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Summary

Identifying the processes that preserve diversity in nature is a longstanding goal

of ecology. Theoretical and empirical explanations of coexistence have focused on

the role of competitive interactions in shaping ecological communities. Competi-

tion among multiple species can range from hierarchical to intransitive. Hierarchi-

cal competition occurs when species can be ranked unambiguously in order of their

competitive abilities. Intransitive competition, on the other hand, occurs when the

competitive superiority of species is not strictly hierarchical and is characterized by

the existence of at least one competitive cycle (such as in the rock-paper-scissors

game).

Over ecological time scales, competitive cycles can have stabilizing effects on

species coexistence because decreasing the abundance of any competitor in the

cycle propagates through the network in a way that feeds back to favour the re-

covery of the perturbed species. However, not all competitive cycles generate

this stabilizing effect. Mathematical modelling has been used to show that cycles

containing an odd number of species will stabilize coexistence, whereas cycles

containing an even number of species will destabilize it. The persistence of an

individual species not only depends on its pairwise competitive abilities, but also

by its participation in intransitive triads (three-species cycles) which effectively

rescue it periodically from extinction.

Despite decades of research, a number of questions still remain regarding how

competitive intransitivity increases local species richness, whether intransitive

competition alone leads to species distributions across sites in a metapopulation,

and how dispersal combines with intransitive competition to predict species coex-

istence in a metapopulation, among others. Many questions on intransitive com-

petition have traditionally been approached via a graph-theoretic representation
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of an ecological community as a directed graph, known as a tournament. By ana-

lyzing the structure or topology of the graph, ecologists could be able to anticipate

some of the dynamical properties of an ecological community and also make pre-

dictions on community structure.

In this thesis, we bring together different mathematical tools and concepts bor-

rowed from the fields of numerical analysis, graph theory, game theory, chemical

reaction network theory, and the theory of dynamical systems to explore a number

of questions related to the dynamics of ecological communities under intransitive

competition and the numerical stability of finite difference schemes used for solv-

ing PDEs in ecology.

More specifically, we explore how network structure (or topology) can be used

to provide insights as to why some species persist while others go extinct, and

provide solutions to one of community ecology’s central aims, the prediction of

community structure at equilibrium. Furthermore, we explore the role of dispersal

or migration in the dynamics of populations living in spatially discrete habitats

(patches).

Finally, we explore the mathematical problem of analyzing the stability of some of

the popular finite difference schemes that have been used in the literature for the

solution of reaction-diffusion equations. Such equations appear in the literature as

models that govern the dynamics of populations living in spatial habitats that are

viewed as a continuum, such as in aquatic systems. Since these equations have

no known analytical solutions, their solutions can only be obtained via numerical

methods, in particular, finite difference methods, whose stability properties are

not well known, especially when applied to systems.



Nederlandstalige
samenvatting

Een langetermijndoel van de ecologie is het identificeren van processen die de

diversiteit in de natuur bewaren. Theoretische en empirische verklaringen voor

coëxistentie focussen daarbij op de rol van competitieve interacties in de vorm-

ing van ecologische gemeenschappen. Competitie tussen meerdere soorten kan

variëren van hiërarchisch tot intransitief. Enerzijds treedt hiërarchische competitie

op wanneer de soorten ontegensprekelijk kunnen gerangschikt worden op basis

van hun competitieve capaciteiten. Anderzijds treedt intransitieve competitie op

wanneer de competitieve superioriteit van soorten niet strikt hiërarchisch is en

gekarakteriseerd wordt door het bestaan van minstens één competitieve cykel

(zoals in het blad-steen-schaar spel).

Over ecologische tijdschalen kunnen competitieve cykels stabiliserende effecten

hebben op coëxistentie van soorten aangezien de afname van de abundantie van

een soort kan propageren doorheen het netwerk op zo’n wijze dat dit leidt tot het

herstel van diezelfde soort. Echter, niet alle competitieve cykels genereren dit

stabiliserend effect. Wiskundige modellering heeft aangetoond dat cykels met een

oneven aantal soorten coëxistentie zullen stabiliseren, terwijl cykels met een even

aantal soorten deze zullen destabiliseren. Het overleven van een individuele soort

hangt niet alleen af haar competitieve capaciteiten, maar ook van haar deelname

aan intransitieve triades die haar effectief periodiek redden van uitsterven.

Niettegenstaande decennia van onderzoek blijven er een aantal vragen, onder

andere betreffende hoe competitieve intransitiveit lokaal het aantal soorten doet

toenemen, of intransitieve competitie alleen leidt tot een metapopulatie overheen
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sites en hoe verspreiding samen met intransitieve competitie toelaat coëxistentie

van soorten te voorspellen. Heel wat vragen betreffende intransitieve competitie

worden traditioneel aangepakt op basis van een grafentheoretische voorstelling

van een ecologische gemeenschap als een gerichte graaf, in het bijzonder een

tornooistructuur. Het analyseren van de structuur of de topologie van deze graaf

heeft ecologen toegelaten de dynamische eigenschappen van een ecologische

gemeenschap in te schatten en de structuur van een gemeenschap te voorspellen.

In deze thesis combineren we diverse wiskundige tools en concepten - uit

de numerieke analyse, grafentheorie, speltheorie, theorie van chemische reac-

tienetwerken en de theorie van dynamische systemen - voor het exploreren van

een aantal relevante vragen betreffende de dynamiek van ecologische gemeen-

schappen onder intransitieve competitie en de numerieke stabiliteit van eindige-

differentie-schema’s voor het oplossen van partiële differentiaalvergelijkingen in

de ecologie. Meer specifiek exploreren we hoe netwerkstructuur (of topologie)

inzicht kan verschaffen in het waarom bepaalde soorten overleven terwijl andere

uitsterven, en formuleren oplossingen voor één van de centrale doelstellingen

van de ecologie, nl. het voorspellen van de gemeenschapsstructuur bij even-

wicht. Verder exploreren we de rol van dispersie of migratie in de dynamiek van

populaties in spatiaal discrete leefgebieden. Finaal exploreren we het wiskundig

pro-bleem van het analyseren van de stabiliteit van enkele populaire eindige-

differentie-schema’s die in de literatuur aangewend worden voor het oplossen

van reactie-diffusie-vergelijkingen. Dergelijke vergelijkingen treden op in modellen

die de dynamiek beschrijven van populaties in spatiale leefgebieden die gezien

kunnen worden als een continuüm, zoals in aquatische systemen. Aangezien

dergelijke vergelijkingen geen gekende analytische oplossingen hebben, kunnen

deze enkel benaderd worden via numerieke methoden, in het bijzonder eindige-

differentie-methodes, waarvan de stabiliteitseigenschappen niet goed gekend zijn,

in het bijzonder voor stelsels van vergelijkingen.
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1
Introduction

1.1 Overview

The coexistence of species which interact competitively has long interested ecol-

ogists and the question of what permits so many competitors to coexist in some

communities remains an open question (Tilman, 1982; Chesson, 2000). The mys-

tery of species coexistence is rooted in the competitive-exclusion principle, which

states that two species competing for the same resource cannot coexist (Hardin,

1960; Armstrong and McGehee, 1980). The species that is better at gaining the

limiting resource will eventually eliminate the inferior competitor. However, the

central prediction of the competitive exclusion principle, the elimination of all but

the best competitor, lies in sharp contrast with what is observed in nature. Many

habitats harbor a considerable diversity of species, the most obvious among these

being the paradox of the plankton (Hutchinson, 1961) where a number of the phy-

toplankton species are able to coexist in a relatively homogeneous or unstructured

environment (the open ocean), all competing for the same sorts of resources. This

contrast poses an enigma.
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Coexistence has been so coupled with the concept of competition that it may be

aptly defined as the absence of competitive exclusion (Aarssen, 1983). Thus, to

resolve the enigma of coexistence, efforts have been geared towards establishing

what factors or mechanisms prevent competitive exclusion of one species by an-

other in a resource-limited environment. In this regard, two somewhat opposing

explanatory frameworks have been proposed; the niche and neutral theories of

coexistence.

The classical niche theory of coexistence, which is the oldest explanation for

species coexistence, states that only those species differing sufficiently in re-

source use can coexist. In other words, two (or more) species cannot coexist in

the same ecological niche (Gause, 1934). A species’ ecological niche has been

defined by the resources and conditions it requires to survive and reproduce (Grin-

nell, 1917). Hutchinson (1957) expanded on this definition of niche by disaggre-

gating the habitat into the multiple resources it embodied. The physical space a

species occupies, the temperature and moisture conditions of the space, and the

seasonality in abiotic and biotic conditions that the space experiences, along with

the food requirements and the interactions that a species engages in with other

species are considered. In this case, a species’ ecological niche can be viewed

as a multidimensional space or hypervolume, in which each resource represents

an independent axis. The space that each species occupies within this hypervol-

ume is defined by its basic resource requirements (i.e., the fundamental niche)

and is winnowed down by antagonistic interactions with other organisms (i.e., the

realized niche) (Moore, 2013).

From the classical niche theory, each species is adapted to exploit a unique eco-

logical niche through partitioning of resources and the very coexistence of species

is only possible because their niches are different. If niche differentiation is not

achieved, competitive exclusion will eventually happen. The three conditions nec-

essary for competitive exclusion to proceed are (Aarssen, 1989);

• demands on resources sufficiently exceed supply,

• species do not make demands on sufficiently different resource units, and

• the species differ sufficiently in competitive ability.

The niche differentiation theory is, however, jeopardized by the fact that only few

studies have been able to successfully quantify the importance of niche differ-

ences in maintaining the diversity observed in nature (Adler et al., 2007). It has

also been argued that the coexistence of plant species may not necessarily be a

result of niche differentiation, but rather the degree of niche overlap (i.e., simi-

larity between species in the use of a particular set of resources) (Kim and Ohr,

2020; Shmida and Ellner, 1984; Mahdi et al., 1989). Higher plants are relatively

immobile, lack any real choice in energy supply, and generally make demands on
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essentially the same resources. It is thus difficult to imagine how there could not

be considerable niche overlap and enormous opportunity for competition in many

plant communities (Aarssen, 1983). Thus, whether niche differentiation is needed

for coexistence of plants is itself open to question.

Hubbell’s (2001) neutral theory directly challenged the niche paradigm by propos-

ing that species similarities with regard to fitness, and not niche differences, ex-

plain the high diversity of many natural communities. That is, species are able to

coexist or evade competitive exclusion only if these species are ecologically equiv-

alent in the sense that, they are equally able to survive, reproduce, disperse and

even evolve (to give rise to new species). This coexistence is not maintained by the

ability of species to compete more effectively when rare, but by three processes:

ecological drift (i.e., changes in species population size due to random births and

deaths), dispersal and speciation. Hubbell showed that neutral models describe

the abundance patterns of trees in tropical rain forests especially well. However,

despite the fact that this theory has provided good fits to empirical data, it has also

met resistance from many ecologists who feel that the equivalence assumption is

unrealistic and violates the deeply held belief that all species are fundamentally

different.

The above two theoretical frameworks, however, seem insufficient to account for

all the diversity observed in many natural communities. This is because both

mechanisms focus on the reduction of competitive exclusion and yet, such reduc-

tion may not be required for species coexistence (Soliveres et al., 2015).

A number of empirical and theoretical studies suggest that intransitive competition

(or a lack of competition hierarchy) is an important mechanism that allows species

to coexist within a single community even if they compete strongly (Gilpin, 1975;

Laird and Schamp, 2006; Allesina and Levine, 2011; Gallien et al., 2017). This

lack of competition hierarchy can emerge when, for example, species’ competitive

abilities differ across resources, or across species life stages (Gallien, 2017).

Alternatively, intransitivity in the competitive interactions among species can also

occur if the hierarchy in species’ ability to exploit resources differs from their ability

to prevent resource uptake by others (Laird and Schamp, 2006). This leads to the

generation of cycles in the hierarchy of competitive strength, just as in the game

of rock-paper-scissors (RPS). This mechanism is stabilizing because decreasing the

abundance of any competitor in the cycle propagates through the network in a

way that feeds back to favour the recovery of the perturbed species.

The presence of cycles also means that, although species differ considerably in

their competitive abilities, no single competing species is superior to any other at

the level of the community. In other words, intransitive competition constitutes

some form of “competitive equivalence" of species, which results into an equal

probability of survival, reproduction and distribution within the habitat, as all par-

ticipants of interactions control the abundance of each other (Permogorskiy, 2015).
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This could allow species to coexist even without niche differences.

For any species-rich ecosystem composed of strongly competitive species, it is

likely that intransitive cycles will exist (Vandermeer, 2011). Many theoretical stud-

ies have explored how such intransitive cycles benefit diversity maintenance (Laird

and Schamp, 2006; Allesina and Levine, 2011), although direct empirical sup-

port for this coexistence mechanism is generally sparse. However, Kerr et al.

(2002) showed that intransitive interactions occur between engineered strains of

the bacterium Escherichia coli, whereas Sinervo and Lively (1996) demonstrated

that these interactions exist between individuals with different mating strategies in

a population of lizards. Although these interactions actually occur within a species

(intraspecific), rather than between species (interspecific), the best species-level

evidence for intransitive competition comes from patterns of colony overgrowth in

marine sessile organisms (Buss and Jackson, 1979).

Mathematical models have been used to provide insights into the underlying

mechanisms and ecological implications of intransitive cycles within a competition

network (Laird and Schamp, 2006). One key result from modelling studies is that

intransitive competition cycles formed by an odd number of species will stabilize

coexistence, whereas cycles containing an even number of species are inherently

unstable, with an odd number of species among the even surviving while the rest

are excluded (Allesina and Levine, 2011; Vandermeer, 2011).

However, modelling studies have, so far, been unable to predict the prevalence of

intransitive competition in nature, or how many species in natural communities are

maintained by it (Soliveres et al., 2015; Godoy et al., 2017; Soliveres et al., 2018;

Saiz et al., 2019). This could be due to the difficulty in observing and measuring

intransitivity in the field, or due to the fact that broad theories on the subject are

still lacking. Thus, the role of intransitive competition in maintaining diversity in

real-world ecosystems remains unclear despite decades of research devoted to

answering this question.

Within intransitive competition networks, one core aim of many community ecol-

ogists is the prediction of community structure at equilibrium, which is essentially

the final species composition, including the number of species (species richness)

and their relative abundances. However, till now, predictions on even the simplest

community aspects like equilibrium species richness remains a challenge. This is

because ecological communities can be highly diverse with very many species in-

teracting in a complex network. Thus it is challenging to study how communities

evolve.

On the one hand, some studies have suggested that predictions on community

structure could be possible if ecologists are able to accumulate a sufficiently in-

clusive worldwide data set of species traits (Grime, 2006; McGill et al., 2006). But

collecting enough data on the relevant traits of species sufficient enough to make

prediction possible is not only difficult but also expensive in practice. Moreover,
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because competitive outcomes may depend on various environmental conditions,

unless one can accurately predict future environmental conditions or declare com-

petition to be utterly unimportant in structuring communities, it seems unlikely

that community structure can be predicted from a database of species traits (Koide

et al., 2011).

On the other hand, other studies have suggested that predictions on commu-

nity structure will require the development of metrics that explore the ranking

of species involved in intransitive structures, not just aspects of their presence,

absence or frequency (Laird and Schamp, 2018b).

Generating and making predictions on community composition (species richness

and abundance) at equilibrium from intransitive competition networks, has led

ecologists to turn to tools, concepts and results developed outside ecology, such

as graph (or network) theory, game theory and chemical reaction network the-

ory, among others, and these have proven to be be extremely useful in providing

insights into a number of ecological questions.

For example, game theory provides a mathematical framework in which compet-

itive interactions among species can be treated as a game with multiple players.

Using this framework, ecologists are able to elucidate evolutionary consequences

of interactions, such as fitness payoffs and the proportions of strategies (pheno-

types) played by each group within a population.

On the other hand, when ecological communities are represented by interaction

networks, graph theory provides a robust and well-formalized framework to char-

acterize the complexity of such networks. For example, it has provided indices that

have enabled ecologists to quantify not only the degree, but also the architecture

of ecological complexity.

Furthermore, in the absence of dispersal, the dynamics of ecological competi-

tion networks are often modelled by systems of ordinary differential equations

(ODEs). Chemical reaction network theory (CRNT) provides a mathematical frame-

work within which the qualitative dynamics of such ODE model systems can be

linked to the structure of the interaction network.

Finally, combining intransitive competition with already established explanations

for community diversity, such as the existence of a global metapopulation, in

which all species coexist and from which local communities (habitat patches) are

assembled by dispersal processes, could provide insights into the coexistence

mechanisms of spatially structured environments.

The competition-dispersal (or competition-colonization) trade-off has long been

regarded as one possible mechanism enabling coexistence, where species with

inferior competitive ability can compensate by migrating more frequently, and

over long distances, hence adopting the name fugitive species, whereas superior

competitors dominate within patches, fugitive species gain an edge through the

discovery and early colonization of fresh resource patches.
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Classic metapopulation models based on the competition-dispersal tradeoff go

back to Levins and Culver (1971) who demonstrated that two species can coexist

in a metapopulation if one species is a superior competitor and the other species

is a superior disperser. This was also confirmed by Tilman (1994) whose multi-

species model predicts that an unlimited number of species competing for a single

resource can coexist in a spatially subdivided habitat, given that the inferior com-

petitors have sufficiently higher dispersal abilities than the superior competitors.

Furthermore, assuming intransitivity in the competitive interactions within the

habitat patches creates some form of competitive equivalence among the species

(Laird and Schamp, 2006), and could therefore provide insights into the effects of

dispersal on coexistence when differences in competitive abilities among species

are neutralized. Numerical simulations by Nagatani et al. (2018) have already

shown that, for cyclic interactions within a patch, metapopulation dynamics are

significantly different when the dispersal network is homogeneous compared to

when the dispersal network is heterogeneous.

Finally, classic metapopulation models treat the environment as a discrete collec-

tion of habitat patches, and thus have model equations in the form of a system of

ODEs. However, in some cases, like for many aquatic systems, the environment is

viewed as a continuum and metapopulation models of such systems can only be

constructed for very finely reticulated subdivisions of the continuum. For analysis

of such situations, it is generally more convenient to pass to the limit and replace

the discrete patch ODE system by a system of partial differential equations (PDEs).

ODEs also provide an insufficient description when continuous aspects of geometry

are important or the well-mixed assumption is obviously at odds with the nature

of the ecological system at hand (Daun et al., 2008). In such cases, again, PDEs

(or reaction-diffusion equations) provide an appropriate framework to model such

systems.

PDEs are advantageous over ODEs because they allow modellers to incorporate

both temporal and spatial processes simultaneously into equations governing pop-

ulation dynamics. In addition, they have been used to lend insight into numerous

fundamental population processes including dispersal, ecological invasions, the ef-

fect of habitat geometry and size, dispersal mediated coexistence, and the emer-

gence of spatial patterns (Holmes et al., 1994).

Unfortunately, since the PDE model equations are often nonlinear, closed-form

analytical expressions of their solutions can be found only in very special circum-

stances, and these are mostly of limited theoretical and practical interest. Thus

scientists have naturally been led to seek numerical techniques for the approxi-

mation of solutions. However, their numerical computations are more demanding

than those of ODEs, and may, in some situations, require a larger computing plat-

form than personal computers.

The most powerful and generally applicable algorithms for the approximate solu-
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tion of PDEs rely on the concept of discretization, whereby the PDE under consid-

eration is replaced by equations that involve a finite number of unknowns. There

are several different ways to discretize a PDE. The simplest method uses finite dif-

ference approximations for the partial derivatives in the PDE. This gives rise to a

large algebraic system of equations to be solved in place of the PDE, something

that is easily solved on a computer. Mathematical theory may be useful in se-

lecting appropriate numerical simulation methods and may facilitate accuracy and

efficiency of simulations.

However, a number of mathematical challenges arise when using a finite differ-

ence method to solve the underlying PDE, top among these is the problem of

numerical stability. A given finite difference method is unstable if the small differ-

ences between the original PDE and its discretized version to be implemented on

a computer lead to significant changes in the numerical solution over time with

respect to the exact solution. Stability of a numerical method is a fundamental

property that is necessary for the method to produce a valid solution. A standard

tool for establishing the stability of a finite difference scheme is the von Neumann

stability analysis.

1.2 Research questions

In this thesis, we shall bring together different mathematical tools and concepts

borrowed from the fields of numerical analysis, graph theory, game theory, chem-

ical reaction network theory, and the theory of dynamical systems to explore a

number of questions related to the dynamics of ecological communities under in-

transitive competition and the numerical stability of finite difference schemes used

for solving PDEs in ecology.

More specifically, in this thesis, we will explore how network structure (or topol-

ogy) can be used to provide insights as to why some species persist while others

go extinct, and provide solutions to one of community ecology’s central aims, the

prediction of community structure at equilibrium. Then, we shall explore the role

of dispersal or migration in the dynamics of populations living in spatially discrete

habitats (patches). Finally, we will explore the mathematical problem of analyzing

the stability of some of the popular finite difference schemes that have been used

in the literature for the solution of reaction-diffusion equations. Such equations ap-

pear in the literature as models that govern the dynamics of populations living in

spatial habitats that are viewed as a continuum, such as in aquatic systems. Since

these equations have no known analytical solutions, their solutions can only be ob-

tained via numerical methods, in particular, finite difference methods, whose sta-

bility properties are not well known, especially when applied to reaction-diffusion

systems.
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For this purpose, we formulate several research questions to guide our investiga-

tions, which will be elaborated and motivated in subsequent chapters:

1. How does community structure emerge from a directed graph?

2. What properties of intransitive networks promote species richness?

3. To what extent are single-patch dynamics within a metapopulation affected

by migration?

4. Do the well-known stability properties of finite difference schemes that have

been derived on the linear diffusion equation extend to the full reaction-

diffusion system?

These research questions will be studied through the use of both mathematical

analysis and simulations.

1.3 Scope of the thesis

In Chapter 2, we introduce in detail the important ecological concepts and tools

relevant to the later chapters of this thesis. We start by introducing the concept

of an ecological community, and the common measures used to distinguish eco-

logical communities. We then introduce the graphical (or network) representation

of an ecological community. This allows us to introduce the notion of intransitive

competition, which is the main focus of our work, and the measures of intransitiv-

ity. Finally we introduce the concept of kings/non-kings in a network, an important

concept that we use in Chapter 5 to justify the competitive exclusion of some

species.

In Chapter 3, we review the mathematical modelling approaches suitable for in-

transitive competition dynamics. We start by discussing non-spatial model for-

mulations which take the form of ODEs and aspects of their dynamic behavior,

particularly, the stability of equilibrium points. Then we introduce relevant con-

cepts from game theory and chemical reaction network theory. We then intro-

duce spatial models ranging from discrete metapopulation models to continuous

reaction-diffusion equations. Finally, we discuss some popular numerical methods,

in particular, finite difference schemes, used for the numerical solution of reaction-

diffusion equations. We end the chapter with an introduction of the von Neumann

stability analysis, which will provide a basis for the mathematical problem of nu-

merical stability that is discussed in Chapter 6.

In Chapter 4, we intend to answer our first two research questions where we try

to explore how community structure emerges from a complete directed graph (or

tournament). To do this, we make use of the intransitive triads in the tournament
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together with the concept of kings/non-kings in the tournament. By first elimi-

nating all the non-kings and reducing the tournament to an all-kings tournament,

we are then able to use the interactions among the intransitive triads to deduce

the final species richness and/or composition even without the need for numerical

simulations of their mean-field ODE models.

Our third research question is answered in Chapter 5, where we make use of con-

cepts and methods from dynamical systems theory, graph theory and chemical

reaction network theory, particularly the concept of detailed balancing, to explore

the effects of dispersal or migration on the dynamics of a metapopulation that is

composed of several subpopulations spread among distinct habitat patches. This

chapter also provides a mathematical proof to some established numerical results

in the literature and thus broadens the application of such results.

The final research question of this thesis is answered in Chapter 6, where we ex-

plore a well-known mathematical problem of numerical stability. Here, we perform

a von Neumann stability analysis of some popular finite difference schemes that

have been used for the numerical solution of reaction-diffusion equations in ecol-

ogy. Stability results in the literature have been derived based on the analysis

of a system of linear diffusion equations. It is not clear whether these existing

stability conditions would still hold if the same schemes are applied to the full

reaction-diffusion equations which are usually encountered in practice. The aim of

this chapter is to shed light on this existing mathematical problem.

Finally, in Chapter 7, we present a summary of the main results of this thesis as

well as their conclusions. We also outline possible future research directions.
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2
Ecological Background

2.1 Introduction to ecological communities

2.1.1 What is a community?

An ecological community is an assemblage of interactions among species pop-

ulations occurring together in space and time (Begon et al., 2006). Community

ecology is the study of the interactions among populations of coexisting species.

One important goal of community ecology is to explain the underlying mechanisms

that create, maintain, and determine the fate of ecological communities.

Ecological communities can be highly diverse with many species interacting in a

complex ecological network. It is challenging to study how entire communities

evolve. Consequently, community ecologists work with restricted groups of organ-

isms, focusing on readily-identified sets of species that are ecologically or taxo-

nomically similar. For example, attention could be restricted to groups of species

that are all engaged in some similar ecological function, also known as functional
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groups, or on the feeding interactions among species, leading to what is known as

a food web, i.e., a group of species linked by such interactions, thus describing the

paths by which biomass flows through the community. A customarily used sub-

set of a food-web is the notion of trophic level, which typically describes a subset

of a community with similar feeding habbits (Bersier, 2007), e.g., herbivores. By

studying these restrictions, ecologists focus their efforts on a manageable and co-

herent portion of the community, manageable in terms of number of species and

coherent in terms of ecological requirements.

2.1.2 Community properties

The potentially bewildering complexity of ecological communities has motivated

ecologists to use various descriptors to condense and summarize information

about the number, identity and relative abundance of species. It should how-

ever be noted that, although no single magic number, index or graph can provide

a complete description of a community, some of these measures provide a useful

way of comparing different communities.

Species richness: One way to characterize a community is to count or list the num-

ber of species that are present. The total number of species present in a com-

munity, often called species richness, is synonymous with our basic notion

of biodiversity. The richness of a community is often calculated based on the

number of species observed in repeated random samples of a given number

of individuals, or on the volume of the habitat that has been explored (Be-

gon et al., 2006). The most common species are likely to be represented in

the first few samples, and as more samples are taken, rarer species will be

added to the list. To decide whether enough sampling effort has been made,

the investigator should continue to sample until the graph of the cummu-

lative number of species versus the amount of sampling effort reaches an

asymptotic value. That asymptotic value provides a reasonable estimate of

the number of species present (Chao and Chiu, 2016).

Species evenness: Another basic feature of ecological communities is the distri-

bution of relative abundances of the various species in a community. There

are many aspects of this distribution that can be measured, but the simplest

feature is species evenness (Smith and Wilson, 1996). Evenness (equitabil-

ity) represents the degree to which individuals are split among species with

low values indicating that one or a few species dominate, and high values in-

dicating that relatively equal numbers of individuals belong to each species.

Species diversity: A combination of the number of species (richness) and their rel-

ative abundance (evenness) defines species diversity, which is a measure

of what is frequently referred to as community structure. Several diversity
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indices have been developed that mathematically combine the effects of

richness and evenness. Such indices provide important information about

the rarity and commonness of species in a community. The two most popular

diversity indices are Simpson’s diversity index (Simpson, 1949), and Shan-

non’s diversity index (Shannon, 1948). Both indices are calculated based on

the relative abundance of species.

2.1.3 Interspecific competition

Community ecologists seek to understand what drives the patterns of species co-

existence, diversity and distribution that is observed in nature. A core part of how

they address these questions is by examining how different species in a commu-

nity interact with each other.

Species interactions represent the effects that individuals in a community have

on each other. These interactions can be defined as either intraspecific or inter-

specific. Intraspecific interactions are those that occur between individuals of the

same species while interactions that occur between two or more species are called

interspecific interactions.

Interspecific interactions have long been considered to be among the key mech-

anisms that can influence species abundances and community composition and

thus govern the structure and dynamics of ecological communities. Organisms

live in a complex web of interspecific interactions, affecting one another via com-

petition, predation, and mutualism, among various other forms of interactions.

Among the interspecific interactions, competition is probably the most frequently

inferred interaction in community ecology and has received, by far, the most theo-

retical and empirical attention. Competition is most typically considered the inter-

action of individuals that vie for a common resource that is in limited supply, but

more generally can be defined as the direct or indirect interaction of organisms

that leads to a change in fitness (or reproductive success) when the organisms

share the same resource.

Theoretically, interspecific competition for finite resources has been viewed as

asymmetric (i.e., in terms of a winner and a loser) with the dominating species

gaining more resources and eliminating the subordinate from the habitat or segre-

gating them to less favorable sites. This view was first fostered by the competitive

exclusion principle (Hardin, 1960) which states that if two or more species com-

pete for the same limiting resource, then all but one of them will be driven to

extinction.

Interspecific competition can be categorized to be of two types, interference

competition and exploitative competition (Miller, 1967). Interference competition

refers to any activity which either directly or indirectly limits a competitor’s access
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to a necessary resource such as a niche, defended space or particular habitat.

For example, competition among sessile animals has been found to involve direct

physical aggression: one species of barnacle outcompeted another for attachment

space by undercutting or even crushing other competitors. Some animals show

more formalized aggressive behaviours, with greater emphasis on display and cor-

respondingly less on physical contact (Shigesada et al., 1984).

Exploitative competition, on the other hand, is the indirect interaction among

species arising from the joint exploitation of a limited resource. Simply put, the

use of the resource by one individual will decrease the amount available for other

individuals. As an extreme example, one species may feed on a plant during the

day, and another species may feed on the same plant during the night. Each

species diminishes the resource for the other, but there is no direct contact or con-

flict (Jensen, 1987). Whether by interference or exploitation, over time a superior

competitor can eliminate an inferior one from the area, resulting in competitive

exclusion (Hardin, 1960). Therefore the distribution and structure of ecological

communities can be theoretically affected by both exploitative and interference

competition.

2.2 Ecological communities as complex net-
works

2.2.1 Introduction

Networks provide one of the best representations for ecological communities, com-

posed of many species with dense connections between them. Network-based

approaches to ecological questions have been increasingly used, particularly in

recent decades, because they offer the opportunity to investigate, within a com-

mon formal mathematical framework, questions ranging from the species level to

the community level (Delmas et al., 2019). This methodological framework de-

rived from graph theory has provided ecologists with the tools needed to observe

and quantify the structure of ecological communities in ways that simply were not

available previously.

Network concepts, tools and techniques have a long history of use in ecology. The

first attempt to represent the trophic interactions in a community as a network was

made by the Italian scientist Lorenzo Camerano in 1880 (Bersier, 2007). Earlier

verbal descriptions of food webs existed, but Camerano was apparently the first to

provide a graphic representation of the connections of groups of species in a natu-

ral community (Cohen, 1994). Three decades later, Pierce et al. (1912) attempted

to describe the predatory and parasitic interactions of the boll weevil as a net-

work of interactions. Shortly thereafter, Summerhayes and Elton (1923) analyzed
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in some detail the trophic interactions among the species inhabiting Bear Island,

concluding that animal communities could be best described in terms of the food

relations between species. They seized the opportunity presented by the relatively

small number of species on Bear Island to present a graphic representation of the

feeding relationships linking all animal species. These three pioneering works all

recognized the importance of the diagrammatic approach, specifically treating the

community as a network, in studying the interactions between species in order to

understand the organization and dynamics of communities.

Today, the network-oriented approach permeates almost all areas in ecology and

evolution and is one of the fastest growing ecological disciplines (Delmas et al.,

2019). For example, scientists have used network models to investigate commu-

nities of mutualistic species (Bascompte and Jordano, 2007), general properties

of ecosystems (Higashi and Burns, 1991), competitive interactions (Allesina and

Levine, 2011) and the movement of genes and organisms across landscapes (Ur-

ban and Keitt, 2001; Holland and Hastings, 2008; Jacoby et al., 2012).

2.2.2 Graphs and graph theory

In recent years, graph theory (also called network theory) has established itself

as one of the most useful tools that ecologists have used to study ecological net-

works (Proulx et al., 2005; Bunn et al., 2000). Urban and Keitt (2001) give a gen-

eral description of ecological applications of graph theory. However, this section

describes the graph theory concepts and terms that will be used in this thesis.

2.2.2.1 Definitions

In general, networks or graphs are used to capture relationships between entities

or objects. By definition, a graph G is a mathematical object consisting of two sets:

vertices (nodes/points) V and edges (links/arcs/lines) E that represent functional

connections between pairs of vertices. We sometimes write G(V, E) instead of G.

A subgraph of G is a graph whose vertex and edge set are subsets of the vertex

and edge set of G. We write |V| to denote the number of vertices in G, and |E| to
denote the number of edges in G.

In ecology, individuals, populations and habitats are the main objects of interest,

and thus act as the vertices to the graph, with behaviour and dispersal as the main

processes that link them (Dale and Fortin, 2010). For example, a food web can

be represented as a graph with species as nodes and their feeding relationships

as edges. Similarly, the spatial dynamics of a metapopulation can be analyzed by

connecting the patches (nodes) of suitable habitat with edges measuring dispersal

between patches. We usually represent a graph pictorially (Fig. 2.1).
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We say that two vertices  and j of G are adjacent if there is an edge e = j
joining them, and the vertices  and j are then said to be incident with such an

edge. Similarly, two distinct edges e and ƒ are adjacent if they have a vertex in

common. The graph is called undirected (or symmetric) when all the edges are

bidirectional, meaning every edge from vertex  to vertex j is also an edge from

vertex j to vertex . It is called directed (or digraph) when every edge is assigned

a direction. This is usually indicated with an arrow on the edge. In ecology, the

edges in a directed graph could indicate the direction of biomass transfer (e.g.,

from competitive subordinate to dominant) (Otto and Day, 2007) or the direction

of migration.

In addition, the edges can be unweighted or weighted leading to an unweighted

or weighted graph, respectively. Weights can represent a variety of ecologically

relevant quantities, depending on the system being described. For example, edge

weights can quantify interaction frequency, interaction strength (e.g., per-capita

effect of one species on the growth rate of another), carbon flow between trophic

levels, dispersal probabilities (e.g., the rate at which individuals of a population

move between patches), etc.

In a digraph G, the in-degree of a vertex , denoted deg−(), is the number of

edges coming into it. The out-degree of , denoted deg+(), is the number of

edges going out of it. The degree of , denoted deg() is the sum of the in-degree

and out-degree.

2.2.2.2 Matrix representations

Although it is convenient to represent a graph by a diagram of points joined by

lines or arrows, such a representation may be unsuitable if we wish to store a large

graph in a computer. One useful representation involves matrices. If G is a graph

with vertices labelled {1,2, . . . , n}, its adjacency matrix A is the n×n matrix whose

j-entry (entry in the -th row and j-th column) j depends on whether the graph

is weighted or unweighted. In unweighted graphs, j = 1 if there exists an edge

from vertex j to vertex , otherwise j = 0. (As a cautionary remark, the adjacency

matrix obtained using the above definition is the transpose of what is commonly

defined as the adjacency matrix). In weighted graphs, the edge weight is given

instead of being set to unity. Adjacency matrices are symmetric for undirected

graphs but not for digraphs. In ecology, edge weights denote the strength of the

interaction between two ecological entities (individuals, populations or habitats).

This strength is not necessarily between 0 and 1; if the strength of interactions

depicts the raw effect of one population on another, then it can take both negative

and positive values (Delmas et al., 2019) (see Fig. 2.1).

Another important matrix representation of a graph is the incidence matrix. The

incidence matrix of G is a |V| × |E| matrix B, whose j-entry bj = 0 if vertex 
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Figure 2.1: Categorization of graphs: (a) unweighted undirected; (b) weighted undirected; (c) un-
weighted directed; (d) weighted directed. On the right are the corresponding adjacency matrices for
the given networks. Arrow thickness in graphs (b) and (d) represents the strength of the link/interaction.

and edge j are not incident, otherwise bj = 1 or −1 if edge j originates from, or

terminates at, vertex , respectively. Thus the sum of entries in each column of B

is zero. Equivalently, this can be written as 1>B = 0, where 1 ∈ Rn denotes the

n-dimensional vector with all entries equal to 1.
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2.2.2.3 Paths, cycles and connectivity

Many applications of graphs involve ‘getting from one vertex to the other’. For

example, you may wish to find the shortest route between two habitat patches or

to identify vertices of high importance, such as keystone species in a food web, and

patches acting as stepping stones in a dispersal network (Costa et al., 2019). The

interaction between vertices can be thought of as a flow of information between

the vertices that are linked by edges. The following definitions describe ways of

going from one vertex to another.

Given a graph G, a walk in G is a finite sequence of edges of the form 01,

12, . . . , m−1m also denoted by 0 → 1 → 2 → · · · → m in which any two

consecutive edges are adjacent. Such a walk determines a sequence of vertices

0, 1, . . . , m. We call 0 the initial vertex and m the final vertex of the walk

, and speak of a walk from 0 to m. The number of edges in a walk is called

its length. Note that we do not require all the edges or vertices in a walk to be

different.

It is sometimes useful to be able to refer to a walk under more restrictive conditions

in which we require all the edges, or all the vertices, to be different. A path in G

is a walk from 0 to m such that each vertex is unique (i.e., no vertex is visited

more than once, except possibly, 0 = m). This implies that the edges of a path

are also unique. A closed path (i.e., one in which 0 = m) is called a cycle.

We can use the concept of a path to define a connected graph. A graph G is said

to be (strongly) connected if, for every pair of vertices , j in G, there exists

a (directed) path from  to j, and is disconnected or unconnected otherwise.

Every disconnected graph can be split up into a number of (strongly) connected

subgraphs, called (strongly) connected components (Aldous and Wilson, 2003).

For any graph G with n vertices and incidence matrix B, it holds that rank B =
n − ℓ, where ℓ is the number of (strongly) connected components of the graph. In

particular, G is connected if and only if ker B> = span 1.

We complete this section by describing one important type of graph known as a

complete graph. A complete graph is a graph in which each vertex is adjacent

to every other vertex in the graph. Thus, a complete graph with n vertices has

n(n − 1)/2 edges. For ecological applications, focus is often on directed graphs as

many ecological processes are oriented. In this regard, we talk about complete

directed graphs, also known as tournaments (See Fig. 2.2). Such a digraph can

be used to, for example, represent interspecific competition within a community

where each species is assumed to compete with every other species and these

pairwise competitive interactions are asymmetric characterized with one consis-

tently dominant species and one consistently subordinate species.

