Q, Q_1 and Q_2 are mutually disjoint and Q_2 is the reflection of Q_1 about Q (in the near hexagon H).

Let Q' be a W(2)-quad of H disjoint from Q and let H' denote the unique \mathbb{G}_3 -hex through Q' (recall Lemma 3.1(9)). We prove that $\langle x, Q \rangle \cap H' = \emptyset$. Suppose to the contrary that $\langle x, Q \rangle \cap H'$ contains a point u. If $u \in H$, then $u \in Q = \langle x, Q \rangle \cap H$ and $u \in Q' = H' \cap H$, a contradiction. If $u \in \Gamma_1(H)$, then $u \notin \Gamma_2(Q) \cup \Gamma_2(Q')$ by Lemma 4.3 and hence $\pi_H(u) \in Q \cap Q'$, a contradiction. If $u \in \Gamma_2(H)$, then $u \in \Gamma_2(Q) \cap \Gamma_2(Q')$ and hence $\Gamma_2(u) \cap H \subseteq Q \cap Q'$, again a contradiction. So, the big \mathbb{G}_3 -hexes $\langle x, Q \rangle$ and H' are disjoint. Hence, the line $x\pi_{H'}(x)$ belongs to S by Lemma 4.6. Since x and $\pi_{H'}(x)$ are points of type (a), also the third point of $x\pi_{H'}(x)$ has type (a) by Lemma 4.9. So, the W(2)-quad Q' determines a line of S through x which only consists of points of type (a). If we denote by $Q'' \cong W(2)$ the reflection of Q' about Q (in H) and by H'' the unique \mathbb{G}_3 -hex through Q'', then $H'' = \mathcal{R}_{H'}(\langle x, Q \rangle)$ and $x\pi_{H'}(x) = x\pi_{H''}(x)$. So, the W(2)-quads Q' and Q'' determine the same line of S through x.

Since there are 12 W(2)-quads in H disjoint with Q, it follows from the above discussion that there are $\frac{12}{2} = 6$ lines of S through x containing only points of type (a).

From Lemmas 4.4 and 4.10, we readily obtain:

Corollary 4.11 There are $\frac{3360 \cdot 6}{3} = 6720$ lines of S containing precisely three points of type (a).

Lemma 4.12 There are 13440 lines of S containing one point of type (a) and two points of type (b).

Proof. Let x be one of the 3360 points of type (a). By Lemmas 4.6, 4.9 and 4.10, x is contained in 10 - 6 = 4 lines of S which contain a unique point of type (a). Hence, the required number is equal to $3360 \cdot 4 = 13440$.

By Corollary 4.7, Corollary 4.11 and Lemma 4.12, we obtain:

Corollary 4.13 There are two types of lines in S:

(1) Lines of S only containing points of type (a).

(2) Lines of S containing a unique point of type (a) and two points of type (b).

Recall that a *hyperplane* of a point-line geometry is a proper subspace meeting each line.

Proposition 4.14 Let X denote the set of points of \mathbb{G}_4 consisting of the points of H, the points of $\Gamma_1(H)$ and the points of type (a) of $\Gamma_2(H)$. Then X is a hyperplane of \mathbb{G}_4 .

Proof. We need to prove that every line L containing a point x of type (b) of $\Gamma_2(H)$ intersects X in a unique point. Put $Q := \langle \Gamma_2(x) \cap H \rangle$. Then Q is a grid-quad of type II and $\langle x, Q \rangle \cong \mathbb{H}_3$.

If L is not contained in $\langle x, Q \rangle$, then $L \in S$ by Lemma 4.6. Corollary 4.13 then implies that $|L \cap X| = 1$.

If L is contained in $\langle x, Q \rangle$, then L contains a unique point y of $\Gamma_1(Q)$ by Lemma 4.5. Let $z \in \Gamma_2(Q)$ denote the third point on the line L. By Lemma 4.3 applied to the hex $H' = \langle x, Q \rangle$, $z \in \Gamma_2(H)$. Since $z \in \Gamma_2(Q)$ and Q are contained in the hex $\langle x, Q \rangle$, $\Gamma_2(z) \cap Q$ is an ovoid of Q. It follows that $\Gamma_2(z) \cap H = \Gamma_2(z) \cap Q$. Since Q is a grid, z is of point of type (b) and y is the unique point of X contained in L.

5 A new class of valuations of \mathbb{G}_4

Let H denote a hex of \mathbb{G}_4 isomorphic to \mathbb{H}_3 and let f denote a valuation of Fano-type of H. Recall that every point of $\Gamma_1(H)$ is classical with respect to H. Lemma 2.3(i)+(ii) allows us to define the following function \overline{f} from the point-set of \mathbb{G}_4 to \mathbb{N} : (i) If $x \in H$, then we define $\overline{f}(x) := f(x)$.

(ii) If $x \in \Gamma_1(H)$, then we define $\overline{f}(x) := 1 + f(\pi_H(x))$.

(iii) If x is a point of type (a) of $\Gamma_2(H)$, then $f(x) := d(x, x^*)$, where x^* is the unique point of O_f contained in the W(2)-quad $\langle \Gamma_2(x) \cap H \rangle$.

(iv) Let x be a point of type (b) of $\Gamma_2(H)$ such that $|O_f \cap Q| = 3$, where Q is the unique grid-quad of H containing $\Gamma_2(x) \cap H$. Then $\overline{f}(x) := 2$ if $\Gamma_2(x) \cap (O_f \cap Q) \neq \emptyset$ and $\overline{f}(x) := 1$ otherwise.

(v) Let x be a point of type (b) of $\Gamma_2(H)$ such that $|O_f \cap Q| = 0$ where Q is the unique grid-quad of H containing $\Gamma_2(x) \cap H$. Let X denote the ovoid of Q consisting of all points with f-value 1. We define $\overline{f}(x) := 3$ if $\Gamma_2(x) \cap X \neq \emptyset$ and $\overline{f}(x) := 2$ otherwise.

