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Abstract: The feedback integrators method is improved, via the celebrated Dirac formula, to integrate
the equations of motion for mechanical systems with holonomic constraints so as to produce numeri-
cal trajectories that remain in the constraint set and preserve the values of quantities, such as energy,
that are theoretically known to be conserved. A feedback integrator is concretely implemented in
conjunction with the first-order Euler scheme on the spherical pendulum system and its excellent
performance is demonstrated in comparison with the RATTLE method, the Lie–Trotter splitting
method, and the Strang splitting method.
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1. Introduction

The method of feedback integrators was proposed in [1,2] to numerically integrate the
equations of motion for dynamical systems in order to preserve their domain manifolds
and first integrals. The method is summarized as follows. Suppose that there is a given
invariant set Λ of a continuous-time dynamical system on a manifold P, where Λ can be the
intersection of level sets of the first integrals of the system. Embed P into some Euclidean
space, extend the system to the ambient Euclidean space, and modify it outside Λ to turn
Λ into a local attractor of the resulting dynamical system in the ambient space. Then,
trajectories originating from points in Λ generated by integration of the modified dynamics
remain in Λ theoretically and near Λ numerically, irrespective of the choice of numerical
integration schemes. It is rigorously shown [1,3,4] that the discrete-time dynamical system
derived from any one-step numerical integrator with uniform step size h for the modified
continuous-time system has an attractor Λh that contains Λ in its interior and converges to
Λ as h→ 0+. In this procedure, the set of equations of motion of the modified dynamical
system is called a feedback integrator. Feedback integrators can be implemented by any
usual integration scheme such as Euler, Runge–Kutta, or Matlab ode45 in one single global
Cartesian coordinate system for the ambient Euclidean space and do not require projecting
numerical trajectories to a certain set or solving algebraic equations during integration.

Here, we propose a way to apply feedback integrators to mechanical systems with
holonomic constraints, which is not addressed in [1,2]. Consider a symplectic manifold
P, a symplectic submanifold S of P, and a Hamiltonian function H on P, where it is often
the case that P = T∗Rn for some n and S is the cotangent bundle of a set of holonomic
constraints in Rn. The Hamiltonian function H defines a Hamiltonian vector field XH on P
and the restriction H|S of H to S defines a Hamiltonian vector field, denoted XH|S, on S. In
general, XH does not coincide with XH|S on S; so, we employ the celebrated Dirac formula
to extend the vector field XH|S from S to P, such that the dynamical system extends from S
to P. The manifold S is an invariant set of the extended dynamical system on P. Thus, we
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can apply the usual method of feedback integrators to the extended system on P such that
S is numerically well-preserved.

This paper is organized as follows. The Dirac formula is first reviewed for the sake of
completeness; then, the procedure for implementing feedback integrators for mechanical
systems with holonomic constraints is presented. A simulation study is carried out on the
spherical pendulum system, which is a mechanical system with a holonomic constraint, to
demonstrate the excellent performance of feedback integrators in preserving the constraint
set, the total energy, and the vertical component of the angular momentum vector, in
comparison with the RATTLE method, the Lie–Trotter method, and the Strang method.
Refer to [5] for more information on the three methods. We conclude with a small-scale
simulation of the planar pendulum to show that the feedback method generally gives rise
to integrators that are computationally more efficient as well.

Related Work

The numerical integration of mechanical systems with holonomic constraints has
been an area of active research interest over the past decades. In this section, we briefly
compare our approach with existing methods from the literature. Holonomic constraints
can be viewed as index-1 differential-algebraic equations (DAEs) [6,7]. These systems can
be integrated by direct discretization or by reformulating the DAE as an equivalent set of
ODEs to which a standard numerical integration scheme may be applied. The resulting
integration scheme typically involves the solution of a nonlinear equation representing
the constraint. Another approach starts from the Hamiltonian or variational nature of
mechanical systems to come up with discretizations that preserve the symplectic structure
and the constraint manifold [5,8–10]. Such discretizations, the RATTLE algorithm [11]
and its generalizations [12–14] chiefly among them, typically exhibit superior long-term
integration properties compared with standard, nonsymplectic integration algorithms,
and have found wide application in the numerical integration of mechanical and control
systems [15–17]. This approach has also been extended to the case of classical field theories
with constraints [18,19], or to systems with dissipation [20]. What all these methods have in
common is that they seek to enforce the constraint equations directly, which requires special-
purpose integration algorithms. By contrast, the feedback integrator method described
in this paper modifies the equations of motion directly, to approximately conserve the
constraint equations and other integrals of motion. As we pointed out before, the advantage
of this approach is that it allows for standard, off-the-shelf numerical integrators to be used,
such as the Euler or Runge–Kutta method.