Tournaments form perhaps the most widely studied class of directed graphs, and

much is known about them (e.g., see (Moon, 1968))
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Figure 2.2: A complete digraph (tournament)

2.3 Intransitive competition

Ecologists have traditionally focused on competition as the main force structur-

ing ecological communities. Thus our primary understanding of the preservation

of species diversity both empirically and theoretically has been achieved mainly

through the study of pairwise competitive interactions (Chesson, 2000). Therefore,

for the remainder of the main part of this thesis, we will focus explicitly on pairwise

competitive interactions between species and the networks that arise from these

interactions.

2.3.1 What is intransitive competition?

In theoretical studies on the effects of interspecific competition on community

structure, it is usually assumed that each species competes with every other

species in the community and that the pairwise competitive interactions among

species are asymmetric and characterized by a consistent outcome, with one

consistently dominant species and one consistently subordinate species (Muyinda

et al., 2020).

In this regard, an ecological community of n species linked by competition can

be represented as a tournament graph whose vertices are the species and whose

directed edges point from the competitive subordinate to the competitive dom-

inant, indicating the transfer of energy and matter; some conventions use the

reverse. Equivalently, these competitive interactions can be captured in a square

n × n adjacency matrix A, whose rows and columns are labelled by the species in

the community ordered in a similar way. The entries of A are such that j = 1 if

species  dominates species j, otherwise j = 0 (see Fig. 2.3).

In the simplest case, where all species in a system compete for a single limit-

ing resource, their competitive abilities should be transitive (Allesina and Levine,

2011). That is, one species dominates all the other species in a group, a second
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Figure 2.3: A 7-species tournament with corresponding adjacency matrix

dominates all but the first, and so on down to the last species which is dominated

by all the others (Fig. 2.4 (a)). That is, for any three individuals (triad), if A domi-

nates B and B dominates C, then A also dominates C. Transitive tournaments are

consistent with a global ranking of all the competitors.

Transitivity is a common feature among many diverse taxa, including insects, fish,

birds and mammals (LeBrun, 2005; French and Smith, 2005; Broom et al., 2009;

Rushen, 1982; Stuble et al., 2017; Chase et al., 2002). However, transitivity as-

sociated with resources critical for a species’ survival can undermine coexistence

because, at equilibrium, the best competitor will drive all the others extinct (Le-

Brun, 2005).

By contrast, when species compete for several resources in which each competitor

competes best for, yet is limited by, a different resource, then it may result in an

intransitive tournament that is not consistent with any global ranking. Intransitivity

is therefore characterized by the presence of at least one cycle within the network

where the transitivity assumption fails. That is, A dominates B, B dominates C,

but C dominates A. Such a three-species cycle, analogous to the classical rock-

paper-scissors (RPS) game, is called an intransitive triad and the more intransitive

triads there are in the tournament, the further the network is from transitivity

(Fig. 2.4 (b)) (Chase et al., 2002).

These cyclic competitive interactions have been found to exist in a variety of

real ecosystems including plant systems (Lankau et al., 2011; Taylor and Aarssen,

1990; Cameron et al., 2009), marine benthic systems (Buss and Jackson, 1979) and

microbial populations (Kerr et al., 2002; Kirkup and Riley, 2004). Cyclic competi-

tion also plays a role in the mating strategy of side-blotched lizards (Sinervo and

Lively, 1996), the overgrowth of marine sessile organisms (Burrows and Hawkins,

1998), competition between mutant strains of yeast (Paquin and Adams, 1983) and

in explaining the oscillating frequency of lemming populations (Gilg et al., 2003).

Figure 2.4 shows an example of both a transitive and intransitive competition net-

work.

Because of the lack of irrefutable evidence that intransitivity is abundant in natu-
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Figure 2.4: (a) A transitive 7-species tournament. (b) An intransitive tournament with three of its nine
intransitive triads highlighted.

ral systems, theoretical examinations of intransitivity have frequently focused on

systems with few species. Theoretical models of intransitivity show clearly, for

example, that hierarchies of three species quickly collapse to monocultures, while

an intransitively competing triad of species can coexist indefinitely in many com-

petition models (e.g., Gilpin (1975)). While fewer studies have considered more

diverse systems, these have produced evidence that more intransitivity within a

network of competing species (i.e., less hierarchical competition) results in more

prolonged coexistence (e.g., Laird and Schamp (2006, 2018b)).

2.3.2 Measuring intransitivity

Intransitive competition was first explored theoretically by May and Leonard (1975)

and Gilpin (1975), and since then, a few studies have tested for the occurrence of

intransitive competition and its effects on coexistence, developing different indices

to measure it. Such indices have shown that competition networks characterized

by greater levels of intransitivity are more resistant to species extinctions, and

are therefore more likely to display persistent species coexistence, than the more

transitive communities (Laird and Schamp, 2006).

Several possible indices exist for measuring intransitivity and for otherwise de-

scribing the structure of competitive interactions. These indices, in general,

roughly group into measures derived from matrix theory (e.g., relative variance)

and measures derived from graph theory (e.g., number of cycles, out-degree

statistics). The aim of each measure is to quantify in some way the degree to

which a given network is not transitive. We now briefly discuss some of the known

indices of intransitivity.
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2.3.2.1 Slater’s i

The Slater measure of intransitivity, denoted by i, is the minimum number of edge

directions that need to be reversed in order to transform the tournament into a

transitive network (Slater, 1961). Thus it is an intuitive way of measuring intran-

sitivity. Low values of i correspond to more hierarchical systems, with i= 0 corre-

sponding to a transitive tournament. Conversely, high values of i correspond to

more intransitively competing networks.

Slater’s i was independently rediscovered and introduced to ecological literature

by Petraitis (1979) who denoted it with s. All tournaments have a minimum value

of i=s= 0; however, the maximum value is positively related to the species rich-

ness (Laird and Schamp, 2018b). Petraitis referred to the upper bound of s as M

(which is the maximum number of edge reversals across all possible n-species

tournaments that are needed to transform any tournament into a transitive net-

work) and used s and M to make a scaled index t = 1 − s/M, with transitive and

maximally intransitive tournaments having values of t = 1 and t = 0, respectively.

A formula for computing M was given by Petraitis (1979):

M =















n2 − 1

8
, if n is odd,

n2 − 2n

8
+  , if n is even,

where

 =











1 , if 6 ≤ n ≤ 10 ,
2 , if 12 ≤ n ≤ 20 ,
3 , if 22 ≤ n ≤ 30 .

However, this formula has been recently established not to hold for some tour-

naments with n ≥ 7 species (Laird and Schamp, 2018a). Nonetheless, there are

other ways of estimating reversal-based indices, even if exact values cannot be

computed (see, e.g., (Kenyon-Mathieu and Schudy, 2007)).

2.3.2.2 Kendall and Babington Smith’s d

The Kendall measure (Kendall and Babington Smith, 1940) counts the number of

intransitive triads among all
�n
3

�

triads in an n-species tournament. Thus, it has

a very close intuitive link with intransitivity. Like in Slater’s i, low values of d

correspond to more hierarchical networks, with d= 0 for a transitive tournament

while higher values of d correspond to more intransitively competing networks.
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The number of intransitive triads is calculated as follows (Bezembinder, 1981):

d =
�

n

3

�

−
1

2

n
∑

=1

s(s − 1) ,

where s corresponds to the number of competitors that species  outcompetes (or

the sum of the elements in row  of the adjacency matrix A). Since the maximum

value of d grows with n, a scaled index ζ is given by ζ = 1− d/dmax, where dmax =
(n3 − n)/24 for n odd and dmax = (n3 − 4n)/24 for n even (Kendall and Babington

Smith, 1940).

Laird and Schamp (2006, 2008) independently developed two very similar indices,

relative variance (RV) derived using variances of the score sequence (row sums

of the adjacency matrix A arranged in nondecreasing order) (Laird and Schamp,

2006) and relative intransitivity (RI) given by RI = 1 − RV = d/dmax (Laird and

Schamp, 2008).

2.3.2.3 Laird and Schamp’s unbeatability (u) and always-beatability (a)

Laird and Schamp (2018b) proposed two binary indices, unbeatability (u) and

always-beatability (a), taking values of either 0 or 1. Unbeatability has a value

u= 1 when there is an “unbeatable" species that outcompetes every other species

in the tournament, and a value of u= 0 otherwise. Likewise, always-beatability

has a value of a= 1 when there is an “always-beatable" species that is outcom-

peted by every other species, and a value of a= 0 otherwise. These two indices

are inversely related to the intuitive understanding of intransitivity. A transitive

tournament must have both values of u and a equal to 1, whereas intransitive

networks do not necessarily have to. All tournaments with u= 1 are expected to

evolve to a monoculture of the unbeatable species, whereas for a tournament with

a= 1, the always-beatable species is expected to go extinct first.

2.4 Kings in a tournament

In his exposition on the use of tournaments to model dominance in flocks of chick-

ens, Maurer (1980) defined a king in a tournament T as a species  ∈ T such that

for every other species j ∈ T, either species  dominates j, or there is a third species

k ∈ T such that  dominates k and k dominates j. This definition of kings in tour-

naments is due to the mathematical sociologist Landau (1953), who showed that

any finite flock of chickens has a most dominant one, called a king. He associated

with each tournament an ordered sequence of non-negative integers, its score

sequence, formed by listing the vertex in-degrees in non-decreasing order, and
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showed that every vertex of maximum score is a king. We refer to any species

that is not a king as a non-king (see, e.g., Fig. 2.5 ).

1

2

34

5

Figure 2.5: The kings correspond to the green nodes 1, 2 and 4, while species 3 and 5 are non-kings.
Among the three kings, only 1 and 4 (with thicker borders) are strong kings.

In a bid to strengthen the capability of kings, Ho and Chang (2003) developed

the notion of a strong king which represents a strong sense of dominance in tour-

naments. To define a strong king, denote by b(, j) the number of third species

k ∈ T through which species  dominates j indirectly. Then, a king  is said to be

strong if b(, j) > b(j, ) for all species j that dominate species . Obviously, it is

not true that every king in a tournament is strong, e.g., among the three kings of

the tournament shown in Fig. 2.5, only 1 and 4 are strong kings. Details on the

characterization of strong kings can be found in Chen et al. (2008).

2.5 Conclusion

Despite interspecific differences in competitive ability, the high level of biodiver-

sity present in ecological communities is a long-standing mystery in community

ecology. Classical coexistence theories establish that each species inhabits a par-

ticular ecological niche, involving a given combination of abiotic and biotic factors,

where it outcompetes the rest of the species in the local pool (i.e., niche theory).

Under this premise, niche overlap penalizes worse competitors, which results in

their competitive exclusion from a community, and supports that species coexist

by being functionally different and by exploiting different niches. If true, then the

species richness of a community depends on the total amount of niche space and

the average size of each niche. Thus, wide niches should lead to a lower species

richness than narrow ones for a given set of resources.

In contrast, neutral theory assumes that individuals and species are demograph-

ically and ecologically interchangeable and therefore equivalent in their compet-

itive ability, i.e., none of the species shows an advantage or disadvantage over

the others. According to the neutral theory, ecological drift, dispersal and speci-

ation are the drivers of population dynamics and species coexistence. However,
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each theory suffers from some shortcomings. Field evidence that classic resource-

based niche differences are essential for coexistence is rare, whereas the species

equivalence assumption of neutral theory is hard to reconcile with nature.

An alternative coexistence mechanism is a competitive intransitivity within the

community. Theory has proposed that intransitive competition in complex eco-

logical networks can enhance community persistence. This means that the com-

petitive abilities of the species cannot be ordered in a strict hierarchy but instead

form cycles of competitive dominance, such as in the rock-paper-scissors game.

More and more empirical evidence of intransitive competition has been found in

bacteria, phytoplankton, plants, vertebrate and invertebrate communities.

The use of network approaches to answer ecological questions has grown consid-

erably in recent decades. The abstraction of ecological systems, such as commu-

nities, through networks of interactions between their components indeed pro-

vides a way to summarize this information with single objects. Concepts bor-

rowed from graph theory, such as nodes, links, cycles, and connectivity are now

commonly used in the analysis of food webs, ecological competition networks,

plant-pollinator networks and predator-prey interactions. By combining the graph-

theoretical framework with game theory and dynamical systems, ecologists can be

able to determine the equilibrium abundance of all species from the competitive

network, explore how species diversity relates to the number of limiting factors,

and how spatial heterogeneity combines with intransitivity to interactively favor di-

versity preservation. Results from this can offer new perspectives on established

ecological theories as well as tools to address new challenges. In the next chapter,

we introduce the mathematical modelling frameworks commonly used in the study

of ecological systems, together with game-theoretical concepts and methods.
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3
3

Modelling Background

3.1 Introduction

The desire to formulate general rules in ecology often finds its expression in the

construction of mathematical models (Begon et al., 2006). By definition, a math-

ematical model is a representation in mathematical terms of the behaviour or dy-

namics of a real object, which enables the study of the object without its experi-

mental analysis (Dym, 2004).

Since models are attempts to represent some aspects of reality, any effort to in-

clude all aspects would overwhelm us with detail and would require a model as

large as the original object (Olinick, 2014). Thus there is a large component of

compromise in mathematical modelling. Almost all real ecological systems are

too complicated to model in their entirety. Hence the first level of compromise is

to identify the most important aspects of the system. These will be included in

the model, the rest will be excluded. The second level of compromise concerns

the level of mathematical manipulation that is worthwhile. Although mathematics

has the potential to prove general results, these results depend critically on the
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form of equations used. Small changes in the structure of equations may require

enormous changes in the mathematical methods. Using computers to handle the

model equations may never lead to elegant results, but it is much more robust

against alterations.

Thus in constructing a mathematical model, scientists must keep in mind the type

of information they wish to obtain from it. The simple schematic diagram of Fig. 3.1

illustrates the role that mathematical models play in science. Scientists begin

Real World

Real-World
Conclusions

Mathematical
Model

Mathematical
Conclusions

Abstraction

Logical
Argument

Interpretation

Experiment

Figure 3.1: Schematic diagram of the modelling process

with some observations about the real object. They wish to make conclusions or

predictions about the situation they have observed. One way to proceed is to

conduct experiments and record the results. The model builder follows a different

path. First, she abstracts, or translates, some of the essential features of the real

world into a mathematical system. Then by logical argument, she derives some

mathematical conclusions. These conclusions are then interpreted as predictions

about the real object.

The real objects of ecological research are populations, communities and ecosys-

tems. Conducting experiments on such objects is not possible, because it can lead

to changes or even destruction of the ecological objects (Gertsev and Gertseva,

2004). In this situation it is clear that mathematical modelling plays a key role in

ecological research.

To be useful, the mathematical model should make predictions about the real ob-

ject that are expected to be actually observed when appropriate experiments are

carried out. If the predictions from the model bear little resemblance to what ac-

tually occurs in the real world, then the model is not a good one. In that case, the

modeler has not isolated the critical features of the situation being studied, or the

axioms misrepresent the relations among these features. On the other hand, if

there is good agreement between what is observed and what the model predicts,

then there is some reason to believe that the mathematical model does indeed

correctly capture important aspects of the real-world object.

What happens frequently is that some of the predictions of a mathematical model

agree quite closely with observed events, but other predictions do not. In such
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a case, we might modify the model so as to improve its accuracy. The incorrect

predictions may suggest ways of rethinking the assumptions of the mathematical

model. One hopes not only that the revised model will preserve the correct predic-

tions of the original one, but also that it will make further correct predictions. The

incorrect inferences of the revised model will lead, in turn, to yet another version,

more sophisticated than the earlier one. Thus, by stages, we develop a sequence

of models, each more accurate than the previous ones.

Mathematical modelling has played, and will continue to play, a crucial role in the

development of ecology, particularly in our ability to predict outcomes. Models

can be used to try to further our understanding of the fundamental mechanisms

driving community patterns already observed and to make new predictions of how

community dynamics should proceed under different conditions (Vellend, 2016).

Historically, mathematical modelling and its applications can be traced back to an-

cient civilizations as an attempt to understand and analyze the world around them.

The great Belgian mathematician and ecologist Pierre-François Verhulst in 1838

developed the logistic equation to describe the self-limiting growth of populations,

which included terms for intrinsic growth rate and a carrying capacity (Bacaër,

2011).

In 1910, Alfred Lotka developed a set of differential equations, heavily influenced

by the logistic equation, to model the oscillating dynamics of two reacting chem-

ical species, in which a product formed by the reaction is also one of the starting

species, creating a self-sustaining feedback loop (autocatalysis) (Lotka, 1910). A

decade later, it occurred to him to apply the same mathematics to living popula-

tions of predator-prey (or herbivore-plant) dynamics Lotka (1925). Concurrently,

Vito Volterra independently developed a similar predator-prey model to explain his

son-in-law’s observations of fish predators in the Adriatic Sea (Volterra, 1927).

The so-called Lotka-Volterra equations (LV equations) demonstrate the inherent

tendency of predator-prey populations to oscillate, e.g., a large predator popula-

tion will reduce available prey to the point where predators decline from lack of

food, but this will result in a population increase for the prey species and a subse-

quent resurgence of the predator (Levin et al., 2009). The LV system has become

the classical mathematical model for explaining the predator-prey interactions in

natural communities and has formed the cornerstone for much of ecology today.

Many mathematical variations of the basic LV system have been developed to ex-

plain unexpected changes and temporal fluctuations in the dynamics of not only

natural animal populations (e.g., snowshoe hare and the Canadian lynx) but also to

show that long-term coexistence of predators and prey is possible in a laboratory

using predatory and prey mites (Tahara et al., 2018).

The middle of the 20th century also witnessed a major wave of enthusiasm for

the use of mathematical models in community ecology bolstered largely via con-

tributions of Robert MacArthur and colleagues. MacArthur developed a conceptual
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framework to champion the role of competition in determining the structure of eco-

logical communities. This work led to the theory of island biogeography (MacArthur

and Wilson, 1967), a classical theory postulating that species richness in isolated

habitats is regulated by local extinction and colonization and should vary with

habitat size and proximity to potential sources of colonizers.

Shortly after MacArthur and Wilson’s seminal contributions, a cornerstone for theo-

retical ecology, a number of physicists entered ecology in the 1970s, and their use

of mathematical tools drove a dramatic increase in dynamical systems theory in

ecology. Robert May, a trained physicist, rankled ecologists in 1972 by publishing a

simple mathematical model describing the relationship between diversity and sta-

bility in a theoretical ecosystem (May, 1972, 1974). The surprising result of May’s

model was that large or complex ecosystems were so unstable that their existence

was statistically improbable. While that conclusion did not match what ecologists

observe in natural systems such as rain forests, which may contain thousands of

species in a single tree, the model challenged the simplistic assumption of more

diversity leading to more stability. In another very influential paper in 1976, he

introduced community ecology to the possibility of chaotic dynamics in even the

simplest of models, ones that were taught in virtually every introductory ecology

course (May, 1976).

Today, exponential gains in computing power and data storage capacity have al-

lowed scientists to explore ever more complex models in finer detail. This is due

to the fact that the formulated mathematical models can be complemented with

realistic simulations in which details not amenable to analysis can be explored.

The visual real-time simulations of modelled phenomena give more compelling

and more accessible interpretations of what the models predict. This has made it

easier to earn the recognition of ecologists.

3.2 Classification of mathematical models in
ecology

All mathematical models in ecology can be divided into two groups; isomorphic

and homomorphic models (Gertsev and Gertseva, 2004). An isomorphic model is

one in which every aspect of the real object has a corresponding component in the

model. In other words, the model is symmetric relative to the object of modelling.

However, since the real objects of ecological research (i.e., populations, commu-

nities, ecosystems) are very complex, it is almost impossible to reflect all features

of such objects in the model. Thus it is necessary to resort to definite assump-

tions and group characteristics. In this case, however, symmetry between the real

object of modelling and the mathematical model is lost resulting in the so-called

homomorphic relationship, and the mathematical model becomes homomorphic.
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Thus it is clear that all mathematical models in ecology are homomorphic (Gertsev

and Gertseva, 2004).

Since the assumptions made about the real object frequently involve a rate of

change (with respect to time t) of one or more variables, the mathematical depic-

tion of all these assumptions may be one or more equations involving derivatives.

In other words, the mathematical model may be a differential equation or a sys-

tem of differential equations that describe the behavior of a system that evolves

with time, also known as a dynamical system. A solution of the model then gives

the state of the system; in other words, the values of a set of time-dependent

variables, called state variables, for appropriate values of t, describe the state of

the system in the past, present, or future. The set of possible combinations of

state variable values is called the state space of the system. Such a state space

is often called a phase space. Evolution of a dynamical system corresponds to a

trajectory (or an orbit) in the phase space. Different initial states result in different

trajectories. The set of of all trajectories forms the phase portrait of a dynamical

system.

Mathematical models can also be classified by what role random events play in

the model. A deterministic model has no random components; for the same initial

conditions and time period projected, it always gives the same result. The most

typical deterministic models encountered are difference equations or differential

equations. In contrast, a stochastic model incorporates at least one random factor,

and thus the results could be different every time the model is run.

One type of stochastic model assumes that the values of some or all parameters

vary through time or across individuals and are therefore described by probability

distributions (Jackson et al., 2000). Each time the model is run, the parameter

values are drawn from their specified probability distributions. Other stochastic

models add random errors following each calculation to simulate the effects of

environmental variability. One reason to add stochasticity is to produce realistic

variability in the trajectories of the state variables through time, either because

the variance as well as the average value is of interest or because the effect of

variability in one state variable on another state variable is of interest. Model

results might be cast in terms of probabilities, for example, as the percentage of

simulations in which all but one of the competing species goes extinct. A stochastic

model is not necessarily more “correct" than a deterministic model, and it is more

work to create. It does provide additional information, but whether this information

is of value depends on the purpose of the model.

Another way in which models may differ is based on the way time is handled in the

model. In discrete-time models, such as difference equations, time takes on values

only at certain time-points (i.e., time is broken into discrete segments, usually of

fixed length). A typical difference equation model of population growth takes the
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general form

t+1 = ƒ (t) (3.1)

where t and t+1 represent the value of the state variable at the beginning of two

successive time intervals, and ƒ is the function describing the change. State vari-

ables that fall naturally into this type of analysis include populations with discrete

life stages (e.g., insect larvae instars) or that have nonoverlapping generations (in

which the adults die and are replaced by their offspring at fixed intervals). In con-

trast, continuous-time models, such as differential equations, describe continuous

changes of an object with time and, for a scalar variable , have the general form

d

dt
= ƒ () (3.2)

where d/dt is the rate of change of the state variable and ƒ is the function de-

scribing the processes that contribute to the rate of change.

Finally, mathematical models are usually composed of variables, which are ab-

stractions of quantities of interest in the described systems, and operators that

act on these variables, which can be algebraic operators, functions, differential

operators, etc. If all the operators in a mathematical model exhibit linearity, the

resulting mathematical model is defined as linear, otherwise the model is consid-

ered to be nonlinear. The question of linearity and nonlinearity is dependent on

context, and linear models may have nonlinear expressions in them. For example,

a differential equation is said to be linear if it can be written with linear differential

operators, but it can still have nonlinear expressions in it.

While appropriate in some situations, linear models may obscure potentially im-

portant properties of the population, which may ultimately influence the accuracy

of predictions drawn from them. For example, linear models cannot detect non-

linear density dependence and the differential influence of abiotic factors above

and below certain density thresholds (Ellis and Post, 2004). Although there are

exceptions, nonlinear models tend to be more difficult to study than linear ones. A

common approach to nonlinear problems is linearization, but this can be problem-

atic if one is trying to study aspects such as chaotic dynamics which are strongly

tied to nonlinearity.

We focus on deterministic models of interacting species mediated by competitive

interactions. Such models are termed species- or population-level models because

they model changes in populations, and assume that stochasticity at the individ-

ual level can be averaged into a deterministic population-level effect (Daly, 2017).

These differ from other modelling approaches such as community-level models

and individual-based models. In community-level models, a multispecies commu-

nity is considered as a sort of “super-organism", because it grows, adjusts under

some circumstances, reproduces itself, and functionally represents higher level

of integration than the individual species that make it up. From this angle, the
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community can be viewed as a collection of genes and reactions, rather than a

set of distinct species (Song et al., 2014). Consequently, community-level models

describe the dynamics of communities in terms of interactions between genes/re-

actions, rather than between species. Individual-based models, on the other hand,

simulate populations and communities by following individuals and their proper-

ties (DeAngelis and Grimm, 2014).

We now proceed to describe the different population-level models used in this

thesis.

3.3 Non-spatial models of competition

3.3.1 Mean-field ODE models

Spatial heterogeneity is a crucial factor which shapes the dynamics of a single

population and supports coexistence of large numbers of species within ecological

communities and ecosystems, a fact which has been recognized both in experi-

ments/observations and theoretical models (Morozov and Poggiale, 2012; de Souza

Júnior et al., 2014; Hart et al., 2017). However, incorporating spatial effects could

lead to models, such as reaction-diffusion equations, that are less tractable than

their spatially homogeneous counterparts. In particular, the analytical treatment

of such models becomes seriously impeded and in many cases it can be impossi-

ble. In addition, the implementation of complex spatial models normally implies

the use of a large number of additional parameters and functions which are often

unknown or poorly understood (Morozov and Poggiale, 2012). This makes analy-

sis of sensitivity of the model to variation of parameters or functions substantially

more complicated compared to the non-spatial cases.

However, in a large number of cases, we are interested in generic mechanisms

through which an ecosystem or a community functions, and for this reason we

only need a qualitative description of the system. The main questions include

the possibility of persistence and coexistence of species as well as the eventual

types of patterns of dynamics which include oscillatory, chaotic, stationary, etc.

From this point of view, we only need to include the spatial heterogeneity in the

case where the same model without space would provide qualitatively different

patterns or where adding spatial dimension results in a minimal increase in model

complexity.

Since the main drawback of spatially explicit models lies in their complexity, some-

times it can be possible to simplify those models and describe the population dy-

namics in terms of some integral characteristics averaged over a large part of

the habitat or even over the entire habitat. Such reduced models are known as
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mean-field models. In a mean-field ODE model, the individuals in a community are

assumed to be well-mixed and the probability of interaction of a randomly cho-

sen individual with any other individual does not depend on the individual chosen.

Also the environment is considered to be homogeneous so that the proportions of

species do not vary from point to point in space. Some classical examples include:

1. the classical Lotka-Volterra model for competitive interactions of S species

with relative abundances 1, . . . , S, which takes the general form

d

dt
= 

 

r −
S
∑

j=1

αjj

!

, (3.3)

where r > 0 is the intrinsic growth rate of species , and αj represents the

competitive effect of species j on species . Note that the term inside the

parentheses
�

r −
∑S
j=1 αjj

�

is called the per-capita growth rate of species .

2. the well-known model for cyclic competition (May and Leonard, 1975):

d1

dt
= 1(1 − 1 − α2 − β3) ,

d2

dt
= 2(1 − β1 − 2 − α3) ,

d3

dt
= 3(1 − α1 − β2 − 3) ,

(3.4)

3. Frean and Abraham’s (2001) mean-field model of rock-paper-scissors compe-

tition
dr

dt
= r(sPr − pPp) ,

dp

dt
= p(rPp − sPs) ,

ds

dt
= s(pPs − rPr) ,

(3.5)

where r , s and p are the proportions of species r (rock), s (scissors) and

p (paper) with r + s + p = 1. An individual of species r can invade a

species s with probability Pr , a species s invades a species p with proba-

bility Ps, a species p invades a species r with probability Pp, and all other

invasion probabilities are zero, and

4. Laird and Schamp’s (2009) multispecies extension of the model in Eq. (3.5)

d

dt
=

S
∑

j=1

T(, j)j (3.6)
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where x = (1, . . . , S)> is the vector of species abundances and T is the

tournament matrix (i.e., T(, j) = 1 if species  outcompetes species j, T(, j) =
−1 if species j outcompetes species , and T(, j) = 0 if  = j).

It can be noted from the above four models that the considered mean-field ODE

system takes the general form

d

dt
= ƒ(1, 2, . . . , S) = g(1, 2, . . . , S) , (3.7)

for some given linear function g. This is because for models of biological sys-

tems,  = 0 implies ƒ(1, 2, . . . , S) = 0 such that a non-existent species cannot

increase (Williams and Chow, 1978).

3.3.2 Dynamic behavior

We now give a brief discussion of the behavior of dynamical systems, focused on

systems modelled by nonlinear ODEs. This allows us to discuss equilibrium points,

stability of equilibrium points in the sense of Lyapunov, limit cycles and other key

concepts of dynamical systems. We also introduce some methods for analyzing

global behavior of solutions.

3.3.2.1 Stability of equilibrium points

The goal here is to discuss some results on the stability of solutions to the nonlinear

ODE system of the form

ẋ = ƒ (x) , (3.8)

where the dot represents the derivative with respect to time t, x = (1, . . . , n)>

and ƒ (x) = (ƒ1(x), . . . , ƒn(x))>. Equation (3.8) is called time-invariant because ƒ

does not explicitly depend on t.

The components of the n-dimensional vector ƒ (x) are assumed to be locally Lips-

chitz functions of x defined for all x ∈ D ⊂ Rn. A function ƒ (x) is locally Lipschitz at

a point x0 if it satisfies the Lipschitz condition

‖ƒ (x) − ƒ (y)‖2 ≤ L‖x − y‖2 (3.9)

for all x,y in some neighborhood of x0, where L is a positive constant, and ‖ · ‖2
denotes the Euclidean norm of an n-dimensional vector; that is,

‖x‖2 =
r

21 + 
2
2 + · · · + 

2
n
. (3.10)
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The Lipschitz condition guarantees that Eq. (3.8) has a unique solution that satis-

fies the initial condition x(0) = x0 (Levine, 1996).

An equilibrium point for the dynamical system (3.8) represents a stationary con-

dition for the dynamics. We say that x∗ = (∗
1
, ∗
2
, . . . , ∗

n
)> ∈ D is an equilibrium

point of Eq. (3.8) if ƒ (x∗) = 0. Whenever the state of the system starts at x∗, it

will remain at x∗ for all future time. Equilibrium points are one of the most im-

portant features of a dynamical system since they define the states corresponding

to constant operating conditions. As discussed in many textbooks, the equilibrium

solutions often dictate the long term behavior of the general solutions.

It is often important to know whether an equilibrium point is stable or not. Stability

of equilibrium points is usually characterized in the sense of Lyapunov, a Russian

mathematician and engineer who laid the foundation of the theory which now

carries his name. Generally speaking, we say that an equilibrium point is locally

stable if all solutions which start near x∗ (meaning that the initial conditions are

in a neighborhood of x∗) remain near x∗ for all time; otherwise it is unstable. It

is said to be locally asymptotically stable if it is locally stable, and furthermore, all

solutions starting near x∗ asymptotically approach x∗ as time approaches infinity.

We now make these definitions precise.

Definition 3.1. We say that an equilibrium point x∗ is locally stable if for all ε > 0,

there exists a δ > 0 such that

‖x(0) − x∗‖2 < δ ⇒ ‖x(t) − x∗‖2 < ε for all t > 0 .

Note that this definition does not imply that x(t) gets closer to x∗ as time in-

creases, but rather just that it stays nearby. Furthermore, the value of δ may

depend on ε, so that if we wish to stay very close to the equilibrium point, we may

have to start very, very close (δ � ε). This type of stability is sometimes called

stability “in the sense of Lyapunov".

Definition 3.2. An equilibrium point x∗ is locally asymptotically stable if it is

stable and also there exists a δ > 0 such that ‖x(0) − x∗‖2 < δ implies that x(t)→
x∗ as t→∞.

Furthermore, an equilibrium point may be stable but not asymptotically stable.

Such an equilibrium is said to be neutrally stable.

Finally, we say that an equilibrium point is unstable if it is not stable. More specif-

ically, we say that x∗ is unstable if given ε > 0, there always exists an initial

condition x(0) with ‖x(0) − x∗‖2 < ε such that x(t) grows unbounded as time

increases.

Definitions 3.1 and 3.2 are local definitions; they describe the behavior of a system

near an equilibrium point. The region of attraction (also called region of local
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asymptotic stability, domain of attraction or basin) is defined as the set of all

points x0 ∈ D such that the solution of Eq. (3.8) that starts from x0 at time t = 0
approaches x∗ as t →∞. When the region of attraction is the whole space Rn, we

say that x∗ is globally asymptotically stable.

The goal now is to characterize the stability of the equilibrium point x∗ of Eq. (3.8).

For convenience, we take x∗ = 0. There is no loss of generality in doing this

because any equilibrium point x∗ can be shifted to the origin via the change of

variables x̃ = x− x∗. Therefore we assume, ƒ (0) = 0, and study the stability of the

origin x∗ = 0.

For a linear system, ẋ = Ax where A is a constant-coefficient matrix, the equi-

librium point x∗ = 0 is globally asymptotically stable if all eigenvalues of A have

negative real parts. However for a nonlinear system ẋ = ƒ (x), establishing any

kind of stability is usually very difficult.

3.3.2.2 Lyapunov’s stability method

In 1892, Lyapunov introduced a method to determine the stability properties of an

equilibrium point without explicitly integrating the differential equation (3.8). The

method is a generalization of the idea that if there is some “measure of energy"

in a system, then we can study the rate of change of the energy of the system

to ascertain stability. The “Lyapunov function" plays the role of this energy. The

equilibrium state of a physical system is stable if the energy decreases (or at least

does not increase) continuously in the neighborhood of this equilibrium state.

Before stating the method, we start by looking at a number of functional properties

that we shall use in describing Lyapunov functions.

Definition 3.3. Let V : D→ R be a continuously differentiable function defined on

a domain D ⊂ Rn that contains the origin. V is said to be positive definite if

(a) V(0) = 0, and

(b) V(x) > 0 for x ∈ D, and x 6= 0.

It is said to be positive semidefinite if condition (b) is replaced by the weaker con-

dition V(x) ≥ 0 for x 6= 0. A function V(x) is said to be negative definite or negative

semidefinite if −V(x) is positive definite or positive semidefinite, respectively. If

V(x) does not have a definite sign as per one of these four cases, it is said to be

indefinite.

Using these definitions, the following theorem allows us to determine stability for

a system by constructing an appropriate energy function. Roughly, this theorem

states that when V(x) is a positive definite function and V̇(x) ≤ 0 along the trajec-

tories of a system, then we can conclude stability of the equilibrium point x∗ = 0.
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The time derivative of V taken along the trajectories of the system (3.8) is as

follows:

V̇(x) =
n
∑

=1

∂V

∂
̇ =

n
∑

=1

∂V

∂
ƒ(x)

=
�

∂V

∂1

∂V

∂2
· · ·

∂V

∂n

�













ƒ1(x)
ƒ2(x)

...

ƒn(x)













=
�

∂V

∂x

�>
ƒ (x) .

(3.11)

Lyapunov’s stability theorem is stated as follows.

Theorem 3.1. (Khalil, 1996)[Lyapunov’s theorem] Let x = 0 be an equilibrium

point of (3.8) and D ⊂ Rn be a domain containing x = 0. Let V : D → R be a

continuously differentiable function with V̇(x) given by Eq. (3.11) denoting the

derivative of V along the trajectories of (3.8). The origin is stable if V(x) is positive

semidefinite and V̇(x) is negative semidefinite, and it is asymptotically stable if

V̇(x) is negative definite. That is, if

1. V(0) = 0 and V(x) ≥ 0 in D \ {0}, and

2. V̇(0) = 0 and V̇(x) ≤ 0 in D \ {0},

then x = 0 is locally stable. It is locally asymptotically stable if condition (2) is

replaced by

V̇(0) = 0 and V̇(x) < 0 , ∀x ∈ D \ {0} .

Furthermore, if D = Rn and V is radially unbounded (that is, ‖x‖ → ∞ ⇒ V(x) →
∞), then the origin is globally asymptotically stable. A continuously differentiable

function V(x) satisfying the stability conditions above is called a Lyapunov function

for the system.

Note that if the origin x = 0 is a globally asymptotically stable equilibrium point of

a system, then it must be the unique equilibrium point. For if there was another

equilibrium point x∗, the trajectory starting at x∗ would remain at x∗ for all t ≥
0; hence, it would not approach the origin which contradicts the claim that the

origin is globally asymptotically stable. Therefore global asymptotic stability is not

studied for multiple equilibria systems.

Lyapunov’s theorem is a powerful tool for studying the stability of equilibrium

points without solving the differential equation (3.8). However, there are two draw-

backs. First, there is no systematic method for finding a Lyapunov function for a

given ODE system. In some cases, there are natural Lyapunov function candidates

like energy functions in electrical or mechanical systems. In other cases, it is ba-

sically a matter of trial and error (Khalil, 1996). Second, the theorem’s conditions
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for stability are only sufficient; they are not necessary. Failure of a Lyapunov func-

tion candidate to satisfy the conditions for stability or asymptotic stability does

not mean that the equilibrium is not stable or asymptotically stable. It only means

that such a stability property cannot be established by using this Lyapunov func-

tion candidate. But the search for an appropriate Lyapunov function is rooted in

the fact that the converse of Theorem 3.1 exists. That is, if an equilibrium point is

stable, then there exists a continuously differentiable function V(x) satisfying the

conditions of the theorem (Murray et al., 1994).

3.3.2.3 LaSalle’s invariance principle

For local and global asymptotic stability, Lyapunov’s theorem requires that the

Lyapunov function is strictly decreasing outside the equilibrium point, i.e., V̇(x) < 0
for any x 6= 0. In many situations, however, we are unable to find such a Lyapunov

function. If the Lyapunov function is not strictly decreasing, then the solution can

remain on a level surface of the Lyapunov function (V(x) = c for some c > 0)

and not be attracted towards the equilibrium point. LaSalle introduced a theorem

which enables one to conclude asymptotic stability of the equilibrium point even

when V̇(x) = 0 for some x 6= 0. To state LaSalle’s invariance principle, we need to

introduce a few definitions.

Definition 3.4. Let x(t;x0) denote the solution to (3.8) with initial condition x0. A

point p is called an omega limit point of solution x(t;x0) if there exists a sequence

{tn} of time points, with tn →∞ as n→∞, such that

x(tn;x0)→ p as n→∞ .

