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Abstract. In this paper we study the Lp-Lq boundedness of Fourier multipliers
on the fundamental domain of a lattice in Rd for 1 < p, q < ∞ under the classical
Hörmander condition. First, we introduce Fourier analysis on lattices and have a
look at possible generalisations. We then prove the Hausdorff-Young inequality,
Paley’s inequality and the Hausdorff-Young-Paley inequality in the context of
lattices. This amounts to a quantitative version of the Lp-Lq boundedness of
Fourier multipliers. We will show that this delivers also some Lp-estimates by using
some standard Lebesgue space embeddings, which come from the finite measure
of the fundamental domain. Moreover, the Paley inequality allows us to prove the
Hardy-Littlewood inequality. As an application we treat some Sobolev embedding
results, which also indicate the sharpness of our main inequalities.
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1. Introduction

The main goal of this paper is to prove the Lp-Lq boundedness of Fourier mul-
tipliers on a fundamental domain Ω of a lattice L in Rd. The Fourier analysis on
lattices is very similar to the toroidal case, which corresponds to the theory of the
usual Fourier series. In fact, lattices and their fundamental domains can be viewed
as linear deformations of the Euclidean lattice Zd and the torus Td (which can be
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2 A. HENDRICKX

viewed as a fundamental domain of Zd), respectively. However, we should be care-
ful with this interpretation, since we identify Td here with [0, 1)d. If we consider
the usual embedding of Td in Rd+1, then we should rather think of Ω as a different
parametrisation domain of the embedded torus given by a linear change of variables.
Since we start with the basics, this paper may be suitable for anyone new in this
field, especially because this paper is essentially self-contained. It may also be in-
teresting to consider this theory from the viewpoint of the more general theory of
pseudo-differential operators and Fourier analysis on groups.

This may be the first text on this particular topic. However, pseudo-differential
operators on the lattice Zd and on the torus Td have already been studied in [6]
and [24, Chapter 4], respectively. There are a lot of results available on the Lp-Lq

boundedness of Fourier multipliers. A fundamental article on Fourier multipliers
on the Euclidean spaces is [15] by Lars Hörmander. The results of this article are
extended to Fourier multipliers on SU(2) in [1], on compact homogeneous manifolds
in [2], on Riemannian symmetric spaces of the noncompact type in [4], on smooth
manifolds in [7], on compact Lie groups in [25], on locally compact groups in [3], on
compact hypergroups in [17], to Fourier multipliers associated with the anharmonic
oscillator in [8, 9] and to Fourier multipliers associated with a generalised (k, a)-
Fourier transform in [16], just to mention a few of them.

1.1. Organisation of this paper. In Section 2 we explore Fourier analysis on
a lattice L in Rd. Our first task is to ensure that we have some form of Fourier
analysis on a fundamental domain Ω of L. This will be the content of Theorem 2.1
of Fuglede, which roughly relates Fourier analysis on a subset Ω ⊆ Rd with tilings
of Rd with the lattice L. The notion of the dual lattice L⊥ shows up here, as this
occurs in the explicit description of the orthonormal basis of L2(Ω) which enables
Fourier analysis on Ω. Next, we introduce some function spaces, and we construct
the Fourier transform FΩ of a periodic smooth function f ∈ C∞

per(Ω) and look at
some properties of it. At the end of this section we invite the reader to extend our
theory to the case of spectral sets and to lattices living in proper subspaces of Rd,
for which lattices of type Ad can be a guiding example.

In Section 3 we prove some important inequalities that will help to prove the
Lp-Lq boundedness of Fourier multipliers on Ω. A general result of Hilbert space
theory yields Plancherel’s identity (3.1) in our context of lattices. We obtain the
Hausdorff-Young inequality for FΩ by interpolating Plancherel’s formula and the

estimate ∥f̂∥ℓ∞(L⊥) ≤ ∥f∥L1(Ω), where we denote FΩf(κ) by f̂(κ).
Subsections 3.2 and 3.4 are devoted to a generalisation of some classical results

in [15] by Hörmander. The first result that we mention is Paley’s inequality.

Theorem 1.1 ([15, Theorem 1.10]). Let φ > 0 be a measurable function on Rd such
that

m{ξ ∈ Rd : φ(ξ) ≥ s} ≤ C/s for all s > 0,

where C > 0 is some constant and m is the Lebesgue measure on Rd. Then for any
1 < p ≤ 2 we have(∫

Rd

∣∣∣∣∣ f̂(ξ)φ(ξ)

∣∣∣∣∣
p

φ(ξ)2 dξ

) 1
p

≤ Cp∥f∥Lp(Rd) for all f ∈ Lp(Rd),

where Cp > 0 only depends on p and C. Here f̂(ξ) denotes the usual Euclidean
Fourier transform of f .
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In our situation we consider the measure space L⊥ endowed with the counting
measure. It is natural to consider this measure, because the discrete version of inte-
gration is summation. The translation of Theorem 1.1 in our setting then suggests
that (∑

κ∈L⊥

|f̂(κ)|p φ(κ)2−p

) 1
p

≲ M
2−p
p

φ ∥f∥Lp(Ω) for all f ∈ Lp(Ω)

under the condition that φ is a positive function on L⊥ satisfying

Mφ := sup
s>0

s
∑
κ∈L⊥

φ(κ)≥s

1 < ∞.

Here the notation ≲ means that the (weak) inequality holds if we multiply the right-
hand side with a certain positive constant depending only on the exponents of the
relevant Lebesgue spaces, so in this case the constant only depends on p. The factor

M
2−p
p

φ is written explicitly since this embodies the dependence on φ. This Paley-type
inequality is proven in Theorem 3.2 in Subsection 3.2.