2. Main Results

We first review the Dirac formula [21,22], explain how to construct feedback integrators
for mechanical systems with holonomic constraints, and design a feedback integrator
for the planar and spherical pendulum systems to demonstrate its excellent integration
performance and versatility in comparison with the RATTLE method, the Lie–Trotter
method, and the Strang method.

2.1. Review of the Dirac Formula

In this section, we recall the construction of Dirac for the decomposition of the Hamil-
tonian vector field along a symplectic submanifold S ⊂ P, where (P, ω) is a symplectic
manifold and S is symplectic, such that for all z ∈ S we have TzS⊕ TzSω = TzP. Suppose
that we are given a Hamiltonian function H on P. We will work semiglobally as follows.
Suppose that S locally is expressed as the zero level set of a function f : P→ R2k that has
0 as a regular value. Then, we have dim S = 2n− 2k where dim P = 2n and we denote
f = ( f1, . . . , f2k). Since S is symplectic, we can restrict the Hamiltonian H to S and, pulling
back the symplectic form to S, we have

ι∗Sω(z)(XH|S(z), vz) = d(H|S)(z) · vz
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for vz ∈ TzS.

Proposition 1. Each of the X fi
|S is a section of TSω. Furthermore, these sections are linearly

independent and, at any point, span this distribution.

Proof. We have that v ∈ TzS if and only if d fi(z) · v = 0 for all i ∈ {1, . . . 2k}. Now, let
v ∈ TzS. We then have, for each i, ω(z)(X fi

, v) = d fi(z) · v = 0; therefore, X fi
|S is a

section of TSω . From the independence of the fi, a dimension count shows that the linearly
independent X fi

(z) span TzSω, completing the proof.

Now, define for each z ∈ P a (2k× 2k) matrix by

Cij(z) = { fi, f j}(z).

We then have the following.

Proposition 2. Fix z ∈ S. The matrix Cij(z) is invertible.

Proof. Fix z ∈ S. We know that TzS is symplectic and, therefore, TzSω is too. By the
previous proposition, we know that the X fi

(z)’s form a basis of the symplectic space TzSω .
Therefore, the entry of the matrix Cij(z) is precisely the symplectic form evaluated on the
vectors X fi

(z), X f j
(z), which is, thus, a non-degenerate matrix since the restriction of ω to

TzSω is non-degenerate.

We then have the following version of the Dirac formula for the Hamiltonian vector field.

Theorem 1. With the definition of Cij(z) given as above, denoting its inverse by Cij(z) for z ∈ S,
the following formula holds:

XH|S(z) = XH(z)−
2k

∑
i,j=1

Cij(z){H, fi}(z)X f j
(z). (1)

Proof. Since S is symplectic, we have that for all z ∈ S, TzP = TzS⊕ TzSω. We will show
that the projection πz : TzP→ TzS relative to this decomposition is given by the right-hand
side of (1). This is equivalent to showing that I− πz : TzP→ TzSω is given by

(I− πz)XH(z) =
2k

∑
i,j=1
{H, fi}(z)Cij(z)X f j

(z). (2)

To establish this, first observe that the right-hand side lies in TzSω by Proposition 1. Next,
if H = f` where ` ∈ {1, . . . 2k}, then the right-hand side of (2) is

2k

∑
i,j=1

C`i(z)Cij(z)X f j
(z) =

2k

∑
j=1

δ`j(z)X f j
(z) = X f`(z)

which shows that the operator is the identity on the subspace TzSω. Next, suppose that
XH(z) ∈ TzS. Then, we have d fi(z) · XH(z) = 0 for all i and, therefore, the right-hand
side of (2) vanishes, as required. This proves that the projection I− πz is given by the
Formula (2) and, thus, πz is given by the right-hand side of (1).