Proposition 5.1 The map \overline{f} is a valuation of \mathbb{G}_4 .

Proof. Recall that a function from the point-set of \mathbb{G}_4 to \mathbb{N} is a valuation of \mathbb{G}_4 if and only if it satisfies properties (V1) and (V2). Clearly, \overline{f} satisfies property (V1). It remains to show that \overline{f} also satisfies property (V2). Let L be an arbitrary line of \mathbb{G}_4 . We can distinguish 6 possibilities by corollary 4.13:

(1) L is contained in H. Then L satisfies property (V2) with respect to \overline{f} since L satisfies property (V2) with respect to f.

(2) *L* intersects *H* in a unique point x_L . Then $\overline{f}(x) = f(x_L) + 1 = \overline{f}(x_L) + 1$ for every point *x* of $L \setminus \{x_L\}$. So, *L* satisfies property (V2).

(3) $L \subseteq \Gamma_1(H)$. Then $\pi_H(L) := \{\pi_H(x) \mid x \in L\}$ is a line of H parallel with L. For every point x of L, $\overline{f}(x) = f(\pi_H(x)) + 1$. Since $\pi_H(L)$ satisfies property (V2) with respect to f, L satisfies property (V2) with respect to \overline{f} .

(4) $L \cap \Gamma_1(H) \neq \emptyset$ and $L \cap \Gamma_2(H) \neq \emptyset$. Let x denote an arbitrary point of $L \cap \Gamma_2(H)$ and let Q denote the unique quad of H containing $\Gamma_2(x) \cap H$. Then $\langle x, Q \rangle$ is a hex containing L.

From the definition of f, we see that there exists a constant $\epsilon \in \{-1, 0\}$ such that the map $u \mapsto \overline{f}(u) + \epsilon$ defines a valuation f' of $\langle x, Q \rangle$. If x is a point of type (a), then $\epsilon = 0$ and f' is a classical valuation of $\langle x, Q \rangle \cong \mathbb{G}_3$ by Lemma 2.3(i). If x is a point of type (b), then $\epsilon = 0$ if $|O_f \cap Q| = 3$ and $\epsilon = -1$ if $|O_f \cap Q| = 0$. Moreover, by Lemma 2.2, f' is a valuation of grid-type of $\langle x, Q \rangle \cong \mathbb{H}_3$.

By the previous paragraph, the line $L \subseteq \langle x, Q \rangle$ satisfies property (V2) with respect to \overline{f} .

(5) $L \subseteq \Gamma_2(H)$ and every point of L is of type (a). Put $L = \{x_1, x_2, x_3\}$ and let Q_i , $i \in \{1, 2, 3\}$, denote the unique W(2)-quad of H containing $O_i = \Gamma_2(x_i) \cap H$. The set O_i is an ovoid of Q_i . Put $H_i := \langle x_i, Q_i \rangle, i \in \{1, 2, 3\}$. By Lemmas 4.8 and 4.9, H_1 , H_2 and H_3 are three mutually disjoint \mathbb{G}_3 -hexes, $\mathcal{R}_{H_1}(H_2) = H_3$ and $\mathcal{R}_{Q_1}(Q_2) = Q_3$ (reflection about the big W(2)-quad Q_1 in the \mathbb{H}_3 -hex H). So, every line meeting Q_1 and Q_2 also meets Q_3 . We have $\mathcal{R}_{H_1}(O_2) = \mathcal{R}_{H_1}(\Gamma_2(x_2) \cap Q_2) = \Gamma_2(x_3) \cap Q_3 = O_3$. In a similar way, one can prove that $O_3 = \mathcal{R}_{H_2}(O_1)$. It follows that $O_1 \cup O_2 \cup O_3$ is the union of 5 lines which meet Q_1, Q_2 and Q_3 . Let $u_i^*, i \in \{1, 2, 3\}$, denote the unique point of Q_i with f-value 0 (recall Lemma 2.3(i)). Since every two points of O_f lie at distance 2 from each other, $d(u_1^*, u_2^*) = 2$. Since u_1^* is classical with respect to Q_2 , the unique point v of Q_2 collinear with u_1^* is collinear with u_2^* . Let w denote the point of the line u_1^*v distinct from u_1^* and v. The quad $\langle u_1^*, u_2^* \rangle$ contains the line u_1^*v and hence contains the point $w \in Q_3$. Since the local space of H at the point w is a Fano plane minus a point, the quade $\langle u_1^*, u_2^* \rangle$ and Q_3 meet in a line. Since $u_1^*, u_2^* \in O_f$, the quad $\langle u_1^*, u_2^* \rangle$ of H is special with respect to f. So, $\langle u_1^*, u_2^* \rangle$ is a grid and the line $\langle u_1^*, u_2^* \rangle \cap Q_3$ contains a unique point of O_f which necessarily coincides with u_3^* . The points u_1^* , $\pi_{Q_1}(u_2^*)$ and $\pi_{Q_1}(u_3^*)$ of Q_1 form a line of Q_1 which intersects O_1 in a unique point. It follows that $O_1 \cup O_2 \cup O_3$ has a unique point u^* in common with $\{u_1^*, u_2^*, u_3^*\}$. If $i \in \{1, 2, 3\}$ such that $u^* = u_i^*$, then $f(x_i) = 2$ and $f(x_i) = 3$ for all $j \in \{1, 2, 3\} \setminus \{i\}$. This proves that L satisfies property (V2).