In Subsection 3.4 we discuss the analogue of Hörmander’s classical version of
the Hausdorff-Young-Paley inequality, which generalises both the Hausdorff-Young
inequality and Paley’s inequality.

Theorem 1.2 ([15, Corollary 1.6]). Assume φ satisfies the condition of Theo-
rem 1.1. Let 1 < p ≤ 2 and 1 < p ≤ b ≤ p′ < ∞, where p′ denotes the conjugate
exponent of p, i.e. 1

p
+ 1

p′
= 1. Then for all f ∈ Lp(Rd) we have(∫

Rd

∣∣∣f̂(ξ)φ(ξ) 1
b
− 1

p′
∣∣∣b dξ) 1

b

≤ Cp∥f∥Lp(Rd).

Note that this inequality reduces to the Hausdorff-Young inequality for b = p′

and to Paley’s inequality for b = p. We can interpret the Hausdorff-Young-Paley
inequality in our context in the same way as for Paley’s inequality. The resulting
hypothesis is that (∑

κ∈L⊥

∣∣∣f̂(κ)φ(κ) 1
b
− 1

p′
∣∣∣b) 1

b

≲ M
1
b
− 1

p′
φ ∥f∥Lp(Ω),

where φ is a positive function on L⊥ satisfying

Mφ := sup
s>0

s
∑
κ∈L⊥

φ(κ)≥s

1 < ∞.

Again, we included the factor M
1
b
− 1

p′
φ in the right-hand side of the inequality as it

contains the dependence on φ. We will show that this assertion is true in Theo-
rem 3.5.

In Subsection 3.3 we prove the Hardy-Littlewood inequality as a consequence of
the Paley inequality. The original result of Hardy and Littlewood appeared in [14].

Theorem 1.3 ([14, Theorem 5]). Let 1 < p ≤ 2. For every f ∈ Lp(T) we have

+∞∑
m=−∞

|f̂(m)|p (|m|+ 1)p−2 ≲ ∥f∥pLp(T). (1.1)
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We can view T as the fundamental domain of the one-dimensional lattice Z, which
enables us to interpret this inequality in our setting, where we allow more general
weight functions than (|m|+1)p−2 in (1.1). Such a weight function φ needs to decay
sufficiently fast, which we express by asking that∑

κ∈L⊥

1

φ(κ)β
< ∞ for some β > 0.

Under this condition we prove in Theorem 3.3 that for every f ∈ Lp(Ω) we have(∑
κ∈L⊥

|f̂(κ)|p φ(κ)β(p−2)

) 1
p

≲p,φ ∥f∥Lp(Ω).

The hidden constant in this inequality indeed depends on both p and φ, but the
dependence on φ can be eliminated by including a similar constant as in the Paley
inequality.

Next, in Section 4 we prove the Lp-Lq boundedness of Fourier multipliers on Ω
for 1 < p, q < ∞. Hörmander proved in the Euclidean case [15, Theorem 1.11]
that a Fourier multiplier with symbol σ(ξ) has a bounded Lp-Lq extension as a
consequence of the Hausdorff-Young-Paley inequality, provided that 1 < b < ∞,
1 < p ≤ 2 ≤ q < ∞ with 1

p
+ 1

q
= 1

b
and σ(ξ) is a measurable function satisfying

m{ξ ∈ Rd : |σ(ξ)| ≥ s} ≤ C

sb
for all s > 0,

where C > 0 is some constant. We will prove a similar result in Theorems 4.4
and 4.5. The fact that Ω has finite measure delivers some Lebesgue space embeddings
in Lemma 4.6. This will allow us to obtain also Lp-Lq boundedness results for the
remaining cases in Theorem 4.7 and Remark 4.8. Moreover, we will show in the case
1 < q ≤ 2 ≤ p < ∞ that the weakest Hörmander-type condition is sufficient. We
point out that these results give sufficient conditions for Lp-boundedness of Fourier
multipliers on Ω.

Finally, we discuss the application of the main results on Lp-Lq boundedness of
Fourier multipliers on Ω to Sobolev embedding results in Section 5. In particular,
we define the Laplacian on Ω there as a Fourier multiplier to be able to construct
the Sobolev spaces. To this end we need to introduce functions of Fourier multi-
pliers, and we will provide a general estimate for this type of Fourier multipliers
under suitable conditions on the function. This will allow us to deduce continuous
embeddings Lp

s(Ω) ↪→ Lq
t (Ω) and Lp

s(Ω) ↪→ Lq(Ω) under suitable conditions on the
parameters p, q, s and t. At the end of this section we remark that these Sobolev
embeddings indicate the sharpness of our main inequalities.

1.2. Notation and conventions. We follow the convention that 0 ∈ N.
Throughout this paper L stands for a lattice in Rd and Ω denotes a fundamental

domain of L. These concepts are introduced in Section 2.
For vectors x, y ∈ Rd we write x · y =

∑d
j=1 xjyj for the Euclidean inner product

and |x| =
√
x · x for the Euclidean norm.

Let X and Y be normed vector spaces. We denote by L(X, Y ) the normed vector
space of all bounded linear mappings from X to Y .

If we consider the Lebesgue space ℓp(A) for some set A and some 1 ≤ p ≤ ∞, it
is always tacitly assumed that the measure on A is the counting measure. When we
sum over the empty set, this is by definition equal to 0.
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We denote the conjugate exponent of a real number 1 ≤ p ≤ ∞ by p′, i.e.
1
p
+ 1

p′
= 1.

