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Principal component approaches are often used in the construction of composite indicators to summarize the information of
input variables. �e gain of dimension reduction comes at the cost of di�culties in interpretation, inaccurate targeting, and
possible con�icts with the theoretical framework when the signs in the loading are not aligned with the expected direction of
impact. In this study, we propose an adjustment in the construction of principal component approaches to avoid these problems.
�e e�ectiveness of the proposed approach is illustrated in de�ning the Food and Agriculture Organization of the United Nations’
Resilience Capacity Index, which is used tomeasure household-level resilience to food insecurity.We conclude that the robustness
gain of using the new method improves the reliability of the composite indicator.

1. Introduction

Composite indicators are widely used to evaluate the overall
performance of entities on multiple criteria [1]. �eir rising
popularity comes from the power of simpli�cation by sum-
marizing a complex and sometimes elusive process into a single
�gure. Constructing a composite indicator requires carefully
analyzing the underlying structure of the input variables, as it
helps assess the suitability of the data and provides an un-
derstanding of the implications of the methodological choices
[2]. Various techniques can be used in this step, among which
principal component analysis is a popular choice. Its related
factor analysis method is most preferred in the development of
composite indicators, as this approach is simple and allows for
the construction of weights representing the information
content of individual indicators [2] (In this paper, we refer to
“principal component analysis” and “principal component
factor analysis” generally as “principal component ap-
proaches”). �ere are multiple aggregate measures that employ
principal component approaches in their constructions. Some

examples are the product market regulation index of [3], the
sustainability indicator proposed by [4], and the wealth index of
[5], which is used in Demographics and Health Surveys (DHS)
reports [6] andUNICEFMultiple Indicator Cluster Surveys [7].

Composite indicators constructed using traditional prin-
cipal component approaches can encounter some potential
limitations. Without loss of generality, we assume to have a set
of input variables in which they are all de�ned in such a way
that an increase leads to an improvement of the state proxied by
the aggregate index. Under this assumption, we expect the
composite index to positively correlate with all of its sub-in-
dicators. However, negative signs in the classical loadingmatrix
can reverse this relation, dampening the representative power
of the aggregate indicator.�ey can also de�ect how changes in
input variables should be loaded to the composite indicator,
leading to inaccurate ranking and targeting of entities’ per-
formances. Moreover, the traditional loading solution includes
both positive and negative values, which can result in inter-
pretation di�culty. If two indicators have the same sign on one
loading vector, they tend to increase or decrease together on
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that score. If they have opposite signs, there is a trade-off
between these two variables [8]. When an individual variable
has sizable positive loading in one score and significant neg-
ative loading in another [2], it can be confusing and difficult to
conclude the overall direction of impact.

(is study proposes a solution for the above problems by
modifying the traditional principal component approaches to
consider the expected direction of impact while grouping
common information from the data set. Using an alternative
version of the loading matrix that contains only positive (or
negative) elements, we control how variables influence
principal component scores, thereby ensuring accurate tar-
geting and ranking of entities’ performance and a consistent
relationship between input indicators, scores, and the com-
posite indicator. Additionally, the new loading solution
reallocates the concentration of elements to provide a
straightforward interpretation. Overall, our method supports
the reading of results and the accuracy of the estimated
indicator.

(emethodological approach taken in this study is based
on optimization techniques. As explained by [8], outputs of
classical principal component analysis (PCA) correspond to
optimal solutions of several optimization problems simul-
taneously, and we can consider possibilities for tweaking
these allocation problems to find “better” solutions that
satisfy alternate criteria. Following this inspiration, we first
develop an optimization-based process to extract loading
vectors of the traditional PCA.(en, to acquire a newmatrix
with only positive (or negative) values, zero lower (or upper)
bounds are enforced to the original allocation problems.(e
obtained solution is also applicable in a factor model
framework. Principal component factor analysis (PCFA)
differs from PCA in terms of score estimation, as the model
assumes that the data are based on the underlying latent
factors. (e communalities in this factor model are assumed
to be 1. (us, the estimators of the latent variables obtained
are proportional to those given by the PCAmodel [9]. Using
unrotated PCA loadings as pattern coefficients [10], we build
up formulas for classical and restrained PCFA approaches.

To date, much research focused on creating new
methods for PCA and factor analysis (FA) based on the
particular analysis needed. Common goals are to increase
the robustness to outlier observations of PCA [11, 12] and
FA [13–15]; to create sparse principal components where the
loadings have few nonzero entries [16, 17]; or to create
smooth scores where the loadings of certain variables are
similar [18]. (ere are also several studies investigating the
nonnegativity of PCA and FA loading solutions with dif-
ferent techniques such as oblique factor rotation with
partially nonnegative constraint [19], positive matrix fac-
torization [20, 21], or singular value decomposition with
modifications in exponential parameterization [22]. (is
research contributes to the existing literature using opti-
mization techniques to find the loading that maximizes the
variance explained under the constraint that the signs of the
loadings are as expected.

Although from the methodology we have solutions for
both restrained PCA and PCFA, the application section only
demonstrates and discusses in detail the impact of

constraints under PCFA.(ere are twomain reasons for this
setting. First, PCA and PCFA return similar or proportional
results. Key conclusions about the impact of constraints
obtained from the two methods are the same; thus, it is a
repetition to explain them both. Second, the resilience pillars
employed for demonstration in this section are normally
constructed using FA [23]; therefore, discussing PCFA re-
sults is more relevant for practical usage.

