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Abstract

The credibility of threshold-based alarms in anesthesia monitors is low and most of the warnings
they produce are not informative. This study aims to show that Machine Learning techniques have a
potential to generate meaningful alarms during general anesthesia without putting constraints on the
type of procedure. Two distinct approaches were tested — Complication Detection and Anomaly
Detection. The former is a generic supervised learning problem and for this a simple feed-forward
Neural Network performed best. For the latter, we used an Encoder-Decoder Long Short-Term
Memory architecture that does not require a large manually-labeled dataset. We show this ap-
proach to be more flexible and in the spirit of Explainable Artificial Intelligence, offering greater
potential for future improvement.
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Introduction

During clinical procedures, anesthesiologists rely on measurements displayed on ventilator and
patient vital signs monitors. These have built-in alarm systems for critical incidents which produce
warnings when a preset threshold is surpassed. Several studies have shown that a large number of
false positives can occur. In moderate-risk operations, 64% of the alarms were labeled as clinically
irrelevant, with only 5% requiring immediate action.' In high-risk cardiac surgery, 80% of alarms
were considered useless.” There are a number of negative consequences that can arise from a high
rate of false alarms. For example, anesthesiologists can become less sensitive to alarms if they occur
unnecessarily. When they are occupied with another activity, they show decreased performance at
interpreting the relevance of an alarm.” Discomfort induced by a high false alarm rate, also known as
“alarm fatigue”,* can result in anesthesiologists changing the thresholds to more liberal values, or
ignoring them entirely. Over 70% of anesthesiologists turn off the alarming systems due to an excess
of false warnings.’

Methods from Artificial Intelligence (AI) have been tried as early as the 1990s to reduce the
number of false alarms. Rule-based systems are built on expert knowledge and applied in a new
context™’ and have yielded promising results in detecting a large number of critical patients states.
However, they have failed to be broadly applied in practice because their optimization is cum-
bersome and such methods often failed to fully embrace the complexity of anesthesiology.® Newer
approaches apply Machine Learning (ML) algorithms, in which statistical dependencies in the data
are identified through a training process to classify true complications. Rejab et al.” used
k-Prototypes Clustering to find groups of similar patients. For each group, they trained a ML
classifier (Incremental Support Vector Machines) to monitor patients’ vital parameters and to
generate appropriate alarms. This resulted in a reduction of 99.8% for false alarms and 97% for
warnings. Hatib et al.'® used a ML classification algorithm called Logistic Regression to predict
hypotension from early alterations in high-frequency arterial pressure waveforms. The algorithm
was able to detect a hypotensive event 15 min in advance with 95% accuracy. This significantly
reduced the average time and depth of hypotension in elective noncardiac surgeries, and this finding
was reproduced in a follow-up study by Wijnberge et al.'' In 2018, Kendale et al.'> compared
different ML classification algorithms in predicting the occurrence of peri-operative hypotension
based on preoperative patient data. They found that Linear Discriminant Analysis, Gradient
Boosting Machines, Neural Networks, and Random Forests are the best performing methods to
predict the chance of hypotension (low blood pressure) during perioperative anesthesia.

There is an issue with transparency when applying ML techniques to healthcare. Most ML
methods are intractable: it cannot be determined or explained how a classifier algorithm reached a
specific result. There are also potential legal issues because the European General Data Protection
Regulation (GDPR 2016/679 and ISO/IEC 27,001) makes it difficult to use black-box solutions in
practice. The concept of Explainable-Al has been advanced that Al decision processes should be
retraceable and interpretable.'> Choi et al.'* developed a promising algorithm with respect to
transparency based on a Recurrent Neural Network. They used a special mechanism called At-
tention that determines what the most crucial “visits” and variables within a visit were, which are
then displayed to the clinician to explain the reasoning behind a proposed medical diagnosis.
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Although ML techniques seem very promising, no studies exist where ML has actually been used
for health monitoring during routine anesthesia practice. We therefore tested multiple ML tech-
niques to investigate whether they can be applied to a realistic clinical dataset, ranging from
complex black-boxes to more simple semi-transparent solutions. In this paper, we focus only on a
selection, which we believe to be the most relevant for the given problem. We aim to outline the
general idea of applying Al to health monitoring rather than presenting a single fined-tuned solution.
We studied and compared two distinct approaches, namely Complication Detection and Anomaly
Detection, which vary in required input (labeled vs. unlabeled) and output (specific vs. general
indication of an adverse event).