The set of all such points of x(t;x0) is called the ω-limit (or forward) set of x(t;x0)
and denoted by ω(x0).

Similarly, for tn → −∞ an alpha limit point and α-limit (or backward) set α(x0) are

defined.

A simple example of an ω-limit set is an asymptotically stable equilibrium point.

Another example is a closed (periodic) orbit that attracts a trajectory. Such an

orbit is called a stable limit cycle. Thus, a limit cycle is a periodic orbit γ that is the

omega- or alpha-limit set of a point x 6∈ γ.

Definition 3.5. A set M ⊂ Rn is said to be (positively) invariant w.r.t. (3.8) if

x0 ∈ M, ⇒ x(t;x0) ∈ M, ∀t ≥ 0 .

We also say that x(t;x0)→ M as t→∞ if there exists a point p ∈ M such that

‖x(t;x0) − p‖2 → 0 as t→∞ .
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The equilibrium point and the limit cycle are invariant sets, since any solution

starting in either set remains in the set for all future time. Moreover, if x(t;x0)
is bounded for all t ≥ 0, then the ω-limit set ω(x0) is nonempty, compact (i.e.,

bounded and closed) and invariant (Murray et al., 1994; Khalil, 1996). In addition,

x(t;x0)→ ω(x0) as t→∞ .

For a set E that is not invariant, we can talk about its maximal (largest) invariant

set M ⊂ E.

We are now ready to state LaSalle’s invariance principle.

Theorem 3.2 (Khalil, 1996, LaSalle’s invariance principle). Let Ω ⊂ D be a com-

pact set that is positively invariant w.r.t. (3.8). Let V : D → R be a continuously

differentiable function such that V̇(x) ≤ 0 in Ω. Let E be the set of all points in Ω

where V̇(x) = 0. Let M be the largest invariant set in E. Then every solution

starting in Ω approaches M as t→∞.

Since our interest is in the asymptotic stability of the origin, that is x(t;x0)→ 0 as

t → ∞, we need to have M = {0}. That is, set E contains no invariant sets other

than the origin. In this case, LaSalle’s invariance principle is commonly stated

through the following two corollaries of Theorem 3.2. The first one establishes

conditions for (local) asymptotic stability, and the second one establishes condi-

tions for global asymptotic stability.

Corollary 3.1 ((The local) LaSalle’s invariance principle). Let x = 0 be an equilib-

rium point for (3.8). Let V : D→ R be a continuously differentiable, positive definite

function on a domain D containing the origin x = 0, such that V̇(x) ≤ 0 in D. Let

S = {x ∈ D : V̇(x) = 0} and suppose that no solution can stay indefinitely in S,

other than the trivial solution x(t) ≡ 0. Then, the origin is asymptotically stable.

Corollary 3.2 ((The global) LaSalle’s invariance principle). Let x = 0 be an equi-

librium point for (3.8). Let V : Rn → R be a continuously differentiable, radi-

ally bounded, positive definite function such that V̇(x) ≤ 0 for all x ∈ Rn. Let

S = {x ∈ Rn : V̇(x) = 0} and suppose that no solution can stay indefinitely in S,

other than the trivial solution x(t) ≡ 0. Then, the origin is globally asymptotically

stable.

Not only does LaSalle’s invariance principle relax the negative definiteness re-

quirement of Lyapunov’s stability theorem, but it can also be used in cases where

the system has an equilibrium set rather than an isolated equilibrium point.

3.3.3 Equilibrium stability and species coexistence

We have already seen that for ODE models governing the dynamics of n intransi-

tively competing species, the components of the n-dimensional vector ƒ in (3.8)
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take the general form

ƒ(x) = g(x) ,

where x = (1, . . . , n)> is the vector of species abundances and g : D ⊂ Rn →
R are given functions. Generally, it is assumed that the functions g, together

with their first derivatives, are defined and continuous for all nonnegative values

of x. The particular ecological situation will dictate additional specific conditions

on the n functions g1, . . . , gn.

An equilibrium point x∗ is called a coexistence equilibrium (even when it does not

describe actual coexistence) if all species have positive abundances (∗ > 0 for

all ) at this point (Barabás et al., 2016). If such a coexistence equilibrium point

exists, it has to be the solution of the following set of n linear equations (with one

equation for each species ):

g(1, 2, . . . , S) = 0 . (3.12)

The equilibrium point is said to be locally stable if species’ abundances tend to

return to this point when perturbed from it, and it is globally stable if species’

abundances approach this point for any combination of starting abundances.

Analyses of the Lotka–Volterra population dynamics model have analytically

demonstrated that a necessary condition for species coexistence is the existence

of a coexistence equilibrium point (Hofbauer and Sigmund, 1998). However, al-

though necessary, the existence of a coexistence equilibrium point is not sufficient

to guarantee species coexistence in n-species systems. For example, it has been

shown that competition between two species can lead to the extinction of one of

them even if a coexistence equilibrium point exists (Hofbauer and Sigmund, 1998).

On the other hand, although the stability of a coexistence equilibrium point is not

required for coexistence in higher dimensional systems, it has been shown that

the global stability of a coexistence equilibrium point is a sufficient condition for

species coexistence (Saavedra et al., 2017). Therefore species coexistence can

be studied by looking into the conditions necessary for species to coexist (that

is, existence of a coexistence equilibrium point) and the necessary and sufficient

conditions (i.e., existence and global stability) for species persistence. Unfortu-

nately, many times, global stability is difficult to prove and one may only rely on

the necessary conditions for species coexistence.
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3.3.4 Game theory in the ecological context

3.3.4.1 Introduction

The structure of the competitive network is an important driver of biodiversity and

coexistence in natural communities. In addition to determining which species sur-

vive, the nature and intensity of competitive interactions within the network also

affect the growth, productivity, and abundances of those individuals that persist.

However, competitive interactions are costly. Energy is invested by each organ-

ism in both exploitative and interference competition as a means to acquire the

resource. The energy spent is a cost to the organism, and the resources are ben-

efits. Comparing the relative cost to the benefits obtained following an interaction

determines the net gain or loss incurred by the organism, and this value is re-

ferred to as the payoff (Cowden, 2012). An individual’s payoff depends on both

her competitive strategy, such as exploitation or interference, and the competi-

tive strategies of the organisms with which it interacts. Organisms with the most

dominant strategy maximize their payoff and, in turn, increase their fitness. In this

regard, the network of competitive interactions can be viewed as an evolutionary

game, and here, we review the game-theoretical methods that have been applied

to questions in ecology.

A game, in the mathematical sense, is a situation in which players make rational

decisions according to defined rules in an attempt to receive some sort of pay-

off. Game theory is the branch of mathematics which focuses on the analysis of

such games. Game theory is useful for creating a precise mathematical model

linking strategy combinations to payoff. The origins of game theory can be traced

back to the Renaissance, when the first analyses of strategy games appeared,

although no formal theory existed until 1928 when John von Neumann first pub-

lished the paper On the Theory of Games of Strategy, and with his subsequent

1944 book with Oskar Morgenstern titled, Theory of Games and Economic Behav-

ior (von Neumann and Morgenstern, 1944). Inspired by the equilibrium concept

of von Neumann for two-person, zero-sum games, John Nash (1950) defined and

characterized equilibrium for general-sum n-person games. This notion, now called

the Nash equilibrium (NE), proved to be so successful in various applications, es-

pecially in economics. Originally, game theory was studied by economists and

mathematicians, but in 1973, Maynard Smith and Price published an article where

they adapted the methods of traditional game theory to the context of biological

natural selection (Maynard Smith and Price, 1973). They introduced the concept

of evolutionarily stable strategy (ESS), which is closely related to the Nash equilib-

rium, as a way of explaining the existence of ritualized animal conflict. Evolution-

ary game theory was greatly advanced through the introduction of the Replicator

Equation (RE), which has strong connection with the classical Lotka–Volterra model

and the intransitive competition model (3.6). In fact, in this thesis, the ODE model
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system that is employed in all non-spatial cases is the replicator equation

d

dt
= (Tx) (3.13)

for a two-player, symmetric, zero-sum game defined by the payoff matrix T.

For a detailed introduction to evolutionary game theory, see Hofbauer and Sig-

mund (1998).

3.3.4.2 Symmetric two-person zero-sum games

We start by analyzing games in which two players face each other, each choosing

one strategy out of a set. Importantly, we consider static games in which each

player makes his/her decision without having knowledge of the decision of the

other player. Player 1 (row player) has to choose between n options, or strategies

which we denote by e1, . . . ,en and Player 2 (column player) between m strategies

f1, . . . , fm. If Player 1 chooses e and Player 2 chooses fj, then Player 1 obtains

a payoff j and Player 2 obtains a payoff bj. You can think of the payoff as, for

example, a monetary payoff paid to the player after they choose their strategy and

played the game but many interesting other interpretations arise. The game, then,

is described by two n ×m payoff matrices A = (j) and B = (bj). Alternatively, we

can describe it by one matrix T whose element in the -th row and j-th column, is

the pair (j, bj) of payoff values.

For example, suppose the two players engaged in a Rock-Paper-Scissors game.

In this game, each player has to opt between the three strategies, numbered in

that order. The loser pays one dollar to the winner and no money is exchanged in

case of a tie. The rules of the game, together with the payoff matrix are shown

in Fig. 3.2. This game is an example of a zero-sum game. In a zero-sum game,

Rock

PaperScissors

T =







R P S
R (0,0) (−1,1) (1,−1)
P (1,−1) (0,0) (−1,1)
S (−1,1) (1,−1) (0,0)







Figure 3.2: A Rock-Paper-Scissors game with its corresponding payoff matrix. When the players pick
different objects, the winner is the one who picks the object at the head of the arrow connecting the two
objects.

the payoffs to the players are opposite in the sense that whatever the first player

wins, the second player loses and vice versa. That is, bj = −j. Thus the sum

of their payoffs is 0, hence the name zero-sum game. A zero-sum game is called

symmetric if the corresponding payoff matrix is square and skew-symmetric. Thus
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a symmetric two-person zero-sum game is defined by a single, square payoff ma-

trix T = (Tj). A positive entry Tj represents a gain for Player 1 of that amount (and

a corresponding loss to Player 2 of the same amount) and vice versa. A zero-sum

game that is played on a tournament is called a tournament game. For example,

the payoff matrix for the zero-sum RPS game above is

T =









R P S

R 0 −1 1

P 1 0 −1

S −1 1 0









Let us enumerate the strategies by 1,2, . . . , n. Suppose that Player 1 opts to play

strategy  with probability . This mixed strategy is thus given by the probability

vector x = (1, 2, . . . , n)> ∈ Rn (with  ≥ 0 and
∑n
=1  = 1). We denote the set

of all such mixed strategies by Sn, which is a unit simplex in Rn, spanned by the

standard unit vectors e, which are said to be the pure strategies, and correspond

to the original set of alternatives. That is,

Sn =

(

x ∈ Rn :
n
∑

=1

 = 1 ,0 ≤  ≤ 1

)

.

A strategy x ∈ Sn is called completely mixed if it belongs to the interior of Sn (which

we will denote by Sn+). That is, x ∈ Sn+ if  > 0 for all .

If Player 1 plays the pure strategy  and Player 2 uses a mixed strategy y, then the

payoff for Player 1 (or more precisely, its expected value) is

(Ty) =
n
∑

j=1

Tjyj . (3.14)

On the other hand, if Player 1 uses the mixed strategy x and Player 2 uses y, then

the expected payoff for Player 1 (which is the same as the negative payoff for

Player 2) is

x · Ty =
∑



(Ty) =
∑

,j

Tjyj . (3.15)

In playing the game, Player 2 wants to select a strategy to minimize Player 1’s

payoff (as it is a zero-sum game this will increase her payoff). On the other hand,

Player 1 wants to maximize his own payoff as well. Thus if Player 1 knows the

strategy y of the co-player, then Player 1 should use a strategy x∗ which is a best

reply to y. The set of best replies is the set

�

x∗ ∈ Sn : x · Ty ≤ x∗ · Ty ∀x ∈ Sn
	

. (3.16)
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If Player 1 has found a best reply to the strategy y of Player 2, then Player 1 has

no incentive to deviate from x∗, as long as Player 2 sticks to y. But will Player 2

stick to y? Only if Player 2 has no incentive either to use another strategy, i.e., he

has also hit upon a best reply. Two strategies x∗ and y∗ are said to form a Nash

equilibrium (NE) pair for a two-player zero-sum game if no player can improve his

payoff by changing his strategy from his equilibrium strategy to another strategy

provided his opponent keeps his equilibrium strategy. That is,

x · Ty∗ ≤ x∗ · Ty∗ ≤ x∗ · Ty (3.17)

for all x,y ∈ Sn. In other words, (x∗,y∗) is a NE pair if and only if x∗ is a best reply

to y∗ and y∗ is a best reply to x∗. The strategies x∗ and y∗ are also called optimal

strategies. The fundamental theorem of game theory due to Von Neumann states

that there always exist at least one NE pair for any two-person zero-sum finite

game. The quantity  = x∗ · Ty∗ is called the value of the game. For a symmetric

game,  = 0 and any strategy optimal for Player 1 is also optimal for Player 2 (i.e.,

y∗ = x∗) (Fisher and Ryan, 1992). A symmetric NE for a zero-sum game is, thus,

specified by a strategy x∗ having the property that it is the best reply to itself,

that is

x · Tx∗ ≤ 0 (3.18)

for all x ∈ Sn. The NE is said to be strict if equality holds only for x = x∗. Nash

(1951) has showed that every finite symmetric game admits a symmetric NE.

A useful tool to find Nash equilibria is to eliminate strategies from the game, a pri-

ori, because they will never be a part of a NE strategy. In a symmetric, two-person

zero-sum game with payoff matrix T, a strategy  is dominated by strategy k if,

Tj ≤ Tkj for all j and Tj < Tkj for at least one j. The dominance principle states that

a rational player should never play a dominated strategy since his payoffs would

be less than his payoffs if he uses the dominant strategy. The importance behind

dominant strategies is that they are useful in ruling out other strategies to play

within a game. It would not be logical to play a strategy that is inferior to another.

Indeed we have

Proposition 3.1 (Sultan, 1993, p.294). Suppose  is a dominated strategy in a

symmetric, two-person zero-sum game with payoff matrix T. Then for any sym-

metric NE x∗, ∗ = 0. Moreover, any NE for the game obtained by removing the

rows (and columns) from T corresponding to dominated strategies will also be a

NE for the original game.

This allows to eliminate dominated strategies in an iterative manner until we ob-

tain a payoff matrix T′ for a game which does not contain dominated strategies.



3

3 MODELLING BACKGROUND 46

3.3.4.3 Evolutionary game dynamics

In Section 3.3.4.2, we have considered two-player games in the framework of clas-

sical game theory, where the outcome depends on the choices made by rational

and consciously reasoning individuals. The solution for this type of game (the NE)

was based on the idea that each player uses a strategy that is a best response to

the strategy chosen by the other, so neither would change what they were doing.

The 1970s witnessed the birth of evolutionary game theory marked by the publi-

cation of a series of papers by mathematical biologist John Maynard Smith (1973;

1974; 1979). Maynard Smith adapted the methods of classical game theory, which

were created to model the behaviour of rational economic agents, to the context

of evolutionary biology, particularly for understanding the behaviour of animals in

game-theoretic situations. It required a radical shift in perspective and the intro-

duction of thinking in terms of populations.

In evolutionary game theory, players are interpreted as populations (of animals

or individuals) which are genetically programmed to play a particular strategy (or

phenotype) that is inherited by its offspring (Webb, 2007). The game is the game

of life. From time to time, two individuals meet randomly and play the game, using

their strategies. The outcome of each encounter yields a payoff which represents

a gain in biological fitness (expected number of offspring). Thus individuals with

more successful strategies have higher fitness and leave more offspring also pro-

grammed to play in the same way. So in the next generation, the composition of

the population will change.

In order to analyze this set-up, it is convenient to assume that the population

is well-mixed so that the individuals (players) differ only by their strategy. This

applies well to games where both players are on an equal footing (e.g., symmetric

games). Thus much of evolutionary game theory is concerned with symmetric two

player games.

Evolutionarily stable strategies

A strategy x∗ for a symmetric zero-sum game with payoff matrix T is an evolu-

tionarily stable strategy (or ESS) if two conditions are met (Hofbauer and Sigmund,

1998, p.63):

(a) equilibrium condition:

x · Tx∗ ≤ 0 ∀x ∈ Sn ; (3.19)

(b) stability condition:

if x 6= x∗ and x · Tx∗ = 0 , then x∗ · Tx > x · Tx = 0 . (3.20)
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Note that Eq. (3.19) is just the definition of a NE; strategy x∗ is a best reply against

itself. This, however, does not guarantee uninvadability since it allows the exis-

tence of another strategy x which is an alternative best reply. The stability condi-

tion states that in such a case, x∗ does better against x than x against itself. Thus

it is clear that a strict NE implies ESS and ESS implies NE.

We now connect NE and ESS with dynamical systems.

Replicator dynamics

Assume that the population evolves in the sense that the proportions (or relative

abundancies)  change with time. Thus we let x(t) depend on time, and denote

by ̇(t) the rate of change of . The assumption of differentiability implies an

infinitely large population (Sigmund, 2011). The per capita growth rate ̇/ of

the relative abundance of strategy  is a measure of its evolutionary success. The

differential equation for ̇/ is derived using the basic tenet of Darwinism which

is that the reproductive success of a given individual using strategy  should be

proportional to the difference between the fitness ƒ(x) of individuals using  and

the average fitness ƒ̄ (x) =
∑

 ƒ(x) of the population (Hofbauer and Sigmund,

1998). Thus we have

̇


= fitness of type  − average fitness , (3.21)

which yields the replicator equation

̇ = (ƒ(x) − ƒ̄ (x)) ,  = 1, . . . , n . (3.22)

Under the usual smoothness assumption on ƒ(x) (e.g., if ƒ(x) is locally Lipschitz

continuous), the ODE (3.22) with initial condition x0 has a unique solution (for

sufficiently small t) which we denote by x(t;x0). Equation (3.22) has the following

elementary properties.

Lemma 3.1. 1. The simplex Sn is invariant under the replicator dynam-

ics (3.22): if x0 ∈ Sn then x(t;x0) ∈ Sn for all t ∈ R.

2. Every face of the simplex Sn is invariant under the dynamics (3.22).

Proof. 1. Let K = 1 + · · · + n, then we have

dK

dt
= (1 − K)ƒ̄ (x) ,

which has K(t) = 1 as a solution. Thus if x0 = (1(0), . . . , n(0)) ∈ Sn (or

K(0) =
∑n
=1 (0) = 1), then K(t) =

∑n
=1 (t) = 1 for all t.
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2. Note that if (0) = 0, then ̇ = 0 and thus (t) = 0 for all t, so that the faces

of the simplex, and therefore Sn itself, are invariant.

Thus we will restrict Eq. (3.22) to the simplex Sn. In addition, item 2 of Lemma 3.1

means that if a certain strategy is not present in the population, the dynamics will

not introduce it. So the replicator dynamics do not include mutation (generation of

new strategies) but only selection mechanisms (where only the fittest strategies

propagate in the population). If certain strategies are absent from the population

then the population stays on the corresponding face of the simplex.

In the context of a symmetric game, ƒ(x) is linear and corresponds to the expected

fitness (or payoff) for a player using the strategy  against a population state x and

the average fitness ƒ̄ (x) corresponds to the average fitness in the population. Thus

the replicator equation (3.22) becomes

d

dt
=  ((Tx) − x · Tx) (3.23)

for  = 1, . . . , n. Accordingly, the proportion of individuals using strategy  increases

(decreases) if its payoff is bigger (smaller) than the average payoff in the popula-

tion. For a symmetric zero-sum game, x · Tx = 0 and Eq. (3.23) becomes

d

dt
= (Tx) , (3.24)

which is the same as the mean-field ODE in Eq. (3.6) describing the dynamics of n

interacting species.

If a certain strategy is absent at initial times, for example, let us assume that

1(0) = 0, then by Lemma 3.1 the trajectories of the dynamics do not leave the

face of the simplex {x ∈ Sn, 1 = 0}. Let us set x̃ = (2, . . . , n)> and let T̃ the

(n − 1) × (n − 1) matrix obtained from T by deleting its first row and first column.

Then we have
d

dt
= 

�

T̃x̃
�

 ,  = 2, . . . , n , (3.25)

and so the dynamics on the face of the simplex is simply the dynamics for the

reduced game with strategies {2, . . . , n} and payoff matrix T̃.

An equilibrium point of the replicator equation is a population state x∗ ∈ Sn for

which ̇∗ (t) = 0 for all . In particular, all vertices of Sn (i.e., population states in

which only one strategy is present) are equilibrium points. The replicator equa-

tion (3.24) admits a coexistence equilibrium x∗ ∈ Sn+ if there exists a solution (in

Sn+) of the linear equations

(Tx) = 0 ,  = 1, . . . , n . (3.26)
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Similarly all equilibrium points on each face can be obtained by solving a corre-

sponding system of linear equations. Generically, each sub-simplex (and Sn itself)

contains one or no coexistence equilibria (Hofbauer and Sigmund, 1998). Thus, if

a coexistence equilibrium for Eq. (3.24) exists, then it is unique.

It can also be shown that if no coexistence equilibrium exists, then all orbits in Sn+
converge to the boundary, for t → ±∞. In particular, if strategy  is dominated,

then (t) → 0 for t → +∞ (Sigmund, 2011). Conversely, if there exists an or-

bit x(t) bounded away from the boundary of Sn (i.e., such that for some  > 0 the

inequality (t) >  for all t > 0 and all  = 1, . . . , n), then there exists a coexistence

equilibrium in Sn+ (Hofbauer and Sigmund, 1988).

The equilibrium points of the replicator equation (3.24) are closely related to the

NE of the symmetric zero-sum game with payoff matrix T. Recall that a point

x∗ ∈ Sn is a (symmetric) NE if

x · Tx∗ ≤ x∗ · Tx∗ = 0 (3.27)

for all x ∈ Sn, and an evolutionarily stable state if

x∗ · Tx > x · Tx (3.28)

for all x 6= x∗ in a neighborhood of x∗.

The following two theorems relate the NE of the game to the equilibrium points of

Eq. (3.24).

Theorem 3.3 (Hofbauer and Sigmund, 1998, Theorem 7.2.1).

(a) If x∗ ∈ Sn is a NE of the game described by the payoff matrix T, then x∗ is

an equilibrium point of (3.24).

(b) If x∗ is the ω-limit of an orbit x(t) in the interior of Sn, then x∗ is a NE.

(c) If x∗ is a Lyapunov stable equilibrium point, then it is a NE.

Theorem 3.4 (Hofbauer and Sigmund, 1998, Theorem 7.2.4). If x∗ ∈ Sn is an

evolutionarily stable state for the game with payoff matrix T, then it is an asymp-

totically stable equilibrium point of (3.24). In fact, if x∗ ∈ Sn+ is evolutionarily

stable, then it is a globally stable equilibrium point for (3.24)

The above two theorems imply that ecologists can predict the number of coexisting

species by examining NE behaviour of the underlying zero-sum game. Importantly,

the problem of computing the NE for a two-person zero-sum game can be reduced

to solving an appropriately defined linear programming problem (Fisher and Ryan,

1992). In fact, it has been shown that the converse is also true, i.e., every linear
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programming problem can be solved by finding a symmetric NE to a corresponding

zero-sum game (Adler, 2013).

In situations where coexistence of all species is required, the ODE system (3.24)

should admit a coexistence equilibrium point which is stable. In such a case, it is

convenient to consider competition tournaments for which the corresponding zero-

sum game is completely mixed. In a completely mixed game, the symmetric NE

is unique and lies in Sn+ . It has already been shown that all symmetric, two-person

zero-sum games with an even number of pure strategies are never completely

mixed, which implies that the coexistence of an even number of species is not

possible Allesina and Levine (2011). Kaplansky (1945) provided the necessary and

sufficient conditions for the game to be completely mixed, i.e., a symmetric, two-

person zero-sum game is completely mixed if its payoff matrix T has rank n − 1
and all its cofactors are different from zero and have the same sign. Furthermore,

for games whose payoff matrices are of order 3 or 5, he went ahead to provide

specific conditions for the game to be completely mixed. For instance, for n = 3,

the game with pay-off matrix

T =







0 c −b
−c 0 

b − 0







is completely mixed if and only if , b, c are different from zero and have the same

sign. The unique symmetric NE is then given by (/(+ b+ c), b/(+ b+ c), c/(+
b + c)). For n = 5, the symmetric game is completely mixed if and only if the five

expressions
T25T34 − T35T24 + T45T23
−T15T34 + T35T14 − T45T13
T15T24 − T25T14 + T45T12
−T15T23 + T25T13 − T35T12
T14T23 − T24T13 + T34T12

have the same sign and the unique NE is then proportional to them. These condi-

tions were later extended to odd-ordered skew-symmetric payoff matrices Kaplan-

sky (1995).

3.4 Chemical reaction network theory

3.4.1 Introduction

Chemical reaction network theory (CRNT) has been developed over the last 50

years to study the dynamical evolution of the concentrations of the chemical
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species involved in a known set of reactions (Feinberg, 1987). A primary aim of the

theory is to make assertions about connections between the qualitative dynamics

of a kinetic system and properties of its underlying reaction network. If the graph

underlying the kinetic system in a given reaction network has some special prop-

erties, then the associated dynamical system is known (or conjectured) to have

certain dynamical properties. Questions regarding the existence of positive equi-

libria, their stability, and the nonextinction, or persistence, of species which are

the constituents of the system can be answered even without knowledge of the

exact values of key system parameters, called rate constants, which are usually

difficult to find experimentally, and, hence, are often times unknown.

For example, if the underlying reaction network is reversible (i.e., for every edge,

there is an edge in the reverse direction), then the kinetic (mass-action) system ad-

mits a positive equilibrium point in each positive stoichiometric compatibility class

(invariant set) for any choice of positive rate constants (Boros, 2019). In addition,

if the rate constants satisfy some algebraic constraints such as the Wegscheider

conditions (Wegscheider, 1902), the mass-action system is in a state of thermo-

dynamic equilibrium, where the rate of any forward reaction is balanced by the

rate of the reverse reaction. Such a system, said to be detailed-balanced, enjoys

remarkable dynamical properties, like the existence of a globally defined Lyapunov

function, and uniqueness of a positive equilibrium point in each positive stoichio-

metric compatibility class (Schaft et al., 2013).

In this section, we introduce the necessary mathematical concepts, results and

notation from the CRNT that will be useful in the analysis of some of the ecological

models discussed in this thesis.

3.4.2 Chemical reaction networks

Chemical reaction networks provide an efficient way to model mechanisms of local

interactions in disciplines ranging from chemistry, biochemistry, epidemiology to

population dynamics. In these systems, entities interact to form other entities as

prescribed by a directed graph, the reaction network.

In ecology, a number of models enjoy compact representations in the form of

chemical reactions. Examples of these include, the classic Lotka–Volterra predator-

prey model
d1

dt
= α1 − β12

d2

dt
= −γ2 + κ12

(3.29)
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from a hypothetical chemical reaction network

X1
α−→ 2X1

X1 + X2
β
−→ (1 + δ)X2

X2
γ
−→ ∅

(3.30)

with κ = βδ. We can easily interpret these reactions as, respectively: the birth

of new prey from a prey, a predator consuming a prey and giving birth to δ new

predators, and a predator dying.

Here, we introduce the mathematical concepts and notation relevant for the study

of chemical reaction networks.

Roughly, a chemical reaction network (CRN) is a finite set of chemical reactions of

the form

Rj :
n
∑

=1

αjX
k+
j
−*)−
k−j

n
∑

=1

βjX , j = 1, . . . , r (3.31)

where S = {X1, . . . , Xn} is called the set of chemical species, R = {R1, . . . ,Rr} is

called the reaction set. The nonnegative integers αj and βj are called the sto-

ichiometric coefficients. They control the number of individual molecules which

are either consumed by, or produced as a result of, each individual reaction. Fi-

nally, the constants k+j > 0 and k−j ≥ 0 are the reaction rate constants. Note that

if k−j = 0, then reaction Rj only happens in the forward direction and is thus not

reversible.

The species on the left-hand and right-hand side are usually referred to as the

reactants/substrates and, the products of reaction Rj, respectively. If a reaction

happens spontaneously (no reactants) or when there are physical inflows in the

system, then ∅ may appear at the left-hand side of (3.31). Similarly, if some

reactants are degraded into something whose concentration is unimportant, or if

there are physical outflows to the system, then ∅ may appear at the right-hand

side of (3.31).

The stoichiometric coefficients of a CRN are often represented in a more com-

pact form called the stoichiometric matrix, denoted by S. Matrix S is organized

such that every column corresponds to a reaction and every row corresponds to a

chemical species. Thus it is an n × r matrix given by

S =
�

γj
�

where γj = βj − αj (3.32)

for  = 1, . . . , n and j = 1, . . . , r

It is more common within chemical reaction network literature to index the re-

actions by the net terms on the left-hand or right-hand side of a reaction, which

are called complexes. This eliminates redundancies so that, if a stoichiometrically
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equivalent complex appears multiply in the network (3.31), it is only indexed once.

Consequently we associate to network (3.31) a set of complexes: C = {C1, . . . ,Cm},

the union of all distinct left-hand or right-hand sides of the reactions in the net-

work. Thus each C represents a distinct non-negative integer linear combination

of species corresponding to products or reactants of the reactions in (3.31), specif-

ically
∑n
j=1 αjXj or

∑n
j=1 βjXj. It is typically assumed that: (a) every species in S

appears in at least one complex in C; (b) every complex in C appears in at least

one reaction in R; and (c) there are no self reactions (i.e., C −*)− C). Thus a CRN is

a triplet N = (S,C,R) of the three nonempty finite sets.

Viewing CRNs as interactions between distinct complexes naturally gives rise to

their interpretation as directed graphs G(V, E) where the vertices are the com-

plexes (i.e., V = C) and the edges are the reactions (i.e., E = R). In the literature

this graph has been termed the complex graph of the network (Rao et al., 2012).

Connectivity concepts from graph theory also apply to the complex graph of a

CRN. If there is a path between two vertices C and Cj, then they are said to be

connected. If there is a directed path from vertex C to vertex Cj and vice versa,

then they are said to be strongly connected. If any two vertices of a subgraph are

(strongly) connected, then the subgraph is said to be a (strongly) connected com-

ponent. The connected components are precisely the linkage classes, whereas the

strongly connected components are the strong linkage classes of a CRN.

A CRN is called reversible if every reaction in the network is reversible. It is said to

be weakly reversible if the existence of a path from C to Cj implies the existence

of a path from Cj to C.

For example, consider the chemical reaction network

N : C1 → C2 −*)− C3 C4 −*)− C5 (3.33)

There are two linkage classes: L1 = {C1,C2,C3} and L2 = {C4,C5}. It is not hard to

see that the linkage classes completely partition the complex set C of a CRN. For

example, we have L1 ∩L2 = ∅ and L1 ∪L2 = C in (3.33).

3.4.3 Mass-action systems

In the mean-field ODE models of Section 3.3.1 the default rule for describing the

dynamics of two interacting species is the law of mass-action. The law of mass-

action is a powerful concept that describes the average behavior of a system that

consists of many interacting parts, such as molecules, that react with each other,

or interacting populations. The law originates in the theory and practice of chem-

ical reaction kinetics and states that the rate at which molecules of type A and B

collide (i.e., the number of collisions per unit volume per unit of time) in a well-

stirred reaction vessel, is proportional to the product of the concentrations of A
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and B. Translated into individuals of species 1 and species 2 making pairwise

contacts in a homogeneously mixing population, the assumption reads that the

number of contacts per unit area per unit of time is proportional to the product

of the density of species 1 and the density of species 2. Its use in ecology began

with the pioneering work of Alfred Lotka (Lotka, 1925) who used it to justify the

encounter term in his predator-prey ODE model. Since then, the law has become

ubiquitous in mathematical ecology for modelling the interactions between indi-

viduals of different groups. The use of the law is appealing since it permits the

use of powerful results from CRNT. Moreover, the simplicity of the interaction term

widens the possibilities to analytically study the behaviour of the resulting systems

of differential equations.

In order to model how the concentrations of the chemical species evolve over time,

we assume that the reaction vessel is spatially homogeneous (well-stirred solution)

and that the reacting species are in sufficient quantity to be modelled as chem-

ical concentrations. We furthermore assume that the system obeys mass-action

kinetics, so that the rate of each reaction is proportional to the product of concen-

trations of the reactant species each raised to a power equal to the corresponding

stoichiometric coefficient. For example, consider the chemical reaction

X1 + X2
kƒ
−*)−
kr
X3 .

By the law of mass-action, the rate of reaction in the forward direction is given by

ƒ = kƒ12, while the rate of reaction in the reverse direction is r = kr3. The

net reaction rate  is thus given by  = ƒ − r = kƒ12 − kr3. Now consider the

chemical reaction

2X1 + 3X2
kƒ
−*)−
kr
4X3 .

This can alternatively be written as

X1 + X1 + X2 + X2 + X2
kƒ
−*)−
kr
X3 + X3 + X3 + X3 .

Again applying the law of mass-action, the rate of reaction in the forward direction

is given by

ƒ = kƒ1 · 1 · 2 · 2 · 2 = kƒ21
3
2
,

while the rate of reaction in the reverse direction is

r = kr3 · 3 · 3 · 3 = kr43 ,

and the net reaction rate is given by  = kƒ21
3
2 − kr

4
3
.
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Thus, for reaction Rj in (3.31), by the law of mass-action,

rate of forward reaction, forward
j

= k+
j

n
∏

=1


αj
 and

rate of backward reaction, backward
j

= k−j

n
∏

j=1


βj
j

(3.34)

Therefore the net reaction rate  in the presence of both forward and backward

reactions is

(x) = forward


− backward


= k+


n
∏

j=1


αj
j − k

−


n
∏

j=1


βj
j , (3.35)

where x ∈ Rn is the vector of concentrations of chemical species and  = 1,2, . . . , r.
Then the mass-action rate for the complete reaction set is given by the vector

v(x) =
�

1(x) · · · r(x)
�>

. (3.36)

We can now write the ODE system governing the dynamics of a CRN under mass-

action kinetics as
dx

dt
= Sv(x) (3.37)

where S is the n × r stoichiometric matrix.

In order to most clearly emphasize the connection between the reaction graph of a

chemical reaction network and the behaviour of solutions under mass-action kinet-

ics, it is common to reformulate the dynamical representation (3.37) by splitting

the stoichiometric matrix S into forms which emphasize the connections between

stoichiometrically distinct complexes.

Note from graph theory that the complex graph can also be characterized by its

m × r incidence matrix B = (bj) defined as follows:

bj =















−1 if C is the reactant complex of reaction Rj

1 if C is the product complex of reaction Rj

0 otherwise

.

Since each of the m complexes is a combination of the n chemical species, we

can define an n × m matrix Z = (zj) where zj is the stoichiometric coefficient of

species X in the complex Cj. Thus the kth column of Z represents the stoichiomet-

ric coefficients of the chemical species in the complex Ck. The matrix Z is called

the complex stoichiometric matrix (Rao et al., 2012). Notice that every column

of S is the difference of two columns of Z. It can be easily verified that

S = ZB . (3.38)
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Hence the dynamical system (3.37) for the evolution of the species concentrations

can also be written as
dx

dt
= ZBv(x) (3.39)

For some purposes, description (3.37) is useful, but for others (3.39) is.

3.4.4 Detailed balancing for mass-action systems

The nonlinearity in the mass-action system (3.37) or (3.39) makes it very difficult,

if not impossible, to create general mathematical criteria about qualitative prop-

erties of such systems, like existence of positive equilibria, stability properties of

equilibria, or persistence (non-extinction) of variables. However, CRNT provides

a framework that answers this type of questions for mass-action systems. The

theory introduces new concepts such as the deficiency of a reaction network, and

gives conditions on such networks for the existence, uniqueness and stability of

equilibrium points. These conclusions sometimes hold independent of the precise

values of the system parameters (rate constants) which are usually difficult to find

experimentally, and, hence, are often times unknown in practical applications.

Mass-action systems give rise to very diverse dynamics. For example, weakly

reversible deficiency zero mass-action systems have a unique, positive and lo-

cally asymptotically stable equilibrium (within the same stoichiometric compat-

ibility class or invariant set) (Feinberg, 1987). Yet there are other mass-action

systems that have periodic orbits or limit cycles, and others that admit multiple

positive equilibria within the same stoichiometric compatibility class. Here, we

focus on one important characterization of equilibrium points of mass-action sys-

tems which have proven useful in the literature: detailed-balanced equilibrium

concentrations.

We begin with some definitions.

Definition 3.6. A vector of concentrations x∗ ∈ Rn+ is called an equilibrium of the

dynamical system (3.37) if

Sv(x∗) = 0 . (3.40)

Definition 3.7. For a reversible CRN, an equilibrium x∗ ∈ Rn+ of (3.37) is called

detailed balanced if

(x∗) = 0 , for  = 1,2, . . . , r . (3.41)

That is, for every reversible reaction, the forward and backward rates are equal. An

equilibrium that is detailed balanced is also called a thermodynamic equilibrium.

It has been shown that for mass-action systems, if one positive equilibrium point of

the deterministic model is detailed balanced, then every positive equilibrium point

is detailed balanced (Feinberg, 1989). Thus, we have the following definition.
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Definition 3.8. A mass-action system is said to be detailed balanced if the net-

work is reversible and there exists a positive equilibrium point which is detailed

balanced.

Detailed balanced equilibria have particularly nice properties in the context of

mass-action systems. For example, It has been shown that if a mass-action sys-

tem is detailed balanced then there exists a unique positive equilibrium in each

stoichiometric compatibility class, and this equilibrium is detailed-balanced. More-

over, such an equilibrium is locally asymptotically stable in its stoichiometric com-

patibility class due to the existence of a strict Lyapunov function (Schaft et al.,

2013).

3.4.5 Wegscheider’s conditions

In a reversible CRN, the principle of detailed-balance requires that, at equilibrium,

the net reaction rate for each reaction is zero. This implies that, for a given

equilibrium, detailed-balance results in a system of linear algebraic conditions

on the reaction rate constants. On the contrary, if we assume the existence of

an a priori unknown equilibrium point with the detailed-balance property, then a

system of nonlinear conditions on rate constants appear (Gorban and Yablonsky,

2011). These conditions are known now as the Wegscheider conditions named

after Rudolf Wegscheider (1901) who introduced the principle of detailed-balance

in the field of chemical kinetics.