To compare the performance of the new approach over
the classical one, we use them in the construction of the four
pillars of the Resilience Capacity Index (RCI), used by the
Food and Agriculture Organization (FAO) to understand
how households cope with shocks and stressors. (is is a
measure of performance that assesses the resilience of
households and is built on four fundamental attrib-
utes—namely, access to basic services, assets, social safety
net, and adaptive capacity. Each of these pillars itself is a
composite indicator aggregated from a subset of selected
indicators.

(e theoretical framework suggests that a pillar should
have positive relationships with all of its input variables.
Using two data sets collected fromUganda in 2019 and Chad
in 2014, we find that this relationship is not always guar-
anteed under classical PCFA. (e mixed-sign loading ma-
trices can result in pillars that have negative correlations
with one of their sub-variables. Moreover, some variables
have significant positive loading in one component and
significant negative loading in another, making it difficult to
conclude the overall influence on the composite indicator.
By design, the constrained solution does not suffer from this
lack of interpretability. (e constraints ensure that all
loading elements are nonnegative. By construction, we thus
have a positive correlation between a pillar and each input
variable. As the signs in the loading are consistent and
aligned with the expected direction, the changes in input
variables are accurately reflected in values of the pillar and
therefore lead to better targeting and changes in ranks of
household performance.

(e remainder of the study is organized as follows.
Section 2 describes our motivation. Section 3 presents the
methodology, while Section 4 discusses the application re-
sults. Section 5 contains our conclusions.

2. Motivating Example

In what follows, we use a simplified numerical example to
illustrate the problems under traditional principal compo-
nent approaches and how our proposed constraints fix them.
(e illustration is made based on the theoretical framework
of access to basic service pillar, which is fully explained in
Section 4.

Assume that after a project deployed to support a local
community, we interview a number of households and
obtain data for four input variables: access to clean water,
improved sanitation, closeness school, and closeness hospital.
Variables access to clean water and improved sanitation show
whether a household can use water from clean sources and
improved toilet facilities, while closeness school and closeness
hospital indicate how close (in physical distance) the family
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is located relative to the nearest school and hospital. All of
them are structured so that higher values indicate better
performances, and we want to extract their underlying
overall index access to basic service. (e theoretical frame-
work suggests that an increase in access to clean water,
improved sanitation, closeness school, and closeness hospital
should lead to an improvement in household accessibility to
basic service. (us, we expect the composite indicator access
to basic service to have positive correlations with all of its
input indicators.

In Table 1, we use the traditional and constrained version
of PCFA to analyze the input data. Following the Kaiser
criterion, we drop all factors with eigenvalues below 1.0
[2, 24] and keep the first two scores to construct the overall
index. (e left panel of Table 1 (entitled “Original loadings”)
presents the loadings of the scores obtained using the tra-
ditional PCFA approach (without constraints), together with
the correlations between the composite indicator built from
them and input variables. We see that the traditional method
focuses only on retaining maximum variance and returns a
mixed-sign loading matrix. (us, the composite indicator
has a negative correlation with the first sub-indicator, in-
dicating that an increase in the ability to get clean water leads
to a decrease in access to basic service. (is conflicts with
what is suggested by the above theoretical framework. In
contrast, if we use the proposed constrained approach, we
obtain the loading of the scores presented in the right panel.
Due to the constraints, the loading is kept nonnegative for all
elements, ensuring a consistent positive correlation between
input variables and the aggregate. Moreover, under the new
loading pattern, each sub-indicator is significantly loaded on
only one score, giving a clear idea of how it influences the
overall index.

3. Methodology

3.1. -e Framework. Assume that we have data for n

households on m input variables, and they are standardized
and stacked into an n × m matrix named X. (ese input
variables are correlated and are designed such that higher
values indicate better performance. Our goal is to obtain an
n × 1 vector holding the values of the single composite in-
dicator CI that can represent X.

To get CI, we first apply PCA/PCFA to summarize the
underlying structure of X using a new set of q uncorrelated
intermediate predictors or scores (q≤m). (en, each of
these scores is assigned a weight equal to the proportion of
the explained variance [2]. From there, we derive CI by
linearly aggregating the scores and their corresponding
weights. Let Z � (z1, . . . , zq)′ be the n × q matrix of scores,
and w � (w1, . . . , wq)′ be the q × 1 weight vector with wj the
share of variance explained by zj. We then have the general
definition of CI as follows:

CI � 

q

j�1
zjwj � Z

T
w. (1)

In what follows, we focus on building up the specific
expressions for Z and w under different model choices. First,

we present how they can be obtained when finding the
loadings under traditional principal component approaches.
(en, we explain how the new constrained solutions can be
derived by adjusting the above procedures.

3.2. Classical Solutions Using Optimization

3.2.1. Under PCA. Under the PCA method, Z is obtained
using

Z � XV, (2)

where X is the original data set, V � (v1, . . . , vq)′ the m × q

loading matrix. (is process also provides an estimation of
wj � (1/m)var(Xvj) [25].