Methods

Data

Data for this project was provided by the Department of Anesthesiology of University Medical
Center Groningen (UMCG). The anonymized dataset consisted of a subset (z = 715) of clinical
procedures performed between 2014 and 2017. Due to the retrospective character of the project, the
use of anonymous data, and because patients were not subject to intervention, our medical ethical
committee waived the need for informed consent (UMCG Ethics’ Committee, METC 2020/624).

The measurements were sampled every 15 s (0.067 Hz) and contained vital parameters which
were used as input variables for the ML models: HR (Heart Rate), EtCO, (End-Tidal Carbon
Dioxide), FiO, (Fraction of inspired Oxygen), TVE (Tidal Volume Expired), Respiratory Rate,
SpO, (Oxygen Saturation), P.x (Peak Inspiratory Pressure), PEEP (Positive End-Expiratory
Pressure), Temperature, ABPg, (Systolic Arterial Blood Pressure), ABPg;, (Diastolic Arterial
Blood Pressure), MAP (Mean Arterial Pressure), Cgyn (Dynamic Lung Compliance) and body
weight. Since most ML algorithms operate on windowed time-series data, the datasets were
processed to such a format with a duration of 10 min. This value was chosen based on consultation
with physician anesthesiologists. Hence, the dimensions of a single sliding window were
40 timesteps x 14 features.

Complication detection approach

In Complication Detection, a classifier algorithm was trained to detect a medical complication, in
this case hypotension. Even though it has no rigorous definition, hypotension is thought to occur in
41%-93% of all procedures'® and posits danger for patient health if undetected. Cases where
hypotension was detected by the anesthesiologist and officially registered as complication were
selected. Data preprocessing consisted of: (1) perioperative phase selection based on the use of
mechanical ventilation; (2) blood pressure measurement selection — when available, arterial blood
pressure was chosen over the less precise noninvasive method with an arm cuff; (3) missing data
imputation with polynomial interpolation; (4) standardization was achieved using median centering
per patient and rescaling the so that the 25™ and 75" quantiles fall within —1 to 1 range. The selected
83 procedures consisted of over 46 000 time steps (200 h) where 21% of the time steps were labeled
as hypotensive.

It was not technically feasible to have an expert manually flag all hypotensive events so the
detection of hypotension used Ballast’s” rule-based system as the ground truth for our ML models.
This system uses mathematical expressions based on expert knowledge (Figure 1) to indicate the
time of occurrence of a complication. For each time step, the algorithm computes the complication
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Figure |. Rule-based system label generation.

indicators using factors such as moving averages of past observations measured in different periods,
the time for which a threshold was surpassed by some vital parameter, and relationships between the
parameters. The hypotension alarm used in the current study was generated by two sets of equations.
The first checks if ABP, <70 mm Hg. The second set is responsible for monitoring the trend of
consecutive measurements, which is done by first establishing a threshold for an acceptable relative
rate of change in ABPy,. This threshold has a gradually decreasing tolerance to changes depending
on the proximity of ABPg to the 70 mm Hg boundary. For every incoming measurement of ABPyy,
moving averages are calculated with time constants of 20, 200 and 2000 seconds. This allows
determination whether the blood pressure is falling at a fast, medium or slow speed. If any of these
trend indicators surpasses a certain change threshold, or if the absolute ABP from the first
equation is too low, then the hypotension alarm is triggered.

In our Complication Detection approach, we tested two ML algorithms: Random Forest and
Fully Connected Neural Network — these handle windowed time series data in a different way.