For example, consider the reversible CRN in Fig. 3.3. An equilibrium is said to

X2

k −
5

k +
5

X1 + X3

2X1
k+1

k−1

X1 + X2
k+2

k−2

2X2

X4 + X5
k+3

k−3
k
−
4

k
+
4

Figure 3.3: Example of a reversible CRN with 5 chemical species ({X1, . . . , X5}), 6 complexes ({C1 =
2X1,C2 = X1 + X2,C3 = 2X2,C4 = X1 + X3,C5 = X4 + X5,C6 = X2}) and 5 reversible reactions (edges of the
network)

be detailed-balanced if at the equilibrium concentration, the net reaction rate for

each reversible reaction is zero. Thus, if ∗ denotes the equilibrium concentration

of species X,  = 1, . . . ,5, then the full set of conditions, arising from the five

reactions, required for the mass-action equilibrium to be detailed balanced is given
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as:
k+
1
∗
1
2 = k−

1
∗
1
∗
2

k+
2
∗
1
∗
2
= k−

2
∗
2
2

k+
3
∗
1
∗
3
= k−

3
∗
4
∗
5

k+
4
∗
4
∗
5
= k−

4
∗
2

k+
5
∗
2
= k−

5
∗
1
∗
3
.

(3.42)

Assuming that a detailed-balance equilibrium exists for this network, the set of

conditions (3.42) can be simultaneously satisfied only if the reaction rate constants

are appropriately constrained. Some algebraic manipulation of (3.42) allows us to

identify the required constraints as follows

k+1

k−1
=
k+2

k−2

k+
3
k+
4
k+
5
= k−

3
k−
4
k−
5
.

(3.43)

(3.44)

Note that the second constraint (3.44) does not require precise knowledge of the

constituent species in the complexes C4,C5 and C6, but only the fact that the three

complexes form a cycle. On the other hand, the first constraint cannot be obtained

without knowledge of the constituent species in the complexes C1,C2 and C3. The

set of constraints on the rate constants, such as the ones in (3.43 and 3.44) is not

only necessary but also sufficient in the sense that if the constraints are satisfied

for a reversible CRN with mass-action kinetics, then every equilibrium of the CRN is

detailed-balanced (Feinberg, 1989). Thus we say that a CRN is detailed-balanced

when its equilibria are detailed-balanced, or equivalently, when the rate constants

satisfy the appropriate constraints, known as the Wegscheider’s conditions.

3.5 Spatial models

3.5.1 Introduction

Spatial heterogeneity, i.e., differences between populations and individuals at dif-

ferent geographical locations, is one of the most obvious features of the natural

world. Spatial structure and dynamics determine the way the interactions among

species living within a given habitat are interconnected (Gibert and Yeakel, 2019)

to form the complex networks that characterize ecological communities. In addi-

tion, heterogeneities in the spatial landscape have been shown to have profound

effects on the dynamics of populations and the structure of communities (Kareiva

et al., 1990; Cantrell and Cosner, 2003). For example, early theoretical studies

on the cyclic competition among three species were based on the Lotka–Volterra
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ODE system, which ignores spatial effects and predicts a solution of unstable pe-

riodic dynamics that leads to the extinction of two of the species after a short

transient (May and Leonard, 1975; Berr et al., 2009). However, numerous theoret-

ical models have shown that the three competing species can coexist indefinitely if

ecological processes such as dispersal, migration and the cyclic competitive inter-

actions occur over small spatial scales (Kerr et al., 2002; Durrett and Levin, 1998).

Space therefore plays a central role in mediating ecological dynamics and the use

of spatial models in ecology has grown enormously over the last two decades.

There are many ways in which space and the organisms inhabiting it can be repre-

sented in models. However, the most fundamental distinction between the differ-

ent models is the way in which the spatial dimension is represented. Some models

treat space explicitly, giving some sort of description at each spatial location at any

given time, or implicitly, incorporating parameters that vary with spatial scale or

following only the percent cover of different species across the landscape (Cantrell

and Cosner, 2003; Sommer and Worm, 2002; White et al., 2018). Among the mod-

els that treat space explicitly, some treat space as a continuum, while others treat

space as a discrete collection of patches (metapopulation). The continuum mod-

els take the form of partial differential equations (PDEs), or specifically reaction-

diffusion (RD) equations while metapopulation models usually consist of a system

of ODEs that describe movement of individuals between discrete spatial patches.

3.5.2 Reaction-diffusion equations

RD equations arise as models for the densities of organisms that disperse through

space by random walks and that interact with each other and their surroundings

in ways that affect their local densities. These models are in themselves deter-

ministic, but they can be derived as limits of stochastic processes under suitable

scaling. Specifically, they provide a modelling approach that allows us to translate

assumptions about stochastic local movement into deterministic descriptions of

global densities.

RD models are spatially explicit, describe population densities and treat space

and time as continuous. These features distinguish them from other principal ap-

proaches that have been used in studies of spatially structured populations such

as metapopulation patch models and individual-based cellular automata models.

These equations have been used to describe a number of relevant ecological phe-

nomena that include travelling wavefronts corresponding to biological invasions;

critical patch size problems which study the minimum habitat size necessary for

a population to persist and the formation of spatial patterns in ecology (Cosner,

2008). In a RD equation, ‘reaction’ refers to the mathematical description of local

population growth, and ‘diffusion’ refers to the mathematical description of disper-

sal or migration. We now describe how reaction-diffusion models are derived.
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3.5.2.1 Reaction

In the context of ecological models, the reaction terms in RD equations are typi-

cally the same as those that are used in nonspatial models for interacting popula-

tions that are based on ODEs, i.e.,

d

dt
= ƒ(1, . . . , n) , (3.45)

where, as before, ƒ(1, . . . , n) has the form ƒ(1, . . . , n) = g(1, . . . , n). In

the case of a single species with population density (t), common choices for ƒ ()
are ƒ () = r (exponential growth) or ƒ () = r(1 − /K) (logistic growth). For

multispecies systems, typical reaction terms include those from the classic Lotka–

Volterra equations and from the classical replicator dynamics of evolutionary game

theory.

3.5.2.2 Diffusion and random walks

Diffusion is a phenomenon by which matter, particle groups, population, etc.,

spread out within a given space according to individual random walks (Okubo and

Levin, 2001). The diffusive description of random motion emerges as a continuum

limit of such random walks when the length Δ of each space step and the time Δt

required for each time step go to zero in such a way that the ratio (Δ)2/Δt remains

constant. To understand how this works it is useful to consider a simple example

in a one-dimensional spatial domain.

Suppose that an individual moves along a line by moving a distance Δ to the

left with probability 1/2 or a distance Δ to the right with probability 1/2 at each

time step Δt. Let P(, t) denote the probability that the individual is at location 

at time t, or equivalently, the fraction of a population of individuals that are at 

at time t. The probability P(, t + Δt) that the individual is at location  at time

t + Δt can be computed by observing that to arrive at that point at that time the

individual must have been either one step to the left at time t and then moved to

the right, or one step to the right and have moved to the left. Thus, we have

P(, t + Δt) =
1

2
P( + Δ, t) +

1

2
P( − Δ, t) . (3.46)

If we subtract P(, t) from both sides and divide by Δt we obtain

P(, t + Δt) − P(, t)

Δt
=

1

2Δt
[P( + Δ, t) − 2P(, t) + P( − Δ, t)] . (3.47)
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Suppose that we now impose the diffusive scaling

2D =
(Δ)2

Δt
. (3.48)

Then Eq. (3.47) becomes

P(, t + Δt) − P(, t)

Δt
= D

P( + Δ, t) − 2P(, t) + P( − Δ, t)

(Δ)2
. (3.49)

The expression on the left is a difference quotient in t; the expression on the right

is a second order difference in . Thus taking the limit of Eq. (3.49) as Δt, Δ→ 0

while (3.48) remains valid yields

∂P

∂t
= D

∂2P

∂2
. (3.50)

This is the diffusion equation for the density P(, t), which is the diffusion part of

typical reaction-diffusion models. Mathematically this equation is identical to the

heat equation. The relation given in Eq. (3.48) suggests that D can be viewed as

being half of the square of the distance that is moved by an individual in unit time

by symmetric random movements to the left or right. This interpretation of the

diffusion coefficient D is valid in any number of spatial dimensions.

A completely different approach to deriving Eq. (3.50) is based on Fick’s law and

the notion of flux. This states that the flux, J, of material, which can be cells,

amount of chemical, number of animals and so on, is proportional to the gradient

of the concentration of the material. That is, in a one-dimensional spatial domain,

J ∝ −
∂P

∂
⇒ J = −D

∂P

∂
, (3.51)

where P(, t) is the concentration of species and D is the diffusion coefficient. The

minus sign simply indicates that diffusion transports matter from a high to a low

concentration.

We now write a general conservation equation which says that the rate of change

of the amount of material in a region is equal to the rate of flow across the bound-

ary plus any that is created within the boundary. If the region is 1 <  < 2 and

no material is created,

∂

∂t

∫ 2

1

P(, t) d = J(1, t) − J(2, t) . (3.52)
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Assuming that P and J have continuous first order partial derivatives, we have

∫ 2

1

∂P(, t)

∂t
d = −

∫ 2

1

∂J(, t)

∂
d . (3.53)

Thus
∫ 2

1

�

∂P(, t)

∂t
+
∂J(, t)

∂

�

d = 0 . (3.54)

Since this is true for any choice of 1 and 2, it follows that

∂P(, t)

∂t
= −

∂J(, t)

∂
. (3.55)

Using Eq. (3.51), we get the classical diffusion equation in a one-dimensional spa-

tial domain, namely
∂P

∂t
=

∂

∂

�

D
∂P

∂

�

, (3.56)

which, if D is constant reduces to Eq. (3.50).

In higher spatial dimensions, Eq. (3.50) becomes

∂P

∂t
= D∇2P = D

�

∂2P

∂2
+
∂2P

∂y2
+
∂2P

∂z2

�

, (3.57)

where ∇2 is the Laplacian. The coefficient D in Eq. (3.57) still represents half

of the mean square distance travelled by an individual in unit time in all space

dimensions. The single species diffusion equation given in (3.50) can be extended

to multispecies system. In this case P denotes the vector of species densities, P =
(P1, . . . , Pn)> and D = diag(D1, . . . , Dn) is a diagonal matrix with constant diffusion

coefficients D ≥ 0 for all .

3.5.2.3 Boundary conditions

For models involving diffusion in a region Ω ⊂ Rn, n = 1,2,3, with boundary ∂Ω, it

is necessary to specify what happens at the boundary. In the context of ecologi-

cal models, habitat boundaries can be created by physical features such as rivers,

roads or (for aquatic systems) shorelines, but they can also arise from interfaces

between different types of ecological communities such as forests and grasslands.

These boundaries can influence population dynamics in various ways. For exam-

ple, they can act as a barrier to movement of some species or act as a source

of mortality for others. Typical boundary conditions involve specifying the flux of

individuals across the boundary, the density at the boundary or a relation between
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those. If the density is specified, we have a Dirichlet boundary condition

P(, t)|∂Ω = h() , (3.58)

where h is a known function defined on the boundary ∂Ω. If the flux is specified,

we have a Neumann boundary condition

∂P

∂n

�

�

�

�

∂Ω
= h() , (3.59)

where n is the outward pointing unit normal vector on ∂Ω and ∂P/∂n is the direc-

tional derivative of P in the direction of n. If both the flux across the boundary and

the density at the boundary are specified, we have a Robin boundary condition

�

P + b
∂P

∂n

��

�

�

�

∂Ω
= h() (3.60)

for some nonzero constants  and b.

In many ecological models, homogeneous boundary conditions, in which h() = 0,

are often used. Here, the Dirichlet condition P(, t) = 0 corresponds to what is

termed as a lethal (or hostile) boundary because it can be interpreted to mean that

all individuals who encounter ∂Ω die. The no-flux boundary condition ∂P/∂n = 0
corresponds to a situation where individuals encountering ∂Ω are always “re-

flected” back into Ω so that no individual crosses the boundary of the habitat.

The Robin condition P + b ∂P
∂n = 0, with 0 ≤  ≤ 1 and  + b = 1, can be inter-

preted to mean that when individuals reach the boundary ∂Ω, a fraction  of those

individuals die while the rest are reflected back into Ω.

3.5.2.4 The reaction-diffusion model

Once we have specified a habitat Ω, the dispersal properties and local population

dynamics of species inhabiting Ω and the behaviour (or fate) of individuals encoun-

tering the boundary ∂Ω of Ω, we can assemble a complete RD model. Since most

of the ODE models considered involve Lotka–Volterra interaction terms, or other

smooth interaction terms, the traditional way to obtain a reaction-diffusion model

would be to simply add diffusion to the mean-field ODE model system. This leads

to the RD system that takes the form

∂

∂t
= D∇2 + ƒ() , (, t) ∈ Ω × R+ , (3.61a)

where  = (1, . . . , n)> and  = (, t) is the proportion (relative abundance) of

species  at location  at time t. However, if the ODE is governed by the replica-

tor dynamics (3.24), just adding the diffusion term involving the Laplacian to the
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ODE does not work because of the fact that there is an additional condition that
∑n
=1  = 1. This only works in the case when all the diffusion coefficients D are

identical. To complete the model formulation we need to specify initial conditions,

(,0) = () , (3.61b)

and boundary conditions

α
∂

∂n
+ (1 − α) = 0 , (, t) ∈ ∂Ω × R+ , (3.61c)

where 0 ≤ α ≤ 1. Thus α = 1 corresponds to the zero-flux Neumann boundary

conditions while α = 0 corresponds to the homogeneous Dirichlet boundary con-

ditions.

Examples of RD models in ecology include:

• the equation for the logistic growth of a single population distributed along a

single environmental axis , and subject to random dispersal,

̇ = D∇2 + r (1 − /K) , (3.62)

where the dot represents the partial derivative with respect to time t;

• the predator-prey model (Garvie, 2007),

̇ = ∇2 + (1 − ) − h() ,

̇ = δ∇2 + bh() − c ,
(3.63)

where (, t) and (, t) are the population densities of prey and predators

at time t and position , and the parameters , b, c and δ are strictly posi-

tive. The functional response h(·) is assumed to be a C2 function (i.e., h is

continuous and has continuous first and second derivatives) that represents

the prey consumption rate per predator;

• the three-species intransitive (cyclic) competition model obtained from the

RPS mean-field ODE model (3.5) of Frean and Abraham (2001) by assuming

that the competing populations are spatially distributed on a line:

̇1 = ∇21 + 1(α12 − α33) ,

̇2 = ∇22 + 2(α23 − α11) ,

̇3 = ∇23 + 3(α31 − α22) ,

(3.64)

where 1, 2 and 3 are the (non-negative) proportions of the three compet-

ing populations, and the parameters α denote the invasion rates. That is, an
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individual of species 1 can invade another from species 2 with probability α1,

an individual from species 2 invades another from species 3 with probabil-

ity α2, whereas an individual from species 3 invades one from species 1 with

probability α3. All other invasion probabilities are set to zero.

In most of the cases, it is assumed that the above RD equations are defined on

a bounded domain (habitat), Ω, and are augmented with appropriate initial con-

ditions and the no-flux boundary conditions which reflect the assumption that the

individual species cannot leave the domain.

Because the reaction terms in typical RD models are usually nonlinear, the RD sys-

tem is called nonlinear (or semilinear). In general, the nonlinearity makes it hard,

if not impossible, to solve the RD system analytically, which is also the case with

many nonlinear systems of ODEs. Thus numerical methods have an important

part to play in investigating the behavior of solutions of the RD system. On the

other hand, standard results from the general theory of nonlinear PDEs (see Logan

(2008); Cantrell and Cosner (2003)) can be used to show that a given RD model is

well-posed, i.e., a solution exists, the solution is unique and the solution’s behavior

changes continuously with the initial conditions. For example, in the single-species

case, if the function ƒ and the boundary ∂Ω of Ω are smooth and the initial condition

() is continuous on both the interior and boundary of Ω, then Eq. (3.61) will be

well-posed in the sense that it will have a unique solution 1(, t) on Ω× [0, T] for

some T > 0 with 1(, t) depending continuously on (). Such standard results

are, however, not trivial to prove.

Due to the unavailability of analytical solutions of Eq. (3.61)), attempts have been

made to look for numerical solutions to reveal more dynamical behaviors of the

RD system. Typically, finite-difference methods are used to approximate the equa-

tion in space, equipped with some time integration method. These numerical

methods can also be used to get the density values of species at each point of

space in every instant of time. A major issue that arises in the use of these meth-

ods is numerical stability. Numerical stability concerns how errors introduced dur-

ing the execution of an algorithm propagate through the method. It is a property

of the numerical method rather than of the problem being solved. In a stable

method, any numerical errors (e.g., round-off, truncation, discretization), intro-

duced at some stage of the computation do not get amplified as the computation

proceeds. Obviously this is very important, since errors are impossible to avoid in

any numerical calculation. If errors are amplified, pretty soon they will dominate

any computation (making it useless). Ensuring numerical stability usually boils

down to certain constraints on the time step. For example, for classical explicit

methods, the time step is restricted by the famous Courant–Friedrichs–Lewy (CFL)

condition to ensure stability. For example, for the one-dimensional heat equation

t = c, where c > 0, the CFL condition for the stability of the explicit forward

Euler scheme is Δt ≤ Δ2/2c. Implicit schemes, on the other hand, allow for a
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larger time step, but require more computations. In an unconditionally stable

method, there is no restriction on the time step for obtaining a numerical solu-

tion. In the single species case (scalar form of Eq. (3.61)), existing unconditionally

stable methods are all implicit methods. However, as we shall show later, these

methods have conditional numerical stability conditions in the multispecies (higher

dimensional) case.

3.5.3 Metapopulation models

Metapopulation theory constitutes a useful framework for explicitly incorporating

spatial effects in models for population dynamics in ecology. Whereas classical

population models treat local populations as closed systems (no immigration or

emigration), this assumption is probably not valid for many species. Movement of

individuals among populations is common and can have profound effects on the

dynamics of local populations.

Metapopulation models describe an open system in which extinction and persis-

tence of local populations depend on the movement of individuals among a set

of habitat patches. Many species often inhabit discrete areas of the landscape

(ponds, woodlands in agricultural landscapes, and so on) where demographic pro-

cesses occur within patches, and dispersal occurs between them. The movement

of organisms between patches leads to local differences in colonization and extinc-

tion rates, which can influence the spatial distribution of a species over time (Gib-

ert and Yeakel, 2019; Hanski and Gilpin, 1997).

Levins (1969), modelling the dynamics of insect pests across a region within which

local populations fluctuate asynchronously, coined the term metapopulation to de-

scribe a population comprising many subpopulations, living in spatially discrete

habitats (patches) connected to each other through dispersal or migration (Han-

ski, 1998).

Levins’ original theoretical model incorporated a series of identical habitat patches

that are classified as either occupied by subpopulations of individuals or empty at

any point in time. The model is a differential equation that specifies how patches

become occupied or vacant through time and predicts the percentage of habitat

patches that would hold populations at equilibrium. There are two key parameters:

the local extinction rate and the migration rate of individuals to other patches. If p

denotes the proportion of occupied patches at any time t, the equation for the

model is,
dp

dt
=mp(1 − p) − ep , (3.65)

where m is the migration rate (the probability that migrants from any given sub-

population reach another site), and e is the rate at which local populations (in a
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single patch) go extinct. The model is analyzed to give the number (proportion) of

occupied patches at equilibrium.

If the colonization rate is larger than the extinction rate, m> e, then Eq. (3.65) ad-

mits a unique equilibrium fraction p∗ of occupied patches given by p∗ = 1 − e/m
which is globally stable (Amarasekare, 1998). Global stability means that the frac-

tion of occupied patches eventually approaches its equilibrium value p∗ for all

possible initial conditions (except p = 0), and returns to this equilibrium after any

size perturbation away from equilibrium (except one that gives p = 0). The im-

portant and intriguing conclusion from the Levins model is that the persistence

of the entire metapopulation is guaranteed as long as individuals can success-

fully disperse from one patch to another and this migration rate exceeds the local

extinction rate.

Note that the simple Levins model describes the state of the population by a scalar

variable, namely the fraction of occupied habitat patches. But in doing so the

model ignores two important forms of population structure. One structure that

is ignored is the distribution of local population sizes, as only the presence or

absence of the species in the habitat patches are modelled. This is why the original

Levins model and its derivatives have also been called patch-occupancy models

or extinction-colonization models or presence-absence models (Fahrig, 2007).

The second structure missing from the Levins model is the spatial configuration of

the landscape, as the model assumes an infinitely large network of discrete habitat

patches of equal size and equal connectivity.

Not surprisingly, the simplicity of the Levins model has attracted criticism because

of its lack of biological realism (Harrison and Taylor, 1997). However, interest in

his conclusion about persistence has led to a number of models of metapopulation

dynamics with increasing sophistication. For example, Hanski and Ovaskainen

(2000) extended Levins’ formulation to realistic landscapes in which the habitat

patches may differ from each other, e.g., in terms of their size, quality and con-

nectivity to the remaining network. Metz and Diekmann (1986) formulated and

solved a model incorporating explicit local population sizes. Other models have in-

corporated several realistic biological processes, such as the rescue effect (Hanski,

1983) (where occupied patches on the brink of extinction are rescued by immigra-

tion of individuals into the patch (Brown and Kodric-Brown, 1977)), patch prefer-

ence effect (Etienne, 2000) (where dispersers have a preference for either occu-

pied or empty patches), Allee effect (Amarasekare, 1998) (where the per capita

growth rate of populations at low densities increases with an increase in density),

and multispecies competition (Levin, 1974; Tilman, 1994).
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3.5.4 ODEs vs PDEs in modelling spatial dynamics

We have seen in the previous section that ODEs can still be used to study spatial

effects on the dynamics of an ecological community especially if the community is

considered as a collection of discrete well-mixed habitat patches that interact only

via dispersal of individuals. As long as the factors driving inter-patch migrations

can be reasonably modelled mathematically, ODEs remain a viable and relatively

simple option for characterizing spatially structured systems.

However, in some settings, the particular geometry of a habitat patch, its size and

the permeability of its edges (or boundaries) are potentially important in dictating

system behavior. For example, in marine communities, it has been suggested that

changes in the ratio of perimeter length to area, and patch shape, might affect

the number of species able to inhabit a patch (Koivisto et al., 2011). ODEs provide

an insufficient description when continuous aspects of geometry are important or

the well-mixed assumption is obviously at odds with the nature of the ecological

system at hand (Daun et al., 2008). In such a case, PDEs (or RD equations) provide

an appropriate framework to model such systems.

PDEs have also been used to lend insight into numerous fundamental population

processes including dispersal, ecological invasions, the effect of habitat geome-

try and size, dispersal-mediated coexistence, and the emergence of spatial pat-

terns (Holmes et al., 1994). As with ODEs, formal mathematical theory has been

developed for many types of PDEs, unfortunately this theory is more complicated,

and often farther removed from insights about the dynamic structure of the un-

derlying system than is the theory for ODEs (Daun et al., 2008). Many of the PDEs

relevant to detailed ecological modelling are too complex for analytical treatment

and therefore the output that can be feasibly obtained from such models is limited

to numerical simulations. However, their computations are more demanding, with

simulations often requiring a larger computing platform than personal computers.

Mathematical theory may be useful in selecting appropriate numerical simulation

methods and may facilitate accuracy and efficiency of simulations, even when this

theory cannot give any direct information about possible model behavior.

PDEs and ODEs are often complimentary modelling tools and may coexist in analy-

sis of the same system, especially when one is attempting to include several scales

of description. Due to the difficulty in solving a PDE, there are instances when the

large time behavior of solutions of the PDE decay to spatially homogeneous func-

tions of time which are solutions of the associated ODE. In this case, the qualitative

properties of solutions of the PDE are determined, at least for large t, by the phase

portrait of the associated ODE. The question to ask is, when and under what con-

ditions can PDE (3.66) be replaced by ODE (3.67)? According to Conway et al.

(1978), the answer to this question depends upon whether an invariant region for

the PDE exists. An invariant region is a subset of the phase space such that if the
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values of the solution of the PDE are contained in the region for one value of t the

same is true for all later times. It has already been shown that for a set  to be

invariant for the PDE, it must be a rectangle that is invariant for the associated

ODE (Conway et al., 1978). Recall that the reaction term ƒ (x) that is used in this

work is the replicator dynamics.

In this work, the PDE system that is used is

∂

∂t
= D∇2 + ƒ(x) (3.66)

where x = (1, . . . , n)>, ƒ(x) = (Tx) is the replicator dynamics and the diffusion

coefficients D are such that D = D (so that
∑n
=1  = 1). The associated ODE is

given by
d

dt
= (Tx) . (3.67)

We have already shown in Lemma 3.1 that the unit simplex Sn is invariant under

the flow of (3.67). Hence the RD system (3.66) admits an invariant set  = Sn.

Let σ = Dλ − M, where −λ is the first nonzero (smallest positive) eigenvalue of

the Laplacian subject to homogeneous Neumann boundary conditions on the spa-

tial domain considered and M is the maximum norm for ∇ƒ (x) (the gradient or

Jacobian of ƒ ) for x ∈ Sn. It has been shown that for σ > 0, the qualitative be-

haviour of solutions of (3.66) is really determined by the behaviour of the asso-

ciated ODE (3.67) (Conway et al., 1978). However, to check whether σ > 0 for

models of many multidimensional systems is a nontrivial task and we are often

resigned to solving the PDE (3.66) itself instead of its associated ODE (3.67).

3.6 Numerical solution of PDEs

Choosing the right method for the numerical solution of Eq. (3.66) subject to

boundary conditions is very important. The overall goal is to obtain a solution

with sufficiently small error in a sufficiently small time (or with limited available

computational resources).

The most powerful and generally applicable algorithms for the approximate solu-

tion of PDEs rely on the concept of discretization, whereby the PDE under consid-

eration is replaced by equations that involve a finite number of unknowns. There

are several different ways to discretize a PDE. The simplest method uses finite dif-

ference approximations for the partial derivatives in the PDE. This gives rise to a

large algebraic system of equations to be solved in place of the PDE, something

that is easily solved on a computer.
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Let us consider the scalar PDE

∂

∂t
= d∇2 + ƒ () (3.68)

coupled with the appropriate boundary conditions. Here  denotes the concentra-

tion (or density) of a chemical/biological species of interest at any time t, and d is

the diffusion coefficient.

To solve (3.68) numerically using a finite difference method, the first step is to

apply the method of lines approach (Hyman, 1976), where the PDE is discretized

first in space and then in time. That is, we first approximate the spatial derivative

by finite difference formulas from a Taylor series expansion. This reduces the PDE

to a semi-discrete form, consisting of a system of nonlinear ODEs in time,

t = C + F() . (3.69)

Here,  is a vector of the concentration  at the grid points, C is a constant matrix

arising out of the discretization of the Laplacian plus boundary conditions and F()
is a vector of the nonlinear reaction term evaluated at the grid points.

Next we discretize in time by, again, approximating the time derivative in the ODE

system with finite difference formulas. The way we discretize the time derivative

(i.e., whether we approximate the derivative using forward, backward or central

differences etc.) gives rise to different finite difference schemes like, the FTCS (For-

ward Time Centered Space), CN (Crank-Nicolson), FSTS (fractional step θ-scheme),

etc. The resulting finite difference formulation is then solved, instead of the PDE,

to give rise to the numerical solution.

The error between the numerical solution and the exact solution is determined by

the error between the true (analytical) derivative and its finite difference approx-

imation. This error is called the discretization error or truncation error. The term

truncation error reflects the fact that a finite part of a Taylor series is used in the

approximation.

There are three important features that a derived finite difference scheme must

possess: consistency, stability and convergence. A finite difference approximation

is considered consistent if by reducing the mesh (space) and time step size, the

truncation error could be made to approach zero. The scheme is said to be stable

if any numerical errors introduced at any stage of the computation decay as the

computation proceeds from one time step to the next. Stability of a finite differ-

ence approximation is assessed using von Neumann stability analysis. Finally, con-

vergence means that the numerical solution from the finite difference equations

approaches the true solution of the PDE when the mesh is refined. The famous Lax

equivalence theorem states that a consistent finite difference approximation for a

well-posed PDE is convergent if and only if it is stable.
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Stability is thus one of the most important properties of a numerical scheme and

it plays a major role in determining which method to use. Several researchers

propose the use of implicit schemes given the fact that such schemes have already

been proven to be unconditionally stable for the linear diffusion equation. The

belief is that this unconditional stability extends to the full RD equation with the

(in general) nonlinear reaction term, although, as we shall see, this is only true

subject to certain conditions on the reaction term.

Implicit schemes also could permit the use of larger time steps compared to ex-

plicit schemes whose time step is very limited by the so-called CFL (Courant–

Friedrichs–Lewy) condition. The main drawback of implicit schemes, especially for

nonlinear RD systems, is the computational complexity in their implementation.

Another important concept that arises in the derivation of finite difference

schemes for the solution of (3.68) is the notion of stiffness. From the method

of lines approach, it has been stated in the literature that the choice of whether to

use an explicit or implicit scheme for the time integration of the ODE system (3.69)

depends on whether the ODE system is stiff or not.

Several attempts at a rigorous definition for the stiffness of an ODE system exist in

the literature. Among all these definitions, it is generally agreed that the essence

of stiffness consists of the fact that the exact solution being sought includes com-

ponents with vastly differing time scales that are hard to follow by the numerical

solution (Brugnano et al., 2011).

In other words, the spectrum of the linearized system (or Jacobian matrix) is such

that some eigenvalues have a very large negative real part, whereas other eigen-

values are much smaller in magnitude. Hence some components of the solution

decay much more rapidly than others. Interestingly, the component of the exact

solution corresponding to such large negative eigenvalues is almost irrelevant, as

it becomes almost instantaneously tiny. However, the presence of such an eigen-

value continues to render the numerical solution to the system very difficult even

to the point of exhausting any available computing resources.

Lambert (1992) points out that stiffness occurs when stability requirements, rather

than those of accuracy, severely constrain the time step length. A familiar conse-

quence of this is expressed by Hairer and Wanner (1996) who state that an ODE

system is stiff whenever standard explicit methods do not work or are unacccept-

ably time consuming, because the time step is forced down to be very small, even

in regions where the solution is smooth.

We proceed to briefly describe the Von-Neumann stability analysis of some popular

finite difference schemes applied to scalar linear RD equations.
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3.7 A von Neumann stability analysis

3.7.1 Background

Studying the stability of finite difference schemes has a long history. Courant

et al. (1928) showed in their pioneering work that the stability of a finite differ-

ence scheme used for the solution of a PDE is obtained only if the ratio of the

mesh widths in different directions satisfies certain inequalities. Since then, these

inequalities are known as the CFL (Courant-Friedrichs-Lewy) conditions.

Later, Charney et al. (1950), while attempting to answer the question of how to

prevent the amplification of a disturbance that may be introduced to a system,

used the method of Courant et al. (1928) to derive a criterion that ensures that

no such amplification occurs for discretized linear PDEs with constant coefficients.

This attempt resulted in a rigorous method for investigating the stability behav-

ior of numerical schemes which, in the literature, is often referred to as the von

Neumann stability analysis (Ehlers et al., 2013).

This approach is based on the Fourier series (transform) expansion of the numer-

ical solution, or error, in a spatial frequency domain and studies the behavior of

the Fourier coefficients as time increases. Unstable schemes cause a growth in

the coefficients. A numerical scheme is called stable if the generated numerical

solution always remains in a bounded neighborhood of the initial condition.

The use of the Fourier transform is supported by Parseval’s identity (Thomas,

1995), which states that the norm of the solution and its transform are equal in

their respective spaces. Thus, the boundedness of the Fourier transform of the

solution is equivalent to the boundedness of the solution itself.

To determine the conditions under which this prerequisite is satisfied, one has to

first assemble the so-called amplification factor (or matrix for systems), which is

a number (or matrix, for systems) relating the Fourier transform of the solution

vectors of the system in two consecutive time steps.

Subsequently, it can be shown that the numerical solution may be stable only if

the magnitude (spectral radius) corresponding to the amplification factor (matrix)

remains smaller than unity. Hence, to keep the magnitude (spectral radius) of the

amplification factor (matrix) smaller than unity becomes the necessary stability

condition for the scheme. More details on this can be found in Thomas (1995).

Because Fourier transforms are used, von Neumann stability analysis is restricted

to linear equations with constant coefficients, uniform grids and periodic boundary

conditions (Wesseling, 2001). This restriction thus leaves us in an uncomfortable

situation of hoping that the results obtained from this analysis extend to the com-
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plicated, nonlinear mathematical models of interest and this fact should not be

forgotten.

For linear PDEs that are posed with non-periodic boundary conditions, a rigorous

stability analysis is more difficult, but the von Neumann method still provides a

useful way of weeding out obviously unsuitable schemes. Moreover, for problems

with variable coefficients, the method is applicable locally by replacing the variable

coefficients by constants, because instability is usually a local phenomenon.

Finally, when dealing with nonlinear problems, the method can be used for the

locally linearized problem to provide initial guidance on the stability limits; then

numerical tests should be performed to confirm the stability restrictions for the

nonlinear problem. This decision has been made considering that although the

linear stability is not a sufficient condition for guaranteeing the nonlinear stability,

it is still a necessary condition for achieving the nonlinear stability (Hirsch, 1988).

3.7.2 Definition of stability

Since the von Neumann method is restricted to linear PDEs with constant coef-

ficients, our stability analysis in this section will be for finite difference schemes

applied to the scalar linear RD equation

∂

∂t
= d∇2 +  (3.70)

where  is a real constant. For simplicity, let us consider Eq. (3.70) in a one-

dimensional spatial domain although the results will analogously hold in three

spatial dimensions. Thus, the version of Eq. (3.70) that we use takes the form

∂

∂t
= d

∂2

∂2
+  . (3.71)

We start by giving a formal definition of stability. To do this, consider a two-level

finite difference scheme for solving (3.71) on a subset of R that takes the form

n+1 = Qn, n ≥ 0, (3.72)

where n+ 1 and n denote the time levels tn+1 and tn, respectively. Stability of the

difference scheme (3.72) is defined as follows Thomas (1995);

Definition 3.9. The difference scheme (3.72) is said to be stable with respect

to the ℓ2 norm if there exist positive constants Δ0 and Δt0 and non-negative

constants K and β so that

‖n+1‖ℓ2 ≤ Ke
βt‖0‖ℓ2 (3.73)
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for 0 ≤ t = (n + 1)Δt ≤ T for any T, 0 < Δ ≤ Δ0 and 0 < Δt ≤ Δt0, and where

‖n‖ℓ2 =

 

Δ
∑

j

|n
j
|2
!1/2

. (3.74)

The above definition of stability implies that for a difference scheme to be stable,

the solutions to the difference equation must be exponentially bounded.

3.7.3 The von Neumann stability condition

A von Neumann stability analysis makes use of the discrete Fourier transform (DFT)

defined as follows (Thomas, 1995);

Definition 3.10. For a function n =
�

nj

�

j∈Z
defined at the grid points j, its dis-

crete Fourier transform ̂n is defined as

̂n(ξ) =
1
p
2π

∑

j∈Z
e−ijξn

j
, i =

p

−1, (3.75)

for ξ ∈ [−π, π] .

The importance of using the DFT in the analysis of the stability of difference

schemes can be seen when applied to the shift operator S defined by

S+n := (nj+1)j∈Z and S−n := (nj−1)j∈Z

That is,

ØS+n(ξ) =
1
p
2π

∑

j∈Z
e−ijξn

j+1 =
1
p
2π

∑

j∈Z
e−i(j−1)ξn

j
(j→ j − 1)

=
1
p
2π

∑

j∈Z
e−ijξeξn

j
= eiξ

1
p
2π

∑

j∈Z
e−ijξn

j

= eiξ̂n(ξ) .

Similarly
ØS−n(ξ) = e−iξ̂n(ξ) .

Thus, taking the DFT of the left- and right-hand side of Eq. (3.72), the difference

scheme can be transformed to the form

̂n+1 = G(ξ)̂n (3.76)
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where the quantity G(ξ) is known as the amplification factor of the difference

scheme. A necessary and sufficient condition for the stability of the difference

scheme (3.72) is given in the following proposition.

Proposition 3.2. (Thomas, 1995, Proposition 3.1.7) Consider the difference

scheme (3.72) with amplification factor G(ξ). The scheme is stable according to

Definition 3.9 if and only if there exist positive constants Δt0,Δ0 and C so that

|G(ξ)| ≤ 1 + CΔt (3.77)

for 0 < Δt ≤ Δt0, 0 < Δ ≤ Δ0 and all ξ ∈ [−π, π].

Inequality (3.77) is called the von Neumann stability condition and a scheme

whose amplification factor satisfies this condition is said to be von Neumann-

stable.

Equipped with the DFT and Proposition 3.2, we are now in position to analyze the

stability of the FTCS scheme, the CN scheme and the fractional step θ-scheme for

Eq. (3.71).

3.7.4 Forward in time, centered in space

The FTCS scheme, also known as the explicit Euler scheme, is an explicit finite

difference scheme that is first order accurate in time. A discretization of Eq. (3.71)

using the FTCS scheme is given by

n+1j − nj
Δt

= d

 

nj+1 − 2
n
j + 

n
j−1

Δ2

!

+ n
j
, (3.78)

where the exponents on  indicate the time level and the subscripts indicate the

spatial grid point. Equation (3.78) can be rewritten as

n+1
j

= r(S+nj + S−nj ) + (1 − 2r + Δt)
n
j

(3.79)

where r =
dΔt

Δ2
. Taking the DFT of both sides of Eq. (3.79) leads to

̂n+1(ξ) =
�

r(eiξ + e−iξ) + (1 − 2r + Δt)
�

̂n(ξ)

= (2r(cosξ − 1) + 1 + Δt) ̂n(ξ)

=
�

1 − 4r sin2
ξ

2
+ Δt

�

̂n(ξ) . (3.80)
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From (3.80), the amplification factor of the FTCS scheme is given by

G(ξ) = 1 − 4r sin2(ξ/2) + Δt . (3.81)

Thus

|G(ξ)| = |1 − 4r sin2(ξ/2) + Δt| ≤ |1 − 4r sin2(ξ/2)| + ||Δt.