To determine V, we follow [8, 25] using optimization-
based techniques. (e traditional PCA framework proj-
ects the loading vectors such that the first score accounts
for the largest possible proportion of the explained
variance, the second score explains for the second highest
variance share, and so on. (is can be done by seeking a
vector v1 such that the variance of projections in X onto
this subspace is maximized, and once we have found it, we
can then seek a second vector v2 orthogonal to v1, which
maximizes the variance “left over” after the first pro-
jection. (e variance of points projected on vector is
var(Xv1) � vT

1 Sv1, where S is the sample covariance/
correlation matrix given by S � (1/n − 1)XTX [8]. As
such, the first optimization problem can be written as
follows:

max
v1

v
T
1 X

T
Xv1,

s.t v
T
1 v1 � 1.

(3)

After finding v1, we can get the second direction by
solving the following problem:

max
v2

v
T
2 X

T
Xv2,

s.t
v

T
1 v2 � 0,

v
T
2 v2 � 1.

⎧⎨

⎩

(4)

Note that the first constraint is linear because we assume
that v1 is known. Here, the condition v2 to be orthogonal to
v1 is added to enforce the idea that v2 captures the variation
left over after projection on v1. Carrying on, we can find the
kth loading vector by solving

max
vk

v
T
k X

T
Xvk,

s.t
v

T
j vk � 0(j � 1, . . . , k − 1),

v
T
k vk � 1,

⎧⎪⎨

⎪⎩

(5)

where vk is restricted to be orthogonal to all preceding
vectors so that it explains the remaining variance in X after
all previous projections. (e variance of points projected on
vector vk is var(Xvk) � vT

k Svk.
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(e vectors vj with j � 1, . . . , q form the first q columns
of the loading matrix V, while wj � (1/m)var(Xvj) makes
the corresponding weight vector w. Applying V to equation
(2), we have the estimation of Z under the traditional PCA
approach.

3.2.2. From PCA to PCFA. FA is similar to PCA. However,
although PCA is based simply on linear data combinations,
FA assumes that the data are based on the underlying latent
factors [2]. (ere are a number of different methods to
estimate the factor score. Here, we present the formula
under PCFA—a special case of the general factor model
where the communalities are assumed to be 1. Following
[9, 10], estimators of the latent variables obtained in PCFA
are proportional to those given by PCA. We can use the
results obtained in Section 3.2.1 to estimate the value of Z as
follows:

Z � D
− (1/2)

VX, (6)

where V is the PCA loading matrix, X is the original data set,
and D � diag(var(Xv1), . . . , var(Xvq)) is the diagonal
matrix of the variance explained. We refer to D− (1/2)V as the
loading matrix under this method. (e weight vector w can
be estimated using the same formula given in Section 3.2.1.

3.3. New Solutions under Constraints. In this subsection, we
look for new solutions of Z and w that can fix the problems
mentioned in Section 2. Given that all indicators X follow
the same structure (Subsection 3.1) and w and D− (1/2) are
always positive, the loading matrix V determines the rela-
tionships between X, Z, and CI under both PCA and PCFA.
(us, our target narrows down to finding a constrained
version of V in which all elements have the same sign. Once
the adjusted V is found, we can apply the formula in
Subsection 3.2 to obtain the restrained solutions of Z and w.

3.3.1. Methodology. To obtain a same-sign loading matrix V,
we add a bound to the optimization function (5) when
finding each vector vk. Although this constraint can be either
positive or negative depending on the characteristics of CI,
here the positive case is presented. Furthermore, we replace
the constraint vT

j vk � 0(j � 1, . . . , k − 1) in equation (5)
with vT

j vk ≤ κj. (e threshold value κj ≥ 0 can be set to strike
a balance between orthogonality of the factors (κj � 0) and

flexibility (larger values of κj ). (ereby, the new solution for
the kth loading vector can be obtained by solving

maxvk
v

T
k X

T
Xvk,

s.t

v
T
j vk ≤ κj(j � 1, . . . , k − 1),

v
T
k vk � 1,

vk ≥ 0m.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

Note that the constraint vT
j vk ≤ κj(j � 1, . . . , k − 1) is

linear because we assume that all vj(j< k) are known when
finding vk. In this study, we set κj � 0. It follows, then, that
whenever a previous factor has a positive loading on a
variable, a subsequent factor must have a zero loading. (is
has the advantage of interpretability of each factor but comes
at the cost of a lower explained variance by the factor.

3.3.2. Implementation. Several solvers exist to find the so-
lution to the constrained optimization problem in (7). In this
study, we derive solutions to the problem in (7) using the
augmented Lagrangian-based optimizer proposed by [26]
and implemented in the open source Rsolnp package of [27].

4. Application

In this section, we test the impact of constraints when
constructing the four pillars of the RCI. Resilience in a food
security context is a concept used by the FAO to understand
how households cope with shocks and stressors [23]. Cur-
rently, the FAO collaborates with organizations around the
world and applies the RCI in more than ten countries in the
Near East and sub-Saharan Africa [28].

(e RCI is a measure of performance and is built on four
fundamental attributes called pillars—namely, access to
basic services (ABS), assets (AST), social safety net (SSN),
and adaptive capacity (AC). Since each of these four pillars is
an independent composite indicator, the application eval-
uates how the constraints affect loadings, attributes, and
rankings of each pillar.