Random Forest is an ensemble of Decision Trees, one of the simplest ML techniques. It is
constructed from true/false nodes which ask questions about the data until the samples from the
training set have been split in a way that the last nodes contain samples of only one class. It is
common practice to train multiple Decision Trees (a Forest) on random subsets of the full dataset
and take their averaged prediction. This additional randomness helps the Forest to generalize better
over the data, whereas a Decision Tree is often biased by noise in the training dataset. A Tree is a
fully-transparent algorithm — the exact steps it took to make a decision can be traced-back, but the
Forest is a semi-transparent algorithm — one can check which features on average contribute most to
making the splits. Random Forests cannot process time-dependent relations, thus additional time-
based features were extracted from the dataset. This was done with a Python package called
TSFRESH'® which extracts features (e.g. mean, entropy, number of peaks, etc.) from the windowed
time-series that carry relevant information for predicting the dependent variable. The recon-
ceptualization of the data resulted in 3604 new features instead of the 14 standard sequential
variables.
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Figure 2. Fully-Connected Neural Network used in the Complication Detection approach.

Neural Networks (ANNs or NNs) are another family of ML algorithms, which are inspired by the
physiology of the human brain. They typically contain thousands of artificial neurons organized in
layers similarly to the cortical architecture. These algorithms work directly on the time-series data,
so extraction of time-based features is not necessary. NNs are capable of capturing the non-linear
processes that occur in the real world and this has contributed to their popularity in the last two
decades. The learning process of a NN is based on iteration over training sets and adjusting the
network weights and biases, so that a cost function is minimized. This is usually the difference
between its outputs and the target variable. A Fully-Connected Feed-Forward Neural Network is a
standard neural architecture with all its units in one layer connected to all units in the contiguous
layers. The data flows from an input layer, through one or more hidden layers to an output layer. For
the Complication Detection system, this is a single neuron that generates the probability that the
vital parameters input to the network represent a hypotensive event.

Both algorithms were implemented using Python libraries (Scikit-learn and Keras with Ten-
sorFlow backend) and run on a Nvidia k40 GPU from the Peregrine HPC cluster. The models were
trained and optimized on 85% of the data using 5-Fold Cross-Validation and the remaining 15% of
the data was used for final tests — every operation was randomly assigned to one of the three subsets.
The Random Forest was left at its default settings except for the number of trees/estimators which
was set to 75. The Fully-Connected Feed-Forward Neural Network was trained using the Adam
optimizer and log-loss cost function. The network (Figure 2) consisted of an input layer that
flattened the sliding window to 560 values with a dropout rate of 0.2 applied to it. The hidden layer
contained 700 units (dropout = 0.5, activation = ReLU) and the output was a single neuron with
sigmoidal activation that generated the probability of hypotension.

Anomaly detection approach

Anomaly Detection was implemented by training a ML algorithm on a dataset with only non-
complications cases. The resulting model should be able to fit the standard non-anomalous behavior
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Figure 3. Encoder-Decoder LSTM architecture unfolded in time. Each LSTM instance contains bidirectional
64 units in the Encoder section and 128 units in the Decoder. Hollow arrows represent the LSTM state being
passed in time and the solid arrows show the data flow beteween the inputs and outputs. Fully-Connected
layers (FC) generate predictions of |3 vital parameters at each forcasted time step. Note: LSTM: Long Short-
Term Memory.

of the vital parameters. Following this assumption, any measured value that does not match the
predictions or expectations of the model is considered an anomaly. The dataset for this approach
contained cases where the anesthesiologist present during the operation procedure flagged it in the
record system as “no complications”, which means that no adverse event had occurred. Labeling
every time step was necessary for this approach due to the model’s generative nature. After
preprocessing, performed as in Complication Detection, the dataset consisted of 632 operations with
roughly 500 000 timesteps (2000 h) in total. The input variables were the same 14 vital parameters
as previously.