Let f ∈ Lp(X,µ) and g ∈ Lq(Y, ν). We write ∥f∥Lp(X,µ) ≲ ∥g∥Lq(Y,ν) if there
exists some constant Cp,q > 0 depending only on the exponents of the relevant
Lebesgue spaces such that ∥f∥Lp(X,µ) ≤ Cp,q∥g∥Lq(Y,ν). If we want to make this
explicit or include other parameters, then we write the parameters as indices, e.g.
∥f∥Lp(X,µ) ≲p,φ ∥g∥Lq(Y,ν). This notation will also be used in related contexts, such
as for norm inequalities for some A ∈ L(Lp(X,µ), Lq(Y, ν)).

2. Fourier analysis on fundamental domains of lattices in Rd

In this section we present the basics of Fourier analysis on fundamental domains
of lattices in Rd. We refer to [19] and [12] for more details on this topic.

A lattice L in Rd is a discrete subgroup of Rd spanned by d linearly independent
vectors, which means

L = {k1a1 + k2a2 + ...+ kdad | ki ∈ Z}
for some linearly independent column vectors a1, . . . , ad in Rd. The d× d-matrix A
with a1, . . . , ad as column vectors is called the generator matrix of L as

L = AZd = {Ak | k ∈ Zd}.
In this case we sometimes denote L by LA.

A fundamental set of a lattice L in Rd is a set Ω ⊆ Rd such that Ω+L = Rd as a
direct sum, which means that Ω contains one representative for every coset of Rd/L.
We can also write down this condition by means of the characteristic function χΩ of
Ω as ∑

λ∈L

χΩ(x+ λ) = 1 for all x ∈ Rd.

This expresses that the translated copies of Ω do not overlap and do not leave gaps.
A fundamental domain of L is a measurable fundamental set of L. Every lattice
L = LA has a natural fundamental domain, namely the parallelotope

ΩP :=

{
d∑

i=1

tiai | t = (t1, . . . , td) ∈ [0, 1)d

}
, (2.1)

which is bounded. Remark that a fundamental domain of a lattice L is clearly not
unique.

Now consider any fundamental domain Ω of L. We can move every set of the
countable decomposition {Ω ∩ (ΩP + λ) | λ ∈ L} of Ω to ΩP , and this results in
ΩP since both Ω and ΩP are fundamental domains of L. Because of the countable
additivity and translation invariance of the Lebesgue measure, we easily see that Ω
and ΩP have the same measure. In particular, since ΩP has positive finite measure,
this is also the case for every fundamental domain of L.
We are also interested in periodic arrangements of subsets of Rd determined by

the points of a lattice which (almost) fill Rd under a less restrictive condition than
for fundamental domains. This can be expressed by the notion of a tiling. We say
that a set Ω ⊆ Rd tiles Rd with the lattice L if∑

λ∈L

χΩ(x+ λ) = 1 for almost all x ∈ Rd.

This expresses that the union of all translated copies of the set Ω almost fills the
whole space Rd with almost no overlaps. We also write this as Ω + L ≈ Rd.
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In order to examine Fourier analysis on a fundamental domain Ω of a lattice L in
Rd we need to construct an appropriate orthonormal basis for L2(Ω). We note that
we endow L2(Ω) with the normalized inner product, namely

⟨f, g⟩L2(Ω) :=
1

|Ω|

∫
Ω

f(x) g(x) dx.

Here |Ω| denotes the Lebesgue measure of Ω.
The construction of our orthonormal basis for L2(Ω) makes use of the concept of

a dual lattice. Given a lattice L in Rd, the dual lattice L⊥ is defined by

L⊥ := {κ ∈ Rd | ∀λ ∈ L : κ · λ ∈ Z},
where κ · λ denotes the usual Euclidean inner product of the vectors κ, λ ∈ Rd. The
generator matrix of L⊥

A is A⊥ := A−T, where AT denotes the transpose of the matrix
A and A−T := (A−1)T. Note that (L⊥)⊥ = L for any lattice L.

Surprisingly, it turns out that Fourier analysis on a fundamental domain of a
lattice and tilings with this lattice are very closely related as demonstrated by the
Fuglede theorem.

Theorem 2.1 (Fuglede, [12, Section 6]). Let Ω ⊆ Rd be a measurable set with
0 < |Ω| < ∞ and let L be a lattice in Rd. Then Ω + L ≈ Rd if and only if
{e2πiκ·x | κ ∈ L⊥} is an orthonormal basis for L2(Ω).

The Fuglede theorem thus provides a natural orthonormal basis to work with.
This theorem works for any fundamental domain of a lattice L as it tiles Rd with
L. Moreover, this is in a certain sense the only type of sets that satisfy the tiling
condition. By the lemma in [12, Section 6] every set Ω ⊆ Rd satisfying Ω + L ≈ Rd

differs from a fundamental domain only by a null set.
As a consequence of the Fuglede theorem, any function f ∈ L2(Ω) can be expanded

into a Fourier series, namely

f(x) =
∑
κ∈L⊥

f̂(κ) e2πiκ·x, where f̂(κ) =
1

|Ω|

∫
Ω

f(x) e−2πiκ·x dx. (2.2)

In summary, choosing a lattice or, equivalently, a generator matrix and fixing
a certain fundamental domain of this lattice, the Fuglede theorem enables Fourier
analysis on this fundamental domain through exponential functions related to the
dual lattice.

2.1. The Fourier transform on a fundamental domain. We now define the
Fourier transform on a fundamental domain Ω of a lattice L in Rd and discuss some
properties of it. Formula (2.2) suggests that we can define the Fourier transform FΩ

on L2(Ω) by

FΩf(κ) := f̂(κ) =
1

|Ω|

∫
Ω

f(x) e−2πiκ·x dx for κ ∈ L⊥. (2.3)

As in the Euclidean case we would like to find a dense subspace of L2(Ω) where the
Fourier transform has very useful properties. For the Euclidean Fourier transform
this space is the class of Schwartz functions S(Rd). We will base our findings on
the toroidal Fourier transform, which is actually a special case of Fourier transforms
on fundamental domains of lattices in Rd. See [24, Chapter 3] for a discussion of
toroidal Fourier transforms.