(e remainder of this section is organized as follows.
First, we introduce the concepts of the four pillars and their
input variables. Subsection 4.2 describes our data sets to-
gether with their descriptive statistics, while Subsections
4.3–4.5 discuss the impact of constraints on loadings,

Table 1: Numeric example to illustrate the explainability of composite indicators.

Input variable ID
Original loadings Loadings with constraints

Loading score 1 Loading score 2 Correlation with CI Loading score 1 Loading score 2 Correlation with CI
1 − 0.54 0.24 − 0.33 0.00 1.00 0.62
2 0.53 0.23 0.63 0.67 0.00 0.50
3 0.10 0.92 0.70 0.36 0.00 0.32
4 0.50 − 0.17 0.34 0.58 0.00 0.43
Variance explained 1.19 1.01 1.09 1.00
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characteristics, targeting, and correlations of pillars. Sub-
section 4.6 checks the stability of loading solutions.

4.1. -e Four Pillars of the RCI. (e four pillars, ABS, AST,
SSN, and AC, are key dimensions of household resilience.
Generally speaking, ABS refers to accessibility and quality of
access to basic services such as clean water, improved toilets,
electricity, hospitals, and schools. AST proxies productive
and nonproductive assets used by the family. SSN generally
includes private/public assistance and transfers received or
made by the household. AC expresses the capacity to adapt
after a shock and is computed using variables such as the
average education of adults and the share of active working
members. By its nature, each pillar is a composite indicator
aggregated from a set of selected inputs. An example of these
input indicators is presented in Table 2.

We see that in each subset, indicators are defined so that the
higher their values, the more positive impact they have on the
corresponding pillar. For example, the more land a household
has, the more asset they own. By definition, the four pillars also
rank better performance with higher values (e.g., an increase in
assets or adaptive capacity should improve the resilience of a
household against shocks and uncertainties). As such, we
expect all input variables within a subset to be positively
correlated with each other and with the corresponding pillars.

4.2. Descriptive Statistics. We use two data sets to test the
performance of the proposedmethods.(efirst one is collected
from 4027 households living in both refugee settlements and
host communities in 11 districts of Uganda in 2019. (is
project aims to provide a comprehensive assessment of the

refugees’ needs and facilitate their social and economic inte-
gration. (e second data set is assembled by interviewing 6949
households in rural Chad in 2014. Its objective is to better
understand the food insecurity situation under great regional
heterogeneity to design effective policy responses. Since these
are two projects conducted for different populations in
countries with different purposes, lists of input variables used in
these two sets share some similarities but are not exactly the
same. For example, the ABS pillar under the Uganda 2019
project is constructed using variable IDs 1, 2, 5, 6, and 7, while
the Chad 2014 data set uses variable IDs 1, 2, 3, 4, and 8 (see
Table 2 for definitions of these variables).

To obtain the input indicators for the four pillars, we first
gather and arrange raw information from the survey and
treat the data for errors, missing observations, and outliers.
Here, data points that are errors or missing are filled with
median values of the local group where the household be-
longs, while outlying values that are more than three times
the median absolute deviation from the median are replaced
by the median plus three times the median absolute devi-
ation.(en, the cleaned data are used to form required input
variables.(eir descriptive statistics are presented in Table 3.

To understand how input indicators interact with each
other and with the overall scale, we conduct Cronbach’s
alpha analysis for each data subset. (e Cronbach coefficient
alpha [29] is the most common estimate of internal con-
sistency of items in a survey, which assesses how well a set of
individual indicators measures a single unidimensional
object (e.g., attitude and phenomenon) based on their
correlations [2]. Among different outputs of Cronbach’s
alpha analysis, we consider inter-item correlations and
corrected item-total correlation results. (e inter-item

Table 2: Definitions of the four pillars and possible input variables.

Pillar Input ID Input variable description

Access to basic services (ABS): ability of a household
to meet basic needs by accessing and effectively using basic services

1 Access to improved sanitation facilities
2 Access to improved water sources
3 Access to electricity
4 Access to improved energy sources
5 Closeness to primary school
6 Closeness to hospital
7 Closeness to markets
8 Closeness to the nearest city

Assets (AST): key elements of a livelihood since
they enable households to produce and consume goods

1 Wealth index
2 Agricultural asset index
3 Tropical livestock unit
4 Land used for crop production

Social safety nets (SSN): capacity of the household
to access formal and informal assistance

1 Participating in social networks
2 Loans/credits received in the last year
3 Formal transfers received in the last year
4 Informal transfers received in the last year
5 Government assistance received in the last year

Adaptive capacity (AC): ability to adapt to a new
situation and develop new livelihood strategies

1 Household average years of education
2 Share of active working members
3 Household head can read or write
4 Different sources of income
5 Different crops cultivated during the last season
6 Participating in training courses

Journal of Probability and Statistics 5



correlations indicate how variables interact with each other,
while item-total correlations reflect how each item by itself
correlated with everything else grouped together. (ose
statistics are presented in Table 4.

As input variables are constructed so that an increase in
their values leads to an improvement in the pillar, we expect
all correlations in Table 4 to be positive. However, due to the
complexity of the analytical context, this assumption may be
violated. In particular, in Panel A, only the AST pillar has a
subset of all input indicators positively correlated. (is
group also has the highest values of correlations and internal
consistency. In Panel B, only the SSN pillar has all positive
correlations. For the other pillars, the situation is more
diverse.