(6) $L \subseteq \Gamma_2(H)$, L contains a unique point x_1 of type (a) and two points x_2 and x_3 of type (b). Let Q_1 denote the unique W(2)-quad of H containing all points of $\Gamma_2(x_1) \cap H$ and put $H_1 := \langle x_1, Q_1 \rangle$. Let $G_i, i \in \{2, 3\}$, denote the grid-quad of H containing all points of $\Gamma_2(x_i) \cap H$ and put $H_i := \langle x_i, G_i \rangle$. Then $H_1 \cong \mathbb{G}_3$ and $H_2 \cong H_3 \cong \mathbb{H}_3$. Moreover, by Lemmas 4.8 and 4.9, H_1, H_2 and H_3 are mutually disjoint, $\mathcal{R}_{H_1}(H_2) = H_3$ and $\mathcal{R}_{Q_1}(G_2) = G_3$. Put $G_1 := \pi_{Q_1}(G_2) = \pi_{Q_1}(G_3)$. We have $\mathcal{R}_{H_1}(\Gamma_2(x_2) \cap G_2) = \Gamma_2(x_3) \cap G_3$. Moreover, $\pi_{Q_1}(\Gamma_2(x_2) \cap G_2) = \pi_{Q_1}(\Gamma_2(x_3) \cap G_3) = \Gamma_2(x_1) \cap G_1$ since every line connecting a point of $\Gamma_2(x_2) \cap G_2 \subseteq \Gamma_3(x_1)$ and $\Gamma_2(x_3) \cap G_3 \subseteq \Gamma_3(x_1)$ contains a unique point nearest to x_1 . We distinguish four possibilities (cf. Lemma 2.4):

(i) $|G_2 \cap O_f| = |G_3 \cap O_f| = 0$, the unique point x^* in $O_f \cap Q_1$ is contained in G_1 and $d(x^*, x_1) = 2$. Then the unique line through x^* meeting G_2 and G_3 intersects G_2 and G_3 in points with f-value 1 belonging respectively to $\Gamma_2(x_2)$ and $\Gamma_2(x_3)$. It follows that $\overline{f}(x_1) = 2$ and $\overline{f}(x_2) = \overline{f}(x_3) = 3$. So, Lsatisfies property (V2).

(ii) $|G_2 \cap O_f| = |G_3 \cap O_f| = 0$, the unique point x^* in $O_f \cap Q_1$ is contained in G_1 and $d(x^*, x_1) = 3$. Hence, the ovoid $\Gamma_2(x_1) \cap G_1$ of G_1 contains two points with *f*-value 1 and one point with *f*-value 2 (recall Lemma 2.3(i)). Since each of the three lines meeting $\Gamma_2(x_1) \cap G_1$, $\Gamma_2(x_2) \cap G_2$ and $\Gamma_2(x_3) \cap G_3$ contains a unique point with smallest f-value, there exists an $i \in \{2, 3\}$ such that (a) the ovoid $\Gamma_2(x_i) \cap G_i$ contains two points with f-value 2 and 1 point with f-value 1, and (b) the ovoid $\Gamma_2(x_{5-i}) \cap G_{5-i}$ contains three points with f-value 2. It follows that $\overline{f}(x_1) = 3$, $\overline{f}(x_i) = 3$ and $\overline{f}(x_{5-i}) = 2$. So, L satisfies property (V2).

(iii) There exists an $i \in \{2, 3\}$ such that $|G_i \cap O_f| = 3$ and $|G_{5-i} \cap O_f| = 0$. Moreover, we assume that $d(x_1, x^*) = 2$, where x^* is the unique point in $O_f \cap Q_1$. (Recall $x^* \notin G_1$.) Since $\{x^*\} \cup (\Gamma_2(x_1) \cap G_1)$ is contained in the ovoid $\Gamma_2(x_1) \cap Q_1$ of Q_1 , no point of $\Gamma_2(x_1) \cap G_1$ is collinear with x^* . So, $\Gamma_2(x_1) \cap G_1$ only contains points with f-value 2 (recall Lemma 2.3(i)). Since every line meeting $\Gamma_2(x_1) \cap G_1$, $\Gamma_2(x_2) \cap G_2$ and $\Gamma_2(x_3) \cap G_3$ has a unique point with smallest f-value and G_i contains only points with f-value 0 or 1, $\Gamma_2(x_i) \cap G_i$ only contains points with f-value 1 and $\Gamma_2(x_{5-i}) \cap G_{5-i}$ only contains points with f-value 2. It follows that $\overline{f}(x_1) = 2$, $\overline{f}(x_i) = 1$ and $\overline{f}(x_{5-i}) = 2$. This proves that L satisfies property (V2) with respect to \overline{f} .

(iv) There exists an $i \in \{2,3\}$ such that $|G_i \cap O_f| = 3$ and $|G_{5-i} \cap O_f| = 0$. Moreover, we assume that $d(x_1, x^*) = 3$ where x^* is the unique point in $O_f \cap Q_1$. (Recall $x^* \notin G_1$.) Then $\Gamma_2(x_1) \cap G_1 \subseteq \Gamma_2(x_1) \cap Q_1$ contains at least one point with f-value 1 (collinear with x^*). The unique line through each such point meeting G_2 and G_3 contains a unique point with smallest f-value. Hence, $\Gamma_2(x_i) \cap G_i$ contains at least one point with f-value 0 and $\Gamma_2(x_{5-i}) \cap G_{5-i}$ contains at least one point with f-value 1 (recall that every point of G_i has f-value 0 or 1). It follows that $\overline{f}(x_1) = 3$, $\overline{f}(x_i) = 2$ and $\overline{f}(x_{5-i}) = 3$. This proves that L satisfies property (V2).

The valuation \overline{f} of \mathbb{G}_4 defined above is called a *valuation of Fano-type* of \mathbb{G}_4 .

6 The classification of the valuations of \mathbb{G}_4

6.1 Some lemmas

During the classification of the valuations of \mathbb{G}_4 , we will need the following three properties which hold for valuations of general near polygons:

Lemma 6.1 ([11]) Let f be a valuation of a dense near 2n-gon S.

(i) f is a classical valuation if and only if there exists a point with value n.