Our main use of this theorem is to extend a Hamiltonian system on S to all of P.
That is, given a Hamiltonian function H defined on P, we compute the right-hand side of
Equation (1) for arbitrary z ∈ P to obtain a vector field defined on a neighborhood of the
submanifold S (or level surface in this case) that will automatically be equal to XH|S on S
itself. Thus, the Dirac formula gives us a way to extend Hamiltonian vector fields on S to
the ambient space.
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2.2. Feedback Integrators for Mechanical Systems with Holonomic Constraints

Given a Hamiltonian function H on a 2n-dimensional symplectic manifold P and
its Hamiltonian vector field XH on P, consider a Hamiltonian system ΣS on a (2n− 2k)-
dimensional symplectic submanifold S of P whose Hamiltonian function is the restriction
H|S of H to S. So, the equations of motion of ΣS can be written as

ż = XH|S(z), z ∈ S. (3)

Assume that S is expressed as a level of a function f = ( f1, . . . , f2k) : P→ R2k. Thanks
to the Dirac Formula (1), the dynamical system (3) extends to P as

ẋ = XH(x)−
2k

∑
i,j=1

Cij(x){H, fi}(x)X f j
(x), x ∈ P. (4)

It is easy to verify that S is an invariant manifold of (4). We now wish to integrate the
dynamics (4) from a point x0 in S.

Suppose that we can embed the manifold P in some Euclidean space Rm with m ≥ 2n
and extend the vector field (4) to Rm, not necessarily in the Dirac way. Denote the extended
vector field by X and write the corresponding dynamical system as

ẋ = X(x), x ∈ Rm. (5)

Suppose that both functions f and H also extend to the ambient Euclidean space Rm

in such a way that D f · X = 0 and∇H · X = 0 in Rm, and that the manifold S is still a level
set of the extension of f in Rm. As a result, the functions f and H are first integrals of (5)
and the manifold S is an invariant manifold of (5).

Suppose that there are ` first integrals I = (I1, . . . , I`) of (5) other than H and f , where
the function I may include part of a function on Rm whose level set defines P in Rm. Define
a function F : Rm → R2k+1+` by F = ( f , H, I), and a function V on Rm by

V(x) =
1
2
(F(x)− F(x0))K(F(x)− F(x0))

where K = KT is a (2k + 1 + `)× (2k + 1 + `) constant positive definite symmetric matrix.
The minimum value of V is 0 and the function V satisfies

V−1(0) = {x ∈ Rm | x ∈ S, H(x) = H(x0), I(x) = I(x0)}.

The set V−1(0) is an invariant manifold of (5) since∇V · X = (F(x)− F(x0))
TK ·DF ·

X = (F(x)− F(x0))
TK · 0 = 0.

Modify the dynamical system (5) as follows:

ẋ = X(x)− L(x)∇V(x), x ∈ Rm, (6)

where L is a map from Rm into the set of m × m positive definite symmetric matrices
and ∇V is computed as ∇V(x) = DF(x)TK(F(x) − F(x0)). Since 0 is the minimum
value of V, the gradient ∇V vanishes on V−1(0), which implies that the two dynamical
systems (5) and (6) coincide on V−1(0). It follows that the set V−1(0) is an invariant
manifold of (6). Along any trajectory of (6), V(t) is an nonincreasing function of t since
dV
dt = 〈∇V, (X − L∇V)〉 = −〈∇V, L∇V〉 ≤ 0; so, the trajectory converges to V−1(0) as

t → ∞ or it remains close to V−1(0) if it starts near V−1(0). Under some conditions on
V, the set V−1(0) becomes a unique attractor of (6) in a neighborhood of itself in Rm;
refer to [1] for those conditions. Due to the invariance of V−1(0) and the coincidence
of (5) and (6) on V−1(0), integrating (5) from x0 and integrating (6) from x0 produce the
same trajectory. Numerically, however, integrating (6) has the following advantage: if the
trajectory deviates from V−1(0) at some numerical integration step, then it will get pushed
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back toward the attractor V−1(0), thus remaining on the manifold S and preserving all
the first integrals; refer to [1,23] for a rigorous explanation. Although [1,23] provides some
sufficient conditions for V−1(0) to be a local attractor of (6), in practice, it is not necessary
to verify them. The procedure outlined in this section is good enough for applications,
which will be illustrated with the planar and spherical pendulum in the next sections.