The Anomaly Detection approach was based on a study on multi-sensor data.'” A NN was
trained to forecast a sequence of 16 future time steps (4 min) for each of the /3 vital parameters (we
did not forecast body weight). The forecasting was approached with Sequence-to-Sequence
modeling'® and more specifically an Encoder-Decoder Long Short-Term Memory Network (E-D
LSTM). This architecture uses Long Short-Term Memory (LSTM) layersl() rather than the standard
artificial neurons, as LSTMs have the ability to model time-dependent changes, a crucial property
for forecasting sequences (Figure 3). In the Encoder part of our architecture, an LSTM layer
generated the historical context of the whole sequence. The Decoder part used this context and the
most recent input to recursively generate 16 future time steps with its LSTM layer. The forecasts
from the E-D LSTM model were then accumulated at each time step and compared to the actual
data. If the difference between the forecasts and the patient data exceeded a threshold (set in
consultation with an anesthesiologist), an anomalous state was detected (see Appendix 1). Ad-
ditionally, such an approach to Anomaly Detection based on forecasting error allows retrieving the
source of abnormal changes in the current input by identifying which of the /3 vital parameters have
the largest error.

The Log-Cosh was used as loss function for the E-D LSTM and the Adam function as optimizer.
The Encoder consisted of 64 Bidirectional LSTM units (dropout = 0.2; recurrent dropout = 0.2) and
the Decoder was built out of 128 LSTM units (dropout = 0.2, recurrent dropout = 0.2) on top of
which a fully-connected layer with 13 units with linear activation generated the forecasted values.

Metrics

The choice of metric determines which aspects of an alarming system are the most influential. For
medical diagnosis, the priority is to consider the fraction of all hazardous events that are actually
detected by the system, which is given by recall
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Table |. Final scores for complication detection techniques.

Algorithm Engineered features Precision Recall Fy AUC
Positive guess N/A 0.21 | 0.35 0.50
Decision tree Yes 0.28 0.57 0.38 0.64
Random forest Yes 0.37 0.73 0.49 0.73
Fully-connected network N/A 051 0.63 0.56 0.82

Note: AUC: Area Under ROC Curve.

true positives
Recall = p

true postives + false negatives

It is also necessary to register the fraction of all generated alarms that are true hazardous events,
known as precision

true positives

Precision = — -
true positives + false postives

Together, recall and precision describe the completeness and exactness of an alarming system
which is expressed as the F; score — a harmonic mean between the two

precision X recall
F] = 2 X

precision + recall

F, score is not directly interpretable but allows to easily compare models with regards to
precision and recall without being biased by a high score of one of these two metrics. Moreover,
since precision and recall formulas do not include true negatives — these are of little interest in
medical diagnosis systems — they are more robust to class imbalance.?® This is an important property
because hypotensive events are underrepresented in our data compared to the more common non-
hypotensive condition. Area Under ROC Curve was also computed for completeness; however, it
should be considered with caution since is likely boosted by high recall score and class imbalance.

Results

For Complication Detection, a non-ML baseline was implemented to assess if the ML techniques
based their decisions on the complex data patterns instead of simply predicting the most frequent
class from the training set. A Positive Guess baseline was used which naively predicted for each
time step the outcome “hypotension”. Each ML model was trained 5 times and evaluated on the test
set to provide averaged final scores (Table 1).

All of the described techniques showed increased performance compared to the baseline (F, =
0.35) with the Decision Tree (F; = 0.38) and Random Forest (F; = 0.49) obtaining lower scores than
the NN (F; = 0.56). Additionally, the precision-recall curve in Figure 4 depicts how recall and
precision would change if the class assignment threshold (set by default to 0.5) was altered. It can be
observed that for the NN to obtain a recall score of 1, precision would have to decrease to around
0.21, which is equal to the Positive Guess baseline score. Inspecting the most relevant features in the
Random Forest indicated that its classification was mostly based on engineered features of the blood
pressure measurements and more specifically the mean change inside the 10-min window.