Of course, in the setting of Fourier analysis on fundamental domains of lattices
in Rd we consider different function spaces than in the Euclidean setting. Consider
a lattice L with fundamental domain Ω. Now note that Rd/L is homeomorphic to
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Td = Rd/Zd so that Ω is compact for the initial topology. This initial topology is
defined as the weakest topology that makes the projection mapping x ∈ Ω 7→ x+L ∈
Rd/L continuous, and one can easily check that Ω ∼= Rd/L with this topology. In
fact, we can view this initial topology as an L-periodised Euclidean topology. As a
consequence, every complex-valued function on Ω has compact support. Hence, it
is a natural choice to consider the Fourier transform on the function space C∞

per(Ω),
which is constructed as follows.

Definition 2.2. A function f : Rd → C satisfying f(x+λ) = f(x) for all x ∈ Rd and
λ ∈ L is called L-periodic. The space Cm

per(Ω) consists of all m-times continuously
differentiable L-periodic functions f considered to be defined on Ω, and C∞

per(Ω) :=⋂
m∈N C

m
per(Ω). The topology on C∞

per(Ω) is the topology of uniform convergence on
compact sets of the functions and all their derivatives.

Remark 2.3. Since Ω ∼= Rd/L, it is natural to consider function spaces on Rd/L,
which can be identified with periodic functions. Indeed, the function space C∞

per(Ω)

corresponds to C∞(Rd/L), but we write C∞
per(Ω) instead of C∞(Ω) or C∞(Rd/L) to

avoid confusion. Notice that this difference is not really relevant for the Lebesgue
spaces, as the periodic Lebesgue space Lp

per(Ω) is isometrically isomorphic to Lp(Ω),
where the isomorphism is given by the restriction f ∈ Lp

per(Ω) 7→ f |Ω ∈ Lp(Ω).

We now define the analogue of the Schwartz space S(Rd) on a lattice L. Since L
is a discrete space, the requirement of smoothness is removed.

Definition 2.4. Let L be a lattice. We say that f : L → C belongs to s(L) if for
all N ∈ N there exists a constant CN > 0 such that for all λ ∈ L we have

|f(λ)| ≤ CN(1 + |λ|2)−N/2.

We endow s(L) with the topology generated by the countable family of seminorms
pj(f) := supλ∈L |f(λ)| (1 + |λ|2)j/2 for j ∈ N.

These function spaces appear in the theory of the toroidal Fourier transform. The
torus Td is namely the quotient Rd/Zd of the space Rd with the lattice Zd and can
be viewed as the fundamental domain [0, 1)d of Zd (with the initial topology). The
toroidal Fourier transform has the following useful property, which can be directly
compared to the Euclidean case.

Theorem 2.5 ([24, page 301]). Let

FTd : C∞
per(Td) → s(Zd) : f 7→ f̂(ξ) :=

∫
Td

f(x) e−2πix·ξ dx

be the toroidal Fourier transform. Then FTd is an isomorphism from C∞
per(Td) to

s(Zd), which means that it is a linear homeomorphism. Its inverse is given by

F−1
Td : s(Zd) → C∞

per(Td) : f 7→ qf(x) =
∑
ξ∈Zd

f(ξ) e2πix·ξ.

We can relate the Fourier transform on a fundamental domain Ω of a lattice L
in Rd to this toroidal case. Since A : Td → ATd = Ω is a homeomorphism, we find
an isomorphism α : C∞

per(Ω) → C∞
per(Td) with α[f ](x) := f(Ax) for every x ∈ Td.

Similarly, we see that β : s(Zd) → s(L⊥) with β[f ](x) := f((A⊥)−1x) = f(ATx) for
every x ∈ L⊥ is also an isomorphism. Note that the isomorphisms α and β actually
just represent a change of variables.
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The Fourier transform on the fundamental domain Ω is related to the toroidal
Fourier transform via the isomorphisms α and β as represented in the following
diagram:

FΩ : C∞
per(Ω)

α−→ C∞
per(Td)

FTd−−→ s(Zd)
β−→ s(L⊥).

Since FΩ = β ◦ FTd ◦ α is a composition of isomorphisms, Theorem 2.5 gives the
following result.

Theorem 2.6. Let

FΩ : C∞
per(Ω) → s(L⊥) : f 7→ f̂(κ) :=

1

|Ω|

∫
Ω

f(x) e−2πiκ·x dx

be the Fourier transform on a fundamental domain Ω of a lattice L in Rd. Then FΩ

is an isomorphism from C∞
per(Ω) to s(L⊥). Its inverse is given by

F−1
Ω : s(L⊥) → C∞

per(Ω) : f 7→ qf(x) =
∑
κ∈L⊥

f(κ) e2πiκ·x.

Later we will see that both FΩ and F−1
Ω have bounded Lp(Ω)-ℓp

′
(L⊥) extensions

for every 1 ≤ p ≤ 2 as a consequence of the Hausdorff-Young inequalities in Theo-
rem 3.1, where 1

p
+ 1

p′
= 1.

Note that C∞
per(Ω) is dense in Lp(Ω) for 1 ≤ p < ∞ since this is generally known

for Ω ⊆ Rd. It is also true that s(L⊥) is dense in ℓp(L⊥) for 1 ≤ p < ∞, because
we can approximate an arbitrary f ∈ ℓp(L⊥) by a sequence of finitely supported
functions on L⊥ and these belong to s(L⊥). Hence, the bounded Lp(Ω)-ℓp

′
(L⊥)

extensions of FΩ and F−1
Ω are unique.