2.3. The Spherical Pendulum

We build a feedback integrator for the spherical pendulum [24], which is a Hamil-
tonian system with a holonomic constraint, and compare its performance with that of
such geometric numerical integration methods as the RATTLE method, the Lie–Trotter
splitting method, and the Strang splitting method. The phase space of the spherical pen-
dulum is T∗S2, which is a symplectic submanifold of T∗R3 = R3 ×R3. This submanifold
is globally defined as the (`2, 0)-level set of the function f = ( f1, f2) : T∗R3 → R2 with
` > 0, where f1(q, p) = ||q||2 and f2(q, p) = q · p for (q, p) ∈ T∗R3. We fix the Hamiltonian
H(q, p) = ||p||2/2m + mgq3. Restricted to T∗S2, this gives the Hamiltonian of the spherical
pendulum under gravity, with its S1 symmetry. In order to write down the extended
Hamiltonian vector field, we compute the following:

{H, f1} = −2 f2/m, {H, f2} = −‖p‖2/m + mgq3, { f1, f2} = 2 f1,

XH = (p/m,−mge3), X f1 = (0,−2q), X f2 = (q,−p),

and

[Cij] =

[
0 −1/(2 f1)

1/(2 f1) 0

]
,

where e3 = (0, 0, 1). Hence, by the Dirac formula, the spherical pendulum system extends
to T∗R3 as

ẋ = X(x)

where

X(x) =
(

1
m

p− f2

m f1
q,−mge3 +

f2

m f1
p +

(
−‖p‖2

m
+ mgq3

)
1
f1

q
)

for x = (q, p) ∈ T∗R3. The extended system has four first integrals on T∗R3: the constraint
functions f1 and f2, the Hamiltonian H, and the vertical component J(q, p) = q1 p2 − q2 p1
of angular momentum.

Choose a point (q0, p0) ∈ T∗S2, and define a function V : T∗R3 → R by

V(q, p) =
1
2

k1|∆ f1|2 +
1
2

k2|∆ f2|2 +
1
2

k3|∆H|2 + 1
2

k4|∆J|2,

where ki > 0, i = 1, . . . , 4 are constants; ∆ fi = fi(q, p) − fi(q0, p0), i = 1, 2; ∆H =
H(q, p)− H(q0, p0); and ∆J = J(q, p)− J(q0, p0). It is easy to verify that 0 is the minimum
value of V and

V−1(0) = {(q, p) ∈ T∗R3 | f1(q, p) = `2, f2(q, p) = 0, H(q, p) = H0, J(q, p) = J0},

where H0 = H(q0, p0) and J0 = J(q0, p0). The gradient of V is computed as

∇V = k1∆ f1∇ f1 + k2∆ f2∇ f2 + k3∆H∇H + k4∆J∇J,

where ∇ f1 = (2q, 0), ∇ f2 = (p, q), ∇H = (mge3, p/m), and ∇J = (p× e3, e3 × q). Then,
the feedback integrator corresponding to the function V for the spherical pendulum is
given by

ẋ = X(x)−∇V(x)
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or

q̇ =
1
m

p− f2

m f1
q− 2k1∆ f1q− k2∆ f2 p− k3mg∆He3 − k4∆J(p× e3) (7)

ṗ = −mge3 +
f2

m f1
p +

(
−‖p‖2

m
+ mgq3

)
1
f1

q− k2∆ f2q− k3
∆H
m

p− k4∆J(e3 × q). (8)

We now compare the feedback integrator with the RATTLE method, the Lie–Trotter
method, and the Strang method on the spherical pendulum system. The RATTLE algorithm
is given on p. 246 in [5] and is known to be symplectic and convergent of order two [5].
The Lie–Trotter method and the Strang method are so-called splitting methods and are
explained on pp. 253–254 in [5], where the two splitting methods yield first- and second-
order numerical integrators, respectively [5]. For the splitting methods, we split the
Hamiltonian function H into the kinetic function H[1](q, p) = ||p||2/2m and the potential
function H[2](q, p) = mgq3, and we note that the dynamics associated to H[1] and H[2]

can be integrated analytically. For numerical simulation, choose the parameter values
m = g = ` = 1 for convenience, and the initial points q(0) = (0, 1, 0) and p(0) = (1, 0,−1)
on T∗S2. The corresponding initial values of the first integrals f1, f2, H, and J are f10 = 1,
f20 = 0, H0 = 2, and J0 = −1, respectively. We fix the time step size h = 10−3 and the
time interval [0, 100] for integration by all four methods. For the feedback integrator, the
usual Euler scheme is used to integrate (7) and (8) with the following gain values: k1 = 50,
k2 = 50, k3 = 50, and k4 = 50.