If we restrict r so that

|1 − 4r sin2(ξ/2)| ≤ 1 , (3.82)

then,

|G(ξ)| ≤ 1 + ||Δt ,

which is the von Neumann stability condition inequality with C = ||. Thus the FTCS

scheme is stable whenever (3.82) is satisfied. That is

|1 − 4r sin2(ξ/2)| ≤ 1 ⇔ r ≤ 1/2 .

Hence the FTCS is a conditionally stable scheme and the condition for stability is

0 < r =
dΔt

Δ2
≤ 1/2 .

This is the well-known CFL (Courant-Friedrichs-Lewy) condition for the stability of

the FTCS scheme.

3.7.5 The Crank–Nicolson scheme

The Crank–Nicolson (CN) scheme is a second order accurate in time implicit

scheme commonly employed for the time integration of initial value problems

(IVPs). A CN discretization of Eq. (3.71) is given by

n+1j − nj
Δt

=
d

2





n+1j+1 − 2
n+1
j + n+1j−1

Δ2



+

d

2

 

nj+1 − 2
n
j + 

n
j−1

Δ2

!

+


2
(n+1

j
+ n

j
) . (3.83)

Equation (3.83) can be rewritten as

�

1 + r −
Δt

2

�

n+1
j
−
r

2

�

S+n+1j
+ S−n+1j

�

=
�

1 − r +
Δt

2

�

n
j

+
r

2

�

S+nj + S−nj
�

, (3.84)
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where r = dΔt/Δ2. Taking the DFT of Eq. (3.84) leads to the simplified form

�

1 + 2r sin2
ξ

2
−
Δt

2

�

̂n+1 =
�

1 − 2r sin2
ξ

2
+
Δt

2

�

̂n . (3.85)

From Eq. (3.85), the amplification factor of the CN scheme is given by

G(ξ) =
1 −

�

2r sin2 ξ
2 −

Δt
2

�

1 +
�

2r sin2 ξ
2 −

Δt
2

� . (3.86)

Note from Eq. (3.86) that if  ≤ 0, the amplification factor G can be written as

G(ξ) =
1 − p

1 + p
, where p = 2r sin2

ξ

2
−
Δt

2
≥ 0. (3.87)

Thus |G(ξ)| < 1 for all ξ ∈ [−π, π]. Hence, from Proposition 3.2, the CN-sheme is

unconditionally stable.

However, if  > 0, then as Δt approaches (1 + 2r sin2(ξ/2))/, |G| → ∞ and the

CN-scheme will be unstable. Thus the unconditional stability of the CN-scheme is

only guaranteed when  ≤ 0.

3.7.6 The fractional step theta scheme

The FSTS is an operator splitting technique introduced by Glowinski (2003) for

the time integration of initial value problems. The method has also been used by

Madzvamuse and Chung (2014) to solve a system of RD equations. To introduce

the scheme, consider an IVP

t = A() , (0) = 0 , (3.88)

where A is a (possibly nonlinear) operator that has a nontrivial decomposition

A = A1 + A2 . (3.89)

To derive the FSTS, the time step is divided into three portions and over each

portion, the operators A1 and A2 are alternately treated implicitly and explicitly.

Let θ ∈ ]0,1/2 [ and divide the time interval [n, n+1] into three subintervals [n, n+
θ], [n+ θ, n+1− θ] and [n+1− θ, n+1]. A FSTS for Eq. (3.88) proceeds as follows:
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Assuming n is known, compute n+θ, n+1−θ and n+1 as follows:

Step 1: Solve for n+θ using:

n+θ − n

θΔt
= A1(n+θ) + A2(n)

Step 2: Solve for n+1−θ using:

n+1−θ − n+θ

(1 − 2θ)Δt
= A1(n+θ) + A2(n+1−θ)

Step 3: Solve for n+1 using:

n+1 − n+1−θ

θΔt
= A1(n+1) + A2(n+1−θ)

In the case of RD equations, it is natural to take the operators A1 and A2 to be the

diffusion and reaction terms, respectively. Thus, a FSTS for Eq. (3.71) is given by































n+θ
j
−n

j

θΔt = d

�

n+θ
j+1 −2

n+θ
j
+n+θ

j−1

�

Δ2
+ nj ,

n+1−θj −n+θ
j

(1−2θ)Δt = d

�

n+θ
j+1 −2

n+θ
j
+n+θ

j−1

�

Δ2
+ n+1−θj ,

n+1
j
−n+1−θj

θΔt = d

�

n+1
j+1 −2

n+1
j
+n+1

j−1

�

Δ2
+ n+1−θj .

(3.90)

Define r = Δt/Δ2. The three equations in (3.90) can be rewritten as



















(1 + 2rdθ)n+θj − rdθ(n+θj+1 + 
n+θ
j−1 ) = (1 + θΔt)

n
j ,

(1 − (1 − 2θ)Δt)n+1−θj = (1 − 2(1 − 2θ)rd)n+θj + (1 − 2θ)rd(n+θj+1 + 
n+θ
j−1 ) ,

(1 + 2rdθ)n+1j − rdθ(n+1j+1 + 
n+1
j−1 ) = (1 + θΔt)

n+1−θ
j .

(3.91)

Taking the DFT of Eq. (3.91) and combining the three resulting equations gives

̂n+1 =
(1 + θΔt)2

�

1 − 4rd(1 − 2θ) sin2
�

ξ
2

��

(1 − (1 − 2θ)Δt)
�

1 + 4rdθ sin2
�

ξ
2

��2
̂n . (3.92)
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The amplification factor for the FSTS will therefore be given by

G =
(1 + θΔt)2

�

1 − 4rd(1 − 2θ) sin2
�

ξ
2

��

(1 − (1 − 2θ)Δt)
�

1 + 4rdθ sin2
�

ξ
2

��2
. (3.93)

For stability, we need to compute |G|. Now,

|G| =
�

�

�

�

1 + θΔt

1 − (1 − 2θ)Δt

�

�

�

�

·

�

�

�

�

�

�

1 − 4rd(1 − 2θ) sin2
�

ξ
2

�

1 + 4rd
�

2θ + 4rdθ2 sin2
�

ξ
2

��

sin2
�

ξ
2

�

�

�

�

�

�

�

· |1 + θΔt| .

Assume that  ≤ 0 and 1
4 ≤ θ ≤

1
3 . Then

�

�

�

�

1 + θΔt

1 − (1 − 2θ)Δt

�

�

�

�

≤ 1

follows from  ≤ 0 and θ ≤ 1
3 , and

�

�

�

�

�

1 − 4rd(1 − 2θ) sin2 ξ
2

1 + 4rd(2θ + 4rdθ2 sin2 ξ
2 ) sin

2 ξ
2

�

�

�

�

�

≤ 1

follows from  ≤ 0 and θ ≥ 1
4 . Hence

|G| ≤ 1 + θ||Δt ≤ 1 +
1

3
||Δt , (3.94)

which is the von Neumann stability condition.

Thus, if  ≤ 0 and θ ∈ [1/4,1/3], then from Proposition 3.2, the FSTS is linearly

unconditionally stable. In addition, the FSTS is second order accurate in time only

if θ = 1 − 1/
p
2. Note that 1/4 < 1 − 1/

p
2 < 1/3. However, if  > 0, then as

Δt approaches 1/(1 − 2θ), |G| → ∞ and the FSTS will be unstable. Thus the

unconditional stability of the FSTS is only guaranteed when  ≤ 0 and 1/4 ≤ θ ≤
1/3.

3.7.7 Conclusions

From the stability analysis of the FTCS, CN and FSTS finite difference schemes

applied to the linear RD equation, it is clear that the explicit FTCS scheme is con-

ditionally stable with the time step restricted by the CFL condition. Both the im-

plicit CN and FSTS schemes could be unconditionally stable, with no restriction

on the time step size, provided the reaction term of the equation satisfies certain

conditions, in particular, the coefficient of the linear reaction term should be non-
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positive and 1/4 ≤ θ ≤ 1/3 for the FSTS. This results from this analysis, although

carried out when Eq. (3.71) is restricted to a one-dimensional spatial domain, anal-

ogously hold in higher spatial dimensions. However, many mathematical models

of ecological communities are not scalar equations and are generally nonlinear. It

is not clear whether the stability conditions derived from an analysis of the scalar

linear RD equation would still hold when the same schemes are applied to the

multidimensional nonlinear RD models commonly encountered in ecology.

Thus, in cases where the dynamics of an ecological community can only be mod-

elled by a system of nonlinear RD equations, questions regarding the stability of

finite difference schemes that can be used to obtain the numerical solution of the

model still remain. This is because analyzing the stability of a numerical scheme

applied to a nonlinear RD system can be a complicated task. In addition, the

available stability conditions obtained from a linear analysis may not necessarily

apply to the nonlinear problem. This is due to the fact that linear stability is a

necessary condition for nonlinear problems but is certainly not sufficient (Hirsch,

1988). Thus, later in this thesis, we shall explore the question of stability of finite

difference schemes when applied to systems of nonlinear RD equations to try and

establish some necessary and possibly sufficient conditions under which some of

the well-known implicit schemes are stable.



4

4
The method of triads

The material of this chapter is based on the following publications:

• Muyinda, N., Baetens, J.M., De Baets, B., and Rao, S. (2020). Using intransi-

tive triads to determine final species richness of competition networks. Phys-

ica A - Statistical Mechanics and its Applications, 540.

https://doi.org/10.1016/j.physa.2019.123249

• Muyinda, N., De Baets, B., and Rao, S. (2020). Non-king elimination, intran-

sitive triad interactions, and species coexistence in ecological competition

networks. Theoretical Ecology, 13, 385–397.

https://doi.org/10.1007/s12080-020-00459-6

4.1 Introduction

One of the central concerns in community ecology is how species coexist as they

do in the face of competition. In the quest for mechanisms of species coexis-

tence, competitive intransitivity has been identified as an important mechanism
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that can theoretically lead to the coexistence of multi-species communities despite

intense competition among species (Gilpin, 1975; May and Leonard, 1975; Laird

and Schamp, 2006; Vandermeer, 2011). In addition, the discovery of compelling

empirical examples of competitive intransitivity in a range of taxa including bac-

teria (Kerr et al., 2002), lizards (Sinervo and Lively, 1996), coral reef invertebrates

(Buss and Jackson, 1979) and plants (Lankau et al., 2011) have further aroused

interest in the issue.

Studies have shown that intransitive competition not only promotes species rich-

ness within a community, but also fosters coexistence among highly dissimilar

species with different competitive strategies by creating some form of competitive

equivalence among the species (Laird and Schamp, 2006; Soliveres et al., 2015).

However, despite the fact that indices of intransitivity have been key in demon-

strating the effect of intransitive competition on species coexistence, ecologists

have been unable to use these indices to predict the final species richness or fi-

nal species composition of competition networks that are modelled by complete

directed graphs (or tournaments). Indeed, there are tournaments that have the

same level of intransitivity, as measured by a particular index, but that evolve to a

completely different final species richness. An example of such a case is shown in

Fig. 4.1, where all three 5-species tournaments have a relative intransitivity value

of 4/5, but two tournaments evolve to one of their intransitive triads, whereas the

third tournament supports coexistence of all the five species. This implies that the

final species richness cannot be derived from the degree of intransitivity provided

by the current indices. It further suggests that species coexistence may be influ-

enced by certain topological variations that are not accounted for (or captured) in

the current indices.

Laird and Schamp (2018b) have stated that predicting the final species richness

in competition networks will require the development of metrics that explore the

ranking of species involved in intransitive structures, not just aspects of their pres-

ence, absence or frequency. In that regard, they proposed the two binary indices,

unbeatability () and always-beatability (). All tournaments with  = 1 are ex-

pected to have a final species richness of 1, whereas for an n-species tournament

with  = 1, the final species richness is at most n − 1. However, predicting the

final species richness in tournaments with no unbeatable species remains an open

problem.

In a two-dimensional spatial domain in which three species compete intransi-

tively for survival, coexistence is characterized by the formation of spiral wave

patterns and the interactions among the different species are characterized by

the entanglement of the corresponding spirals (Reichenbach et al., 2007; Cheng

et al., 2014). From numerical simulations of a 5-species cyclic system, Cheng et al.

(2014) observed that the competition among the species at the microscopic level

leads to the emergence of mesoscopic groups, each involving three species, and

it is the interaction among these groups that fundamentally determine the final
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Figure 4.1: Three five-species tournaments, each with a relative intransitivity value of 4/5. A numerical
simulation of the ODE system (3.13) for each tournament shows that the tournaments in (a) and (c)
collapse to one of their intransitive triads, whereas the tournament in (b) supports coexistence of all five
species.

species richness. These mesoscopic groups are the intransitive triads of the com-

petition network.

In this chapter, we propose an approach that makes use of the interactions among

the intransitive triads in a tournament to deduce the final species richness and

composition in a number of competition networks, and also give explanations as

to why some species survive while others are excluded. The proposed approach,

which we call the “the method of triads" (Muyinda et al., 2019, 2020) involves two

steps. In the first step, it is assumed that community structure is governed by
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the pairwise interactions among the species and it is these interactions that fun-

damentally determine the survival or competitive exclusion of each species. This

step involves the recursive competitive exclusion of all non-kings in the tourna-

ment resulting into smaller and smaller tournaments until the point at which the

resulting tournament is such that every species is a king. At this point, the pairwise

interactions among species are not sufficient to guarantee survival of individual

species as simulations have shown that even the so-called strong kings can get

excluded. It is the interactions among the intransitive triads of the tournament

that fundamentally determine the survival or competitive exclusion of species in

an all-kings tournament.

In the second step, focus is on tournaments in which every species is a king. In

such tournaments, interactions occur at the group level and it is the interactions

among the intransitive triads of the tournament that fundamentally determine the

final richness and composition. We establish dominance relations among the in-

transitive triads in the tournament, which allows us to generate a competition

network of the intransitive triads. This competition network is then represented by

an oriented graph known as the triad-interaction graph (TIG), in which the nodes

are the intransitive triads and the arrows point from the subordinate triad to the

dominant one. The structure of the TIG is then used to deduce the possible final

species richness and/or composition.

4.2 The method of triads

Consider an n-species tournament with adjacency matrix A = (j). The method of

triads proceeds as follows.

4.2.1 Eliminate all non-kings

The first step in the application of the method of triads is the elimination of all

non-kings in the tournament. In Section 2.4, we defined a king in a tournament as

any species that dominates every other species either directly or through a third

species. We thus defined a non-king as any species that is not a king.

In a tournament containing both kings and non-kings, it is believed that the sur-

vivorship of individual species is governed by their pairwise competitive abilities.

At this stage, all non-kings in the tournament will eventually get excluded result-

ing in a smaller tournament. To show this, we view the competition network as

a game-theoretical problem, in particular, as a symmetric two-player zero-sum

game in which the species correspond to the pure strategies available to the play-

ers. We then show that any strategy corresponding to a non-king is a dominated
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strategy and hence will not be part of the unique NE strategy of the game. This

result is presented in Lemma 4.1.

Lemma 4.1. Consider an n-species tournament whose corresponding symmetric

zero-sum game has payoff matrix T. If species  is a non-king in the tournament,

then strategy  in the corresponding game is a dominated strategy.

Proof. Suppose species  is a non-king. Then there exists at least one other

species, say species k, such that species k not only dominates species , but also

dominates every other species that is dominated by species .

This implies that in the corresponding zero-sum game, the payoff matrix T is such

that Tk = 1 (which implies Tk = −1) and Tkj = 1 for all j for which Tj = 1. Thus

Tj ≤ Tkj for all j, and hence strategy  is dominated by strategy k.

A consequence of Lemma 4.1 is the following result.

Lemma 4.2. In a competition network represented by a complete directed graph

(tournament), all non-kings will ultimately perish.

Proof. The proof follows from Lemma 4.1, Proposition 3.1 and Theorem 3.3.

To illustrate the result in Lemma 4.2, we use two examples shown in Figs. 4.2

and 4.3.
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Figure 4.2: An eight-species tournament with the kings shaded in green. Next to each node is shown
the proportion of the population playing that node in a NE strategy. A simulation of the ODE system (3.13)
is shown on the right. It is clear that all non-kings are not part of the unique NE strategy and hence they
ultimately perish as shown in the simulation.

Lemma 4.2 allows us to eliminate all the non-kings in the tournament resulting in

a smaller tournament. If the resulting tournament also contains non-kings, these

also get eliminated. This process is continued until the point at which the resulting

tournament is such that every species is a king. At this point, pairwise interactions
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Figure 4.3: A nine-species tournament with the kings shaded. Next to each node is shown the proportion
of the population playing that node in a NE strategy. A simulation of the ODE system (3.13) is shown on
the right.

among species are insufficient to drive coexistence as simulations have shown that

even the so-called strong kings can face competitive exclusion (see, e.g., Fig. 4.4).
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Figure 4.4: A seven-species tournament in which every species is king. Only species 1, 2 and 3 (with
thicker borders) are strong kings. A simulation of the ODE system (3.13) for the tournament shows that
species 2, although a strong king, does not persist.

We postulate that, at the point where every species is a king, it is the group in-

teractions, in particular, the interactions among the intransitive triads, that funda-

mentally determine the final species richness and composition.

4.2.2 Find all intransitive triads in the tournament

After recursively eliminating all the non-kings and thus reducing the tournament

to one in which every species is a king, the next step is to identify all the intran-

sitive triads in the tournament. Recall from Section 2.3.2.2 that the number of



4

4.2 THE METHOD OF TRIADS 87

intransitive triads (which we denoted with d) in an n-species tournament is given

by

d =
n(n − 1)(n − 2)

6
−
1

2

n
∑

=1

s(s − 1) , (4.1)

where s corresponds to the number of competitors that species  outcompetes

(or the sum of the elements in row  of the adjacency matrix A). For illustration,

consider the all-kings seven-species tournament of Fig. 4.5, where the s are shown

in the right-hand column outside the adjacency matrix.
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s
































0 1 0 1 1 0 1 4
0 0 0 1 1 1 1 4
1 1 0 0 0 1 0 3
0 0 1 0 0 1 1 3
0 0 1 1 0 1 0 3
1 0 0 0 0 0 1 2
0 0 1 0 1 0 0 2

Figure 4.5: A seven-species tournament with corresponding adjacency matrix

Note that the sum of the s equals n(n − 1)/2, the number of edges in the graph.

Then

d =
(7)(6)(5)

6
−
1

2
(12 + 12 + 6 + 6 + 6 + 2 + 2) = 35 − 23 = 12 .

Hence the seven-species tournament of Fig. 4.5 has 12 intransitive triads.

To retrieve these intransitive triads, we compute the determinants of all 3 × 3
principal submatrices of the adjacency matrix A. By definition, an m ×m matrix P

is a principal submatrix of A if P is obtained from A by deleting any n−m rows and

the same n −m columns. The species involved in an intransitive triad correspond

to the row indices of any 3×3 principal submatrix of A whose determinant is equal

to 1. In fact, all 3× 3 principal submatrices of A, except those corresponding to the

intransitive triads, have determinant zero.

For example, the 12 intransitive triads in the 7-species tournament of Fig. 4.5 are

126,143,153,173,146,156,243,253,273,367,475 and 567.

After listing the intransitive triads in the tournament, we proceed to establish a

dominance relationship among them.
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4.2.3 Establish dominance relations among the in-
transitive triads

In the case where the tournament T contains only one intransitive triad (d = 1) and

considering the fact that the tournament contains no unbeatable species (since

every species is a king), we expect the tournament to evolve to the single intransi-

tive triad. In this case, the final species richness will be 3 whereas the final species

composition will be the three species involved in the lone intransitive triad.

Suppose that the tournament with adjacency matrix A contains d (≥ 2) intransitive

triads. Denote the set of intransitive triads with

T = {T1, T2, . . . , Td} where Tj = j1j2j3 ,

with species j ∈ {1,2, . . . , n},  = 1,2,3.

From the set T, form all the
�d
2

�

possible pairs {T, Tj}<j of intransitive triads. For

each pair {T, Tj}, proceed as follows:

1. If T and Tj have two species in common, say, 1 = j1 and 2 = j2, then, if

3 j3 = 1, then T dominates Tj and vice versa.

2. If T and Tj have only one species in common, say, 1 = j1, and if 2 j2 =
1 & 2 j3 = 1, or, 3 j2 = 1 & 3 j3 = 1, then T dominates Tj.

3. Finally, if T and Tj have no common species, but one of the triads has at

least one species that dominates all the three species in the second triad,

then the first triad will dominate. Otherwise no conclusion can be made

about the dominance relation between the two triads and the TIG contains

no edge between the two triads.

The above three rules allow us to construct a TIG that may or may not be a com-

plete directed graph. The TIG can also be coded in a d × d adjacency matrix

A∗ = (∗j ) in which ∗j = 1 if T dominates Tj, otherwise ∗j = 0. If no domi-

nance relation can be established between T and Tj, then ∗j + 
∗
j = 0; otherwise

∗j + ∗j = 1. The structure of the TIG could then be used to deduce the final

species richness and/or composition of the original n-species tournament.

4.2.4 Determine the final species richness

From the structure of the TIG, the final species richness and composition of the

tournament can be deduced by making use of the following hypotheses.
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1. If there exists a k ∈ {1,2, . . . , d} such that
d
∑

j=1

∗
kj
= d − 1, that is, Tk is an

‘unbeatable’ triad in the TIG, then the network will evolve to Tk.

2. Suppose, on the other hand, that there exists no unbeatable triad and yet

the k-th column of matrix A∗ is a zero column. This implies that triad Tk
dominates every other triad Tj for which there exists an edge between Tk and

Tj. In addition, if, for any other triad T for which there exists no edge between

T and Tk, Tk dominates T through a third triad, then the competition network

will evolve to Tk.

3. Finally, if there exists no unbeatable triad and A∗ contains no zero column,

then, like in the case of a competition network with no unbeatable species,

the tournament cannot evolve to a three-species system and thus the final

species richness is greater than 3. Thus we expect the final species richness

and composition to be determined from the cycles formed by the intransitive

triads.

Thus, in the case where the TIG contains no unbeatable triad and A∗ contains

no zero column, the final species richness and composition is derived as

follows.

(a) Determine all cycles formed by the intransitive triads by evaluating the

determinants of all principal submatrices of A∗ of size {3,4, . . . , d}. The

cycles will correspond to the indices of all those principal submatrices

with determinant equal to 1 or −1.

(b) Ignore all cycles in which the total number of species that form the triads

in the cycle is even. This is because coexistence of an even number of

species is not possible (Allesina and Levine, 2011).

(c) From (a) and (b), the final species richness and composition can be de-

duced by making use of the following hypotheses.

H1. If the TIG contains a single cycle of triads, the competition network

will evolve to a community whose composition are the species that

form the intransitive triads involved in the cycle of triads. Thus the

final species richness is equal to the number of unique species that

make up the triads that form the lone cycle.

H2. If the TIG contains a cycle in which every triad in the cycle domi-

nates every other triad outside the cycle, in other words, a dominant

cycle of triads, then the network will evolve to a community com-

posed of the species that make up the intransitive triads involved in

the dominant cycle.

H3. If the TIG contains multiple cycles of triads, and the total number

of individual species involved in each of the cycles is equal, then

the final species richness will be equal to the number of individual
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species that form any one of the cycles of triads. However, although

we can deduce the exact final species richness, we are unable to

exactly state the final species composition as the network could

evolve to any of the cycles of triads.

On the other hand, if the TIG contains multiple cycles of triads, with

different numbers of individual species, the current method is un-

able to exactly deduce both the final species richness and compo-

sition as the network could evolve to any of the cycles of triads.

However, the method is able to narrow down both the final species

richness and composition to a few possibilities.

4.3 Example

To illustrate the method of triads, consider a nine-species tournament for which

the iterative elimination of non-kings reduces the tournament to a five-species

tournament in which every species is a king as shown in Fig. 4.6.
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Figure 4.6: Left: A nine-species tournament with the kings in green. Center: A six-species tournament
obtained from elimination of the non-kings from the nine-species tournament. Right: A final five-species
tournament in which every species is a king.

The resulting five-species tournament contains four intransitive triads 127, 137,

157 and 253. Dominance relations among these intransitive triads lead to the TIG

shown in Fig. 4.7. The TIG contains a single cycle in which all the triads in the

cycle, that is, 127, 137 and 157, dominate every other triad outside the cycle,

which in this case is triad 253. Since the total number of individual species in this

cycle is odd, it is concluded, from hypotheses H1 or H2, that the final five-species

tournament supports coexistence of all the five species {1,2,3,5,7} that form the

cycle of triads. Thus the original nine-species competition network will evolve to a

community of five species composed of 1, 2, 3, 5 and 7.

Computing the unique NE strategy of the corresponding symmetric zero-sum game

for the nine-species tournament yields x∗ =
�

1
3 ,

1
9 ,

1
9 ,0,

1
9 ,0,

1
3 ,0,0

�

, which also
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Figure 4.7: A TIG for the final five-species tournament of Fig. 4.6. The TIG contains a single cycle formed
by the red arrows.

confirms the competitive exclusion of species 4, 6, 8, and 9. A simulation of the

ODE system (3.13) for this nine-species tournament is shown in Fig. 4.8.
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Figure 4.8: A simulation of the ODE system (3.13) for the nine-species tournament of Fig. 4.6. Shown on
the right is the time evolution of the four species that go extinct.

Thus, both the simulation of the ODE system (3.13) and the unique NE strategy

of the corresponding zero-sum game confirm that species {1,2,3,5,7} form the

final species composition as predicted by the method of triads. Hence the final

species richness of the nine-species tournament is 5.
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4.4 Results

The method of triads has been tested on all non-isomorphic tournaments com-

posed of five to nine species and on a number of non-isomorphic tournaments

composed of 10 species. To validate the predictions from the method of triads, we

have used the computation from the game-theoretical framework where the tour-

nament has been treated as a two-person, zero-sum game and computed the Nash

equilibrium optimal strategy for each tournament. In addition, we have also car-

ried out ODE simulations for a number of selected cases. Two useful results have

been derived regarding the final species richness and composition for all networks

whose non-king elimination reduces the tournament to an all-kings tournament of

size three and five. These two results are presented in the following propositions.

Proposition 4.1. For a three-species network in which every species is a king, all

the three species coexist.

Proof. A three-species community in which every species is a king is an intransitive

triad. Thus the three species coexist.

Proposition 4.2. For a five-species community in which every species is a king,

all the five species coexist.

Proof. It can be verified that there exist exactly two non-isomorphic tournaments

of size five in which every species is a king. These two tournaments are shown in

Fig. 4.9. Note that the tournament on the left is isomorphic to the final five-species

1
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34

5

1
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34

5

Figure 4.9: The two non-isomorphic tournaments of size five in which every species is a king.

tournament of Fig. 4.6 which has been shown to support coexistence of all the five

species.

Applying the method of triads, it can be verified that the tournament on the right

contains five intransitive triads that form the TIG shown in Fig. 4.10. From the

TIG, it is clear that the triads form a single cycle that involves all the five in-

dividual species. Thus from hypothesis H1, we conclude that this tournament

supports coexistence of all the five species. Computing the unique NE strategy
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Figure 4.10: The TIG for the five-species tournament in Fig. 4.9 on the right.

of the corresponding symmetric zero-sum for this five-species tournament yields

x∗ =
�

1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

�

, which confirms coexistence of all the five species.

Figure 4.11 shows results from the simulation of the ODE system (3.13) for the two

tournaments of Fig. 4.9.
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Figure 4.11: Corresponding simulation results of the ODE system (3.13) for the two 5-species tournament
of Fig. 4.9.

Propositions 4.1 and 4.2 lead to the exact determination of the final species com-

position and richness in 8 out of the 12 non-isomorphic tournaments composed

of five species, 41 out of the 56 tournaments composed of six species, 322 out

of the 456 tournaments composed of seven species, 4142 out of the 6880 tour-

naments composed of eight species and 87638 out of the 191536 tournaments

composed of nine species.
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In Table 4.1, we present a summary of the number of ecological networks com-

posed of five to nine species for which the method of triads is able to accurately

predict the final species richness and/or composition.

Table 4.1: A summary of the results obtained from applying the method of triads to all non-isomorphic
tournaments composed of five to nine species. Here, FSR denotes final species richness, while FSC denotes
final species composition.

#Species
# non-isomorphic

Tourn.

%Tourn. for which the
exact FSR can be

deduced

%Tourn. in which the
exact FSC can be

deduced
5 12 100 100
6 56 100 96.4
7 456 94.5 65.1
8 6880 83.1 70.3
9 191536 66.6 53.8

4.5 Species richness versus relative intransi-
tivity

We try to further explore how the level of intransitivity of a tournament relates

to the final species richness in tournaments that contain neither unbeatable nor

always-beatable species. In Fig. 4.12, we plot graphs of the final species richness

versus the relative intransitivity of such tournaments containing five, six, seven

and eight species.

Although it may be early to infer a relationship between the level of intransitivity

and the final species richness, an observation from Fig. 4.12 is that there is a criti-

cal value of the relative intransitivity below which maximum possible coexistence

is not possible. For example, in the case of five species, all tournaments with a

relative intransitivity below 0.8 cannot support coexistence of all the five species.

Similarly, in the case of six species, all tournaments with a relative intransitivity

below 0.625 cannot support coexistence of five species, which is the maximum

coexistence possible in this case, while in the case of seven and eight species,

it is 0.6429 and 0.5, respectively. However, having a relative intransitivity value

greater than the above-mentioned critical values does not necessarily imply that

maximum coexistence of the species will occur.

4.6 Discussion and conclusion

Interaction networks are basic descriptions of ecological communities and are at

the core of community dynamics models (Alcántara and Rey, 2012). An analysis of
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Figure 4.12: Final species richness versus relative intransitivity. The number of dots at a single point
represents the number of tournaments with the same relative intransitivity value.

The size of the points is therefore proportional to the log of the number of overlap-
ping points. The graph also confirms that the FSR is always odd.
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these networks should enable us to anticipate some of the dynamical properties of

ecological communities. This is based on the intuition that many of the dynamical

properties of networks depend on the particular arrangement of their nodes (i.e.,

the topology of the network). For example, it has been observed that an intran-

sitive cycle within a network can act as a stabilizing force, in that other species

may be influenced by it in a way that prevents what would otherwise be a com-

petitive exclusion (Vandermeer, 2011). The survivorship of an individual species

is determined not only by its pairwise competitive ability, but also by its partici-

pation in intransitive triads, which effectively rescue it periodically from extinction

(Vandermeer, 2013).

In this chapter, we have highlighted an approach that can be used to predict the

dynamical properties of ecological communities governed by intransitive compe-

tition by considering the competition networks, represented by complete directed

graphs, directly rather than via numerical simulations of their mean-field differ-

ential equation models. The simulation of differential equations is essential when

making precise predictions about how an ecological community will evolve over

time in particular situations. However, to gain a more intuitive understanding of

how community structure emerges from a directed graph, an analysis of the topol-

ogy of the network is needed (Vandermeer and Perfecto, 2018).

The approach introduced, coined the method of triads, makes use of the pairwise

competitive abilities of individual species to partition the nodes of the network

into two disjoint groups, the kings and non-kings based on Maurer’s definition of

kings in a tournament (Maurer, 1980). By using a game-theoretical framework,

we have mathematically proven that every non-king species will ultimately face

competitive exclusion resulting in an all-king community in which every species is

involved in at least one intransitive triad with every other species.

In the resulting all-king community, it is postulated that the pairwise competitive

abilities of species are not sufficient to guarantee the survival of individual species

and it is the competitive interactions among the intransitive triads of the network

that fundamentally determine the community structure. This has also been ob-

served in simulations of spatial competition models where the intransitive triads

are shown to form spiral wave patterns and the interactions among the differ-

ent species are characterized by the entanglement of the corresponding spirals

which ultimately determine the community structure at equilibrium (Vandermeer

and Yitbarek, 2012; Cheng et al., 2014). A triad interaction graph (TIG) is there-

fore constructed and the final community composition and/or richness can then be

deduced based on the structure of the TIG.

The hypotheses H1-H3 stated in the method of triads have been derived out of

intuition and confirmed through model simulations. Numerical simulations show

that the proposed hypotheses hold for all non-isomorphic tournaments composed

of five to nine species and for all examples of 10-species tournaments that we

have tested them on. Results show that an all-king community of size five is
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persistent in that all the five species will coexist in perpetuity. In addition, the

proposed approach leads to the exact deduction of the final species composition

and richness in a number of ecological networks composed of five to nine species

as the results in Table 4.1 show.

By comparing the second column of Table 4.1 with the last two columns, it can

be observed that the method of triads is unable to deduce the exact final species

richness and composition for a number of non-isomorphic tournaments. This is

because for such tournaments, the TIG contains multiple cycles of triads of dif-

ferent size. Here size is used to refer to the total number of unique individual

species that make up the triads involved in the cycle. In such case, the method

can, however, narrow down the final species richness and composition to a few

possibilities, which are, respectively, the sizes of the cycles of triads and sets of

individual species that make up the cycles. However, for a network whose TIG con-

tains multiple cycles of triads but whose size is the same, the exact final species

richness can be deduced, which is the size of the cycle of triads. Here, the network

will still evolve to one of the sets of individual species that make up the cycles of

triads. Deducing the exact final species richness and composition for a network

whose TIG contains multiple cycles of triads is still a subject of future research.
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5
Dynamics of balanced

metapopulation models

The material of this chapter is based on the following publication:

• Rao, S., Muyinda, N., and De Baets, B. (2021). Stability analysis of the coex-

istence equilibrium of a balanced metapopulation model. Scientific Reports,

11(1). https://doi.org/10.1038/s41598-021-93438-8

5.1 Introduction

In Chapter 4, we highlighted an approach that can be used to predict the final

species richness and composition of ecological communities governed by intran-

sitive competition by considering the competition networks, represented by tour-

naments, directly rather than via numerical simulations of their mean-field ODE

models. To validate our prediction for each tournament, we carried out numeri-

cal simulations of its mean-field ODE model system that was derived under the
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assumption that all individuals of all species live in a well-mixed, homogeneous,

non-spatial landscape. However, spatial heterogeneity is one of the most obvious

features of the natural world. Species are rarely distributed continuously in space

but rather are organized into local populations (habitat patches), interconnected

to varying degrees through dispersal. The issue of how species coexist in patchy

environments is central to both basic and applied ecology. Even if local populations

go extinct, species can persist at a regional scale through immigration from other

habitats. The idea that colonization and extinction dynamics of patches could pro-

mote coexistence of competitors was first conceptualized in Hutchinson’s notion

of a fugitive species. Hutchinson (1951) proposed the term fugitive to describe

a species that is able to coexist with a competitively dominant species due to its

better dispersal capabilities. The fugitive species is quicker to occupy any vacant

patches in the environment and establish populations before competitively supe-

rior species arrive and eventually displace them. The colonization of new patches

allows the fugitive species to continually flee from competition as long as the land-

scape contains some unoccupied patches. Because competition for resources is

asymmetric, a trade-off between dispersal and local competitive abilities among

species can lead to coexistence in a patchy environment (Tilman, 1994; Gordon,

2000).

Mathematical representations of this idea began with Levins’ (1969) one-species

patch-occupancy model (discussed in Section 3.5.3) and generated the metapop-

ulation concept, defined as an assemblage of local populations connected by dis-

persal. His simple model predicts that a metapopulation will persist only when the

rate of local extinction is exceeded by the rate of recolonizations by dispersers

from occupied patches. If, instead, the local extinction rate happens to exceed

the rate of recolonization, then Levins’ model predicts extinction on a global scale.

In the 50 years since Levins first introduced his model, hundreds of papers have

analyzed and expanded on its basic structure. Current metapopulation models

with a more complex structure than Levins’ patch-occupancy model and its vari-

ants allow for a broader range of population phenomena to be examined, such as

changes in local population size, variations in patch size, quality and connectivity,

and multispecies competition.

In typical metapopulation modelling, the landscape is assumed to be composed

of multiple habitat patches, where population dynamics takes place and homoge-

neous mixing of individuals is assumed, connected to each other through dispersal.

This effectively defines the landscape as a network (directed graph) in which the

nodes are the patches and the weighted edges express the migration or coloniza-

tion rate constants. Nagatani et al. (2018) assume that the migrations between

patches are random with the migration rate constant being equal to the reciprocal

of the number of dispersal links from a given patch to other patches. They there-

fore define a dispersal graph to be homogeneous if all nodes (patches) have the

same number of links, otherwise the graph is considered heterogeneous.
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For many ecologists, the central question is how the structure or connectivity

pattern of the underlying graph influences the dynamics of the metapopulation.

Intriguingly, initial research indicated that spatial structure has in fact very lit-

tle effect, with criteria for metapopulation stability appearing to be identical to

the stability conditions for a single patch (Rohani et al., 1996). However, many

model-based and empirical studies have shown that variability or heterogeneity in

patch connectivity may play a role in enhancing the persistence of metapopula-

tions (Artzy-Randrup and Stone, 2010; Perry and Lee, 2019). For example, numer-

ical simulations by Nagatani et al. (2018) have shown that in a metapopulation

model for the rock-paper-scissors game, the dynamics are significantly different

when the dispersal network is homogeneous compared to when the network is

heterogeneous. Specifically, their simulations show that the coexistence equilib-

rium within each habitat patch is asymptotically stable in the case of a heteroge-

neous network, while the same equilibrium remains neutrally stable in the case of

a homogeneous graph (as in the single patch case). That is, heterogeneity leads

to the indefinite coexistence of all three species with abundances equal to the

coexistence equilibrium values, whereas homogeneity leads to the perpetual co-

existence of all three species with periodically oscillating abundances (i.e., there

exists a limit cycle around the coexistence equilibrium to which the trajectories

converge). However, these numerical results have been provided without mathe-

matical proof.

In this chapter, we show, mathematically, that the numerical observations of Na-

gatani et al. (2018) are not only valid for RPS competition systems, but also extend

to a broader class of competition networks. We first broaden the class of compe-

tition networks under consideration by giving a more general definition of homo-

geneity/heterogeneity that is based on the adjacency matrix of the dispersal graph

without imposing any restrictions on the values of the migration rate constants.