2.2. Spectral sets and the Fuglede conjecture. We now briefly discuss the
Fuglede theorem outside the context of lattices. A measurable set Ω ⊆ Rd with 0 <
|Ω| < ∞ is called a spectral set if there exists a set Λ ⊆ Rd such that {e2πiλ·x | λ ∈ Λ}
is an orthonormal basis for L2(Ω). In this case the set Λ is called an exponent set
for Ω. Note that every exponent set is countably infinite.

Further, a measurable set Ω ⊆ Rd with 0 < |Ω| < ∞ is called a direct summand if
there exists a set Γ ⊆ Rd such that (after modifying Ω with a null set) Ω + Γ = Rd

as a direct sum. This set Γ is called a translation set for Ω.
It is asserted in [12, page 119] that exponent sets and translation sets are always

discrete, closed and total, which means that these sets are not contained in a proper
subspace of Rd. As a consequence every translation set is also countably infinite.
Remark that the Fuglede theorem tells us that a measurable set Ω ⊆ Rd is a spectral
set admitting an exponent subgroup Λ ⊆ Rd if and only if Ω is a direct summand
admitting a translation subgroup Γ ⊆ Rd.

In [12] Fuglede conjectures that, more generally, a measurable set Ω ⊆ Rd with
0 < |Ω| < ∞ is a spectral set if and only if Ω is a direct summand. Theorem 2.1
states that this conjecture is true for fundamental domains of lattices in Rd. This
conjecture has also been shown in [18] to be true for any compact convex set Ω ⊆ Rd

with non-empty interior, but counterexamples have been found in Rd for d ≥ 3.
However, the conjecture remains unknown for d ∈ {1, 2}.

We can introduce a Fourier transform on a spectral set Ω in the same way as in
Subsection 2.1. We also have an obvious candidate for the inverse Fourier transform.
However, we do not have some isomorphisms that link this Fourier transform to
a canonical Fourier transform as before. So the question arises whether we can
prove that this Fourier transform is invertible and whether it is an isomorphism
on a suitable function space on Ω, such as L2(Ω). This would provide a way to
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generalise the results in this paper to any spectral set Ω ⊆ Rd. However, it may
seem improbable that we can invert this Fourier transform, because we might loose
control over the corresponding Dirichlet kernel if we do not have more structural
information about the exponent set Λ. Otherwise we could ask whether there is
another approach that works for all spectral sets. We leave this question open.

2.3. Lattices of type Ad. Sometimes a lattice L has a simpler description in a
higher-dimensional space. One can try to extend the theory in this paper to lattices
living in proper subspaces. We will give an example of such a lattice, which appears
in [19]. We study this particular kind of lattices through homogeneous coordinates.

Let d ≥ 1. If we identify Rd with the hyperplane

Rd+1
H := {(t1, t2, . . . , td+1) ∈ Rd+1 | t1 + t2 + · · ·+ td+1 = 0}

in Rd+1, then the lattice of type Ad is defined as

Zd+1
H := Zd+1 ∩ Rd+1

H = {(k1, k2, . . . , kd+1) ∈ Zd+1 | k1 + k2 + · · ·+ kd+1 = 0}.

Note that this lattice lives in a d-dimensional subspace of Rd+1, so it is described by
homogeneous coordinates t, for which we will use bold letters, and Ad := Zd+1

H .
We consider the fundamental domain of the lattice Ad tiling Rd+1

H given by

ΩH := {t ∈ Rd+1
H | −1 < ti − tj ≤ 1,∀ 1 ≤ i < j ≤ d+ 1}.

Note that the strict inequality ensures that the translated copies of ΩH do not
overlap. As an example, for d = 2 this fundamental domain ΩH is a regular hexagon.
Note that we need slightly different but similar definitions for the generator matrix

of the lattice Ad and related concepts because this lattice lives in a proper subspace
of Rd+1. The natural choice for the generator matrix of the lattice Ad is the (d+1)×d
matrix

A :=



1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1
−1 −1 · · · −1 −1

 ,

since Ad = AZd+1 with this choice. The dual lattice A⊥
d is defined to be generated

by the matrix

A⊥ := A(ATA)−1 =
1

d+ 1



d −1 · · · −1 −1
−1 d · · · −1 −1
...

...
. . .

...
...

−1 −1 · · · d −1
−1 −1 · · · −1 d
−1 −1 · · · −1 −1

 .

We now give an explicit description of the dual lattice A⊥
d . Consider

H := {k ∈ Ad | k1 ≡ k2 ≡ · · · ≡ kd+1 (mod d+ 1)}.

To every element A⊥j with j ∈ Zd of the dual lattice A⊥
d we relate the vector

k = (d + 1)A⊥j, which belongs to Ad because the integers are closed under linear
combinations. Moreover, we can easily compute that k ∈ H. Conversely, we imme-
diately see that j = ATk/(d + 1), so it follows that j ∈ Zd for all k ∈ H. In short,
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this means that

A⊥
d =

{
A⊥j | j ∈ Zd

}
=

{
k

d+ 1
| k ∈ H

}
.

The Fuglede theorem tells us that {ϕj | j ∈ H} is an orthonormal basis of L2(ΩH),
where

ϕj(t) := e
2πi
d+1

j·t for j ∈ H and t ∈ Rd+1
H .

In particular, this means that

⟨ϕj, ϕk⟩ :=
1

|ΩH |

∫
ΩH

ϕj(t)ϕk(t) dt = δjk,

where δjk = 1 if j = k and 0 otherwise. We note that |ΩH | =
√
det(ATA) =

√
d+ 1.