The computational results are plotted in Figures 1–5. In Figure 1, the trajectories
q(t) = (q1(t), q2(t), q3(t)) of the configuration variables generated by the four methods are
plotted. The feedback integrator with the Euler, RATTLE, Lie–Trotter, and Strang splitting
methods all generate similar trajectories. Figures 2 and 3 show the plots of the deviations
|∆ f1(t)| and |∆ f2(t)| from the constraint manifold T∗S2. The result by the RATTLE method
is the best, and the trajectory produced by the feedback integrator with Euler remains close
to T∗S2 with the step size h = 10−3 taken into account. Likewise, the trajectories by the
Lie–Trotter method and the Strang method stay close to T∗S2, because the flows of the split
Hamiltonians H[1] and H[2] each preserve T∗S2, as does their composition.

The feedback integrator with Euler and the RATTLE method perform well in preserva-
tion of the values of the Hamiltonian H as do the other two methods, as shown in Figure 4.
The vertical component J of angular momentum is well-preserved by all four methods
as shown in Figure 5, where it is noticeable that the Lie–Trotter method and the Strang
method perform very well in preservation of J.

The computational results imply that the feedback integrator with the first-order
Euler scheme performs well on the spherical pendulum system in comparison with the
well-known RATTLE method that is of second order, and to the Lie–Trotter method and
the Strang method. An advantage of the feedback integrator over the other three methods
is that it does not require any projection or solving of algebraic equations to stay on
the holonomic constraint manifold. Further, it does not require any special integration
algorithms, and simply employs well-known integration algorithms available such as Euler,
Runge–Kutta, or Matlab ode45. Moreover, unlike the Lie–Trotter and Strang methods,
which require a particular splitting of the dynamics into two parts that are separately
integrable, the feedback integrator can be made to work for any constrained dynamical
system by modifying the vector field as in (6).
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Figure 1. The trajectories of the position q(t) = (q1(t), q2(t), q3(t)), 0 ≤ t ≤ 100, of the spherical
pendulum generated by four different methods with step size h = 10−3: a feedback integrator with
the Euler scheme, the RATTLE method, the Lie–Trotter splitting method, and the Strang splitting
method.
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10-16

0 50 100
10-16

10-14
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10-16
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Figure 2. The trajectories of the deviation, |∆ f1(t)| = | f1(t)− f1(0)|, 0 ≤ t ≤ 100, of the spherical
pendulum from the constraint set, ‖q‖2 = 1, generated by four different methods with step size
h = 10−3: a feedback integrator with the Euler scheme, the RATTLE method, the Lie–Trotter splitting
method, and the Strang splitting method. A logarithmic scale is used on the y-axis.
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0 50 100

10-15
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10-15

0 50 100

10-15

Figure 3. The trajectories of the deviation, |∆ f2(t)| = | f2(t)− f2(0)|, 0 ≤ t ≤ 100, of the spherical
pendulum from the constraint set, q · p = 0, generated by four different methods with step size
h = 10−3: a feedback integrator with the Euler scheme, the RATTLE method, the Lie–Trotter splitting
method, and the Strang splitting method. A logarithmic scale is used on the y-axis.



Sensors 2022, 22, 6487 8 of 12
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Figure 4. The trajectories of the energy error, |∆H(t)| = |H(t)− H(0)|, 0 ≤ t ≤ 100, of the spherical
pendulum generated by four different methods with step size h = 10−3: a feedback integrator with
the Euler scheme, the RATTLE method, the Lie–Trotter splitting method, and the Strang splitting
method. A logarithmic scale is used on the y-axis.
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Figure 5. The trajectories of the momentum error, |∆J(t)| = |J(t)− J(0)|, 0 ≤ t ≤ 100, of the spherical
pendulum generated by four different methods with step size h = 10−3: a feedback integrator with
the Euler scheme, the RATTLE method, the Lie–Trotter method, and the Strang method. A logarithmic
scale is used on the y-axis.