8 Health Informatics Journal

Precision-Recall curve

0.8

0.6

Precision

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 4. Precision-Recall curve of the Fully-Connected Neural Network.

For Anomaly Detection, a naive baseline, called Future Duplication, was used. At each time step
t the most recent observation #-1 was duplicated to depict future predicted values at ¢+ /...t + 16.
Mean Absolute Error (MAE) between the actual values of the vital parameters of 16 future time
steps and their predicted values generated by the E-D LSTM were equal to 0.44 and 0.37 for the
Future Duplication baseline, indicating that the forecasts of the ML algorithm showed decreased
performance compared to the naively-generated ones (Table 2). Additionally, the E-D LSTM
technique was tested on 10, previously unseen, procedures where an anesthesiologist tagged 1% of
the time points as anomalous. In this test, the ML algorithm performed similarly (F; = 0.32) to the
baseline (F; = 0.34).

Discussion

Although scores achieved in Complication Detection by the Random Forest and NN are not
impressive, they show that these algorithms are capable of learning patterns that occur in the vital
parameters. Visual inspection of the probabilistic outputs of the NN showed that detecting hy-
potension flagged by the rule-based system is generally an easy task for this ML technique.
Anesthesia cases which contained fewer non-physiological artifacts were modeled almost perfectly
by the NN and the resulting alarms were of high medical relevance in such cases (Appendices 2 and
3). More precisely, the cases where arterial blood pressures were measured invasively (with an intra-
arterial canula) on a continuous base did not cause difficulties for the networks; fewer data points
were missing compared to noninvasive interval measurements, and artifacts with a non-
physiological background were not overwhelmingly present. One can imagine that if systems
based on NNs were to be used during actual clinical procedures, the staff would have to ensure that
the recorded data are reasonably uncorrupted. We believe that a dataset with a reasonable number of
artifacts and reasonable time resolution (<0.067 Hz) would allow future studies to obtain significant
improvement in precision and recall scores, as our results were likely understated by the data
imperfections. In case of the Random Forest, which clearly outperformed a single Decision Tree,
another possible improvement would be replacing the Forest with an often more effective technique
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Table 2. Anomaly detection results.

Future duplication E-D LSTM
Forecast quality MAE 0.37 0.44
Detection quality Precision 0.22 0.2
Recall 0.81 0.83
Fl 0.34 0.32

Note: E-D LSTM: Encoder-Decoder Long Short-Term Memory; MAE: Mean Absolute Error.

of optimizing multiple Decision Trees, namely Gradient Boosting Machine, and extracting the
features manually in consultation with domain experts.

The Anomaly Detection method based on the averaged forecasting error seems to be a promising
approach, although it managed to detect only the more obvious anomalies. This low sensitivity was
caused by poor forecasting capabilities of the E-D LSTM — at least in their current setup, as it did
not surpass the naive baseline. It must be clear that we do not expect a forecasting algorithm to
achieve a MAE score close to 0, as that would indicate that the anomalies were also modeled and
would be a sign of over-fitting in the Anomaly Detection. Nevertheless, a basic inspection of
training and validation curves’ convergence showed that overfitting was not an issue in our
experiments, hence the next step would be to expose the E-D LSTM to more data and increase
the complexity of this model, for example by adding an Attention mechanism.?' Such im-
provements should theoretically help the neural architecture to capture better the patterns
occurring in patient’s vital state. On the other hand, without high-fidelity recordings it is likely
impossible to surpass a certain level of performance because some physiological phenomena are
not observable in a lower time-resolution.

As for a comparison between the Complication and Anomaly Detection systems, even though
Complication Detection seems a better performing approach at this point, it is unlikely that a
complete alarming system could be based solely on it. To improve Complication Detection would
require obtaining a training dataset with a sufficient number of labeled complications, but that would
be a major obstacle. This obstacle becomes even more difficult when trying to detect complications
less frequent than hypotension. A more realistic scenario would be to combine this ML learning
approach with a rule-based system to obtain a product that offers the adaptiveness and sensitivity of
the ML algorithms on the most often encountered complications, expanded by expert-defined
complications that are well-known but rare.