Then by combining concepts and results from game theory, chemical reaction net-

work theory (CRNT) and dynamical systems theory, we provide a mathematical

proof for the numerical observations of Nagatani et al. (2018), generalizing the

scope of application to cover this broader class of competition networks within the

patches. Specifically, we perform a stability analysis of the coexistence equilib-

rium point of a metapopulation model that is based on Levin’s (1974) metapop-

ulation model. In performing the analysis we borrow from CRNT the concept of

detailed-balancedness (van der Schaft et al., 2013, 2015), a key feature for this

kind of metapopulation model, that has not been previously explored. We define

a metapopulation model to be detailed-balanced if there exist positive equilib-

rium species proportions (or relative abundances) for which the overall migration

rate of each species between any two patches is zero. Then, by assuming that

our metapopulation model is detailed-balanced, we provide a mathematical proof

for the numerical observations of Nagatani et al. (2018), which shows that these

numerical observations are not only valid for a three-species cyclic competition

system, but also apply to any n-species tournament for which a coexistence equi-
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librium exists.

5.2 Metapopulation model

Consider an interconnected network of m discrete patches each being inhabited

by the same n species. Let ,j denote the density of species  ( = 1, . . . , n) in

patch j (j = 1, . . . ,m). Within each patch, each species can compete against ev-

ery other species and this competition is asymmetric such that for any pair of

species, one is dominant over the other. In addition, we assume that the densities

of species within each patch are affected by other patches only via migration. Let

ϕ,j denote the rate of change of the proportion of species  in patch j in the absence

of migration. Since the dominance relationships among the species (described by

a tournament matrix T) are assumed to be the same for all patches, and since

the habitat patches are assumed to be spatially homogeneous, the intra-patch

dynamics are governed by the replicator equation (3.13). Thus we have

ϕ,j = ,j
�

Tpj
�

 , (5.1)

where pj :=
�

1,j, 2,j, . . . , n,j
�>

,  = 1, . . . , n and j = 1, . . . ,m.

Allowing migrations between the patches, assume that species can migrate from

one patch to some or all of the other patches. The rate of migration of each species

between two patches is directly proportional to the proportion of the particular

species in the originating patch, with a (nonnegative) constant of proportionality

being the same across species. This constant of proportionality will be referred to

as the rate constant associated with the migration. It is assumed that if there is

migration between two given patches, then it is bidirectional, i.e., the rate constant

of migration from patch j to patch k is strictly positive if and only the same holds

for the migration from k to j. In addition, such an inter-patch migration may be

described by a weighted finite directed graph G1 = (V1, E1) where V1 = {1, . . . ,m}
is the set of patches (vertices) and an edge (j, k) ∈ E1 means that every species

can migrate from patch j to patch k. Thus a directed edge from patch j to patch k

exists if and only if the rate constant of migration from patch j to patch k is strictly

positive. Each edge of the graph has an associated weight which is equal to the

(positive) rate constant associated with the corresponding migration.

The flow of species between the patches can be summarized in a weighted m×m
adjacency matrix A with entry Ajk being equal to the rate constant of migration of

species from the patch j to patch k. The diagonal elements of A are hence equal to

0. Due to the bidirectional nature of migration, it holds that Ajk > 0⇔Akj > 0 and

Ajk = 0⇔Akj = 0, for any j 6= k. Let Δ = diag(δ1, . . . , δm) denote the m-dimensional
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diagonal matrix whose j-th entry is given by

δj =
m
∑

k=1

Ajk . (5.2)

Define L := Δ − A> and denote by ψ,j the net migration of species  from other

patches to patch j. In the simplest case, the net exchange of species  from patch k

to patch j is
Akj,k − Ajk,j

where Akj (resp. Ajk) is the rate constant of migration of any species from patch k

to patch j (resp. reverse). Thus ψ,j takes the form

ψ,j =
m
∑

k=1

�

Akj,k − Ajk,j
�

=
m
∑

k=1

Akj,k − δj,j = −
m
∑

k=1

Ljk,k . (5.3)

Let us denote Ψ :=
�

ψ,1, ψ,2, . . . , ψ,m
�>

and r :=
�

,1, ,2, . . . , ,m
�>

, then

Ψ = −Lr . (5.4)

With migration among the patches, the proportion of a species within a patch is

influenced by two factors: the first is the interaction with other species within the

patch and the second is the migration of that particular species to or from other

patches. Thus, the metapopulation model describing the dynamics of the n species

in the m-patch network is described by the system of mn differential equations;

̇,j = ϕ,j + ψ,j = ,j
�

Tpj
�

 − (Lr)j ,  = 1, . . . , n, j = 1, . . . ,m . (5.5)

This system evolves on the unit simplex Smn.

5.3 Invariance of the unit simplex

We now proceed to show that the unit simplex Smn is positively invariant for the

dynamical system (5.5).

Proposition 5.1. The unit simplex Smn is positively invariant for System (5.5).

Proof. To show the invariance of the unit simplex Smn under the flow of Sys-

tem (5.5), it suffices to show that each of the faces of the simplex cannot be

crossed, i.e., the vector field points inward from the faces of Smn.
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On the one hand, if ,j = 0 for some , j, then

d,j

dt
=

m
∑

k=1

Akj,k ≥ 0 ,

which implies that ,j = 0 cannot be crossed from positive to negative. In an

ecological context, this condition simply states the obvious fact that an extinct

species is in no danger of declining. On the other hand, if ,j = 1 for some , j, then

obviously ,k = 0 for any  6=  or k 6= j and

d,j

dt
= −δj < 0 .

Hence, the vector field associated with System (5.5) points inward from the faces

of Smn. So, Smn is positively invariant under the flow of System (5.5).

Note that Proposition 5.1 does not exclude the solution trajectories of System (5.5)

from approaching the boundary equilibria of the system as t→∞. The metapopu-

lation is said to be persistent if for every x0 ∈ Smn
+ , the ω-limit set ω(x0) does not

intersect the boundary of Smn. In other words, a metapopulation is persistent if

the initial existence of all the species implies that none of the species goes extinct

with the passage of time.

5.4 Neutral stability

In the absence of migration, the local population dynamics are independent and

are governed by the replicator equation

d

dt
= (Tx) , (5.6)

where  is the proportion of species i within the patch and x = (1, . . . , n)>.

Following Grilli et al. (2017), we show that if System (5.6) admits a feasible equi-

librium x∗, then it is neutrally stable. In other words, we show that if all the species

coexist, then their proportions cycle neutrally around the feasible equilibrium. To

do so, we consider the Lyapunov function

V(x) = −
n
∑

=1

∗

ln



∗
. (5.7)
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By Gibbs inequality (Brémaud, 1988), V(x) is positive in Sn+ and V(x) = 0 only if

x = x∗. Taking the time derivative of V, we have (using Tj = −Tj):

V̇(x) = −
n
∑

=1

∗


̇


= −

n
∑

=1

∗

(Tx) = −

n
∑

=1

∗


 

n
∑

j=1

Tjj

!

=
n
∑

j=1

j

 

n
∑

=1

Tj
∗


!

=
n
∑

j=1

j
�

Tx∗
�

j = 0 .

Hence, V is a constant of motion: all orbits t → x(t) of the mean-field model

remain on constant level sets of V. This implies that all orbits in Sn+ are closed

orbits surrounding x∗.

In the following sections, we explore one fundamental ecological question: To what

extent are the single-patch dynamics affected by migration?

5.5 Detailed-balanced single species mass-
action reaction networks

The CRNT concept of detailed-balancing (introduced in Section 3.4.4) will be in-

strumental when deriving the main results of this chapter. With this formulation,

the modelling of dispersion among patches is carried out analogously as in the

case of detailed-balanced mass-action chemical reaction networks (van der Schaft

et al., 2013, 2015). We briefly explain the relevant aspects.

Consider a network of r reversible chemical reactions occurring among the chemi-

cal species C1, C2, . . . , Cm. Each of these r reversible reactions has a species Cj as

substrate and another species Ck as product (with j 6= k). Let Ajk (resp. Akj) denote

the mass action rate constant of the forward (resp. reverse) reaction in (5.8):

Cj � Ck . (5.8)

Since all reactions are reversible, it holds that Ajk > 0⇔ Akj > 0 and Ajk = 0⇔
Akj = 0, for any j 6= k.

We associate a finite asymmetric directed graph G2 = (V2, E2) with the reaction

network, where V2 = {1, . . . ,m} is the set of chemical species and an edge (j, k) in

E2 is associated with each reversible reaction (5.8). Let j denote the concentra-

tion of species Cj, for j = 1, . . . ,m. Let p denote the overall rate of the pth reaction

in the direction of the pth edge in G2. Then the dynamics of the chemical reaction

network can be described by the equation

ẋ = Bv , (5.9)
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where x = (1, 2, . . . , m)>, B is the m × r incidence matrix of G2 and

v = (1, 2, . . . , r)>. Since each reaction of the network is governed by mass

action kinetics, if the pth reaction of the network is described by (5.8), then

p = Ajkj − Akjk . (5.10)

Define kforw
p

:= Ajk and krev
p

:= Akj. Recall that, a reversible chemical reaction

network is said to be detailed balanced if it admits a detailed balanced (or ther-

modynamic) equilibrium. In other words, a detailed balanced single species (or

unimolecular) reversible reaction network is one for which there exists an equi-

librium x∗ at which the overall reaction rate of every reversible reaction of the

network is zero. Thus, if ∗j and ∗k denote the concentrations of Cj and Ck at a

detailed balanced equilibrium x∗, then it holds that

Ajk
∗
j
= Akj∗k .

It is clear from Eq. (5.10) that if  is a detailed balanced equilibrium, then also q

is, for any q ∈ R+ . Hence, we can choose a detailed balanced equilibrium z∗ ∈ Sm+ .

Now define

Keq
p
:=

z∗k
z∗j
=
Ajk

Akj
=
kforw
p

krev
p

.

Define Keq := (Keq
1 , K

eq
2 , . . . , K

eq
r )> and note that

Keq = Exp(B>Ln(z∗)) , (5.11)

where Ln(z∗) is the element-wise natural logarithm of z∗. That is, (Lnz∗) =
ln(z∗ ).

From this, the condition for detailed balancing of a reversible single species chem-

ical reaction network can be derived.

Proposition 5.2. A reversible single species mass action chemical reaction net-

work is detailed balanced if and only if

Ln
�

Keq
�

∈ Im
�

B>
�

. (5.12)

As mentioned in (van der Schaft et al., 2013, Remark 3.1), from condition (5.12),

it follows that any w ∈ Rr satisfying Bw = 0m will also satisfy

r
∑

p=1
p ln

�

Keq
p

�

= 0 .

This leads to the well-known Wegscheider conditions (Wegscheider, 1902) for de-
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tailed balancing given by

r
∏

p=1

�

kforw
p

�p

=
r
∏

p=1

�

krev
p

�p

.

Hence, the reversible reaction network

C2�C1�C3 (5.13)

with strictly positive rate constants is always detailed balanced, whereas the cyclic

reversible reaction network

C1

A 2
1

−−
−*
)−
−−
A 1
2

A
13

−−−*
)−−−A
31

C2
A23−−−*)−−−
A32

C3

with strictly positive rate constants is detailed balanced if and only if

A12A23A31 = A21A32A13 .

We now describe the compact mathematical formulation for a detailed balanced

network derived in (van der Schaft et al., 2013). This formulation will be crucially

used for deriving the main results of this chapter.

Let (5.8) denote the pth reaction of a detailed balanced single species network with

a thermodynamic equilibrium z∗ ∈ Sm+ . Define

κp := Ajkz∗j = Akjz
∗
k
.

For any other vector of concentrations x ∈ Rm+ , it follows from Eq. (5.10) that the

overall rate of the pth reaction in the forward direction is given by

p = κp

 

j

z∗j
−
k

z∗k

!

.

Define K := diag(κ1, κ2, . . . , κr). Then it can be verified that the vector v of reac-

tion rates is given by

v = −KB>
� x

z∗

�

.

Define Z∗ := diag(z∗). From Eq. (5.9), it now follows that the dynamics of the

detailed-balanced single species reaction network is described by the equation

ẋ = −BKB>
� x

z∗

�

= −
�

BKB>(Z∗)−1
�

x . (5.14)
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Equation (5.14) can then be used to provide an analogous formulation for the

metapopulation model (5.5).

5.6 Balanced metapopulation model

We say that the inter-patch migration of a metapopulation network is detailed

balanced if the overall migration rate of any species between any two patches is

zero for a certain positive set of proportions of that species in the different patches.

From the theory of detailed balanced reaction networks described in Section 5.5,

it follows that a detailed-balanced inter-patch migration network corresponds to a

detailed-balanced single species mass-action reaction network. Let B denote the

incidence matrix corresponding to the directed graph G1 describing the inter-patch

migrations and let r denote the number of edges in G1. Comparing Eqs. (5.4)

and (5.14), it follows that if the inter-patch migration is detailed balanced, then

there exist diagonal matrices K ∈ Rr×r and Z∗ ∈ Rm×m with positive diagonal

entries such that (1m)>Z∗1m = 1 and

L = BKB>(Z∗)−1 .

Let Z∗ = diag(z∗). Equation (5.4)) can now be rewritten as

Ψ = −BKB>
� r

z∗

�

. (5.15)

On the other hand, if the interactions within each patch, in the absence of migra-

tions, correspond to a tournament whose corresponding zero-sum game is com-

pletely mixed, then the replicator equation governing the population dynamics

within the patch admits a unique coexistence equilibrium y∗ ∈ Sn+ with Ty∗ = 0n.

Thus, Eq. (5.1) can also be written as

ϕ,j = ,j

�

TY∗
�

pj

y∗

��


, (5.16)

where Y∗ := diag(y∗).

Consequently, from Eqs. (5.5), (5.15) and (5.16), it follows that the dynamics of a

metapopulation can be described by the mn differential equations

d,j

dt
= ,j

�

TY∗
�

pj

y∗

��


−
�

BKB>
� r

z∗

��

j
, (5.17)

for  = 1, . . . , n and j = 1, . . . ,m.

Henceforth in this thesis, we restrict our analysis to metapopulation models of
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type (5.17) for which the interactions within each patch correspond to a tourna-

ment game with a completely mixed NE strategy and whose inter-patch migration

is detailed-balanced. Such metapopulation models will be referred to as balanced

metapopulation models.

If all the elements of z∗ in Eq. (5.17) are equal, i.e., if z∗j =
1
m for j = 1, . . . ,m, then

we say that the balanced metapopulation model is homogeneous, otherwise we

call it heterogeneous. Whether a balanced metapopulation model is homogeneous

or not can be checked from the adjacency matrix A corresponding to its inter-patch

migration graph G2. If A is symmetric, then the model is homogeneous, otherwise

it is heterogeneous.

Remark 5.1. Nagatani et al. (2018) assume that migrations from one patch to

other patches are random with a probability of migration (or migration constant)

equal to the reciprocal of the number of dispersal links from a patch to other

patches. They thus define a dispersal graph to be homogeneous if all nodes have

the same degree (number of links), otherwise the graph is heterogeneous. With

this definition, homogeneity, in general, is equivalent to the existence of cycles in

the dispersal graph, whereas heterogeneity is equivalent to their absence. How-

ever, with our new definition, it is clear that this is not necessary. An example of

such a case is shown in Fig. 5.1.
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Figure 5.1: Left: A heterogeneous dispersal graph according to Nagatani et al. (2018). Right: A homo-
geneous dispersal graph according to our definition.

5.7 Unique coexistence equilibrium

In this section, we present a theorem that gives an expression for the coexistence

equilibrium of the balanced metapopulation model (5.17). Before we state our

main theorem in this section, we need the following lemma.
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Lemma 5.1. Let B ∈ Rm×r denote the incidence matrix of a finite connected

directed graph G2 and let K ∈ Rr×r denote a diagonal matrix with positive di-

agonal entries. For any w ∈ Rm+ , it holds that −w>BKB>
�

1m

w

�

≥ 0. Moreover

−w>BKB>
�

1m

w

�

= 0 if and only if w = q1m, where q ∈ R+ .

Proof. Assume that the pth edge of the graph G2 is directed from vertex p to

vertex jp. Hence, Bpp = −1, Bjpp = 1 and Bkp = 0 for p 6= k 6= jp. Thus,

−w>BKB>
�

1m

w

�

=
m
∑

p=1
(jp − p )κp

�

1

p

−
1

jp

�

=
m
∑

p=1

κp

pjp

�

jp − p

�2 ≥ 0 .

Moreover, −w>BKB>
�

1m

w

�

= 0 if and only if jp = p for p = 1, . . . ,m, which is

equivalent with B>w = 0r .

Since the graph G2 is connected, we recall from Bollobás (1998) that rank(B) =
m − 1 and furthermore ker(B>) = 1m. Therefore B>w = 0r if and only if w = q1m,

where q ∈ R+ . This completes the proof.

We now state the main theorem of this section.

Theorem 5.1. The balanced metapopulation model (5.17) admits a unique co-

existence equilibrium x∗ ∈ Smn
+ . The proportion ∗,j of species  in patch j at the

unique coexistence equilibrium is given by

∗
,j
= y∗


z∗
j
. (5.18)

for  = 1, . . . , n and j = 1, . . . ,m.

Proof. We divide the proof into two parts. In the first part we prove that Sys-

tem (5.18) indeed yields an equilibrium for the model. In the second part, we

prove that this coexistence equilibrium is unique.

Let us define

p∗
j
:=

�

∗
1,j
, ∗
2,j
, . . . , ∗

n,j

�>
= z∗

j
y∗ and r∗


:=

�

∗
,1
, ∗

,2
, . . . , ∗

,m

�>
= y∗


z∗ .

For x∗ to be an equilibrium of System (5.17), it should render the right-hand side

equal to zero. Note that

TY∗

 

p∗j

y∗

!

= z∗
j
TY∗1n = z∗

j
Ty∗ = 0n

and

BKB>
�

r∗
z∗

�

= y∗

BKB>1m = 0m .
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In addition,

(1mn)>x∗ =
n
∑

=1

m
∑

j=1

∗
,j
=

n
∑

=1

y∗


m
∑

j=1

z∗
j
= 1 .

Thus, x∗ is a coexistence equilibrium of System (5.17).

Assume that there exists another coexistence equilibrium x∗∗ ∈ Smn
+ . Let ∗∗,j

denote the corresponding proportion of species  in patch j and define

p∗∗
j

:=
�

∗∗
1,j

, ∗∗
2,j

, . . . , ∗∗
n,j

�>
, and r∗∗


:=

�

∗∗
,1

, ∗∗
,2

, . . . , ∗∗
,m

�>
.

It follows that for any , j it holds that

∗∗
,j

 

TY∗

 

p∗∗j

y∗

!!



−
�

BKB>
�

r∗∗
z∗

��

j

= 0 . (5.19)

Multiplying both sides of Eq. (5.19) with
∗
,j

∗∗,j
, we get

∗
,j

 

TY∗

 

p∗∗j

y∗

!!



−
∗,j

∗∗,j

�

BKB>
�

r∗∗
z∗

��

j

= 0 .

Summing the left-hand side of the above expression over the different species and

patches, we get

m
∑

j=1

n
∑

=1

∗
,j

 

TY∗

 

p∗∗j

y∗

!!



−
n
∑

=1

m
∑

j=1

∗,j

∗∗,j

�

BKB>
�

r∗∗
z∗

��

j

= 0 . (5.20)

Now consider the two terms in the left-hand side Eq. (5.20) separately. For the first

term, note that, for any j, it holds that

n
∑

=1

∗
,j

 

TY∗

 

p∗∗j

y∗

!!



=
n
∑

=1

∗
,j

�

Tp∗∗
j

�


=

n
∑

=1

∗
,j

 

n
∑

=1

T
∗∗
,j

!

= −
n
∑

=1

∗∗
,j

 

n
∑

=1

T
∗
,j

!

= −
n
∑

=1

∗∗
,j

 

n
∑

=1

Ty
∗

z∗
j

!

= −z∗
j

n
∑

=1

∗∗
,j
(Ty∗) = 0 .

Hence,
m
∑

j=1

n
∑

=1

∗
,j

 

TY∗

 

p∗∗j

y∗

!!



= 0 .
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For the second term, we find

−
n
∑

=1

m
∑

j=1

∗,j

∗∗,j

�

BKB>
�

r∗∗
z∗

��

j

= −
n
∑

=1

y∗


m
∑

j=1

z∗j

∗∗,j

�

BKB>
�

r∗∗
z∗

��

j

= −
n
∑

=1

y∗


�

z∗

r∗∗

�>

BKB>
�

r∗∗
z∗

�

.

Thus, Eq. (5.20) can be simplified as

−
n
∑

=1

y∗


�

z∗

r∗∗

�>

BKB>
�

r∗∗
z∗

�

= 0 .

Since y∗ > 0 for  = 1, . . . , n, it holds for any  = 1, . . . , n that

−
�

z∗

r∗∗

�>

BKB>
�

r∗∗
z∗

�

= 0 . (5.21)

From Eq. (5.21) and Lemma 5.1, it follows that r∗∗ = qz∗ with q ∈ R+ for

 = 1, . . . , n. Thus, ∗∗,j = qz
∗
j and p∗∗j = z∗j q for  = 1, . . . , n and j = 1, . . . ,m.

Substituting the latter in the left-hand side of Eq. (5.19), we get

∗∗
,j

 

TY∗

 

p∗∗j

y∗

!!



−
�

BKB>
�

r∗∗
z∗

��

j

= qz∗j
2
�

TY∗
�

q

y∗

��


− q

�

BKB>1m
�

j

= qz∗j
2(Tq) .

Since q > 0 for  = 1, . . . , n, for Eq. (5.19) to hold, we should have Tq = 0n. Also

note that

(1mn)>x∗∗ =
n
∑

=1

m
∑

j=1

∗∗
,j
=

n
∑

=1

q

m
∑

j=1

z∗
j
=

n
∑

=1

q = 1 .

Since the metapopulation model is balanced, it follows that q = y∗. Thus,

∗∗
,j
= y∗


z∗
j
= ∗

,j

for  = 1, . . . , n and j = 1, . . . ,m. This proves the uniqueness of the coexistence

equilibrium x∗.

5.8 Some examples

We now give examples of two balanced metapopulation models.
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Example 1: Consider the following metapopulation network.
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Figure 5.2: A metapopulation network composed of three patches. Each patch contains a local popula-
tion composed of three species (1, 2 and 3), in cyclic competition, as shown by the black arrows. The red
arrows denote migrations among the patches in the directions shown.

It is easy to verify that the network shown in Figure 5.2 corresponds to a balanced

metapopulation model governed by System (5.17) with

T =







0 1 −1
−1 0 1

1 −1 0






; B =







−1 0 1

1 −1 0

0 1 −1






;

y∗ =
�

1
3 ,

1
3 ,

1
3

�>
, z∗ =

�

1
5 ,

2
5 ,

2
5

�>
and K = diag

�

1
10 ,

3
10 ,

1
10

�

.

Note that this metapopulation model is heterogeneous. From Theorem 5.1, it fol-

lows that the species proportions at the unique coexistence equilibrium for this

model are given by ∗,1 =
1
15 and ∗,2 = 

∗
,3 =

2
15 .

Example 2: Consider the following metapopulation network.
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Figure 5.3: A metapopulation network composed of three patches. Species can migrate from patch 1 to
the other two patches and vice versa. However, there exists no migrations between patches 2 and 3.
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It is easy to verify that the network shown in Figure 5.3 corresponds to a balanced

metapopulation model governed by System (5.17) with

T =







0 1 −1
−1 0 1

1 −1 0






; B =







1 −1
0 1

−1 0






;

y∗ = z∗ =
�

1
3 ,

1
3 ,

1
3

�>
and K = 1

3 diag(12). Note that this metapopulation model

is homogeneous. From Theorem 5.1, it follows that the species proportions at the

unique coexistence equilibrium in this case are all given by ∗,j =
1
9 for , j = 1,2,3.

5.9 Stability of the coexistence equilibrium

We now prove the local stability of the unique coexistence equilibrium correspond-

ing to the balanced metapopulation model (5.17). For the proof, we make use of

the same Lyapunov function (5.7) as in Section 5.4, coupled with LaSalle’s invari-

ance principle stated in Theorem 3.2.

Theorem 5.2. Consider the balanced metapopulation model (5.17) with coexis-

tence equilibrium x∗ ∈ Smn
+ .

1. If the model is heterogeneous, then x∗ is locally asymptotically stable w.r.t.

all initial conditions in Smn
+ in the neighbourhood of x∗. Furthermore, if the

model is persistent, then x∗ is globally asymptotically stable w.r.t. all initial

conditions in Smn
+ .

2. If the model is homogeneous and persistent, then as t → ∞, the solution

trajectories converge to a limit cycle satisfying the equation

̇,j = ,j(Tpj)

with ,j = ,k, for  = 1, . . . , n and j, k = 1, . . . ,m.

Proof. Let ,j denote the proportion of species  in patch j. Assuming that x ∈ Smn
+ ,

consider the Lyapunov function

V(x) = −(x∗)>Ln
� x

x∗

�

. (5.22)

By Gibbs inequality, V() is positive on Smn
+ and is equal to zero only if x = x∗.

Taking the time derivative of V, we have

V̇(x) = −
m
∑

j=1

n
∑

=1

 

∗,j

,j

!

̇,j .
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From Eq. (5.17), it follows that

V̇(x) = −
m
∑

j=1

n
∑

=1

∗
,j

�

TY∗
�

pj

y∗

��


+

n
∑

=1

m
∑

j=1

∗,j

,j

�

BKB>
� r

z∗

��

j
.

As in the proof of Theorem 5.1, it can be verified that

m
∑

j=1

n
∑

=1

∗
,j

�

TY∗
�

pj

y∗

��


= 0

and
n
∑

=1

m
∑

j=1

∗,j

,j

�

BKB>
� r

z∗

��

j
=

n
∑

=1

y∗


�

z∗

r

�>

BKB>
� r

z∗

�

.

Thus,

V̇(x) =
n
∑

=1

y∗


�

z∗

r

�>

BKB>
� r

z∗

�

.

Since y∗ > 0 for  = 1, . . . , n, it follows from Lemma 5.1 that V̇(x) ≤ 0 and V̇(x) = 0
if and only if r = qz∗ with q ∈ R+ , for  = 1, . . . , n.

Thus,

,j = qz∗j , (5.23)

for  = 1, . . . , n and j = 1, . . . ,m. Since (1mn)>x = 1, we obtain

n
∑

=1

m
∑

j=1

,j =
n
∑

=1

q

m
∑

j=1

z∗
j
=

n
∑

=1

q = 1 .

Let E ⊂ Smn
+ be the set of all vectors x for which condition (5.23) is satisfied with

(1n)>q = 1. We now determine the largest subset of E that is positively invariant

w.r.t. System (5.17). Assume that x continuously takes values from E and satisfies

System (5.17). Since x takes values from E, we have ̇,j = z∗j q̇. Since x also

satisfies System (5.17), we have

̇,j = ,j
�

Tpj
�

 −
�

BKB>
�

r∗
z∗

��

j

= qz∗j
2(Tq) − q

�

BKB>1m
�

j = qz
∗
j
2(Tq) .

Thus, z∗j q̇ = qz
∗
j
2(Tq) which implies that

q̇ = z∗j q(Tq) , (5.24)

for  = 1, . . . , n and j = 1, . . . ,m. We now consider two cases.
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Case 1: The model is heterogeneous

The model is heterogeneous if the vector z∗ is not parallel to 1m. In this case,

Eq. (5.24) will be satisfied only if

q(Tq) = 0

for  = 1, . . . , n. Since q ∈ R+ for  = 1, . . . , n, it follows that

Tq = 0n .

Since (1n)>q = 1, we have q = y∗. This implies that

,j = y∗ z
∗
j
= ∗

,j

for  = 1, . . . , n and j = 1, . . . ,m.

Thus, the largest subset of E that is positively invariant w.r.t. System (5.17) consists

of just the unique equilibrium x∗ ∈ Smn
+ .

By LaSalle’s invariance principle, it follows that the equilibrium x∗ is locally asymp-

totically stable w.r.t. all initial conditions in Smn
+ in the neighbourhood of x∗, and

globally asymptotically stable w.r.t. all initial conditions in Smn
+ provided that Sys-

tem (5.17) is persistent.

Case 2: The model is homogeneous, i.e., z∗ = 1
m1

m

In this case, Eq. (5.24) takes the form q̇ =
q
m (Tq). We have

,j = qz∗j =
q

m

and

̇,j =
q̇

m
=

q

m2
(Tq) = ,j(Tpj) .

Consequently, the largest subset of E that is positively invariant w.r.t. Sys-

tem (5.17) consists of all vectors x(t) ∈ Smn
+ satisfying

̇,j = ,j(Tpj)

with ,j = ,k for  = 1, . . . , n and j, k = 1, . . . ,m.

The proof for Case 2 again follows from LaSalle’s invariance principle.

The above results can be illustrated by simulating System (5.17) for the metapop-

ulation models shown in Figs. 5.2 and 5.3 of Section 5.8. The results of the simula-

tions are shown in Figs. 5.4 and 5.5, respectively.
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Figure 5.4: Left: Dynamics of the metapopulation model in Fig. 5.2 for patches 1 and 3 showing asymp-
totic stability of the coexistence equilibrium. Right: The time evolution of the proportion of species 1 in
the three patches.
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Figure 5.5: Left: Dynamics of the metapopulation model in Fig. 5.3 for patches 1 and 3 showing a
limit cycle arising from the neutral stability of the coexistence equilibrium. Right: Time evolution of the
proportion of species 1 in the three patches. Note that the dynamics in all patches are the same and thus
the three graphs overlap.

5.10 Discussion and conclusion

In this chapter, we have expanded the class of competition networks for which

the numerical observations of Nagatani et al. (2018) are valid. This has been

done, firstly, by giving a more general definition of homogeneity/heterogeneity of

a metapopulation network that is based on the nature of the adjacency matrix

of its inter-patch migrations rather than on the number of dispersal links as was

previously done in Nagatani et al. (2018).

Secondly, we have performed a stability analysis of the coexistence equilibrium

of a metapopulation model whose inter-patch migration is assumed to be detailed
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balanced and whose intra-patch dynamics is governed by a mean-field ODE system

with a feasible (coexistence) equilibrium.

Detailed balancing, a well-known concept in CRNT, is a key feature of many

metapopulation models and previous studies had not explicitly explored this con-

cept. The motivation behind using concepts from CRNT is based on the fact that

much of the interesting dynamical behavior observed in biological systems can be

understood by analyzing the underlying chemical components and CRNT provides

a unified mathematical approach to the study of chemical processes.

The assumption of detailed balancing thus allows us to view the inter-patch mi-

grations as a detailed balanced single species mass action reaction network and

make use of the already available results on the latter.

Results show that the considered metapopulation model admits a unique coexis-

tence equilibrium. By making use of the Lyapunov function constructed by Grilli

et al. (2017), coupled with LaSalle’s invariance principle, it is shown that:

1. if the model is heterogeneous, then the coexistence equilibrium is locally

asymptotically stable; it is globally stable if the considered metapopulation

is persistent;

2. if the model is homogeneous and persistent, then the dynamics of the model

is analogous to that of a single well-mixed patch; in this case, the coexistence

equilibrium is neutrally stable.

These results provide a mathematical support for the numerical results of Nagatani

et al. (2018) and demonstrate that the numerical observations extend beyond the

three-species cyclic systems to a larger class of networks.

It should, however, be noted that, as in (Nagatani et al., 2018) and most metapop-

ulation models, the above results have been achieved by examining the simplified

case in which the patches are assumed to be spatially homogeneous and contain

a local population in which individuals are well mixed. In addition, it is assumed

that all the patches contain the same species.

Although this assumption is far from real metapopulations, it makes the mathe-

matical analysis tractable and provides a starting point for future analysis of more

realistic metapopulation models.

However, the results reaffirm the prevailing ecological theory that spatial hetero-

geneities in the landscape can have profound effects on the dynamics of popu-

lations within an environment. In the metapopulation framework, these hetero-

geneities come in many forms ranging from differences in dispersal rates among

the patches to patch size distributions, among others. Also the fact that frag-

mented habitats are more likely to present some level of spatial heterogeneity

underlies the importance of the metapopulation framework in studies for nature

conservation.
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6
Finite-difference schemes for
reaction-diffusion equations

modelling cyclic competition:
A stability analysis

The material of this chapter is based on the following publication:

• Muyinda, N., De Baets, B., and Rao, S. (2018). On the linear stability of some

finite difference schemes for nonlinear reaction-diffusion models of chemical

reaction networks. Communications in Applied and Industrial Mathematics,

9(1),121–140. https://doi.org/10.2478/caim-2018-0016

6.1 Introduction

In Chapter 5, we explored the dynamics of metapopulation models which provide

a useful theoretical framework for modelling the dynamics of populations living
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in highly fragmented landscapes composed of discrete habitat patches. If the

environment is a continuum (such as in aquatic systems), models of this type can

be constructed for very finely reticulated subdivisions of the continuum, and these

can provide very good approximations. However, for analysis of such situations, it

is generally more convenient to pass to the limit and replace discrete patch models

by continuum models. This replaces the metapopulation ODEs by a system of PDEs

(in particular, reaction-diffusion (RD) equations), and greatly reduces the number

of equations (Levin, 1976).

The simplest RD models considered take the general form

∂

∂t
= D∇2 + ƒ(1, . . . , n) , (6.1)

or, equivalently, in matrix form,

∂

∂t
= D∇2 + f() , (6.2)

where, as before,  = (x, t) is vector of species population densities at location x

at time t, D is a constant positive diagonal matrix of diffusion coefficients, ∇2 is the

Laplacian, and f() is a vector of functions representing the (in general, nonlinear)

reaction (interaction) terms. The choice of the reaction forms may vary ranging

from interactions governed by the simple law of mass-action to the somewhat

more complicated functional forms such as the Holling types II and III (Volpert and

Petrovskii, 2009).

A common procedure in analyzing the RD model system (6.2) is to assume con-

stant values of the parameters, and to study accordingly the asymptotic (long-

term) behaviour of the system. That is, to search for stable equilibrium points

and stable periodic solutions. In this regard, it is convenient to first consider the

corresponding ODE system by deleting the diffusion term from the model.

Studies have shown that, in the absence of diffusion and with no more than two

interacting species, every bounded solution tends either to a stable equilibrium or

to a stable periodic pattern (e.g., a limit cycle) (Hastings and Harrison, 1994; Levin,

1976). However, if the local equilibrium in the absence of diffusion is unstable,

adding diffusion to the model does not make it more stable (Hastings and Harrison,

1994). On the contrary, an equilibrium that is stable in the absence of diffusion can

become unstable after diffusion is included. This phenomenon is now well-known

as diffusion-driven instability (Turing, 1952).

Diffusion-driven instability, however, seems to contradict the predictions of the

metapopulation model, in which dispersal (in particular, heterogeneous migra-

tion) has a stabilizing effect on species coexistence since it moves the coexistence

equilibrium from the knife-edge neutral stability to local asymptotic stability. This

apparent contradiction comes from the focus on equilibrium behavior of the RD
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models. Studies have shown that within the RD framework, a predator-prey sys-

tem that would not persist in the absence of dispersal will persist with diffusion

added to the system (Nisbet et al., 1993). However, persistence is not via a stable

equilibrium but through cyclic or more complex dynamics (Hastings and Harrison,

1994).

Even in the absence of diffusion, it remains very hard, if not impossible, to solve a

nonlinear ODE system analytically. With the introduction of diffusion, the analysis

of the whole system remains difficult and is hence rare in the literature. Therefore,

numerical methods have an important part to play in investigating the behaviour

of solutions to such models.

Typically, finite-difference methods are used where the RD equation is first dis-

cretized in space, and then in time. These numerical methods can also be used

to get approximate population density values of species at each point of space at

every instant of time. A crucial question that arises in the use of these methods is

whether the method will behave stably or not.

The importance of stability in numerical analysis is stressed by the Lax–Richtmyer

equivalence theorem which states that, under certain natural assumptions, a fi-

nite difference scheme is convergent (i.e., approaches the unknown exact analytic

solution) if and only if it is stable. Here we use the term stability to designate

that any numerical errors, introduced at some stage of the computation, do not

magnify (blow up) over time. Obviously this is very important, since errors are an

inevitable property of any numerical solution. If the algorithm is not stable, then

numerical errors will be amplified with each time step and pretty soon they will

dominate the computation (making it useless).

In this chapter, we explore a mathematical problem concerned with stability of fi-

nite difference schemes for systems of coupled nonlinear RD equations. The aim

is to establish sufficient conditions for the stability of some popular finite differ-

ence schemes for the numerical solution of the general nonlinear RD model sys-

tem (6.2) in a one-dimensional spatial domain. The motivation for this stems from

the fact that majority of the sufficient conditions for the stability of finite difference

schemes in the literature have been established based on an analysis of systems

of linear diffusion equations (see, e.g., Thomas (1995)) and yet these conditions

are only necessary and not sufficient in the case of systems of RD equations. Since

most ecological competition networks involve at least two species, the RD models

of such networks are nonlinear systems due to mass-action type of interactions.

Thus this chapter is aimed at carrying out a rigorous study of stability of finite

difference schemes, applied to coupled nonlinear RD systems, something that has

been lacking in the literature.

To illustrate the results from the stability analysis, we shall study the numerical

solutions of two RD model systems, first from CRNT (the Brusselator model) and

second from population dynamics (the cyclic competition model).
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This chapter is organized as follows. We start with a linearization of the model

system (6.2) in Section 6.2. We then give a formal definition of stability of a finite

difference scheme in Section 6.3. In Section 6.4, we extend the scalar definitions

of the DFT and the von Neumann stability conditions given in Section 3.7.3 to

the multivariable (systems) case. Note that in the scalar case, the von Neumann

stability condition was both necessary and sufficient for stability. However, this

condition is only necessary but not sufficient in the systems case. In Section 6.5,

we give sufficient conditions for stability. Then, in Section 6.6, a local linear sta-

bility analysis of some popular finite difference schemes is carried out. We then

perform some numerical experiments in Section 6.7, on the Brusselator RD model

and a cyclic competition model. Finally, we show, in Section 6.8, that for RD sys-

tems whose reactions are governed by a variety of enzyme kinetic rate laws, some

of the established sufficient conditions are naturally satisfied implying that these

implicit schemes are expected to work for the solution of such RD systems. We

end the chapter with a discussion and conclusions in Section 6.9.