2.4. The Simple Pendulum

One potential drawback of the feedback integration method is that the feedback vector
field is more complex due to the presence of the stabilizing forces. For example, the
right-hand side of (7) and (8) is a sum of five gradients (one gradient of the Hamiltonian
and four gradients of the feedback potential) and this cost compounds for higher-order
numerical methods, which typically require several force evaluations per integration step.
This added computational cost must be taken into account when comparing the error
profile of feedback integrators with that of standard methods, such as RATTLE, which only
evaluate the gradient of the Hamiltonian (but possibly multiple times per integration step).

In this section, we show that the increase in complexity is compensated by the approx-
imate conservation properties of the integrator, and in particular, we show that feedback
integrators are at least as effective as standard integrators when the computational budget
is taken into account. We compare the performance of feedback integrators of different
orders with that of the RATTLE method and show that the increase in computational cost
is balanced by the fact that feedback integrators require fewer force evaluations overall to
achieve a given accuracy.
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To assess the global error of the various integrators, we take recourse to a simpler
mechanical system, for which exact solutions are known and can be approximated with
arbitrary precision: the simple gravitational pendulum. The simple pendulum consists of
a mass m that is free to swing at the end of a rigid rod of length ` under the influence of
gravity. The motion of the pendulum takes place entirely in a fixed plane, denoting the
angle between the horizontal and the position of the pendulum by θ, is determined by

θ̈ + g cos θ = 0, (9)

where g is the gravitational acceleration. The dynamics of the pendulum as a constrained
system can be derived directly via a calculation as in the previous section, or by observing
that the spherical pendulum naturally moves in a fixed plane if the initial position, momen-
tum, and direction of gravity are all coplanar. Either way, the extended Hamiltonian vector
field is readily seen to be

X(x) =

(
1
m

p− f2

m f1
q,−mgey +

f2

m f1
p +

(
−‖p‖2

m
+ mgy

)
1
f1

q

)
,

where q = (x, y) and p = (px, py) are the coordinates and momenta of the pendulum,
respectively, and ey = (0, 1). The first integrals on T∗R2 are the Hamiltonian H(q, p) =

‖p‖2/2m + mgy and the constraint functions

f1(q, p) = ‖q‖2 = x2 + y2 and f2(q, p) = q · p = xpx + ypy.

Similar to the spherical pendulum, we consider these three conserved quantities and
for given initial values (q0, p0) ∈ T∗S2, we define the function V : T∗R2 → R given by

V(q, p) =
1
2

k1|∆ f1|2 +
1
2

k2|∆ f2|2 +
1
2

k3|∆H|2,

where k1, k2, k3 are positive constants; ∆ fi = fi(q, p) − fi(q0, p0); i = 1, 2; and ∆H =
H(q, p)− H(q0, p0). The feedback integrator for the simple pendulum then becomes

q̇ =
1
m

p− f2

m f1
q− 2k1∆ f1q− k2∆ f2 p− k3mg∆He2 (10)

ṗ = −mge2 +
f2

m f1
p +

(
−‖p‖2

m
+ mgy

)
1
f1

q− k2∆ f2q− k3
∆H
m

p. (11)

While the pendulum can, in principle, be integrated exactly, obtaining the solution as
a function of time is not straightforward and requires inverting the elliptic integral of the
first kind. To avoid this difficulty, we integrate the Equation (9) for θ using a high-order
Runge–Kutta method with tolerance set to 10−13. For all numerical simulations, we set
m = g = ` = 1, and we use q(0) = (1, 0) and p(0) = (0, 0) as the initial conditions. For the
feedback method, we use three off-the-shelf numerical schemes to integrate (10) and (11):
(a) the forward Euler method, (b) the explicit 4th-order Runge–Kutta method (RK4), and
(c) the Dormand–Prince method of 8th order (DOP853). Note that the Dormand–Prince
method is a variable step-size integrator while all the others use a fixed step size.