(*ii*) If $d(x, O_f) \le 2$, then $f(x) = d(x, O_f)$.

(iii) No two distinct special quads intersect in a line.

Now, suppose that f is a valuation of \mathbb{G}_4 .

Lemma 6.2 If $x, y \in O_f$, then d(x, y) is even.

Proof. By Property (V2), $d(x, y) \neq 1$. Suppose d(x, y) = 3. Let H denote the unique hex through x and y. If f' denotes the valuation of H induced by f (recall Proposition 1.1), then $O_{f'}$ contains two points at distance 3 from each other. This is impossible since none of the near hexagons \mathbb{G}_3 , $W(2) \times \mathbb{L}_3$, $Q(5, 2) \times \mathbb{L}_3$, \mathbb{H}_3 has such valuations.

Lemma 6.3 If there exists a \mathbb{G}_3 -hex H such that $|H \cap O_f| = 15$, then $O_f = H \cap O_f$.

Proof. Since $|H \cap O_f| = 15$, the valuation f' of $H \cong \mathbb{G}_3$ induced by f is non-classical. Suppose $x \in O_f \setminus H$. Since H is big in \mathbb{G}_4 , x is classical with respect to H. The point $\pi_H(x)$ has value 1 and hence is contained in a unique quad Q of H which is special with respect to f' (recall Lemma 2.1(iii)). If y is a point of $Q \cap O_f$ at distance 2 from $\pi_H(x)$, then d(x, y) = 3, contradicting Lemma 6.2.

Lemma 6.4 If x and y are two different points of O_f , then d(x, y) = 2.

Proof. Suppose the contrary. Then d(x, y) = 4 by Lemma 6.2. Let H denote an arbitrary \mathbb{G}_3 -hex through x. Since $y \in O_f \setminus H$, the valuation induced in H is classical by Lemma 6.3 (recall that $|O_g| = 15$ for every nonclassical valuation g of \mathbb{G}_3). Hence, $f(\pi_H(y)) = d(x, \pi_H(y)) = 3$. On the other hand, since $d(\pi_H(y), y) = 1$ and f(y) = 0, it holds that $f(\pi_H(y)) = 1$, a contradiction.

Lemma 6.5 One of the following cases occurs:

- (A) $|O_f| = 1;$
- (B) There exists a unique \mathbb{G}_3 -hex H such that $O_f \subseteq H$ and $|H \cap O_f| = 15$;
- (C) $|O_f| \ge 2$ and every special quad is a grid-quad of type II.

Proof. Suppose $|O_f| \ge 2$ and let x_1 and x_2 denote two distinct points of O_f . Then $d(x_1, x_2) = 2$ by Lemma 6.4. Let Q denote the unique special quad through x_1 and x_2 . Then Q is not isomorphic to Q(5, 2) since this generalized quadrangle has no ovoids (Payne and Thas [17]). If Q is a W(2)-quad or a grid-quad of type I, then Q is contained in a unique \mathbb{G}_3 -hex H, see Lemma 3.1(9)+(11). Since $Q \cap O_f \subseteq H \cap O_f$, the valuation of H induced by f is non-classical and hence $|H \cap O_f| = 15$ by Lemma 2.1. By Lemma 6.3, it then follows that $O_f = H \cap O_f$. The lemma is now clear.

6.2 Treatment of case (A) of Lemma 6.5

Proposition 6.6 If f is a valuation of \mathbb{G}_4 such that $|O_f| = 1$, then f is a classical valuation.

Proof. Put $O_f = \{x\}$ and let H denote an arbitrary \mathbb{G}_3 -hex through x. By Lemma 3.1(5)+(6), there exists a unique special line L through x not contained in H. Let x' denote an arbitrary point of $L \setminus \{x\}$. By Lemmas 3.1(5)+(6), there exists a unique \mathbb{G}_3 -hex H' through x' not containing the special line L. We will show that the valuation f' of H' induced by f is classical. Suppose the contrary and let Q denote a grid-quad of H'through $x' \in O_{f'}$ which is special with respect to f'. (Such a grid-quad exists by Lemma 2.1(v).) By Lemma 3.1(12), Q is a grid-quad of type I. By Lemma 3.1(11), Q is contained in a unique $Q(5,2) \times \mathbb{L}_3$ -hex H''. By Lemma 3.1(4)+(5), H'' has two special lines though x'. One of these lines is contained in the grid-quad Q of type I. The other special line L' cannot be contained in H' since otherwise $H'' = \langle Q, L \rangle = H'$, which is clearly absurd. Since there is only 1 special line through x' not contained in the \mathbb{G}_3 -hex H' (Lemmas 3.1(5)+(6), we must have L' = L. Now, the valuation of $H'' = \langle L, Q \rangle$ induced by f contains a unique point with value 0 (namely x) and a point with value 1 at distance 3 from it (which is contained in $\Gamma_2(x') \cap Q$). But $Q(5,2) \times \mathbb{L}_3$ does not have valuations of this type. So, we have a contradiction. It follows that the valuation induced in H' is classical. This implies that every point of H' at distance 3 from x' has value 4. By Lemma 6.1(i), it then follows that f is classical.

6.3 Treatment of case (B) of Lemma 6.5

Proposition 6.7 If f is a valuation of \mathbb{G}_4 such that O_f is a set of 15 points in a \mathbb{G}_3 -hex H of \mathbb{G}_4 , then f is the extension of a non-classical valuation of \mathbb{G}_3 .