To better understand the negative connections between
input variables, we look in detail at the ABS pillar under the
Uganda project. Among five variables used to construct this
composite indicator, access to improved sanitation facilities
(input ID 1) has a negative correlation with access to im-
proved water source (input ID 2) and closeness to hospital
(input ID 6), leading to its reversed connection with the total
scale. (is is due to the complexity of the analytical context,

as many interviewed households live in refugee settlements.
(ese families are located far from hospitals and do not have
access to clean water infrastructures that the government
develops; however, they receive emergency support and
mobile sanitation services provided in the camp by hu-
manitarian projects.(is complex situation creates opposing
trends in responses, which leads to negative correlations
between variables. Similarly, refugees receive significant
formal assistance and training from governments and in-
ternational organizations to help them achieve indepen-
dence and self-reliance; however, they might have difficulties
obtaining loans and participating in associations, or acquire
limited education and sources of income. (is explains the
negative correlations of variables formal transfers received of
the SSN pillar (input ID 3, Panel A) and participating in
training course of the AC pillar (input ID 6) with the rest of
their corresponding input subsets.

One way to deal with the negativity in the data set is to
completely remove the opposing variables or replace them
with different proxies. Doing so can increase the internal
consistency of the data and ensure positive correlations
among input variables and with the pillar, even under the
traditional construction method. However, this approach
introduces the risk of losing information. For example, it
may not be possible to drop variables access to improved
sanitation facilities and formal transfers received, as they
capture particular features of the refugee population who
receive significant investment, and policymakers want to
assess how effective these budgets are spent in building
resilience capacity. (us, we propose a more robust ap-
proach of adding constraints in the pillar estimation, which
provides an adjusted proxy of performance that respects the
context complexity while ensuring the positive correlations
between input variables and the pillar.

4.3. Impact of Constraints on Loadings and Characteristics of
Pillars. In this subsection, we test the impact of constraints
on loadings and characteristics of the four pillars, ABS, AST,
SSN, and AC. As explained in the introduction, here we
discuss in detail only the PCFA results to avoid repetition
and link more with the practical usage.

Table 5 displays the results for the four pillars con-
structed under conventional and constrained PCFA using
the Uganda 2019 and Chad 2014 data sets. First, we can see
that under the traditional approach, the loadings are a mix of
both positive and negative elements. Some variables such as
access to improved water sources (input ID 2, Panel A) of the
ABS pillar or different income sources (input ID 4, Panel A)
of the AC pillar have sizable loadings in both Score 1
(positive) and Score 2 (negative), making it difficult to
conclude their overall influence on the aggregate index. A
meaningful interpretation of the scores is, then, not
straightforward.

Notes:

(1) When employing principal component approaches
to build an aggregate index, we need to decide how
many intermediate scores should be retained in the
analysis. Here, Kaiser’s criterion [24] is applied, and

Table 3: Descriptive statistics.

Pillar Input ID Min Mean Max SD
Panel A: Uganda data set

ABS

1 0.00 0.72 1.00 0.45
2 0.00 0.83 1.00 0.38
5 0.29 1.06 3.57 0.66
6 0.02 0.16 0.83 0.14
7 0.11 0.66 2.86 0.55

AST

1 0.00 0.46 1.05 0.18
2 –0.46 0.27 1.36 0.29
3 0.00 0.44 7.14 0.98
4 0.03 1.23 7.50 1.48

SSN

1 0.00 0.51 1.00 0.50
2 0.00 5.24 106.85 13.48
3 0.00 4.93 25.94 5.97
4 0.00 0.18 24.90 1.39

AC

1 0.00 6.16 15.00 3.17
2 0.05 0.50 1.00 0.22
4 0.00 1.48 5.00 0.89
5 0.00 2.96 18.00 2.18
6 0.00 0.70 1.00 0.46

Panel B: Chad data set

ABS

1 0.00 0.41 1.00 0.49
2 0.00 0.50 1.00 0.50
3 0.00 0.02 1.00 0.13
4 0.00 0.00 1.00 0.06
8 0.00 0.18 0.44 0.10

AST

1 –1.13 –0.02 4.32 0.21
2 –1.21 –0.02 8.82 0.32
3 0.00 0.40 20.00 0.77
4 0.00 0.57 55.46 2.17

SSN
2 0.00 0.49 1.00 0.50
3 0.00 0.03 1.00 0.16
5 0.00 0.18 1.00 0.06

AC
2 0.11 1.22 12.00 0.95
3 0.00 0.34 1.00 0.47
4 0.00 0.43 1.00 0.13
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we only keep scores with eigenvalues (or variance
explained) above or equal to 1.0. (e simplest jus-
tification for this is that it does not make sense to add
a score that explains less variance than is contained
in one individual indicator [2, 25]. According to this
rule, no more than two scores should be retained in
each of our examples. (us, in this table, we only
present estimations of the first two loading vectors
given by traditional and constrained PCFA, together
with correlations between input variables and pillars
constructed under these approaches.

(2) A blank column indicates that the corresponding
score has eigenvalues less than 1.0 and thus is not
used in the construction of the pillar.