Although a Decision Tree covered in the Complication Detection section is commonly referred
to as a transparent method, it is not trivial to conceptualize its decision path into information that
could be effortlessly and quickly interpreted in an operation room setting. Similarly, the feature
weights from a Random Forest are more useful for describing the properties of the training dataset
rather than the input’s during inference. The Anomaly Detection approach proved to be the more
promising approach in this regard, as the ease of retrieving prediction errors per vital parameter
(see Appendix 4. for an example) opens new possibilities for further development of such systems
that are more in line with the concept of Explainable AI.'?> Moreover, the fact that Anomaly
Detection is based on methods that do not require a labeled training dataset should make it more
generalizable across different patients and types of procedures. Anomaly Detection could also
serve as a base for an alarming system by being responsible for the initial recognition of an
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abnormality in the incoming data stream. Such abnormality would then be processed by a
rule-based system or any other classifier, such as our Complication Detection system, which could
interpret the abnormality based either on the raw values of the vital parameters or/and the
prediction errors. However, these speculations about the future applications are only valid if the
quality of the forecasts improves.

Final conclusions

Alarm systems that achieve a perfect recall score while maintaining a small percentage of false
alarms (high precision) seems implausible. The tradeoff between precision and recall seems acutely
relevant in health monitoring and the unpredictable nature of the medical events accentuates its
importance. To introduce impactful improvements for alarming systems, it is crucial to determine
the implications of a small reduction in recall with a large increase in precision. Since anesthe-
siologists already tend to disregard alerts, it can be expected that the proposed changes will not
impact the patient’s safety negatively and should increase the reliability of the whole system from
the perspective of the medical staff.

We emphasize the need to reassess how alarming systems are viewed from a human-computer
interaction perspective. We propose a shift from alert-generating devices to support systems that act
as an additional staff member, but with a different type of intelligence that complements human
cognition. If such conceptual change is possible then the methods offered by ML may provide the
best solutions for generating reliable, generalized, and meaningful alarms.
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Appendices (Digital Content)

Appendix |

The network was set to forecast / = /6 (4 min) future timesteps for each of the 13 vital parameters.
These future predictions were accumulated, so that every timestep ¢ was forecasted 16 times at #-/6,
t-15, ..., t-1. Then, a prediction error was computed where e,»j’ is the absolute difference between x;’
the actual value of the variable i measured at time # and its predicted value at time #-j. This means that
for a given time step ¢ there is an error vector &' = [e; /', ..., ei; [, ..., eq/', ..., e4/], where [ is the
number of future predictions, d is the number of dimensions (vital parameters). The next step was to
average the error vectors across the / and d dimensions, so that for every timestep there would be
only a single & grand mean error value. Then, in order to provide a context for every &, a median
value was calculated from the last 8 steps median(e”® ... &) and summed with a constant threshold
7. Finding the optimal threshold was done by maximizing the F; score on the 10 expert-tagged
operations from the validation set. Using a running median was motivated by the fact that some
operations had periods which a NN could not model with a sufficient accuracy and had a generally
higher prediction error &. Also using a simple grand mean &, rather than tracking each variable
separately, provided more consistent results. To sum up, anomaly detection at time ¢ was done by
averaging all prediction errors e,/ into ¢ and checking whether the following condition was
violated & < median(@”® ... e')+r. To retrieve the prediction error per vital parameter, which we
claim is an additional insight into the model’s decision, we simply display the 13 error vectors e’
averaged across the time dimension / (Appendix 4).
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Appendix 2. Detections on good quality data.
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Appendix 3. Detections on poor quality data.

Absolute Prediction Error (standarized)
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Appendix 4. Encoder-Decoder Long Short-Term Memory’s absolute prediction errors on a hypotensive
event. The scale of the error is an absolute value of the vital parameter standardized with the method
described in the Data subsection.
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