Figure 6 (left) shows the trajectory error after one period of the pendulum between
the standard RATTLE integrator on the one hand, and the three feedback integrators on
the other hand, as a function of the step size. The global error decreases as the step size
decreases, in line with the order of the method. This is to be expected, since the feedback
approach merely modifies the vector field to be integrated, but does not otherwise alter the
underlying numerical method.

The vector field integrated by the feedback methods is more complex; thus, one can
ask what the impact is on the total execution time. To investigate this question, we give
each method a fixed computational budget and modify the integrator code so that each
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evaluation of the vector field reduces the computational budget by a certain amount. For
evaluations of the feedback vector field (10) and (11) the cost per evaluation is set to 4, since
the vector field consists of 4 gradients, whereas for the evaluation of the gradient of the
Hamiltonian (needed e.g., by RATTLE), the cost per evaluation is 1. We then compare the
performance of the integrators over one period of the pendulum and adjust the step size
(for RATTLE and the feedback Euler and RK4 methods) or the tolerance (for the feedback-
DOP853 method, which uses a variable step size) so that the computational budget is
exhausted over one period.

The result is shown in Figure 6 (right), which shows the global error as a function of
the computational budget. Note that the error for the feedback-DOP853 method stabilizes
somewhat below 10−12. This is roughly the point where we encounter the limits in the
accuracy of the exact trajectories (which were obtained by numerical integration of (9),
where the tolerance was set to 10−13).

We see that feedback integrators are able to integrate the dynamics of the underlying
system accurately (i.e., with low error) and efficiently (using comparable or lower numbers
of force evaluations), compared with specific holonomic integrators. In terms of computa-
tional efficiency, higher-order integrators such as the feedback-DOP853 integrator clearly
achieve better results than others (lower-order feedback methods and RATTLE). This again
demonstrates one of the key benefits of the feedback integrator method, showing that
it is possible to use any standard numerical integration scheme to obtain approximate
constraint preservation, without loss of accuracy or computational efficacy.

10−3 10−2 10−1

Step size (h)

10−11

10−8

10−5

10−2

G
lo
b
al

er
ro
r

103 104 105

Number of force evaluations

Rattle

FI-Euler

FI-RK4

FI-DOP853

Figure 6. Left: The global trajectory error after one period of the pendulum (approximately 7.4 time
units) as a function of the step size (DOP853 is not included as it is a variable step size method). As the
step size decreases, the global error decreases at a rate proportional to the error of the method. Right:
The global error, but now as a function of the computational budget (number of force evaluations).
Larger computational budgets correspond to smaller step sizes and, hence, lower errors, but take into
account the fact that the feedback methods involve more force evaluations. Despite the overhead,
feedback integrators are able to do at least as well as, or better than, RATTLE.

3. Conclusions

We have presented a general framework to extend the feedback integrators [1] to
systems with holonomic constraints. Beginning with a symplectic submanifold S in the
symplectic manifold P, where S—the holonomic constraint—is the level set of f1 . . . f2k,
on which we have a Hamiltonian H|S. We use the Dirac formula to extend the vector
field XH|S to a vector field X on P. We then apply the feedback integrator to X using an
embedding of P in Euclidean space.

More specifically, in the case that the symplectic manifold S is of the form T∗Q, where
Q embeds in Rn and T∗Q embeds in T∗Rn as the level set of functions f1, . . . f2k, on which
we have an extended Hamiltonian H, we can compute the extension of the vector field
XH|T∗Q directly from the Dirac formula (1). With this vector field, now defined on a
Euclidean space, T∗Rn, we construct the function V : T∗Rn → R≥0, whose 0 level set
contains the dynamic invariants for a given initial point in S, where the set of dynamic
invariants includes the functions f1, . . . f2k. The feedback-integrator-modified vector field,
constructed from the extended vector field X by adding the negative gradient of V, is fed
into any integrator, for example, first-order Euler. In addition to the dynamic invariants,
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the integrator automatically respects, from the construction of the modified vector field,
the holonomic constraints. The resulting integrator has superior performance to even
symplectic integrators, which depend, typically, on implicit solvers. As future work, we
plan to examine the problem of optimal control on manifolds and its relationship with
Hamiltonian mechanics from the viewpoint of feedback integrators about which some
preliminary works have been carried out in [25–27]. We also plan to examine the effect of
the magnitude of feedback integrator term on the precision of numerical integration and to
extend feedback integrators to field theory.
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