To fix this problem, we add a lower bound of zero in the
optimization function to keep all loading elements positive
and rotate the concentration of variable influences on scores.
In particular, negative elements in the first traditional
loadings (caused by the reversed effect of corresponding
items with total scale; see Table 4) are converted to 0.00
under the constrained version. To ensure orthogonality

between factors, values of loading elements in the second
constrained component are allocated so that v2 is perpen-
dicular to v1—that is, the dot product of the two vectors is
zero. For example, in Panel A of Table 5, the AC pillar is
constructed using five sub-indicators, among which the
individual variable participating in training courses (input ID
6) has a negative loading in the first score under traditional
approaches. With constraint, this value is converted to 0.00.
(e negative influence of this variable on the first score is
removed and replaced with a full positive weight on the
second score. (e other four variables already have signif-
icant positive loadings on v1; thus, they are no longer loaded
on v2. As such, under the constrained approach, we rotate
the concentration of variable influences on scores and give
straightforward interpretations for factors.

(ere is a slight reduction in variance explained by
constrained scores compared with the traditional ones. For
example, in Panel A, the first conventional factor used to
construct the ABS pillar has an eigenvalue of 1.30, while its
restrained version has a projected variance of 1.29. (is can
be explained by the nature of optimization problems used to
obtain these values. (e variance explained by score z1

Table 4: Correlations of input indicators in Cronbach’s alpha analysis.

Pillar Input ID Inter-item correlations Item-total correlations
Panel A: Uganda data set

ABS

1 1.00 –0.16
2 –0.11 1.00 0.18
5 0.01 0.05 1.00 0.38
6 –0.10 0.08 0.00 1.00 0.02
7 0.02 0.12 0.24 0.02 1.00 0.50

AST

1 1.00 0.57
2 0.37 1.00 0.46
3 0.27 0.19 1.00 0.47
4 0.30 0.23 0.33 1.00 0.51

SSN

1 1.00 0.65
2 0.20 1.00 0.43
3 –0.09 –0.13 1.00 –0.77
4 0.03 –0.01 –0.03 1.00 –0.02

AC

1 1.00 0.55
2 0.19 1.00 0.36
4 0.11 –0.01 1.00 0.16
5 0.17 0.05 0.15 1.00 0.29
6 –0.13 0.00 –0.18 –0.24 1.00 –0.61

Panel B: Chad data set

ABS

1 1.00 0.11 0.10 0.04 0.13 0.41
2 0.11 1.00 0.04 0.03 –0.10 0.10
3 0.10 0.04 1.00 0.05 0.01 0.20
4 0.04 0.03 0.05 1.00 0.05 0.17
8 0.13 –0.10 0.01 0.05 1.00 0.12

AST

1 1.00 0.41 0.27 0.02 0.66
2 0.41 1.00 0.01 0.10 0.49
3 0.27 0.01 1.00 –0.03 0.24
4 0.02 0.10 –0.03 1.00 0.08

SSN
2 1.00 0.03 0.12 0.62
3 0.03 1.00 0.07 0.59
5 0.12 0.07 1.00 0.64

AC
2 1.00 –0.02 0.02 0.06
3 –0.02 1.00 –0.01 –0.18
4 0.02 –0.01 1.00 0.23
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equals the amount of variance projected on loading vector
v1. Under the traditional approach, this number is found
when solving the optimization problem (3), which has only
one purpose of seeking a combination of v1 that maximizes
vT
1 Sv1. As such, the solution obtained here is optimized for
this sole requirement and captures the highest possible
variance. (e constrained version in equation (7) requires
the optimization problem to (a) find the maximum variance
projected on this vector while (b) keeping all elements to be
positive. An additional task requires a share of resources and
reduces the power in explaining variance of v1; thus, the new

solution will have a lower eigenvalue than the traditional
one. In general, we exchange a part of the variance captured
for fixing the relation between input variables and scores. A
similar logic can be applied to explain the second loading
vector.

(e change in loading structure leads to a shift in
characteristics of the pillar. In particular, the mixed loading
matrices under the classical method result in pillars being
negatively correlated with one of their sub-variables (ABS,
SSN, and AC in Panel A; ABS in Panel B). (is indicates that
an increase in input value leads to a decrease in the pillar,

Table 5: Impact of constraints on loadings and pillar characteristics.

Pillar Input ID
Conventional

loadings Correlation with pillar
Loadings with
constraint Correlation with pillar

S1 S2 S1 S2
Panel A: Uganda data set

ABS

1 –0.15 0.58 0.30 0.00 1.00 0.59
2 0.40 –0.33 0.14 0.36 0.00 0.31
5 0.49 0.34 0.74 0.53 0.00 0.56
6 0.20 –0.48 –0.17 0.15 0.00 0.09
7 0.55 0.27 0.74 0.58 0.00 0.62

Variance explained 1.30 1.16 1.29 1.00

AST

1 0.40 0.73 0.40 0.73
2 0.35 0.64 0.35 0.64
3 0.35 0.65 0.35 0.65
4 0.37 0.69 0.37 0.69

Variance explained 1.85 1.85

SSN

1 0.53 –0.03 0.52 0.65 0.00 0.58
2 0.56 –0.18 0.46 0.64 0.00 0.55
3 –0.42 –0.10 –0.49 0.00 1.00 0.57
4 0.07 0.98 0.68 0.06 0.00 0.05