6.2 Linearization

As it has been stated, the von Neumann stability method makes use of Fourier

transforms and this restricts its application to linear equations with constant coef-

ficients, uniform grids and periodic boundary conditions (Wesseling, 2001). More-

over, because nonlinear problems have no known analytic solutions, analyzing the

stability of a finite difference scheme applied to a nonlinear problem like (6.2) can

be a complicated task. Thus, in most cases, the stability analysis of a finite dif-

ference scheme applied to a nonlinear problem is often reduced to an analysis of

stability of the difference scheme applied to the corresponding locally linearized

problem. However, although the linearization substantially simplifies the stability

analysis, conditions derived from the linear stability analysis may not necessarily

apply to the nonlinear problem. This is due to the fact that linear stability is a

necessary condition for nonlinear problems but is certainly not sufficient (Hirsch,

1988).

We have, so far, defined stability in terms of the boundedness of the errors in-

troduced during the application of the numerical method. Numerical stability can

also be defined in terms of the deviation between two numerical solutions. That is,

for a numerically stable scheme, the deviation between two numerical solutions

arising, for example, due to round-off error, does not grow with time. But the goal

of any numerical method is to generate numerical solutions that can closely match

the unknown analytical solutions. In this regard, stability of a difference scheme

can as well be discussed in terms of the deviation between two analytic solutions.

Using this framework, we proceed to perform a linearization of Eq. (6.2).

Suppose  and v are two analytical solutions to Eq. (6.2) that are close to each
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other. Then their difference satisfies

∂

∂t
( − v) = D∇2( − v) + f() − f(v) .

Define z :=  − v. A Taylor expansion of f() about v leads to

∂z

∂t
= D∇2z + Az + O(z2) ,

where A is the Jacobian matrix of f evaluated at v, and so at any instant in space

and time, it is a matrix of constants. When z is small, which corresponds to the

two solutions  and v being near each other, such that the O(z2) terms are small

compared to the linear term Az, the difference between the two solutions satisfies:

∂z

∂t
≈ D∇2z + Az . (6.3)

Equation (6.3) is the local linear approximation (or linearization) of Eq. (6.2) about

the solution v. In all the analyses of this chapter, we assume that the Jacobian A

is real with finite entries in the space and time domains under consideration.

6.3 The stability problem

We consider the initial-value problem for a system of linear RD equations given by

∂z

∂t
= D∇2z + Az , z(x,0) = z0(x) (6.4)

where z = (z1, . . . , zm)> and z = z(x, t), D is a positive diagonal matrix of diffusion

coefficients and A is a real constant matrix. For simplicity, we restrict Eq. (6.4) to a

one-dimensional spatial domain Ω ⊂ R for time t ∈ ]0, T [, although the results will

analogously hold in three spatial dimensions.

The von Neumann stability analysis requires a uniform grid, so let Δt denote the

time step and Δ the space step. The discrete set of points in space-time is given

by

j = jΔ , tn = nΔt ,

and the continuous function z is approximated by the grid function znj ,

zn
j
≈ z(j, tn) .
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The ℓ2 norm of the grid function zn is defined by

‖zn‖ℓ2 =
√

√

√Δ
∑

j

‖znj ‖
2
2 .

where the norm in the summation is the Euclidean norm defined as

‖z‖2 =

√

√

√

√

m
∑

j=1

|zj|2 .

A general two-step difference scheme of width N for the PDE in Eq. (6.4) at the

point (j, tn) takes the form

∑

|k|≤N
A1
k
zn+1
j+k =

∑

|k|≤N
A0
k
zn
j+k , (6.5)

where A1k and A0k are m × m constant matrices whose entries depend on the pa-

rameters of the PDE and the numerical scheme. A numerical solution of Eq. (6.4)

is obtained by solving the discrete equations (6.5). Thus the numerical solution

gives only approximate values of the exact solution of the PDE at the grid points.

This approximation introduces a number of errors such as truncation and round-

off errors. A good numerical solution is one for which the error is small in some

sense (Liska and Steinberg, 1993). When the numerical error in the solution in-

creases with increasing time, the solution may begin to oscillate with larger and

larger amplitudes and consequently become unstable.

Intuitively, a numerical scheme is stable when the errors are not amplified with

increasing time. More precisely, stability requires that for 0 ≤ t = nΔt ≤ T, there

exists a positive constant K such that

‖zn+1
j
‖ℓ2 ≤ K‖z

n
j
‖ℓ2 . (6.6)

Here K is independent of the step sizes and n but may depend on any other pa-

rameters in the PDE or the discretization scheme. Because of the time-translation

invariance, condition (6.6) only needs to hold for n = 0 (Liska and Steinberg,

1993). It should also be noted that stability is purely a property of the difference

scheme (6.5) and has nothing to do with the original initial-value problem (6.2).

6.4 The von Neumann stability criterion

We now proceed to establish the condition under which relation (6.6) holds, i.e.,

the stability condition. We have already stated that the standard tool for achieving
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this is the von Neumann stability analysis, which makes use of the discrete Fourier

transform (DFT).

In Section 3.7.3, we have defined the DFT, the amplification matrix and also stated

the von Neumann stability condition in the scalar case. We proceed to extend

these definitions to the multivariable (or systems) case.

Suppose that z = (. . . ,z−1,z0,z1, . . .)> with zj =
�

z1j , . . . , zmj

�>
is a vector in ℓ2.

We define the discrete Fourier transform ẑ of z as follows (Thomas, 1995);

ẑ(ξ) =
1
p
2π

∑

j∈Z
e−jξzj (6.7)

for ξ ∈ [−π, π]. The inverse discrete Fourier transform is given by

zj =
1
p
2π

∫ π

−π
ejξẑ(ξ)dξ (6.8)

for −∞ < j <∞.

Like in Section 3.7.3, the DFTs of the shift operators are given by

ÕS±z(ξ) = e±ξẑ(ξ) . (6.9)

The approach that we use to analyze the stability is to take the DFT of Eq. (6.5) to

get
∑

|k|≤N
A1
k
ekξẑn+1 =

∑

|k|≤N
A0
k
ekξẑn . (6.10)

Assuming that the matrix
∑

|k|≤N A
1
ke

kξ is invertible, which is not a significant re-

striction, and from (6.10) we have

ẑn+1(ξ) = G(ξ)ẑn , (6.11)

where

G(ξ) =

 

∑

|k|≤N
A1
k
ekξ

!−1  
∑

|k|≤N
A0
k
ekξ

!

. (6.12)

The matrix G(ξ) is called the amplification matrix of the difference scheme (6.5),

and reduces to the previously defined amplification factor when there is only one

equation to be discretized. Notice that

ẑn+1(ξ) = G(ξ)ẑn

= Gn+1(ξ)ẑ0 .
(6.13)
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So, the growth of ẑn (and zn) and, hence, the stability of the difference scheme,

depends on the growth of the amplification matrix raised to the n-th power, Gn.

In using the DFT, we have transformed our problem from the solution space (ℓ2-

space) containing numerical spatial derivatives to a problem with no spatial vari-

ation in a vector L2-space (the transform space). Then, by Parseval’s identity

(‖z‖2 = ‖ẑ‖2 where the first two-norm is the vector ℓ2 norm and the second two-

norm is the vector L2 norm on [−π, π]), an equivalent form of the stability inequal-

ity (6.6) reads

‖ẑn+1‖2 ≤ K‖ẑn‖2 . (6.14)

In order for all ẑn (and hence zn) to remain bounded, and hence the difference

scheme (6.5) to be stable, requires that the matrix [G(ξ)]n remains uniformly

bounded for all values of ξ. Establishing bounds makes use of the matrix norm

‖G‖2 =mx
z 6=0

‖G · z‖2
‖z‖2

.

Since G is an m×m matrix with m eigenvalues λ1, . . . , λj, . . . , λm obtained as roots

of a polynomial

det |G − λ| = 0 , (6.15)

its spectral radius is defined by the modulus of the largest eigenvalue:

ρ(G) =mx
j
|λj| . (6.16)

From linear algebra, it is known that

‖G‖2 ≥mx
j

‖Gvj‖2
‖vj‖2

=mx
j
|λj| = ρ(G) , (6.17)

where vj are the eigenvectors of G, and

‖G‖n
2
≥ ‖Gn‖2 ≥ ρn(G) . (6.18)

In addition, for any matrix A, ‖A‖2 =
p

ρ(A∗A), where A∗ is the conjugate trans-

pose of A. If A is a real symmetric matrix, then A∗ = A such that ρ(A∗A)ρ(A2) =
ρ2(A), and thus ‖A‖2 = ρ(A).

The von Neumann stability criterion requires that for a stable scheme, the spectral

radius of the amplification matrix satisfies (Richtmyer and Morton, 1967)

ρ(G) ≤ 1 + CΔt , (6.19)

for finite Δt, C ≥ 0 and for all ξ ∈ [−π, π].
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Using the von Neumann criterion (6.19) with a nonzero C allows for exponential

growth in the solution. Although any growth in the solution is viewed as the

scheme tending towards instability, this is special since this growth is less than

or equal to an exponential (Thomas, 1995). Generally, this stability condition is

only necessary. It is also sufficient, for example, in the scalar case (m = 1).

Verifying the sufficient condition is usually an even more complicated problem. In

any case, the necessary condition for stability gives substantial insight into the

stability properties of the difference scheme.

6.5 Sufficient conditions for stability

An attempt at establishing sufficient conditions for stability can be achieved by

making use of the next two propositions and lemma.

Proposition 6.1 (Richtmyer and Morton, 1967, p. 84). Suppose that the am-

plification matrix G associated with the difference scheme (6.5) satisfies the von

Neumann condition (6.19). Then, if G is “uniformly diagonalizable", that is, for

each G, there exists a matrix S such that S−1GS = Λ is diagonal and S and S−1 are

bounded independent of ξ and Δt , then the scheme is stable.

Proposition 6.2 (Horn and Johnson, 2013, p. 368). There is a matrix norm ‖ · ‖s
such that ‖A‖s = ρ(A) if and only if every eigenvalue of A of maximum modulus is

semisimple. That is, for all λ ∈ σ(A) such that |λ| = ρ(A), the algebraic multiplicity

of λ is equal to its geometric multiplicity. We call ‖ · ‖s the spectral radius norm.

Lemma 6.1. Let B be an n-square matrix. Suppose that B is uniformly diag-

onalizable such that S−1BS is a diagonal matrix, for some nonsingular matrix

S. Furthermore, suppose there exists a constant δ such that 4 ≥ δ > 0, where

42 := det (S∗S), S∗ is the conjugate transpose of S, then the matrix S together

with its inverse are uniformly bounded.

Proof. Since B is diagonalizable, the columns of the matrix S are the linearly

independent eigenvectors of B. Assume that the eigenvectors are normalized.

The norm of any n-square matrix does not exceed n times the absolute value of

its largest element (Richtmyer and Morton, 1967). Thus ‖S‖2 ≤ n. In addition,

|(S−1)j| ≤ 1/4 (Richtmyer and Morton, 1967), and since 4 is bounded away from

zero, then ‖S−1‖2 ≤ n/4. Thus the matrices S and S−1 are uniformly bounded.

In addition, we shall also make use of the concept of semi-stability, and D-semi-

stability, of matrices in our attempt to establish sufficient conditions for stability.

By definition, an n-square matrix A is said to be stable (semi-stable) if every eigen-

value of A has a negative (non-positive) real part. It is said to be semi-stable if
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every eigenvalue of A has a non-positive real part. It is said to be D-stable (D-

semi-stable) if for all positive diagonal matrices D, the matrix DA is stable (semi-

stable) (Horn and Johnson, 2013). Note that if a matrix A is D-semi-stable, then

A = A is semi-stable, where  is the identity matrix. Thus D-semi-stability implies

semi-stability.

6.6 Stability of difference schemes

We are now in a position to establish sufficient conditions for the stability of some

popular difference schemes used for the solution of Eq. (6.2). We shall assume that

the matrix A in the linearized Eq. (6.4) is real with finite entries. Thus any matrix

norm of A is bounded by the size of A times the absolute value of its largest ele-

ment (Richtmyer and Morton, 1967), which implies that the matrix A is bounded.

We shall make use this fact.

We shall perform a stability analysis of the Crank–Nicolson (CN) scheme, the frac-

tional step theta scheme (FSTS), the implicit integration factor (IIF) scheme and an

implicit-explicit (IMEX) scheme.

6.6.1 The Crank–Nicolson scheme

The Crank-Nicolson (CN) scheme is a second order accurate in time implicit

scheme commonly employed for the time integration of initial-value problems. A

CN scheme for the linearized Eq. (6.4) in a one-dimensional spatial domain is

1

Δt
(zn+1

j
− zn

j
) =

1

2Δ2
D
h�

zn+1
j+1 − 2z

n+1
j
+ zn+1

j−1

�

+
�

zn
j+1 − 2z

n
j
+ zn

j−1

�i

+
1

2
A
�

zn+1
j
+ zn

j

�

.

(6.20)

Equation (6.20) can be rewritten as

�

 + rD −
Δt

2
A

�

zn+1
j
−
r

2
D(S+zn+1j

+ S−zn+1j
) =

�

 − rD +
Δt

2
A

�

zn
j
+
r

2
D(S+znj + S−z

n
j
) ,

(6.21)

where r :=
Δt

Δ2
.

Taking the discrete Fourier transform of Eq. (6.21) gives

�

 + 2r sin2
�

ξ

2

�

D −
Δt

2
A

�

ẑn+1 =
�

 − 2r sin2
�

ξ

2

�

D +
Δt

2
A

�

ẑn . (6.22)
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Thus, from Eq. (6.22), the amplification matrix for the CN scheme is given by

G =
�

 + pD −
Δt

2
A

�−1 �

 − pD +
Δt

2
A

�

, (6.23)

where p := 2r sin2
�

ξ
2

�

≥ 0 for ξ ∈ [−π, π].

Let us rewrite G in the form

G =
�

 −
Δt

2
( + pD)−1A

�−1
( + pD)−1

�

 − pD +
Δt

2
A

�

. (6.24)

Since D is a positive diagonal matrix, ( + pD) and its inverse are both positive

diagonal and invertible. It is known, from linear algebra, that every n-square ma-

trix is similar to a matrix in Jordan canonical form. That is, if λ1, λ2, . . . , λk are the

distinct eigenvalues of ( + pD)−1A, there exists a nonsingular matrix S such that

( + pD)−1A = SJS−1 , (6.25)

where J is the Jordan canonical form of ( + pD)−1A, and takes the form

J = diag(Jn1 , Jn2 , . . . , Jn ) ,

with  ≥ k and each Jn is a square Jordan block of size n having eigenvalue λ on the

diagonal, 1’s on the superdiagonal and zeros elsewhere, and n1 + n2 + · · ·+ n =m,

the size of G.

Substituting (6.25) in (6.24), the amplification matrix G can be written as

G = XY +
Δt

2
XH , (6.26)

where

X := S
�

 −
Δt

2
J

�−1
S−1 ,

Y := ( + pD)−1( − pD) , and

H := ( + pD)−1A .

(6.27)

Since D = diag(d1, d2, . . . , dm), Y is a diagonal matrix, with diagonal entries

yj =
1 − pdj
1 + pdj

, j = 1,2, . . . ,m . (6.28)

The next theorem establishes sufficient conditions for the stability of the CN

scheme (6.20).

Theorem 6.1. Suppose that the matrix A is D-semi-stable, matrix G is diagonal-
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izable and matrix X is such that every eigenvalue of maximum modulus is semi-

simple. Then

(i) matrix G satisfies the von Neumann condition, and

(ii) the CN scheme (6.20) is unconditionally stable.

Proof. (i) Taking the spectral radius norm of G in Eq. (6.26), we have

‖G‖s ≤ ‖X‖s‖Y‖s +
Δt

2
‖X‖s‖H‖s . (6.29)

Since Y is a diagonal matrix, Proposition 6.2 implies that ‖Y‖s = ρ(Y).

Since pdj ≥ 0, the eigenvalues of Y are its diagonal entries given by

yj =
1 − pdj
1 + pdj

and satisfy |yj| ≤ 1 for all j = 1,2, . . . ,m. Thus ρ(Y) ≤ 1.

From Eq. (6.27), the eigenvalues of X are the same as the eigenvalues of

�

 −
Δt

2
J

�−1
.

If A is D-semi-stable, all the eigenvalues of J, which are, of course, the eigenvalues

of ( + pD)−1A, have non-positive real parts. Thus, for any Δt, if μ is an eigenvalue

of
�

 − Δt
2 J
�

, then Re(μ) ≥ 1. This implies that |μ| ≥ 1. Hence any eigenvalue of
�

 − Δt
2 J
�−1

, given by 1/μ will satisfy |μ−1| ≤ 1. Thus ρ(X) ≤ 1.

Since G is diagonalizable and X is such that every eigenvalue of maximum modulus

is semi-simple, from Proposition 6.2, we have ‖G‖s = ρ(G) and ‖X‖s = ρ(X). Thus

Eq. (6.29) reduces to

ρ(G) ≤ ρ(X)ρ(Y) +
Δt

2
ρ(X)‖H‖s

≤ 1 +
Δt

2
‖H‖s .

(6.30)

Since ( + pD)−1 is a positive diagonal matrix for any p ∈ [0,2r] and matrix A is

bounded, matrix H = ( + pD)−1A is bounded. Let us denote this bound by 2C for

some positive constant C. Then Eq. (6.30) reduces to

ρ(G) ≤ 1 + CΔt .

(ii) Since G is diagonalizable and satisfies the von Neumann condition in (i), the

proof follows from Lemma 6.1 and Proposition 6.1.
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Thus, although the CN scheme has been proven to be linearly unconditionally sta-

ble for the linear diffusion equation, this cannot be established for the full RD

equation unless some reasonable assumptions are made. In our case, we have

proved this by making the assumption that the Jacobian matrix A of the reaction

part is D-semi-stable, the amplification matrix is diagonalizable and the matrix

X :=
�

 − Δt
2 ( + pD)

−1A
�−1

is such that every eigenvalue of maximum modulus is

semi-simple.

The assumption of diagonalizability is reasonable since the set of real matrices

that are diagonalizable within Mn(C) is dense in Mn(R) (Serre, 2010, p. 87). The

assumption of the maximum absolute eigenvalue being semi-simple is even less

restrictive than the diagonalizability assumption. D-semi-stability will be proven

for RD systems whose reaction terms are governed by a variety of enzyme kinetic

rate laws

6.6.2 The fractional step theta scheme

The fractional step theta scheme (FSTS) is an operator splitting technique for the

time integration of initial-value problems of the form

t = A(), (0) = 0 , (6.31)

where A is a nonlinear operator that has a nontrivial decomposition

A = A1 + A2 . (6.32)

For RD equations, operators A1 and A2 are the diffusion and reaction terms, re-

spectively.

Let θ ∈ ]0,1/2[, divide the time interval [n, n+1] into three sub-intervals [n, n+θ],
[n + θ, n + 1 − θ] and [n + 1 − θ, n + 1]. An FSTS for the linearized Eq. (6.4) in a

one-dimensional spatial domain is given by

zn+θj − znj
θΔt

=
1

Δ2
D
�

zn+θ
j+1 − 2z

n+θ
j
+ zn+θ

j−1

�

+ Azn
j
,

zn+1−θj − zn+θj

(1 − 2θ)Δt
=

1

Δ2
D
�

zn+θ
j+1 − 2z

n+θ
j
+ zn+θ

j−1

�

+ Azn+1−θj ,

zn+1j − zn+1−θj

θΔt
=

1

Δ2
D
�

zn+1
j+1 − 2z

n+1
j
+ zn+1

j−1

�

+ Azn+1−θj .

(6.33)

Using an eigenvalue analysis and assuming the operator A in Eq. (6.31) to be

a constant N × N matrix, symmetric and positive definite, and where A1,A2 in
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Equation (6.32) are given by A1 = αA, A2 = βA, with α + β = 1,0 < α,β < 1,

Glowinski (2003) showed that the FSTS is second order accurate in time if θ =
1 − 1/

p
2, otherwise the scheme is first order accurate in time.

This can also be confirmed for the FSTS given in Eq. (6.33) by multiplying the

first and last equations in (6.33) by θΔt and the second equation by (1 − 2θ)Δt,
summing up the three equations and carrying out a Taylor series expansion about

the point (n + 1/2, j).

To perform a stability analysis of the FSTS (6.33), let us first rewrite the three

equations in the form

( + 2rθD)zn+θ
j
− rθD(zn+θ

j+1 + z
n+θ
j−1 ) = ( + θΔtA)z

n
j
,

( − (1 − 2θ)ΔtA)zn+1−θj = ( − 2(1 − 2θ)rD)zn+θ
j
+ (1 − 2θ)rD(zn+θ

j+1 + z
n+θ
j−1 ) ,

( + 2rθD)zn+1
j
− rθD(zn+1

j+1 + z
n+1
j−1 ) = ( + θΔtA)z

n+1−θ
j ,

where, as before, r = Δt/Δ2.

Now taking the discrete Fourier transform of the above three equations and com-

bining the resulting equations gives

ẑn+1 =
�

 + 4rθ sin2(
ξ

2
)D
�−1

( + θΔtA) ( − (1 − 2θ)ΔtA)−1

�

 − 4r(1 − 2θ) sin2(
ξ

2
)D
��

 + 4rθ sin2(
ξ

2
)D
�−1

( + θΔtA) ẑn .

(6.34)

From Eq. (6.34), it is clear that the amplification matrix for the FSTS is given by

G =
�

 + 4rθ sin2
�

ξ

2

�

D

�−1
( + θΔtA) ( − (1 − 2θ)ΔtA)−1

�

 − 4r(1 − 2θ) sin2
�

ξ

2

�

D

��

 + 4rθ sin2
�

ξ

2

�

D

�−1
( + θΔtA) .

(6.35)

We already saw in Section 3.7.6 that, in the scalar case (m = 1), the FSTS scheme

is linearly unconditionally stable provided that the derivative, , of the reaction

part evaluated at any positive solution is nonpositive ( ≤ 0) and θ ∈ [1/4,1/3].
In the multivariable case where m > 1 and G given by Eq. (6.35), we can only

establish linear unconditional stability for the case when θ = 1
3 .

In this case, matrix G reduces to

G = PQR
�

 +
1

3
ΔtA

�

, (6.36)
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where

P :=
�

 +
4

3
r sin2

�

ξ

2

�

D

�−1
,

Q :=
�

 +
1

3
ΔtA

��

 −
1

3
ΔtA

�−1
, and

R :=
�

 −
4

3
r sin2

�

ξ

2

�

D

��

 +
4

3
r sin2

�

ξ

2

�

D

�−1
.

(6.37)

Sufficient conditions for the stability of the FSTS when θ = 1/3 are established in

the next theorem.

Theorem 6.2. Consider the amplification matrix G in Eq. (6.36). Assume that G

is diagonalizable, matrix A is semi-stable and matrix Q in (6.37) is such that every

eigenvalue of maximum modulus is semi-simple. Then

(i) G satisfies the von Neumann condition, and

(ii) the FSTS with θ = 1
3 is unconditionally stable.

Proof. (i) Taking the spectral radius norm of G, we have

‖G‖s ≤ ‖P‖s‖Q‖s‖R‖s
�

1 +
1

3
Δt‖A‖s

�

. (6.38)

Since G is diagonalizable, P and R are diagonal and Q is such that every eigenvalue

of maximum modulus is semi-simple, by using Proposition 6.2, Eq. (6.38) reduces

to

ρ(G) ≤ ρ(P)ρ(Q)ρ(R)(1 +
1

3
‖A‖sΔt) . (6.39)

Since matrix A is bounded, let us denote its bound by 3C, where C is some non-

negative constant. Equation (6.39) reduces to

ρ(G) ≤ ρ(P)ρ(Q)ρ(R)(1 + CΔt) . (6.40)

Matrices P and R are both diagonal with entries, and hence eigenvalues,

μ =
1

1 + 4
3 rd sin

2
�

ξ
2

�

and

ν =
1 − 4

3 rd sin
2
�

ξ
2

�

1 + 4
3 rd sin

2
�

ξ
2

� ,

respectively, for  = 1, . . . ,m.
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Since d > 0, it is clear that both |μ| ≤ 1 and |ν| ≤ 1. Hence

ρ(P) ≤ 1 and ρ(R) ≤ 1 . (6.41)

To find ρ(Q), let J be the Jordan canonical form of A. There exists a nonsingular

matrix S such that A = SJS−1. Matrix Q can then be written as

Q = S
�

 +
1

3
ΔtJ

��

 −
1

3
ΔtJ

�−1
S−1 .

The eigenvalues of Q are the same as the eigenvalues of

�

 +
1

3
ΔtJ

��

 −
1

3
ΔtJ

�−1
.

Let λ1, . . . , λk be the distinct eigenvalues of A. The matrices

�

 +
1

3
ΔtJ

�

and
�

 −
1

3
ΔtJ

�−1

are both upper triangular with diagonal entries 1 +
1

3
Δtλj and 1 − 1

3Δtλj, respec-

tively. Thus the matrix
�

 + 1
3ΔtJ

� �

 − 1
3ΔtJ

�−1
is also upper triangular with distinct

eigenvalues

δj =
1 +

1

3
Δtλj

1 −
1

3
Δtλj

, j = 1, . . . , k .

Since matrix A is semi-stable, that is, Re(λj) ≤ 0 for all j, then |δj| ≤ 1 for all j.

Hence

ρ(Q) ≤ 1 . (6.42)

Combining Eqs. (6.40) to (6.42) leads to

ρ(G) ≤ 1 + CΔt . (6.43)

(ii) Proceeds as in the proof for Theorem 6.1 part (ii).
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6.6.3 The implicit integration factor method

The implicit integration factor (IIF) method is a semi-implicit exponential integrator

method due to Nie et al. (2006). In the IIF method, like in all exponential integrator

methods, stiffness arising due to the discretization of the spatial diffusion term is

overcome by evaluating the diffusion term exactly whereas the stiffness due to the

reactions is handled by carrying out an implicit treatment of the nonlinear reaction

terms. In the single variable case, this method has been proven to be linearly

unconditionally stable (Nie et al., 2006).

To derive an IIF scheme, we make use of the ODE model system arising out of the

method of lines application to the RD system (6.2). That is, the spatial discretiza-

tion of (6.2) which reduces the PDE to a semi discrete form, consisting of a system

of nonlinear ODEs in time,

t = C + F() . (6.44)

Here C is a constant matrix arising out of the discretization of the Laplacian plus

boundary conditions and F() is a vector of the nonlinear reaction terms evaluated

at the grid points.

To derive an IIF method, start by multiplying Eq. (6.44) by an integrating factor

e−tC and then integrating over a single time step from t = tn to t = tn+1 = tn + Δt
to obtain

(tn+1) = eΔtC(tn) + eΔtC
∫ Δt

0
e−τCF((tn + τ)) dτ . (6.45)

This formula is exact and various exponential integrator methods arise from the

choice of approximation of the integral in Eq. (6.45). For example, in the exponen-

tial time differencing (ETD) scheme of Cox and Mathews (2002), the integrand is

approximated first through interpolation polynomials of the function F((tn + τ))
with e−τC unchanged. Then a direct integration of the interpolation polynomial

with coefficient e−τC yields the ETD method.

In the case of IIF, the whole integrand e−τCF((tn+τ)) is approximated by an inter-

polation polynomial and a direct integration of the polynomial is done. The scheme

will be explicit if the interpolation points used for the integrand are tn, tn−1, tn−2, . . .

and implicit when the interpolation points contain tn+1.

Define the vector G(τ) = e−τCF((tn + τ)), to be the integrand in Eq. (6.45). To

construct an r-th order accurate IIF scheme, we approximate G(τ) with an (r − 1)-
th degree Lagrange interpolation polynomial, P(τ), valid on the interval 0 ≤ τ ≤ Δt,
using interpolation points at tn+1, tn, . . . , tn+2−r , where tn+ = tn + Δt. Using the

substitution τ = t − tn, we have G(t) = e−(t−tn)CF((t)) and using the notation
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(tn) = n, we have the Lagrange interpolation polynomial

P(t) =
r−2
∑

=−1
G(tn−)

r−2
∏

j=−1
j 6=

t − tn−j
tn− − tn−j

=
r−2
∑

=−1
eΔtCF(n−)

r−2
∏

j=−1
j 6=

t − tn + jΔt

(j − )Δt
. (6.46)

Thus we have

P(τ) =
r−2
∑

=−1
eΔtCF(n−)

r−2
∏

j=−1
j 6=

τ+ jΔt

(j − )Δt
. (6.47)

Equation (6.45) can then be written as

n+1 = eΔtCn + eΔtC
∫ Δt

0
P(τ)dτ . (6.48)

For the second order IIF scheme (r = 2), we have,

P(τ) =
1

Δt

�

τe−ΔtCF(n+1) + (Δt − τ)F(n)
�

.

Substituting in (6.48) and integrating results into the second order IIF scheme (IIF2)

n+1 = eΔtC
�

n +
Δt

2
F(n)

�

+
Δt

2
F(n+1) . (6.49)

By computing boundaries for the stability region, Nie et al. (2006), proved that, in

the case of a scalar equation (where m = 1), the second order IIF scheme is linearly

unconditionally stable. We use a direct approach to establish sufficient conditions

for the linear stability of this scheme in the multivariable case (m> 1).

For the stability analysis, we consider the linearized PDE (6.4) in one spatial di-

mension. Its discretization in space using a central difference scheme on a grid

with N internal grid points and assuming z = 0 at the boundary, we have

∂zk

∂t
=

1

Δ2
D (zk−1 − 2zk + zk+1) + Azk , k = 1,2, . . . , N, (6.50)

where zk = [z1k , z2k , . . . , zmk ]
>. Here the first subscript represents the index of

the chemical species whereas the second subscript represents the grid point. The

boundary condition implies that z0 = zN+1 = 0. The linear system (6.50) is a

system of Nm equations in Nm unknowns.

Rearrange the equations in (6.50) so that the first N equations are time derivatives

of z1 at the N grid points, the next N equations are for z2, and so on. Then system
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(6.50) can be written in matrix form as

Zt = CZ + AZ , (6.51)

where Z = [z11 , . . . , z1N , . . . , zm1 , . . . , zmN ]
> ∈ RNm, C is an Nm-square block diago-

nal matrix arising due to diffusion and is given by

C = diag(B1, B2, . . . , Bm) with B =
d

Δ2















−2 1 0

1
. . .

. . .

. . .
. . . 1

0 1 −2















N×N

, (6.52)

and A is a block matrix with blocks of size N, arising due to reaction, and is given

by

A =











11N 12N · · · 1mN
21N 22N · · · 2mN

· · · · · ·
m1N m2N · · · mmN











(6.53)

where N is the identity matrix of size N, j is the j-entry of the Jacobian matrix A.

We can express matrix A as a Kronecker product which we define below (Laub,

2005).

Definition 6.1. Let A ∈ Rm×n, B ∈ Rp×q. The Kronecker product of A and B is

defined as the matrix

A ⊗ B =







11B · · · 1nB
...

. . .
...

m1B · · · mnB






∈ Rmp×nq

Thus the matrix A in (6.53) can be written as

A = A ⊗ N . (6.54)

To determine the eigenvalues of A, we shall make use of the following theorem.

Theorem 6.3 (Laub, 2005, p. 141). Let A ∈ Rn×n have eigenvalues λ1, λ2, . . . , λn
and let B ∈ Rm×m have eigenvalues μ1, μ2, . . . , μm. Then the mn eigenvalues of

A ⊗ B are λ1μ1, . . . , λ1μm, λ2μ1, . . . , λ2μm, . . . , λnμm.

We are now in position to analyze the stability of the second order IIF scheme (6.49)
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when applied to the linear system (6.51). This scheme takes the form

�

 −
Δt

2
A
�

Zn+1 = eΔtC
�

 +
Δt

2
A
�

Zn , (6.55)

where C is given by (6.52) and A = A ⊗ N.

Assume that the matrix A is semi-stable. Then the matrix  − Δt
2 A is nonsingular,

and Eq. (6.55) can be written in the form

Zn+1 =
�

 −
Δt

2
A
�−1

eΔtC
�

 +
Δt

2
A
�

Zn = QZn , (6.56)

where Q :=
�

 − Δt
2 A

�−1
eΔtC

�

 + Δt
2 A

�

.

Notice that since we have not employed Fourier transforms, Eq. (6.56) does not

contain an amplification matrix. Thus, Proposition 6.1 that was used for the CN

and FSTS cannot be applied to establish sufficient conditions for the stability of the

second order IIF scheme. We shall instead make use of the following proposition.

Proposition 6.3 (Thomas, 1995, Proposition 3.1.14). Suppose Q is similar to a

symmetric matrix P, i.e., there exists a nonsingular matrix S such that Q = SPS−1.

If ‖S‖ and ‖S−1‖ are uniformly bounded for any matrix norm ‖ · ‖, a necessary and

sufficient condition for the stability of the scheme (6.56) is that ρ(Q) ≤ 1 + βΔt for

some non-negative β, where ρ(Q) is the spectral radius of Q.

Define X :=
�

 − Δt
2 A

�−1
and Y := eΔtC . Matrix Q can be written as

Q = XY( +
Δt

2
A), where A = A ⊗ N . (6.57)

Sufficient conditions for the stability of the IIF scheme are established below.

Theorem 6.4. Suppose that matrix Q in Equation (6.57) is diagonalizable, the

Jacobian matrix A is semi-stable and matrix X is such that every eigenvalue of

maximum modulus is semi-simple. Then

(i) there exists a nonzero constant β such that ρ(Q) ≤ 1 + βΔt, and

(ii) the second order IIF scheme Zn+1 = QZn is unconditionally stable.

Proof. (i) Applying the spectral radius norm on Eq. (6.57), we have

‖Q‖s ≤ ‖X‖s‖Y‖s(1 +
Δt

2
‖A‖s) . (6.58)

Since Q is diagonalizable and X is such that every eigenvalue of maximum modulus

is semi-simple, Proposition 6.2 implies that ‖Q‖s = ρ(Q) and ‖X‖s = ρ(X).
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To find ρ(X), let λ1, λ2, . . . , λk be the distinct eigenvalues of the Jacobian matrix A.

From Theorem 6.3, λ1, λ2, . . . , λk will also be the distinct eigenvalues of A = A⊗ N.

Let J be the Jordan canonical form of A. There exists a nonsingular matrix S such

that A = SJS−1. Matrix X can then be written as

X = S( −
Δt

2
J)−1S−1 .

The eigenvalues of X are the same as the eigenvalues of ( − Δt
2 J)

−1.

Since matrix A is semi-stable, the distinct eigenvalues of ( − Δt
2 J), given by

1 −
Δt

2
λ1,1 −

Δt

2
λ2, . . . ,1 −

Δt

2
λk ,

have positive real parts greater than or equal to 1. Hence |1 − Δt
2 λ| ≥ 1 for all 

and for any Δt. Therefore all the distinct eigenvalues of ( − Δt
2 J)

−1, which are in

fact the eigenvalues of X, and given by

(1 −
Δt

2
λ1)−1, (1 −

Δt

2
λ2)−1, . . . , (1 −

Δt

2
λk)−1 ,

have modulus less than or equal to 1. Thus

ρ(X) ≤ 1 . (6.59)

For matrix Y := eΔtC, matrix ΔtC is real and block diagonal given by Eq. (6.52) with

each B multiplied by Δt. Thus Y is a real block diagonal matrix given by

Y = diag
�

eΔtB1 , eΔtB2 , . . . , eΔtBm
�

.

Since each of the matrices Bj is real symmetric, each of the matrices eΔtBj is also

real symmetric and therefore Y is a real symmetric block diagonal matrix.

We know from linear algebra that every real symmetric matrix is diagonalizable.

This implies that every eigenvalue of Y is semi-simple and thus from Proposi-

tion 6.2,

‖Y‖s = ρ(Y) .

The spectrum of a block diagonal matrix is the union of the spectra of the diagonal

blocks (Dasgupta, 2006). Thus the set of eigenvalues of Y is the union of the sets

of eigenvalues of

eΔtBj , j = 1, . . . ,m .

Note that the matrices ΔtBj are symmetric tridiagonal and thus can be diagonal-

ized. That is, there exists a nonsingular Ej such that ΔtBj = EjΛjE
−1
j , where Λj is
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diagonal with diagonal entries being the eigenvalues of ΔtBj. Thus

eΔtBj = EjeΛjE
−1
j and eΛj = diag

�

eμ1 , eμ2 , . . . , eμN
�

,

where μk is an eigenvalue of ΔtBj, k = 1, . . . , N. The eigenvalues of ΔtBj are given

by

μk = −2rdj + 2rdj cos (θk) = −4rdj sin2
�

θk

2

�

,

where θk =
kπ
N+1 and r = Δt

Δ2
. Thus

0 < eμk = e−4rdj sin
2
�

θk
2

�

≤ 1 k = 1, . . . , N .

Hence

ρ(eΔtBj ) ≤ 1 for j = 1, . . . ,m, which implies ρ(Y) ≤ 1 . (6.60)

Combining Eqs. (6.58) to (6.60), we have

ρ(Q) ≤ 1 +
Δt

2
‖A‖s .

Since matrix A is a constant matrix of size Nm, ‖A‖s is bounded by Nm times the

absolute value of its largest element (Richtmyer and Morton, 1967). Let us denote

this bound by 2β. Thus we have

ρ(Q) ≤ 1 + βΔt .

(ii) Since Q is diagonalizable and satisfies part (i) above, the proof follows from

Lemma 6.1 and Eq. (3.73).

6.6.4 Implicit-explicit (IMEX) methods

We have already stated that the spatial discretization of a PDE system under the

method of lines approach may result in a stiff system of ODEs which requires more

restrictive stability conditions on the spatial term than other terms. Stiff problems

abound in nature, and could also arise when modelling a coupled set of physical

systems, wherein each physical process operates at a slightly different time scale.

For such problems, instead of employing a single explicit or implicit method, on

the full problem (6.44), a more reasonable approach is to apply an explicit method

on the non-stiff portion (the nonlinear reaction terms) and an implicit method to

the stiff portion (the linear diffusion).

Such methods abound in the scientific literature, where scientists often somewhat

arbitrarily combine their favorite explicit and implicit methods together to form
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an implicit-explicit (IMEX) method. IMEX methods, in the case of nonlinear RD

systems, have the advantage that the resulting algebraic system is linear and can

thus be solved without the need for nonlinear iterative solvers which makes the

computation cheaper compared to a fully implicit scheme. For details on IMEX

methods, we refer to (Wang et al., 2015; Ascher et al., 1995).