Proof. Let f' denote the valuation of H induced by f. Then f' is a nonclassical valuation of H with $O_{f'} = O_f$. Hence, f(x) = f'(x) for every point $x \in H$. Now, let x be an arbitrary point of \mathbb{G}_4 not contained in H. Recall that the \mathbb{G}_3 -hex H is big in \mathbb{H}_4 . So, x is collinear with the point $\pi_H(x)$ of H. Let Q denote an arbitrary Q(5, 2)-quad of H through $\pi_H(x)$. Among the near hexagons which can occur as hex in \mathbb{G}_4 , only \mathbb{G}_3 and $Q(5, 2) \times \mathbb{L}_3$ have Q(5, 2)-quads. It follows that the hex $\langle x, Q \rangle = \langle x \pi_H(x), Q \rangle$ is isomorphic to \mathbb{G}_3 or $Q(5, 2) \times \mathbb{L}_3$. The hex $\langle x, Q \rangle$ contains a unique point of O_f , namely the unique point of O_f in Q (recall Lemma 2.1(iv)). Now, all valuations of the near hexagons \mathbb{G}_3 and $Q(5, 2) \times \mathbb{L}_3$ which contain a unique point with value 0 are classical. In particular, the valuation induced in $\langle x, Q \rangle$ by f is classical. Hence, $f(x) = d(x, O_f \cap Q) = 1 + d(\pi_H(x), O_f \cap Q) = 1 + f'(\pi_H(x))$, where the latter equality follows from Lemma 2.1(iv). This proves that f is the extension of f'.

6.4 Treatment of case (C) of Lemma 6.5

In this subsection, we suppose that f is a valuation of \mathbb{G}_4 such that $|O_f| \geq 2$ and such that every special quad is a grid-quad of type II. By Lemma 6.4, every two distinct points of O_f are contained in a unique special quad. Since a special grid-quad contains three points of O_f , we have $|O_f| \geq 3$.

Lemma 6.8 It holds that $|O_f| > 3$.

Proof. Suppose to the contrary that $|O_f| = 3$. Let Q denote the unique special grid-quad of type II and put $\{x_1, x_2, x_3\} = Q \cap O_f$. By Lemma 3.1(12), there exists a $Q(5,2) \times \mathbb{L}_3$ -hex F through Q. This hex contains precisely 2 special lines through x_1 by Lemmas 3.1(4)+(5). So, F has an ordinary line L through x_1 not contained in Q. Let $y \in L \setminus \{x_1\}$. By Lemmas 3.1(6)+(8), there exists a \mathbb{G}_3 -hex H' through y not containing the line L. Let f' denote the valuation of H' induced by f. Since $\pi_{H'}(\{x_1, x_2, x_3\}) \subseteq O_{f'}, f'$ is nonclassical. By Lemma 2.1(v), there exists a W(2)-quad Q' of H' through y which is special with respect to f'. Now, by Lemma 3.1(9), Q' is contained in 1 \mathbb{G}_3 -hex (namely H'), 1 $W(2) \times \mathbb{L}_3$ -hex (namely the hex $\langle Q', M \rangle$ where M is the unique special line through y not contained in H') and three \mathbb{H}_3 -hexes. Hence, $\langle L, Q' \rangle$ is isomorphic to \mathbb{H}_3 . This implies that $\langle L, Q' \rangle$ does not contain Q since $\langle L, Q \rangle \cong Q(5,2) \times \mathbb{L}_3$. It follows that the valuation of $\langle L, Q' \rangle \cong \mathbb{H}_3$ induced by f contains a unique point with value 0 (namely x_1) and a point with value 1 at distance 3 from it (which is contained in $\Gamma_2(y) \cap Q'$). This is impossible, since \mathbb{H}_3 does not have such valuations.

Lemma 6.9 O_f is a set of 7 points in an \mathbb{H}_3 -hex of \mathbb{G}_4 .

Proof. Let x denote an arbitrary point of O_f . By Lemmas 6.4 and 6.8, there are two distinct special grid-quads G_1 and G_2 (of type II) through x. By Lemma 6.1(iii), $G_1 \cap G_2 = \{x\}$. Let u_1 be an arbitrary point of $(O_f \cap G_1) \setminus \{x\}$. By Lemma 6.4, u_1 has distance 2 from every point of $O_f \cap G_2$. If $d(u_1, G_2) = 1$, then u_1 is classical with respect to G_2 and all points of $O_f \cap G_2$ would be collinear with $\pi_{G_2}(u_1)$, clearly a contradiction. Hence, $d(u_1, G_2) = 2$. Since every line of G_2 contains a unique point nearest to u_1 , we have $G_2 \setminus O_f \subseteq \Gamma_3(u_1)$. Now, let u_2 be an arbitrary point of $G_2 \setminus O_f$. Then $\langle u_1, u_2 \rangle$ is a hex. Since $O_f \cap G_2 \subseteq \Gamma_2(u_1)$, there are two distinct points v_1 and v_2 of $O_f \cap G_2$ collinear with u_2 which are on a geodesic path from u_2 to u_1 . Hence, $G_2 = \langle v_1, v_2 \rangle \subseteq \langle u_1, u_2 \rangle$. In particular, $x \in \langle u_1, u_2 \rangle$. Since $x, u_1 \in \langle u_1, u_2 \rangle$, we have $G_1 = \langle x, u_1 \rangle \subseteq \langle u_1, u_2 \rangle$. So, $H := \langle G_1, G_2 \rangle$ is a hex. By Lemma 3.1(12), H is isomorphic to either \mathbb{H}_3 or $Q(5, 2) \times \mathbb{L}_3$. (Recall that G_1 and G_2 are grids of type II). Now, in the near hexagon $Q(5, 2) \times \mathbb{L}_3$ any two distinct grid-quads through the same point meet each other in a line. Since $G_1 \cap G_2 = \{x\}$, we necessarily have $H \cong \mathbb{H}_3$. Since $|G_1 \cap O_f| = |G_2 \cap O_f| = 3$, the valuation f_H of H induced by f must be of Fano-type. Hence, $|O_f \cap H| = 7$.