Variance explained 1.29 1.00 1.21 1.00

AC

1 0.38 0.42 0.74 0.53 0.00 0.57
2 0.18 0.72 0.69 0.35 0.00 0.43
4 0.35 –0.31 0.22 0.35 0.00 0.31
5 0.44 –0.12 0.46 0.47 0.00 0.41
6 –0.42 0.31 –0.31 0.00 1.00 0.46

Variance explained 1.51 1.10 1.34 1.00
Panel B: Chad data set

ABS

1 0.60 0.00 0.54 0.60 0.73
2 0.27 0.67 0.73 0.27 0.32
3 0.42 0.16 0.49 0.42 0.51
4 0.32 –0.07 0.23 0.32 0.39
8 0.34 –0.66 –0.19 0.34 0.41

Variance explained 1.21 1.10 1.21

AST

1 0.57 –0.10 0.64 0.57 0.85
2 0.49 0.34 0.81 0.49 0.73
3 0.31 –0.60 0.01 0.31 0.46
4 0.11 0.67 0.55 0.11 0.16

Variance explained 1.51 1.07 1.51

SSN
2 0.56 0.65 0.56 0.65
3 0.39 0.45 0.39 0.45
5 0.63 0.73 0.63 0.73

Variance explained 1.15 1.15
AC 2 0.69 0.00 0.52 0.70 0.00 0.50

3 –0.43 0.79 0.23 0.00 1.00 0.69
4 0.55 0.62 0.84 0.70 0.00 0.51

Variance explained 1.03 1.00 1.02 1.00
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which conflicts with the definitions and can dampen the
representative power of the pillar. For example, the negative
correlation between closeness to hospital (input ID 6, Panel
A) and the ABS pillar suggests that staying closer to the
hospital will decrease access to basic services. Under our
constrained approach, the lower zero bounds keep all
loading elements positive, which ensures consistent rela-
tionships between original variables, scores, and the com-
posite indicator. All pillars constructed with constraints are
positively correlated with all of their sub-indicators.

4.4. Impact of Constraints on Targeting and Rankings. (e
new loading structure shifts the way input variables are
loaded on scores. As such, it also affects the ranking of
households in each pillar. Among the pillars considered,
only AST in Panel A and SSN in Panel B experience no
impact under constraints, as under the original method, they
use one score with only positive loading elements in the
construction. Other pillars all experience changes in
household performances.

To demonstrate how entity targeting shifted under
constraints, we take an example of 10 families under the ABS
pillar in Panel A and present their values and ranks in
Table 6. (ese households are selected so that they display
different settings from the best to the worst of the
population.

Let us consider the first four households, A, B, C, and D,
in Table 6, which are among the best of the examined
population regarding accessibility to basic services. (ese
households receive the same values in input variables ID 1,
ID 2, ID 5, and ID 7. In other words, they all have access to
clean water sources and improved toilet facilities and are
equidistant from the nearest primary school andmarket.(e
only difference among these families is the distance to the

closest hospital (indicated by input variable ID 6). Values
that households A, B, C, and D received in indicator ID 6 are
0.04, 0.13, 0.14, and 0.33, respectively. As all input variables
indicate better performances with higher numbers, this
shows that household A stays the farthest to the hospital,
second is household B, and so on until householdD, who has
the closest distance. Under the circumstance that all other
variables are kept constant, household D has the easiest
access to basic services; thus, we expect them to have the
highest value and rank best in the ABS pillar.

However, under the traditional PCFA method, the
negative loading element in the second score creates a re-
verse influence from input ID 6 to the composite indicator
(see Table 5). (erefore, entity performance is not accurately
targeted, as the values and ranks of households A, B, C, and
D in the ABS pillar are contrary to their real living condi-
tions. Here, household A has the best accessibility to basic
services, while householdD is ranked as the worst among the
four households.

(is issue is then fixed under the constrained PCFA
method. (e zero lower bounds ensure that all elements of
the new loading matrix are positive (see Table 5). (us, the
changes in input variables are consistently reflected in values
and ranks of the pillar. Household D is now ranked the best
in accordance with their situation, while the position of
household A is dropped to the sixth. As such, we can
conclude that the constraints give a better targeting for the
ABS pillar.

4.5. Impact of Constraints on Correlations between Pillars.
As values and ranks of households in pillars change with
new loading structures, they also affect the relationship
between pillars. We can see in Table 7 that all correlations
change under the impact of constraints. In some cases, the

Table 6: Examples of household rank shifts in the ABS pillar.

Households
Values of input variables Values and ranks of ABS under

ID 1 ID 2 ID 5 ID 6 ID 7 Traditional PCFA Constrained PCFA

A 1 1 3.33 0.04 2.50 1.52 1.11
(1) (6)

B 1 1 3.33 0.13 2.50 1.49 1.13
(4) (3)

C 1 1 3.33 0.14 2.50 1.48 1.14
(5) (2)

D 1 1 3.33 0.33 2.50 1.40 1.19
(6) (1)

E 0 1 2.00 0.20 2.00 0.64 0.29
(273) (647)

F 0 1 3.33 0.33 1.00 0.63 0.33
(276) (543)

G 1 0 1.00 0.33 2.00 0.41 0.32
(529) (564)

H 1 0 0.50 0.33 2.00 0.25 0.22
(773) (876)

I 0 0 0.33 0.13 0.14 –0.62 –0.83
(4020) (4027)

K 0 0 0.33 0.25 0.14 –0.67 –0.79
(4027) (4024)
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change is significant (e.g., the correlation between SSN
and AST in Panel A, or between SSN and ABS under Panel
B).