Let us call a function f on Rd+1
H H-periodic if it is periodic with respect to the

lattice Ad, which means that f(t+k) = f(t) for all k ∈ Ad. Note that the functions
ϕj are H-periodic. Further, we find that every H-periodic L2(ΩH)-function f has a
Fourier series expansion:

f(t) =
∑
k∈H

f̂kϕk(t), where f̂k :=
1√
d+ 1

∫
ΩH

f(t)ϕ−k(t) dt.

3. Some fundamental inequalities

In this section we prove some classical inequalities in the setting of fundamental
domains of lattices in Rd, namely the Hausdorff-Young inequality, Paley’s inequality
and the Hausdorff-Young-Paley inequality. We will also treat the Hardy-Littlewood
inequality, but this is not necessary for the further developments. We begin by
deriving the Plancherel formula in our setting.

Let L be a lattice in Rd with fundamental domain Ω. By a well-known general
fact about Hilbert spaces [22, Theorem 4.18] applied to L2(Ω) with orthonormal
basis {e2πiκ·x | κ ∈ L⊥} we find for f ∈ L2(Ω) the following Plancherel formula:

∥f∥2L2(Ω) =
1

|Ω|

∫
Ω

|f(x)|2 dx =
∑
κ∈L⊥

|f̂(κ)|2 = ∥f̂∥2ℓ2(L⊥), (3.1)

where f̂(κ) is the Fourier transform of f as in equation (2.3).

3.1. Hausdorff-Young inequality. The first inequality that we will consider in
this section, is the Hausdorff-Young inequality. It is fundamental since it shows that
the Fourier transform and its inverse have bounded Lp-Lp′ extensions. The proof
proceeds as in the Euclidean case [24, Corollary 1.3.14].

Theorem 3.1 (Hausdorff-Young inequality). Let 1 ≤ p ≤ 2 and 1
p
+ 1

p′
= 1. If

f ∈ Lp(Ω), then f̂ ∈ ℓp
′
(L⊥) and

∥f̂∥ℓp′ (L⊥) ≤ ∥f∥Lp(Ω). (3.2)

Similarly, if f ∈ ℓp(L⊥), then qf ∈ Lp′(Ω) and

∥ qf∥Lp′ (Ω) ≤ ∥f∥ℓp(L⊥). (3.3)

Proof. For all f ∈ L1(Ω) we have

∥f̂∥ℓ∞(L⊥) = sup
κ∈L⊥

1

|Ω|

∣∣∣∣∫
Ω

f(x) e−2πiκ·x dx

∣∣∣∣ ≤ ∥f∥L1(Ω).
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We obtain the desired result by a straightforward application of the Riesz-Thorin
interpolation theorem [13, Theorem 1.3.4] using this estimate and the Plancherel
formula (3.1).

The second inequality follows similarly by applying Riesz-Thorin interpolation to
the estimates

∥ qf∥L∞(Ω) = ess sup
x∈Ω

∣∣∣∣∣∑
κ∈L⊥

f(κ) e2πiκ·x

∣∣∣∣∣ ≤ ∑
κ∈L⊥

|f(κ)| = ∥f∥ℓ1(L⊥)

and

∥ qf∥2L2(Ω) =
1

|Ω|

∫
Ω

∣∣∣∣∣∑
κ∈L⊥

f(κ) e2πiκ·x

∣∣∣∣∣
2

dx ≤ 1

|Ω|

∫
Ω

∑
κ∈L⊥

|f(κ)|2 dx = ∥f∥2ℓ2(L⊥).

This completes the proof. □

3.2. Paley’s inequality. We now consider a Paley-type inequality, which can be
seen as a weighted version of the Plancherel formula (3.1) for Lp(Ω) with 1 < p ≤ 2.
Our proof strategy is based on the proof of [7, Theorem 4.2].

Theorem 3.2 (Paley’s inequality). Let 1 < p ≤ 2. If φ(κ) is a positive function on
L⊥ such that

Mφ := sup
s>0

s
∑
κ∈L⊥

φ(κ)≥s

1 < ∞,

then for every f ∈ Lp(Ω) we have(∑
κ∈L⊥

|f̂(κ)|p φ(κ)2−p

) 1
p

≲ M
2−p
p

φ ∥f∥Lp(Ω). (3.4)

Proof. Note that the case p = 2 is fulfilled by Plancherel’s formula (3.1). So now
we suppose 1 < p < 2. We define a measure µ on L⊥ by µ{κ} = φ(κ)2 for every
κ ∈ L⊥. Consider the (sub)linear operator A defined by

Af(κ) =
f̂(κ)

φ(κ)
.

Now, our goal is to show that A is of weak type (1, 1) and (2, 2) so that the
result follows from Marcinkiewicz’ interpolation theorem [13, Theorem 1.3.2]. More
specifically, we will see for every s > 0 that

µ{κ ∈ L⊥ : |Af(κ)| ≥ s} ≤
(
∥f∥L2(Ω)

s

)2

and

µ{κ ∈ L⊥ : |Af(κ)| ≥ s} ≤ 2Mφ

∥f∥L1(Ω)

s
.
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Because of the Plancherel formula (3.1) we obtain for every f ∈ L2(Ω) that

s2µ{κ ∈ L⊥ : |Af(κ)| ≥ s} = s2
∑
κ∈L⊥

|Af(κ)|≥s

φ(κ)2

≤
∑
κ∈L⊥

|Af(κ)|2 φ(κ)2

=
∑
κ∈L⊥

|f̂(κ)|2

= ∥f∥2L2(Ω).

This proves that A is of weak type (2, 2).