We show that $\Gamma_1(H) \cap O_f = \emptyset$. Suppose to the contrary that y is a point of $\Gamma_1(H) \cap O_f$. Then y is classical with respect to H. Since f(y) = 0, $f(\pi_H(y)) = 1$ and hence by Lemma 2.3(iv) $\pi_H(y)$ is contained in a unique quad Q of H which is special with respect to f_H . Any point of $Q \cap O_{f_H} = Q \cap O_f$ at distance 2 from $\pi_H(y)$ lies at distance 3 from y, contradicting Lemma 6.4. Hence, $\Gamma_1(H) \cap O_f = \emptyset$.

We show that $f(y) \geq 2$ for every point y of type (a) of $\Gamma_2(H)$. Let Q denote the W(2)-quad of H containing all points of $\Gamma_2(y) \cap H$ and let H' be the \mathbb{G}_3 -hex $\langle y, Q \rangle$. Let u denote the unique point of $O_f \cap Q$ (recall Lemma 2.3(i)) and let L be a line of Q through u. If the valuation $f_{H'}$ of H' induced by f is not classical, then by Lemma 2.1(v) there exists a quad of H' through L which is special with respect to $f_{H'}$. This implies that there is a point of $O_{f_{H'}} \subseteq O_f$ contained in $\Gamma_1(H)$, a contradiction. Hence, $f_{H'}$ is a classical valuation of H'. It follows that $f(y) = f_{H'}(y) = d(y, u) \geq 2$.

We show that $f(y) \ge 1$ for every point y of type (b) of $\Gamma_2(H)$. By Lemma 4.6 there exists a line $L \in S$ through y and this line contains a unique point u of type (a) by Corollary 4.13. Since $f(u) \ge 2$, we have $f(y) \ge 1$.

Let H denote the unique \mathbb{H}_3 -hex of \mathbb{G}_4 containing all points of O_f and let f' be the valuation of H induced by f. By Lemma 6.9, f' is a valuation of Fano-type of H.

Proposition 6.10 The valuation f is obtained from f' in the way as described in Section 5.

Proof. Let x denote an arbitrary point of \mathbb{G}_4 .

If $x \in H$, then $d(x, O_f) \leq 2$ and hence $f(x) = d(x, O_f) = d(x, O_{f'}) = f'(x)$ by Lemma 6.1(ii).

If $x \in \Gamma_1(H)$ such that $d(\pi_H(x), O_f) \leq 1$, then $d(x, O_f) \leq 2$ and hence $f(x) = d(x, O_f) = 1 + d(\pi_H(x), O_f) = 1 + f'(\pi_H(x))$ by Lemma 6.1(ii).

Let $x \in \Gamma_1(H)$ such that $d(\pi_H(x), O_f) = 2$, or equivalently, such that $f'(\pi_H(x)) = 2$. Let H' denote an arbitrary \mathbb{G}_3 -hex through the line $x\pi_H(x)$.

Then $H' \cap H$ is a W(2)-quad Q by Lemma 3.1(14). The hex H' contains a unique point y with f-value 0, namely the unique point of O_f in Q (recall Lemma 2.3(i)). Hence, the valuation induced in H' is classical. Since $d(\pi_H(x), O_f) = 2$, we have $d(\pi_H(x), y) = 2$. It follows that $f(x) = d(x, y) = 1 + d(\pi_H(x), y) = 3 = 1 + f'(\pi_H(x))$.

Let x denote a point of type (a) of $\Gamma_2(H)$. Let Q denote the W(2)-quad of H containing all points of $\Gamma_2(x) \cap H$ and let x^* denote the unique point of O_f in Q. The hex $\langle x, Q \rangle$ is isomorphic to \mathbb{G}_3 and contains a unique point of O_f , namely x^* . Hence, the valuation induced in $\langle x, Q \rangle$ is classical. It follows that $f(x) = d(x, x^*)$.

Let x denote a point of type (b) of $\Gamma_2(H)$ such that $|O_f \cap Q| = 3$, where Q is the unique grid-quad of H containing $\Gamma_2(x) \cap H$. The hex $\langle x, Q \rangle$ is isomorphic to \mathbb{H}_3 and the valuation of $\langle x, Q \rangle$ induced by f is of grid-type. It follows from Lemma 2.2 that f(x) = 2 if $\Gamma_2(x) \cap O_f \cap Q \neq \emptyset$ and f(x) = 1 otherwise.

Let x denote a point of type (b) of $\Gamma_2(H)$ such that $|O_f \cap Q| = 0$, where Q is the unique grid-quad of H containing $\Gamma_2(x) \cap H$. By Lemma 2.3(ii), the points with f-value 1 determine an ovoid of Q. So, the grid-quad Q is special with respect to the valuation f' of $\langle x, Q \rangle \cong \mathbb{H}_3$ induced by f. This implies that the valuation f' is either of grid-type or of Fano-type. We will show that the latter possibility cannot occur.

Suppose that f' is a valuation of Fano-type. Let u denote one of the three points of Q with f-value 1. By Lemma 2.3(iv), there exists a point $v \notin Q$ of O_f collinear with u. Let $G \neq Q$ denote a grid-quad of $\langle x, Q \rangle$ through u (which is special with respect to f'). Then $G \cap Q = \{u\}$. Let w be a point of $G \cap \Gamma_2(u)$. If $w \in \Gamma_1(Q)$, then w is classical with respect to $Q, \pi_Q(w)$ would be a common neighbour of u and w, and the quad $G = \langle u, w \rangle$ would contain the line $u\pi_Q(w)$ of Q, a contradiction. So, $w \in \Gamma_2(Q)$. By Lemma 4.3 applied to the hexes $\langle x, Q \rangle$ and H, we see that $w \in \Gamma_2(H)$. So, there exists a unique hex through w meeting H in a quad and this hex coincides with $\langle x, Q \rangle$. This implies that the hex $\langle vu, G \rangle \neq \langle x, Q \rangle$ intersects H in the line uv. It follows that the valuation induced in $\langle vu, G \rangle$ contains a unique point with value 0 (namely v) and a point with value 1 at distance 3 from it (which is contained in $\Gamma_2(u) \cap G$. Among the near hexagons which can occur as hex in \mathbb{G}_4 , only $W(2) \times \mathbb{L}_3$ has such valuations. So, $\langle vu, G \rangle \cong W(2) \times \mathbb{L}_3$ and the valuation induced in $\langle vu, G \rangle$ is semi-classical. But in a $W(2) \times \mathbb{L}_3$ -hex, every grid-quad is of type I, while the grid-quad G has type II since it is contained in the \mathbb{H}_3 -hex $\langle x, Q \rangle$ (recall Lemma 3.1(11)+(12)). So, we have a contradiction and the valuation f' must be of grid-type.