An IMEX scheme for the linearized Eq. (6.4) in a one-dimensional spatial domain is

1

Δt
(zn+1

j
− zn

j
) =

1

Δ2
D
�

zn+1
j+1 − 2z

n+1
j
+ zn+1

j−1

�

+ Azn
j
. (6.61)

Equation (6.61) can be written as

( + 2rD)zn+1
j
− rD(zn+1

j+1 + z
n+1
j−1 ) = ( + ΔtA)z

n
j
, (6.62)

where as before r := Δt/Δ2. Taking the discrete Fourier transform of Eq. (6.62)

gives
�

 + 4rD sin2
ξ

2

�

ẑn+1 = ( + ΔtA)ẑn , (6.63)

from which the amplification matrix for the IMEX scheme is given by

G = ( + pD)−1 ( + ΔtA) , (6.64)

where p := 4r sin2
ξ

2
, ξ ∈ [−π, π].

Sufficient conditions for the stability of the IMEX scheme are now established in

Theorem 6.5.

Theorem 6.5. Suppose that matrix G in (6.64) is diagonalizable. Then

(i) G satisfies the von Neumann condition, and

(ii) the IMEX scheme in Eq. (6.61) is unconditionally stable.

Proof. (i) Applying the spectral radius norm to Eq. (6.64), we have

‖G‖s ≤ ‖( + pD)−1‖s‖ + ΔtA‖s . (6.65)

Since matrix G is diagonalizable,

‖G‖s = ρ(G) .

Matrix ( + pD)−1 is diagonal with diagonal entries 1/(1 + pd) and

‖( + pD)−1‖s = ρ(( + pD)−1) .
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Thus

ρ(G) ≤ ρ
�

( + pD)−1
�

· ‖ + ΔtA‖s . (6.66)

The eigenvalues of (+ pD)−1 are its diagonal entries 1/(1+ pd) and each of them

is less than 1 since p, d ≥ 0. Thus ρ
�

( + pD)−1
�

≤ 1. Equation (6.66) reduces to

ρ(G) ≤ ‖ + ΔtA‖s ≤ ‖‖s + Δt‖A‖s = 1 + Δt‖A‖s .

Since matrix A is bounded, G satisfies the von Neumann condition.

(ii) Proceeds as in the proof of Theorem 6.1 part (ii).

6.7 Numerical simulations

Most of the conditions derived in the previous section are difficult to verify. How-

ever, we can verify the necessary condition of semi-stability of the Jacobian matrix

by carrying out a numerical simulation of two RD model systems, one from CRNT

and the other from population dynamics, using the finite difference schemes dis-

cussed above.

6.7.1 The Brusselator model

The Brusselator model (Perelson, 1978; Prigogine and Lefever, 1968; Marek and

Schreiber, 1991) is a well-known theoretical model widely used in the modelling

and simulation of oscillating chemical systems. In its classical form, the Brussela-

tor model is associated with the CRN

A −→ U

B + U −→ V + D

2U + V −→ 3U

U −→ E

(6.67)

The CRN is considered to be ‘far from equilibrium’, so that the rates of the reverse

reactions are set to zero. In addition, the assumption is made that the concentra-

tions of the chemical species A and B (the initial reactants) and D and E (the final

products) remain constant over the time scale of interest. This leaves only two

varying concentrations, those of the intermediates U and V, the minimum number

required for an isothermal oscillatory system (Gray et al., 1988).

Assuming that all rate constants of the reactions are unity, the conventional di-
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mensionless Brusselator model in a one-dimensional spatial domain is given by

∂

∂t
= D

∂2

∂2
+ 2 +  − (b + 1)

∂

∂t
= D

∂2

∂2
− 2 + b ,

(6.68)

for (, t) ∈ [0, L]× [0,∞ [ and where  and  denote the concentrations of U and V,

respectively, with D and D their diffusion coefficients. We complete the model

system by imposing homogeneous Neumann boundary conditions

(0, t) = (L, t) = 0 and (0, t) = (L, t) = 0 ,

and nonnegative initial conditions

(,0) = 0() ≥ 0 , (,0) = 0() ≥ 0 .

There are no known analytical solutions to the Brusselator RD system (6.68) and

thus it has to be solved numerically.

The system admits a unique homogeneous equilibrium solution at

 =  , = b/ . (6.69)

In the absence of diffusion, this equilibrium solution is stable when the parameters

(, b) satisfy

b < 2 + 1 . (6.70)

In order for the system to exhibit spatial patterns, Turing’s diffusion-driven insta-

bility requires the homogeneous equilibrium to be unstable in the presence of

diffusion. This is achieved when

b >



1 + 

√

√

√
D

D





2

. (6.71)

Simulation results

The schemes described in this chapter are used to simulate the Brusselator system

using MATLAB for  ∈ [0,10] and taking the initial condition to be a small perturba-

tion of the homogeneous equilibrium solution (6.69). The simulations are carried

out for two cases; one case where the Jacobian of the reaction part is semi-stable

at every time step of the simulation and another case in which it is not semi-stable.

The results from the simulations are compared to those generated by an explicit

scheme (forward in time, centered in space).
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Case I: Jacobian is semi-stable

The parameter values chosen are D = 1, D = 8,  = 4.5, b = 9 and θ = 1/3 for

the FSTS. The results are shown in Figs. 6.1 and 6.2.
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Figure 6.1: Real parts of the two eigenvalues of the Jacobian at the point  = 5.05. The space step size
is Δ = 0.101, while the time step size is Δt = 0.01 for all the schemes.

Case II: Jacobian is not semi-stable

Here all the parameter values stay the same as above except b which we set to 21.

In this case, the Jacobian is not semi-stable for certain Δt (as shown in Fig. 6.3).

This implies that there exists at least one Δt for which the described schemes

are unstable. For example, setting Δt = 0.01, the solutions generated by the CN,

FSTS, IIF and IMEX all converge to the solution generated by the explicit scheme

as shown in Fig. 6.4, whereas, setting Δt = 0.255 for the CN scheme, Δt = 0.2 for
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Figure 6.2: Left: Solution (, t) of the Brusselator system at  = 5.05. The space step size is Δ = 0.101,
while the time step size is Δt = 0.0002 for the explicit scheme and Δt = 0.01 for the rest of the schemes.
Right: Spatial pattern solution.

the FSTS and Δt = 0.25 for the IIF leads to a blow-up of the solutions as shown in

Fig. 6.5. Thus, when the Jacobian is not semi-stable for certain Δt, the described

schemes are unstable.

6.7.2 A 3-species intransitive competition model

We now verify the necessary condition of semi stability of the Jacobian by studying

the numerical solutions of an RD model system governing the dynamics of three

intransitively competing populations that are spatially distributed on a line. This

RD model takes the form

̇1 = ∇21 + 1(α12 − α33) ,

̇2 = ∇22 + 2(α23 − α11) ,

̇3 = ∇23 + 3(α31 − α22) ,

(6.72)

where 1(, t), 2(, t) and 3(, t) are the (non-negative) proportions of the three

competing populations, and the parameters α denote the invasion rates. We study

the numerical simulations of this model subject to homogeneous Neumann bound-

ary conditions
∂

∂
(0, t) =

∂

∂
(L, t) = 0 , for  = 1,2,3 ,

and nonnegative initial conditions

1(,0) = g1() ≥ 0 , 2(,0) = g2() ≥ 0 , and 3(,0) = g3() ≥ 0 .
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Figure 6.3: Real parts of the two eigenalues of the Jacobian for D = 1, D = 8,  = 4.5, b = 21 at the
point  = 5.05. The space step size is Δ = 0.101, while the time step size is Δt = 0.01 for all the schemes.
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Figure 6.4: Left: Solution (, t) for D = 1, D = 8,  = 4.5, b = 21 at the point  = 5.05 with Δt = 0.01.
Right: Spatial pattern.

In the spatially homogeneous case (i.e., in the absence of diffusion), model sys-

tem (6.72) reduces to an ODE system. In this case, the population densities form

closed orbits around the coexistence equilibrium point (∗
1
, ∗
2
, ∗
3
) (see Fig. 6.6)

given by

∗
1
=

α2

α1 + α2 + α3
,

∗
2
=

α3

α1 + α2 + α3
,

∗
3
=

α1

α1 + α2 + α3
,

(6.73)

which is neutrally stable. It is the intransitivity in the pairwise competition which

underlies the cyclic behavior; the phenomenon clearly requires at least three com-

petitors, which is why it cannot occur in models with two competitors.

A natural question to ask is: what happens to the periodic orbits in the ODEs

(Fig. 6.6) once the spatial component (diffusion) is added back to the system. An

attempt to answer this question lies in obtaining the numerical solutions of the

PDE system (6.72). Here, we shall employ the numerical schemes whose stability

has been discussed above to not only test the results from the stability analysis

but also to investigate the behaviour of the solutions of Eq. (6.72).

6.7.2.1 Numerical experiments

The results we present are all generated using MATLAB. By numerically comput-

ing the eigenvalues of the Jacobian matrix A evaluated at the numerical solution

obtained at each time step, it is noted that the Jacobian matrix is not semi-stable
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Figure 6.5: Blow-up of solution (5.05, t) for Δt = 0.255 for the CN, Δt = 0.2 for the FSTS and Δt = 0.25
for the IIF. One of the eigenvalues of the Jacobian has a positive real part at the time of blow-up.
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Figure 6.6: Dynamics of the ODE model system obtained from Eq. (6.72) by dropping the diffusion term.
Species population densities move along periodic orbits around a coexistence equilibrium point (6.73).
Left: The figure shows several such orbits for the invasion rates α1 = 0.2, α2 = 0.5 and α3 = 0.3. Here, 3
ranges linearly from zero along the base of the triangle to unity at its peak; similarly 1 and 2 increase
to unity at their respective corners. Right: The dynamics can also be visualized by plotting the population
densities (t) as a function of time t. These simulations have been obtained by making use of MATLAB’s
standard ODE solver, ode45.

(as shown in Fig. 6.7), a necessary condition for the unconditional stability of the

schemes discussed above. Thus the above schemes when applied to Eq. (6.72)

are expected to be conditionally stable. In other words, there exists a critical time

step size Δt∗ at which the finite difference solution generated from a positive and

bounded initial condition explodes (blows up) and becomes unstable in finite time.

To determine the Δt∗ for which the blow-up occurs, we start by simulating the

model Eq. (6.72) using the four schemes elaborated upon in this chapter starting

with a relatively small Δt for which all schemes are stable and then gradually

increase the time step while observing the behaviour of the resulting solution.

Results from these simulations are shown in Figs. 6.8 to 6.11.

From these figures, it can be observed that for sufficiently small Δt, the densities

of the three species form periodic orbits about the spatially homogeneous coex-

istence equilibrium (6.73), just like in the ODE case, albeit with a much smaller

amplitude. As Δt is increased, a number of arbitrary dynamical behaviours can be

witnessed depending on the numerical scheme being used. For example, when

Δt = 1.0, the numerical solution from the FSTS scheme exhibits quasi-periodic or-

bits (as shown in Fig. 6.9(b)). This also happens when using the IMEX scheme

when, for example, Δt = 0.1 (see Fig. 6.11(b)). A further increase in Δt for these

two schemes produces two somewhat similar dynamics. Both solutions are quasi

periodic at the beginning of the simulation but as time goes on, the product of

the three population densities becomes exponentially small. That is, as time

progresses, the quasi-periodic oscillations die out as the system appears asymp-

totically to move ever closer to an orbit carrying it along the lines 1 + 2 = 1,

2 + 3 = 1, 3 + 1 = 1. In other words, the system moves in population space

from the neighborhood of the point where only species 1 is present, (1,0,0), to
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Figure 6.7: Real parts of the three eigenalues of the Jacobian for for the invasion rates α1 = 0.2, α2 = 0.5
and α3 = 0.3 at the point  = 5.05. The space step size is Δ = 0.1, while the time step is Δt = 0.1 all the
schemes (CN, FSTS and IIF) and Δt = 0.01 for the IMEX scheme.

the neighborhood of the point (0,0,1), to the neighborhood of (0,1,0), back to

(1,0,0), and so on, as shown in Figs. 6.9(c) and 6.11(c) for Δt = 3.0 for the FSTS

and Δt = 1.0 for the IMEX scheme. A further increase in Δt enables us to obtain

a critical value of the time step for which we witness a blow-up of the solutions,

that is, at which the schemes are unstable. In the FSTS, this occurs at Δt = 5.0.

The solutions behaves similarly to the one for Δt = 3.0 but only for a short tran-

sient before a blow-up occurs. For the IMEX scheme, blow-up occurs at Δt = 2.2.

The behavior of the two solutions from the FSTS and IMEX as Δt is increased is

arbitrary and unexpected. It is not clear whether this behaviour is a result of the

nonlinearity, spatial aspects or the numerical properties of the scheme itself or a

combination of the three. This behaviour, however, does not appear in the solution

of the fully-implicit CN scheme and the semi-implicit IIF scheme.

These simulation results, like in the Brusselator model, also confirm results from

the stability analysis that as long as the Jacobian of the reaction part is not semi-

stable, the above analyzed schemes are not unconditionally stable. In short, there

exists a Δt at which the numerical solution blows up. In addition, these results

highlight the intricacies involved in using numerical methods to solve nonlinear

PDEs where solution behavior could be affected not only by the mesh and time

step sizes but also by the scheme used.

One important observation is that the behavior of the generated numerical solution



6

6.7 NUMERICAL SIMULATIONS 151

0 500 1000 1500 2000

Time

0

0.2

0.4

0.6

0.8

1

S
p

e
c
ie

s
 D

e
n

s
it
y

Temporal Variation of Species

Species 1

Species 2

Species 3

(a) Δt = 0.1
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(b) Δt = 4.0
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(c) Δt = 4.118

Figure 6.8: Numerical solutions of Eq. (6.72) using the CN scheme for the invasion rates α1 = 0.2,
α2 = 0.5 and α3 = 0.3 at the point  = 5.05. The space step size is Δ = 0.1, while the time step is
Δt = 0.1,4.0 and 4.118. It can be observed that the dynamics are similar for all Δt for which the scheme
is stable. For Δt = 4.118, there is a blow-up of the finite difference solution and the scheme becomes
unstable.
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Figure 6.9: Numerical solutions of Eq. (6.72) using the FSTS scheme for the invasion rates α1 = 0.2,
α2 = 0.5 and α3 = 0.3 at the point  = 5.05. The space step size is Δ = 0.1, while the time step size is
Δt = 0.1,1.0,3.0 and 5.0. It can be observed that as Δt is increased, the dynamics change from periodic
orbits to quasi-periodic orbits and finally to a blow-up.

is similar among all the four schemes provided that the time step used in the

simulation is sufficiently small. It can also be noted that the critical values of the

time step at which instability (blow-up) occurs in the schemes is larger than the

time step restriction set by the CFL condition for explicit schemes.

6.8 Matrix semi-stability

In the previous section, we have verified numerically the necessary condition of

semi-stability of the Jacobian matrix of the reaction part for the stability of the

analyzed finite difference schemes. A more difficult condition to verify, even nu-

merically, is that of D-semi-stability of the Jacobian. However, for some very spe-

cial cases, it is possible to mathematically verify the D-semi-stability (and hence

semi-stability) of the Jacobian matrix without the need for numerical simulations.

In this section, we show one application of the results of this chapter to the area of

chemical reaction networks. Specifically, for a single non-autocatalytic chemical
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Figure 6.10: Numerical solutions of Eq. (6.72) using the IIF scheme for the invasion rates α1 = 0.2,
α2 = 0.5 and α3 = 0.3 at the point  = 5.05. The space step size is Δ = 0.1, while the time step size is
Δt = 0.1,3.5 and 4.0. It can be observed that the dynamics are similar for all Δt for which the scheme is
stable. For Δt = 4.0, there is a blow-up of the finite difference solution and the scheme becomes unstable.

reaction, by making some reasonable assumptions on the kinetics of the reaction,

we prove that the Jacobian matrix evaluated at any positive solution, is indeed

both semi-stable and D-semi-stable. In addition, we show that the assumptions

that we make in order to prove the semi-stability of Jacobian hold for reactions

governed by a variety of enzyme-kinetic rate governing laws.

6.8.1 Monotone kinetics

Here we give a brief description about the assumption that we make on the kinet-

ics of the reaction. Consider a reversible chemical reaction involving n chemical

species X1, X2, . . . , Xn that takes the form:

n
∑

=1

αX
ƒ
−*)−
r

n
∑

=1

βX , (6.74)
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Figure 6.11: Numerical solutions of Eq. (6.72) using the IMEX scheme for the invasion rates α1 = 0.2,
α2 = 0.5 and α3 = 0.3 at the point  = 5.05. The space step size is Δ = 0.1, while the time step size is
Δt = 0.02,0.1,1.0 and 2.2. It can be observed that as Δt is increased, the dynamics change from periodic
orbits to quasi-periodic orbits and finally to a blow-up.

where α and β are nonnegative integers, known as the stoichiometric coefficients

of species X on the substrate and product sides of the equation, respectively and

ƒ and r are the reaction rates in the forward and backward directions, respec-

tively.

Denote by  the concentration of chemical species X and let x = (1, . . . , n)> ∈
Rn+ denote the vector of species concentrations at any time t. Assume that reaction

(6.74) satisfies the following properties:

(a) The reaction is non-autocatalytic, that is, no chemical species appears on

both the left (substrates) and right (products) side of the reaction. This

means that for each , either α = 0 or β = 0.

(b) The forward and backward reaction rates are continuously differentiable

functions of the species concentrations x. Thus the overall reaction rate  in

the forward direction, given by  = ƒ − r , is a continuously differentiable

function of species concentrations. That is  = (x).
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(c) Define γ := β − α. For each X, if γ < 0, then
∂(x)

∂
≥ 0, while if γ > 0,

then
∂(x)

∂
≤ 0.

All reactions whose reaction rates satisfy properties (b) and (c) above are said to

obey monotone kinetics (Siegel, 2014).

We now proceed to show that the Jacobian of the reaction part of an RD system

modelling the dynamics of a non-autocatalytic reaction with monotone kinetics is

D-semi-stable.

6.8.2 D-semi-stability

The concept of D-stability is commonly encountered in mathematical economics

and there are many necessary and sufficient conditions for a matrix to be D-stable,

although many of them are hard to prove (Giorgi and Zuccotti, 2015). Recall that

a matrix A is said to be D-semi-stable if for all positive diagonal matrices D, the

matrix DA is semi-stable. In addition, we have already seen that every D-stable

matrix is also a stable matrix although the converse is not generally true (Giorgi

and Zuccotti, 2015). Thus in order for us to show that a matrix A is both semi-

stable and D-semi-stable, we only need to show that A is D-semi-stable and use

this to infer the semi-stability of A.

Suppose the chemical reaction (6.74) is non-autocatalytic. Let us order the chem-

ical species in such a way that the first m chemical species, X1, . . . , Xm, appear as

reactants, while the remaining (n −m) species, Xm+1, . . . , Xn, appear as products.

Then Eq. (6.74) can be written as;

m
∑

=1

αX
ƒ
−*)−
r

n
∑

j=m+1

βjXj . (6.75)

The stoichiometric matrix S for reaction (6.75) is given by

N =
�

−α1 · · · −αm βm+1 · · · βn
�>

. (6.76)

The time evolution of the concentrations of the chemical species in reaction (6.75)

is governed by the RD system

∂x

∂t
= D∇2x + S(x) , (6.77)

where (x) is the overall reaction rate. D-semi-stability of the Jacobian for the

reaction part is established in the following theorem.
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Theorem 6.6. Consider the non-autocatalytic reaction (6.75) with stoichiometric

matrix S given by Eq. (6.76) and overall reaction rate (x). Suppose the reaction

kinetics are monotone. Then the Jacobian matrix A of ƒ (x) := S(x), evaluated at

any x ∈ Rn+ , is D-semi-stable.

Proof. Since S is a column vector, denote by sk the k-th-entry of S. The Jacobian

A of ƒ (x) is the n-square matrix A = [j] with

j = s
∂(x)

∂j
, for , j = 1, . . . , n .

Denote by D a positive diagonal matrix given by D = diag(δ1, δ2, . . . , δn). Matrix DA

is given by

DA =





























−δ1α1 ∂(x)∂1
· · · −δ1α1 ∂(x)∂m

−δ1α1 ∂(x)
∂m+1

· · · −δ1α1 ∂(x)∂n

. . .

−δmαm ∂(x)
∂1

· · · −δmαm ∂(x)
∂m

−δmαm ∂(x)
∂m+1

· · · −δmαm ∂(x)
∂n

δm+1βm+1
∂(x)
∂1

· · · δm+1βm+1
∂(x)
∂m

δm+1βm+1
∂(x)
∂m+1

· · · δm+1βm+1
∂(x)
∂n

. . .

δnβn
∂(x)
∂1

· · · δnβn
∂(x)
∂m

δnβn
∂(x)
∂m+1

· · · δnβn
∂(x)
∂n





























Our aim is to show that matrix DA is semi-stable.

Note that the matrix DA has rank 1. From linear algebra, it is known that the

number of nonzero eigenvalues of a matrix is less than or equal to the rank of the

matrix. Therefore matrix DA has at most one nonzero eigenvalue and thus zero

is an eigenvalue of a DA with algebraic multiplicity of at least n − 1. Since matrix

DA is supposed to have n eigenvalues counting multiplicity, the remaining one

eigenvalue of DA is therefore real and is given by the trace of DA. Let us denote

this eigenvalue by λ. Thus

λ =
m
∑

=1

−αδ
∂(x)

∂
+

n
∑

j=m+1

βjδj
∂(x)

∂j
. (6.78)

Since we have monotone kinetics,

∂(x)

∂
≥ 0

for  = 1, . . . ,m and
∂(x)

∂j
≤ 0

for j =m + 1, . . . , n.

Thus each term in both the first and second summations in (6.78) are negative and
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hence both sums are negative. Therefore λ ≤ 0 and the matrix DA is semi-stable.

This proves that the matrix A is D-semi-stable. From the properties of D-stable

matrices, we conclude that matrix A is also semi-stable.

We now demonstrate on some examples that the assumption we made about the

kinetics of the reaction being monotone is a reasonable assumption that is satisfied

by many rate governing laws.

Example 1: Consider the reversible chemical reaction

α1X1 + α2X2 + · · · + αmXm
k1−−*)−−
k−1

βm+1Xm+1 + · · · + βnXn ,

governed by mass-action kinetics. Here, k1 and k−1 are positive rate constants.

Denote by  the concentration of species X. The overall rate of reaction  in the

forward direction is given by

(x) = k1
m
∏

=1


α
 − k−1

n
∏

=m+1


β
 .

For  = 1, . . . ,m, we have γ = −α < 0 and

∂(x)

∂
= k1α

α−1


m
∏

j=1
j 6=


αj
j > 0 , since x ∈ Rn+ .

Similarly, for  =m + 1, . . . , n, we have γ = β > 0 and

∂(x)

∂
= −k−1β

β−1


n
∏

j=m+1
j 6=


βj
j < 0 .

Thus the reaction rate (x) satisfies the properties of monotone kinetics.

Example 2: Consider the reversible enzymatic reaction:

S
E−*)− P .

Here S is the substrate, E is the enzyme that acts as a catalyst for the reaction

and P the product. Let s and p denote the substrate and product concentrations,

respectively, at any time t, and x =
�

s p
�>
∈ R2+ . Note that γs = −1 while γp = 1.

Suppose the reaction is governed by Michaelis–Menten kinetics, then

(x) =

Vƒ
Kss −

Vr
Kp
p

1 + s
Ks
+ p

Kp

,
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where Vƒ , Vr , Ks and Kr are positive constants.

It can be verified that
∂(x)

∂s
> 0 and

∂(x)

∂p
< 0. Thus the reaction obeys mono-

tone kinetics.

6.9 Discussion and conclusion

In this chapter, we have explored the use of finite difference schemes in solving RD

equations that model the dynamics of competing populations in which the habitat

is a continuum. In particular, we have analyzed the stability of some well-known

finite difference schemes and established sufficient conditions for the local linear

stability of these schemes in the multivariable case.

It should be noted, however, that the conditions derived for the stability of the

schemes applied to the localized linear system may not guarantee stability of the

same schemes when applied to the nonlinear RD system (6.2). Nonetheless, linear

stability is a necessary condition for nonlinear stability and it provides a useful way

of weeding out obviously unsuitable schemes.

In addition to the stability analysis, we have also been able to highlight some

of the complexities involved in the use of numerical methods to solve nonlinear

PDEs. The numerical solutions are affected by not only the nonlinearities in the

model but also by the scheme employed and the time step. However, a notable

observation is that for a sufficiently small time step size, the long-term behavior

of the solutions from all the schemes is similar.

Because conclusions based on ecological models are often used in monitoring bio-

diversity and in environmental planning and management, it is important to have

numerical solutions that are consistent and accurately represent the unknown an-

alytical solution. Thus care should be taken when choosing the numerical scheme

and in selecting the time step size for the simulations. Some schemes are more

suited to problems in which the diffusion terms dominate, for example, the IIF

scheme was designed for diffusion-dominated problems and does not seem to

work well for problems where the reactions dominate. On the other hand, the time

step should be chosen in such a way so as to strike a balance between accuracy,

stability and computational effort.

From the stability analysis, one notable sufficient condition for stability of the an-

alyzed schemes is that the Jacobian matrix of the reaction part evaluated at any

known positive solution is either semi-stable or D-semi-stable. This is an eigen-

value problem which is difficult to verify analytically in many multivariable RD

models of the form (6.2). In many practical models, this condition has to be veri-

fied numerically like we have done in Sections 6.7.1 and 6.7.2.
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However, for chemical reaction whose kinetics are monotone, we have been able

to prove analytically in Section 6.8 that the Jacobian matrix is always D-semi-stable

(and hence semi-stable). In addition, we have also demonstrated using examples

that the assumption on the kinetics of the reaction being monotone is reasonable

and is satisfied by a number of kinetic rate governing laws.

We hope that the stability results of this chapter could act as a guide when deciding

on a finite difference scheme to use whenever RD equations have to be used as

a model for studying intransitive competition. Future work related to this chapter

could involve extending the D-semi-stability that has been proven for a single non-

autocatalytic reaction with monotone kinetics to a network of chemical reactions.
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7

7
Conclusions and future work

Coexistence mechanisms, like intransitive competition, that only emerge in sys-

tems with more than two competitors, present a largely unexplored control over

the preservation of diversity in species rich communities. In studying the effects of

intransitive competition on species coexistence, ecologists have traditionally ap-

proached the problem via a graph-theoretic representation of an ecological com-

munity with a directed graph or network. An analysis of the structure of such a

network should enable us to anticipate some of the dynamical properties of an eco-

logical community. However, till now, how the structure of the network influences

coexistence is still an open question.

In this thesis, by making use of a number of mathematical tools borrowed from

fields outside ecology, such as graph theory, game theory, chemical reaction net-

work theory, and the theory of dynamical systems, we have explored a number

of questions relating to the dynamics of species involved in intransitive competi-

tion networks in a bid to provide insights to some of community ecology’s open

questions, such as the prediction of community structure at equilibrium. The

interdisciplinary nature of the thesis has also allowed us to explore an existing

mathematical problem regarding the stability of finite difference schemes for the
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numerical solution of reaction-diffusion equations, which are ubiquitous in the field

of mathematical modelling of biological and chemical systems.

In the following, we summarize the main conclusions that can be drawn from this

thesis, and list several pending issues that might be included in future work.

7.1 Conclusions

In this thesis, we explored two key issues; one regarding the dynamics of species

involved in intransitive competition networks, and two regarding the stability of

finite difference schemes commonly used for the numerical solution of reaction-

diffusion equations in ecology.

In Chapter 4, we have highlighted an approach that can be used to predict the

dynamical properties of ecological communities governed by intransitive com-

petition, by considering the competition networks, represented by complete di-

rected graphs (tournaments) directly rather than via numerical simulations of their

mean-field differential equation models. This approach, which we have named the

method of triads, first makes use of the pairwise competitive abilities of species

in a tournament to partition the species into two disjoint groups, kings and non-

kings. Then by using game-theoretic methods, we have been able to show that

every non-king is competitively excluded from the tournament, thus reducing it

to a smaller tournament in which every species is a king, and each species is in-

volved in at least one intransitive triad with every other species. In the resulting

all-kings community, final community structure can be deduced from an analysis

of the interactions among the intransitive triads of the all-kings tournament. Using

the method of triads, we have been able to deduce the final community struc-

ture (both species richness and composition) in a number of ecological networks

composed of five to nine species as shown in Table 4.1. This chapter highlights

the intuition held by many that final community structure is a function of some

intransitive structures within the network, although it is not yet clear which exact

intransitive structures greatly influence community composition at equilibrium. It

also opens the door for future research on network properties and their relation to

final community composition.

In Chapter 5, we explored the question on how dynamics within a single metapopu-

lation habitat patch are influenced by migrations from and to other patches. Note

that in the absence of migrations, coexistence of species is a result of limit cy-

cles around the neutral equilibrium point. With the introduction of migrations be-

tween patches, the dynamics can be significantly different depending on whether

the dispersal graph is homogeneous or heterogeneous. In this chapter, we have

mathematically proven, using concepts from chemical reaction network theory and

the theory of dynamical systems, that the coexistence equilibrium point is locally
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asymptotically stable for a heterogeneous dispersal graph, yet it stays neutrally

stable if migrations are homogeneous. In deriving the proof, we have assumed

that between any two patches, if there is migration between the two patches,

this migration has to be bidirectional. This allows us to make use of the concept

of detailed balancing from CRNT which ensures that at equilibrium, the net mi-

gration of each species between any two patches is zero. These results provide

mathematical support to already existing numerical simulations in the literature

and demonstrates that the existing numerical results, which have been derived

for three-species cyclic systems, apply to networks with more than three species.

The results also confirm the intuition held by many ecologists that spatial hetero-

geneities in the landscape, which in this case come in the form of differences in

dispersal rates, can have profound effects on the dynamics of populations within

an environment.

In Chapter 6, we have tackled a different mathematical problem to the ones stud-

ied in Chapters 4 and 5. We have explored the problem of numerical stability of

finite difference schemes that are commonly used for the numerical solution of

reaction-diffusion equations that appear, not only in ecology, but also in the mod-

elling of a number of biological and physical phenomena. We have already stated

that for spatial models in which the environment is a continuum, the mathematical

models take the form of reaction-diffusion equations whose analytical solutions are

very hard, if not impossible, to find. Thus numerical methods, in particular, finite

difference schemes, are used to find approximate solutions to the equations. But

the use of numerical methods leads to a different mathematical problem of es-

tablishing whether a given numerical scheme is stable or not. In this chapter, we

have established sufficient conditions for the stability of a number of finite differ-

ence schemes in the case of systems of equations. Many stability conditions in the

literature had been derived based on the analysis of systems of linear diffusion

equations. It was not clear whether the same conditions would still apply if the

methods are applied to systems of the reaction-diffusion equations. Our results

have shown that additional constraints are needed, particularly on the Jacobian of

the nonlinear reaction part to guarantee stability of the schemes.

7.2 Possible future research directions

In Chapter 4 of this thesis, we have demonstrated how structural properties of a

competition network, represented by a complete directed graph, can be used to

answer one of community ecology’s central aims, to predict community structure

at equilibrium. However, as stated before, our method, which makes use of inter-

actions among the intransitive triads, is only able to deduce community structure

at equilibrium for some networks, but fails for others. The method fails particularly

for those networks whose triads interaction graph (TIG) contains multiple cycles
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with different numbers of unique species in the triads forming the cycles. But we

still believe that community structure at equilibrium can be fully predicted from an

analysis of the structure of the graph, without the need for numerical simulations.

In addition, the intransitive competition models of this chapter have been derived

with an assumption that the interactions in a community operate only between

pairs of species and that these pairwise interactions then combine to generate

the dynamics of the full community. Such models, however, often lead to species

abundances to neutrally cycle around a coexistence equilibrium point, which is

problematic as such cycles are not observed in nature (Grilli et al., 2017). In ad-

dition, there are also instances when such pairwise models fail to predict multi-

species coexistence in a number of ecological communities (Dormann and Rox-

burgh, 2005; Momeni et al., 2017). To overcome these problems, recent stud-

ies have suggested that interactions between species should not be constrained

to species pairs, but should include higher-order interactions (Grilli et al., 2017;

Levine et al., 2017; Mayfield and Stouffer, 2017), where the per capita effect of

one competitor on another can be modified by the presence of a third (or even

more) species. Grilli et al. (2017) have shown that incorporating higher-order in-

teractions does not alter the equilibrium values of the pairwise model but has a

dramatic stabilizing effect on the dynamics leading to convergence to the equi-

librium point instead of neutral cycles. Such a stabilizing effect has also been

observed in the metapopulation model of Chapter 5, where heterogeneity in the

migrations moves the coexistence equilibrium point within each patch from neutral

stability to local asymptotic stability.

Finally, we have studied communities whose dynamics are well-described by

systems of ODEs (assuming a large number of interacting individuals) in which

species coexistence is often equated to the existence of a stable equilibrium that

is bounded away from the extinction states and where coexistence holds indef-

initely. However, when the number of individuals is finite, these deterministic

ODE models fail to account for random fluctuations due to demographic and en-

vironmental stochasticity which are experienced by all natural populations. De-

mographic stochasticity describes the random fluctuations in population size that

occur because the death and birth of each individual is a discrete and probabilistic

event (Melbourne, 2012), and environmental stochasticity is the stochastic vari-

ation in the physical and biological environment and thereby in the parameters

affecting the system (Feng et al., 2011). Incorporating stochasticity in models

can introduce qualitative changes in the nature of long-term dynamics that depart

dramatically from the predictions of a deterministic attractor (Hening et al., 2021).

It also allows one to derive expressions for probabilities of extinctions, expected

times to extinction, and other properties of relevant distributions.

Thus future research directions on the problem of predicting community structure

could involve the following;
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1. Deriving an alternative method for ranking dominance relations among the

intransitive triads to the one used in this paper. This could probably lead to

a different TIG where the number of cycles of triads within the graph is less

or even just one.

2. Determination of general properties of tournament matrices corresponding

to all coexistence networks.

3. The method of triads focuses on the number of species that go extinct (and

the number of those that don’t) as an endpoint of the model simulation,

but ignores the time until extinction, which is a highly relevant ecological

aspect. It would be interesting to study the time until all non-kings have

gone extinct and the community reaches its final composition and see if this

varies between different tournaments, and to what extent.

4. How can we incorporate higher-order interactions into the method of triads?

Do the predictions from the method still hold with the incorporation of higher-

order interactions?

5. What is the effect of stochasticity (e.g. time-dependent parameters) on the

method of triads predictions?

In Chapter 5, we have provided a mathematical proof for existing numerical sim-

ulations regarding the effects of dispersal on the dynamics of species living in

discrete habitat patches of a metapopulation modelled by a deterministic system

of ordinary differential equations. In particular, we have shown that dispersal has

the ability to shift the stability properties of the coexistence equilibrium, which

is neutrally stable in the absence of dispersal, to local asymptotic stability in the

presence of dispersal.

In our model, we have assumed that all coefficients (parameters) in the model

equations are constant leading to the time-invariant differential equations used.

However, in realistic scenarios, parameters involved in ecological models are not

constants but rather they depend upon several ecological and environmental fac-

tors that induce seasonality in the parameters. Thus differential equations with

time-varying parameters can be used to account for temporal changes in the pa-

rameters. Such models have been used to, for example, study the extinction of

species in communities modelled by competitive Lotka-Volterra systems (Vance

and Coddington, 1989; de Oca and Zeeman, 1996; Ahmad, 1999; Ahmad and

Lazer, 2000). In fact, Ahmad and Lazer (2000) have derived sufficient condi-

tions that guarantee the persistence and global stability of such time-varying sys-

tems. However, to our knowledge, the time-varying differential equations of the

metapopulation models used in this chapter have not been studied in generality.

Thus possible future work on such deterministic metapopulation models could in-

volve the following;
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1. Deriving sufficient conditions for the persistence and stability of a more real-

istic metapopulation model in which the coefficients are time-varying.

2. Determination of dynamical characteristics (e.g., frequency, amplitude of os-

cillations) in such deterministic metapopulation models and how these math-

ematical results connect with ecological theory.

3. Exploring the effects of local habitat quality on the metapopulation dynam-

ics. The effect of habitat quality crucially depends on migration rate. Thus we

can assume that the more favourable patches have high immigration rates

compared to the less favourable patches with low immigration and high em-

igration rates.

Another very promising future direction that is related to Chapters 4 and 5 in-

volves the integration of intransitive competition in modern coexistence theory

(MCT). Ecologists have embraced MCT as a framework for understanding the fac-

tors that lead to ecological coexistence versus competitive exclusion. According

to MCT (Chesson, 2000), stable coexistence of a set of n competing species is only

possible if each species is able to increase from low density when introduced in a

subcommunity of the remaining n − 1 species. This is termed as the invasibility

criterion, where the species at low density is termed the invader, with the rest of

the community termed the residents. In other words, species coexistence is only

possible if each species has a positive growth rate when invading the rest of the

community. However, this theoretical framework seems insufficient to account for

all the diversity observed in many natural communities. In addition, the theory

has been developed with an exclusive focus on interactions between two species

and is not easily extended to include mechanisms, such as intransitive loops, that

only emerge with more than two species.

On the other hand, studies on the role of intransitive competition in promoting

species coexistence have been typically done outside the framework of MCT. Thus

little is known on how intransitivity interacts with the more traditional drivers of

species coexistence such as niche partitioning. The key question is then: how can

we integrate intransitive competition into MCT? Can intransitive competitive cycles

preserve diversity in situations where coexistence is not possible via MCT mecha-

nisms alone? Exploring these and more questions would provide a contribution to

the development of a more unified theory for species coexistence.

Finally, in Chapter 6, we have derived sufficient conditions for the stability of some

well-known finite difference schemes for the numerical solution of the systems of

reaction-diffusion equations in ecology. Since the equations are nonlinear, these

conditions have been derived through a local linearization. It is hoped that results

from this stability analysis could act as a guide when deciding on a finite difference

scheme to use whenever nonlinear RD equations are encountered. Future work re-

lated to this chapter could involve extending the proof of D-semi-stability that has
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been established for a single non-autocatalytic reaction with monotone kinetics to

a network of chemical reactions.
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