Now note that |Af(κ)| = |f̂(κ)|/φ(κ) ≤ ∥f∥L1(Ω)/φ(κ) by the Hausdorff-Young
inequality (3.2). Hence for f ∈ L1(Ω) we have

µ{κ ∈ L⊥ : |Af(κ)| ≥ s} ≤ µ

{
κ ∈ L⊥ : φ(κ) ≤

∥f∥L1(Ω)

s

}
=
∑
κ∈L⊥

φ(κ)≤σ

φ(κ)2,

where we set σ := ∥f∥L1(Ω)/s. Next we find∑
κ∈L⊥

φ(κ)≤σ

φ(κ)2 =
∑
κ∈L⊥

φ(κ)≤σ

∫ φ(κ)2

0

dτ ≤
∫ σ2

0

∑
κ∈L⊥

τ1/2≤φ(κ)≤σ

1 dτ,

where we used Fubini’s theorem and enlarged the ‘domain of double integration’,
viewing summation as an integral with respect to the counting measure. Finally,
the substitution t =

√
τ gives∫ σ2

0

∑
κ∈L⊥

τ1/2≤φ(κ)≤σ

1 dτ = 2

∫ σ

0

t
∑
κ∈L⊥

t≤φ(κ)≤σ

1 dt ≤ 2

∫ σ

0

t
∑
κ∈L⊥

t≤φ(κ)

1 dt ≤ 2Mφσ.

We thus found for every f ∈ L2(Ω) that

µ{κ ∈ L⊥ : |Af(κ)| ≥ s} ≤ 2Mφ

∥f∥L1(Ω)

s
,

which means that A is of weak type (1, 1).
Remark that the Marcinkiewicz’ interpolation theorem [13, Theorem 1.3.2] also

ensures that the hidden constant in inequality (3.4) only depends on p, since we

eliminated the dependence on φ by explicitly writing the factor M
2−p
p

φ . □

3.3. Hardy-Littlewood inequality. As an intermezzo we include the celebrated
Hardy-Littlewood inequality since it follows by a simple application of the Paley
inequality. It expresses that we have a weighted version of Plancherel’s formula
(3.1) for Lp(Ω) with 1 < p ≤ 2 if the weight decays sufficiently fast. To this end we
apply a similar reasoning as in the proof of [17, Theorem 3.5].

Theorem 3.3 (Hardy-Littlewood inequality). Let 1 < p ≤ 2, and let φ(κ) be a
positive function on L⊥ growing sufficiently fast in the sense that∑

κ∈L⊥

1

φ(κ)β
< ∞ for some β > 0.
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Then for every f ∈ Lp(Ω) it holds that(∑
κ∈L⊥

|f̂(κ)|p φ(κ)β(p−2)

) 1
p

≲p,φ ∥f∥Lp(Ω).

Proof. Put

C :=
∑
κ∈L⊥

1

φ(κ)β
< ∞.

Then we find for any s > 0 that

C ≥
∑
κ∈L⊥

φ(κ)β≤ 1
s

1

φ(κ)β
≥ s

∑
κ∈L⊥

φ(κ)β≤ 1
s

1 = s
∑
κ∈L⊥
1

φ(κ)β
≥s

1

so that

sup
s>0

s
∑
κ∈L⊥
1

φ(κ)β
≥s

1 ≤ C < ∞.

Hence, by Paley’s inequality (3.4), applied to the function 1/φ(κ)β, we obtain for
every f ∈ Lp(Ω) that(∑

κ∈L⊥

|f̂(κ)|p φ(κ)β(p−2)

) 1
p

≲p,φ ∥f∥Lp(Ω).

It is clear that the hidden constant in the Hardy-Littlewood inequality indeed also

depends on φ since we did not include the factor M
2−p
p

1/φ(κ)β
from Paley’s inequality

(3.4). □

3.4. Hausdorff-Young-Paley inequality. We conclude this section with the clas-
sical Hausdorff-Young-Paley inequality. In [15] Lars Hörmander applied the Eu-
clidean version of this inequality to prove the Lp-Lq boundedness of Fourier multi-
pliers. It will also play a crucial role in our arguments in the next section.

Before stating the Hausdorff-Young-Paley inequality we mention the following
important interpolation result, which we will use in our proof.

Theorem 3.4 (Stein-Weiss, [5, Corollary 5.5.4]). Consider two measure spaces
(X,µ) and (Y, ν). Let 1 ≤ p0, p1, q0, q1 < ∞. Assume that the linear operator A
defined on Lp0(X,w0 dµ) + Lp1(X,w1 dµ) satisfies

∥Af∥Lq0 (Y,w̃0 dν) ≤ M0∥f∥Lp0 (X,w0 dµ) for all f ∈ Lp0(X,w0 dµ)

and

∥Af∥Lq1 (Y,w̃1 dν) ≤ M1∥f∥Lp1 (X,w1 dµ) for all f ∈ Lp1(X,w1 dµ)

for some M0 > 0 and M1 > 0, where wj and w̃j are weight functions for j ∈ {0, 1},
i.e. positive measurable functions. Let 0 ≤ θ ≤ 1 be arbitrary, and let

1

p
=

1− θ

p0
+

θ

p1
and

1

q
=

1− θ

q0
+

θ

q1
.

Then A extends to a bounded linear operator A : Lp(X,w dµ) → Lq(Y, w̃ dν) satis-
fying

∥Af∥Lq(Y,w̃ dν) ≤ M1−θ
0 M θ

1∥f∥Lp(X,w dµ) for all f ∈ Lp(X,w dµ),
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where

w = w
p(1−θ)

p0
0 w

pθ
p1
1 and w̃ = w̃

q(1−θ)
q0

0 w̃
qθ
q1
1 .