By Lemma 2.2 it now follows f(x) = 3 if $\Gamma_2(x) \cap Q$ has a point with f'-value 1 and f(x) = 2 otherwise.

This proves the proposition.

6.5 A lemma

Recall that by Section 1.1, the near polygon \mathbb{G}_n can be isometrically embedded into the dual polar space DH(2n-1,4).

Lemma 6.11 Let F be a hex of \mathbb{G}_4 and let f be a valuation of F. Suppose that one of the following cases occurs: (i) $F \cong \mathbb{H}_3$ and f is a valuation of Fano-type of F; (ii) $F \cong \mathbb{G}_3$ and f is a non-classical valuation of F. Suppose also that \mathbb{G}_4 is isometrically embedded into the dual polar space DH(7, 4). Then there exists a unique point $x \in DH(7, 4) \setminus \mathbb{G}_4$ such that $O_f \subseteq \Gamma_1(x)$.

Proof. For every convex subspace A of \mathbb{G}_4 , there exists a unique convex subspace \overline{A} of DH(7,4) containing A and having the same diameter as A. If A has diameter δ and if x_1 and x_2 are two points of A at distance δ from each other, then \overline{A} is the unique convex subspace of DH(7,4) containing x_1 and x_2 .

Let Q be a quad of F which is special with respect to f. We moreover assume that Q is a W(2)-quad if we are in case (ii) of the lemma. Put $Q \cap O_f = \{x_1, x_2, \dots, x_k\}$, where k = 3 (case (i)) or k = 5 (case (ii)). Let y be an arbitrary point of $O_f \setminus Q$. Then $d(y, x_i) = 2$ for every $i \in \{1, \ldots, k\}$. If d(y,Q) = 1, then y is classical with respect to Q and all points of the ovoid $Q \cap O_f = \{x_1, \ldots, x_k\}$ of Q would be collinear with $\pi_Q(y)$, clearly a contradiction. Hence, d(y, Q) = 2. Since every point of $Q \setminus Q$ is collinear with some point of Q, we have $y \notin Q$. Since the quad Q of DH(7,4) is big in the hex \overline{F} of DH(7,4), this implies that $d(y,\overline{Q}) = 1$. Since $d(y,x_i) = 2$ and y is classical with respect to Q, we have $d(\pi_{\overline{Q}}(y), x_i) = 1$ for every $i \in \{1, \ldots, k\}$. For every $i \in \{1, \ldots, k\}$, let Q_i denote the unique quad of \mathbb{G}_4 through y and x_i . Since $y, x_i \in Q_i \cap O_f$, Q_i is special with respect to f. So, Q_i is either a (3×3) -grid or a W(2)-quad and there exists a unique ovoid O_i of Q_i containing y and x_i . Now, the k quads Q_1, \ldots, Q_k are all the quads through y which are special with respect to f. Since any two distinct points of O_f lie at distance 2 from each other, we necessarily have $O_f = O_1 \cup O_2 \cup \cdots \cup O_k$.

We prove that $\pi_{\overline{Q}}(y) \notin \mathbb{G}_4$. Suppose to the contrary that $\pi_{\overline{Q}}(y) \in \mathbb{G}_4$. Since $\pi_{\overline{Q}}(y)$ is collinear with the points x_1, \ldots, x_k , we would then have that $\pi_{\overline{Q}}(y) \in Q$. This is impossible since d(y, Q) = 2. Hence, $\pi_{\overline{Q}}(y) \notin \mathbb{G}_4$. Since $\pi_{\overline{Q}}(y)$ is collinear with the points y and $x_i, i \in \{1, \ldots, k\}, \pi_{\overline{Q}}(y)$ is contained in $\overline{Q_i}$. So, $\Gamma_1(\pi_{\overline{Q}}(y)) \cap Q_i$ is an ovoid of Q_i containing y and x_i . It follows that $\Gamma_1(\pi_{\overline{Q}}(y)) \cap Q_i = O_i$. Hence, $O_f = O_1 \cup O_2 \cup \cdots \cup O_k \subseteq \Gamma_1(\pi_{\overline{Q}}(y))$.

Conversely, suppose z is a point of $DH(7,4) \setminus \mathbb{G}_4$ such that $O_f \subseteq \Gamma_1(z)$. Since z is collinear with the points x_1, \ldots, x_k , we have $z \in \overline{Q}$. Since z is collinear with y. We necessarily have $z = \pi_{\overline{Q}}(y)$.

6.6 The valuations of \mathbb{G}_4 are induced by valuations of DH(7,4)

Let the near octagon \mathbb{G}_4 be isometrically embedded in DH(7,4). For every point x of DH(7,4), the classical valuation g_x of DH(7,4) with $O_{g_x} = \{x\}$ induces a valuation f_x of \mathbb{G}_4 . It holds that $\max\{f_x(u) \mid u \in \mathbb{G}_4\} = 4 - d(x, \mathbb{G}_4)$ in view of the following result which holds for general dense near polygons.