We analyze in detail the case of the SSN and ASTpillars
in Panel A to see how these changes happened. Here, the
correlation drops from 0.35 under traditional PCFA to near
zero under constrained PCFA. (is is an important change
that can have an influence on strategy development. Under
the original method, we can associate more access to social
safety net with more assets, meaning an increase in assis-
tance can help a household build their possessions, which
increases their resilience. (is connection no longer exists
under the constrained PCFA.

As loadings of the AST pillar are all positive and un-
changed under the impact of constraints, this drop occurs
due to the change in loadings attributed to the variable
formal transfer received (input ID 3) of the SSN pillar. In
Table 8, we see that formal transfer received has significant
negative correlations with all variables under the ASTpillar.
(ese numbers reflect the fact that the more assets a
household has, the less likely they are to receive support
from governments and humanitarian organizations. (en,
combined with the negative loadings attributed to the
variable formal transfer received under the traditional
construction approach (see Table 5), these negative corre-
lations are reversed, resulting in a positive link between the
SSN and AST pillars.

In contrast, under the constrained approach, all loadings
are kept positive. (us, the negative connections between
formal transfer received and AST variables are reflected as
they are to the pillar. (ese adverse effects are then coun-
terbalanced by the positive relations between the remaining
SSN variables and the AST variables. As such, the new
correlation of SSN and AST is near zero, as presented in
Table 7.

4.6. Stability of vk. To see how stable the loading solutions
are, we conduct a stability test using mean absolute error
(MAE) as the criterion. First, we calculate the loading matrix
using the complete data set as the comparison base. Next, a
new loading solution is estimated using a randomly drawn
subsample that covers 75% of the population. We subtract
these matrices to obtain the absolute difference. (is is
repeated 500 times with different subsamples. (en, the
MAE is defined as follows:

MAE �
1
500



500

i�1
V

ba
− V

su
i



, (8)

where Vba is the base loading solution calculated using the
full data set and Vsu

i is the ith new loading solution estimated
using the randomly drawn subsample (i � 1, . . . , 500). We
apply this test for 16 aggregate indicators (formed by 4
pillars× 2 construction methods× 2 data sets) and sum-
marize their MAE in Table 9.

Overall, we can see that constrained PCFA returns
loading solutions that are more stable than the traditional
approach. In most cases, MAEs of pillars constructed under

Table 7: Correlations between pillars.

Traditional PCFA Constrained PCFA
ABS AST SSN AC ABS AST SSN AC

Panel A: Uganda data set
ABS 1.00 1.00
AST 0.02 1.00 0.05 1.00
SSN 0.02 0.35 1.00 0.00 0.00 1.00
AC 0.06 0.37 0.20 1.00 0.05 0.29 − 0.05 1.00

Panel B: Chad data set
ABS 1.00 1.00
AST 0.10 1.00 0.17 1.00
SSN 0.12 − 0.10 1.00 − 0.04 − 0.08 1.00
AC 0.08 0.01 0.14 1.00 0.08 0.07 0.06 1.00

Table 8: Correlations between variables of the AST and SSN pillars for the Uganda data set.

Pillar variables SSN
1 2 3 4

AST

1 0.31 0.17 − 0.21 0.04
2 0.13 0.09 − 0.19 0.02
3 0.17 0.08 − 0.20 0.03
4 0.20 0.11 − 0.38 0.03

Table 9: Mean of absolute loading difference.

Pillar PCFA Constrained PCFA
Panel A: Uganda data set

ABS 0.24 0.05
AST 0.01 0.01
SSN 0.18 0.03
AC 0.12 0.04

Panel B: Chad data set
ABS 1.04 0.14
AST 0.22 0.08
SSN 0.04 0.04
AC 0.67 0.07

10 Journal of Probability and Statistics



constrained PCFA are much lower compared with their
versions under standard PCFA. Exceptions are AST in Panel
A and SSN in Panel B: the lower bounds do not change the
loading structures of these pillars; thus, their MAEs are the
same under the two construction methods.

5. Conclusions

In this study, we document how adding constraints im-
proves the representability of principal component-based
composite indicators. (e traditional approaches use load-
ing solutions that include both positive and negative values.
(is introduces potential difficulties in interpretations, in-
accurate ranking, and conflicts with the theoretical frame-
work for the composite indicator. To fix these issues, we
propose to apply a constraint in the process of finding each
loading vector. (is restriction ensures a consistent relation
between input variables, the scores, and the aggregate index.

We compare the performance of conventional and con-
strained principal componentmethods in constructing the four
pillars of the RCI. (is is an approach used by the FAO to
understand how households cope with shocks and stressors in
the context of food security. Using two data sets collected from
Uganda in 2019 and from Chad in 2014, we see that the
constraints have a material impact on the interpretability of the
four pillars. (e restricted loading matrix ensures positive
relations between pillars and their input variables as guided in
the resilience theoretical framework. (e new matrix also
influences household targeting and the connections between
pillars, which is of interest to policymakers. We conclude that
the robustness gain of using the constrained method strikes a
balance between the objective of using a small number of
factors with high explanatory power, on the one hand, and the
interpretability of the obtained composite indicator, on the
other hand.
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