Lemma 6.12 (Proposition 2.2 of [14]) Let S be a dense near 2n-gon and let $F = (\mathcal{P}', \mathcal{L}', \mathbf{I}')$ be a dense near 2n-gon which is fully and isometrically embedded in S. Let x be a point of S and let f_x denote the valuation of Finduced by the classical valuation g_x of S with $O_{g_x} = \{x\}$, then d(x, F) =n - M, where M is the maximal value attained by f_x .

If $x \in \mathbb{G}_4$, then f_x is a classical valuation of \mathbb{G}_4 and $O_{f_x} = \{x\}$. If $x \notin \mathbb{G}_4$, then f_x is not classical and hence is either the extension of a non-classical valuation of a \mathbb{G}_3 -hex or is a valuation of Fano-type.

Proposition 6.13 Let f be a valuation of \mathbb{G}_4 . Then there exists a unique point x of DH(7,4) such that $f = f_x$.

Proof. Obviously, the proposition holds if f is classical. The required point x is then the unique point contained in O_f .

Suppose now that f is non-classical. By the classification of the valuations of \mathbb{G}_4 , we then know that $F := \langle O_f \rangle$ is either an \mathbb{H}_3 -hex or a \mathbb{G}_3 -hex of \mathbb{G}_4 . Moreover, if f' denotes the valuation of F induced by f, then $O_{f'} = O_f$, f' is a valuation of Fano-type of F if $F \cong \mathbb{H}_3$ and f' is a non-classical valuation of F if $F \cong \mathbb{G}_3$. By Lemma 6.11, there exists a unique point $x^* \in DH(7,4) \setminus \mathbb{G}_4$ such that $O_{f'} \subseteq \Gamma_1(x^*)$. Then $O_f \subseteq O_{f_{x^*}}$. Hence, $O_f = O_{f_{x^*}}$ and $f = f_{x^*}$ by the classification of the valuations of \mathbb{G}_4 .

Conversely, suppose that $f = f_x$ for some point x of DH(7, 4). Since f is non-classical, its maximal value is equal to 3. Lemma 6.12 then implies that $d(x, \mathbb{G}_4) = 1$. We have $O_f = \Gamma_1(x) \cap \mathbb{G}_4$. Since $O_f \subseteq \Gamma_1(x)$, Lemma 6.11 implies that $x = x^*$.

By Proposition 6.13, the number of valuations of \mathbb{G}_4 is equal to the number of points of DH(7, 4). The number of classical valuations of \mathbb{G}_4 is equal to the number of points of \mathbb{G}_4 , i.e., equal to 8505. The number of valuations of \mathbb{G}_4 which are extensions of non-classical valuations in \mathbb{G}_3 -hexes is equal to $(\# \mathbb{G}_3$ -hexes) \times (# non-classical valuations in a \mathbb{G}_3 -hex) = 84 \cdot 486 = 40824. The number of valuations of Fano-type of \mathbb{G}_4 is equal to ($\# \mathbb{H}_3$ -hexes) \times (#valuations of Fano-type in an \mathbb{H}_3 -hex) = 2178 \cdot 30 = 65610. The number 8505+40824+65610=114939 is indeed equal to the total number of points of DH(7, 4).

References

- A. E. Brouwer, A. M. Cohen, J. I. Hall and H. A. Wilbrink. Near polygons and Fischer spaces. *Geom. Dedicata* 49 (1994), 349–368.
- [2] A. E. Brouwer and H. A. Wilbrink. The structure of near polygons with quads. *Geom. Dedicata* 14 (1983), 145–176.
- [3] P. J. Cameron. Dual polar spaces. *Geom. Dedicata* 12 (1982), 75–85.
- [4] B. De Bruyn. New near polygons from Hermitian varieties. Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 561-577.
- [5] B. De Bruyn. *Near polygons*. Frontiers in Mathematics, Birkhäuser, Basel, 2006.
- [6] B. De Bruyn. A characterization of the SDPS-hyperplanes of dual polar spaces. European J. Combin. 28 (2007), 705–714.
- [7] B. De Bruyn. Isometric full embeddings of DW(2n-1,q) into $DH(2n-1,q^2)$. Finite Fields Appl. 14 (2008), 188–200.
- [8] B. De Bruyn. Two new classes of hyperplanes of the dual polar space DH(2n-1,4) not arising from the Grassmann embedding. Linear Algebra Appl. 429 (2008), 2030–2045.
- [9] B. De Bruyn. Dense near octagons with four points on each line, III. *Ann. Comb.*, to appear.
- [10] B. De Bruyn. An alternative definition of the notion valuation in the theory of near polygons. *Electron. J. Combin.* 16 (2009), Research Paper 16, 14 pp.

- [11] B. De Bruyn and P. Vandecasteele. Valuations of near polygons. Glasg. Math. J. 47 (2005), 347–361.
- [12] B. De Bruyn and P. Vandecasteele. Valuations and hyperplanes of dual polar spaces. J. Combin. Theory Ser. A 112 (2005), 194–211.
- [13] B. De Bruyn and P. Vandecasteele. The distance-2-sets of the slim dense near hexagons. Ann. Comb. 10 (2006), 193–210.
- B. De Bruyn and P. Vandecasteele. The valuations of the near octagon I₄. *Electron J. Combin.* 13 (2006), Research paper 76, 23pp.
- [15] B. De Bruyn and P. Vandecasteele. The valuations of the near octagon \mathbb{H}_4 . Graphs Combin. 23 (2007), 601–623.
- [16] B. De Bruyn and P. Vandecasteele. The classification of the slim dense near octagons. *European J. Combin.* 28 (2007), 410–428.
- [17] S. E. Payne and J. A. Thas. *Finite Generalized Quadrangles*. Research Notes in Mathematics 110. Pitman, Boston, 1984.
- [18] E. E. Shult and A. Yanushka. Near n-gons and line systems. Geom. Dedicata 9 (1980), 1–72.