We are now ready to state and prove the Hausdorff-Young-Paley inequality, which
is in a sense an interpolated version of the Hausdorff-Young inequality (3.2) and
Paley’s inequality (3.4). We follow the same line of reasoning as in the proof of [7,
Theorem 4.6].

Theorem 3.5 (Hausdorff-Young-Paley inequality). Let 1 < p ≤ 2, and let 1 <
p ≤ b ≤ p′ < ∞ with 1

p
+ 1

p′
= 1. Suppose that φ(κ) is a positive function on L⊥

satisfying

Mφ := sup
s>0

s
∑
κ∈L⊥

φ(κ)≥s

1 < ∞.

Then for every f ∈ Lp(Ω) we have(∑
κ∈L⊥

∣∣∣f̂(κ)φ(κ) 1
b
− 1

p′
∣∣∣b) 1

b

≲ M
1
b
− 1

p′
φ ∥f∥Lp(Ω). (3.5)

Proof. Plancherel’s identity (3.1) treats the case p = 2, so assume that p < 2.
Paley’s inequality (3.4) ensures that the linear operator FΩ : Lp(Ω) → ℓp(L⊥, w0)

with FΩf(κ) = f̂(κ) is bounded, where w0(κ) = φ(κ)2−p. Next, we note that
FΩ : Lp(Ω) → ℓp

′
(L⊥) is also bounded because of the Hausdorff-Young inequality

(3.2). Now, choose 0 ≤ θ ≤ 1 such that 1
b
= 1−θ

p
+ θ

p′
, so θ =

(
1
p
− 1

b

)
/
(

1
p
− 1

p′

)
.

Then Theorem 3.4 tells us that FΩ : Lp(Ω) → ℓb(L⊥, w) is bounded, where

w(κ) = w0(κ)
b(1−θ)

p =
(
φ(κ)

1
b
− 1

p′
)b

.

Here we note that Theorem 3.4 ensures that the hidden constant in the Hausdorff-
Young-Paley inequality only depends on p and b, since the dependence on φ(κ) is

contained in the factor M
1
b
− 1

p′
φ . □

4. Lp-Lq boundedness of Fourier multipliers for 1 < p, q < ∞

We are finally ready to accomplish our main goal, namely establishing the Lp-Lq

boundedness of Fourier multipliers on fundamental domains of lattices in Rd. In this
section we prove this for 1 < p, q < ∞ under a Hörmander-type condition, which is
inspired by Lars Hörmander’s result [15, Theorem 1.11].

We start by defining Fourier multipliers, which intuitively correspond to multipli-
cation by a function in the (multidimensional) ‘frequency space’.

Definition 4.1. An operator A : C∞
per(Ω) → C∞

per(Ω) is called a Fourier multiplier

with symbol σ : L⊥ → C if for all f ∈ C∞
per(Ω) and κ ∈ L⊥ it holds that

Âf(κ) = σ(κ) f̂(κ). (4.1)

Example 4.2. A typical example of a Fourier multiplier is any linear partial dif-
ferential operator with constant coefficients, i.e. A =

∑
|α|≤k aα∂

α for some k ∈ N,
as the Fourier transform converts derivatives into polynomials. Here we used for
α ∈ Nd the multi-index notations ∂α = ∂α1

x1
. . . ∂αd

xd
and |α| = α1 + · · ·+ αd.
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Indeed, let us consider the parallelotopic fundamental domain ΩP as given by
(2.1). Then the formula for integration by parts [10, page 712] for f, g ∈ C∞

per(ΩP )
becomes∫

ΩP

f(x) ∂xj
g(x) dx =

∫
∂ΩP

f(x) g(x)nj(x) dS −
∫
ΩP

∂xj
f(x) g(x) dx

= −
∫
ΩP

∂xj
f(x) g(x) dx,

where the normal n(x) in the point x ∈ ∂ΩP changes sign on opposite faces of the
parallelepiped ∂ΩP , while the other functions stay the same on corresponding points
on opposite faces because of their L-periodicity, which implies that the boundary
term is indeed zero. This corresponds to the fact that the torus Ω ∼= Rd/L has no
boundary.

Since the Fourier transform does not depend on the choice of fundamental domain,
we can choose Ω = ΩP so that we find

∂̂αf(κ) =

∫
ΩP

∂αf(x) e−2πiκ·x dx = (−1)|α|
∫
ΩP

f(x) ∂αe−2πiκ·x dx = (2πiκ)αf̂(κ),

where κα := κα1
1 . . . καd

d . Indeed, if P (∂) =
∑

|α|≤k aα∂
α is a linear partial differential

operator with constant coefficients, then its symbol is P (2πiκ).

Remark 4.3. Since FΩ : C∞
per(Ω) → s(L⊥) is invertible, a Fourier multiplierA satisfies

the relation

Af(x) = F−1
Ω [σ(κ) f̂(κ)](x) =

∑
κ∈L⊥

σ(κ) f̂(κ) e2πiκ·x. (4.2)

This is a special case of a pseudo-differential operator on Ω, which also allows sym-
bols σ(x, κ) that depend on both x and κ. Remark that every Fourier multiplier is
a linear operator as a consequence of (4.2). Moreover, a straightforward verification
using (4.1) shows that any Fourier multiplier A : C∞

per(Ω) → C∞
per(Ω) is continuous if

the symbol has at most polynomial growth. One can easily verify that the condition
on the symbol in the following theorems always restrict the symbol to be bounded,
so we always consider continuous Fourier multipliers.

We start by treating the case p = q = 2 separately. In Remark 4.9 we will give
sufficient conditions for Lp-boundedness for all 1 < p < ∞.

Theorem 4.4. Let A : C∞
per(Ω) → C∞

per(Ω) be a Fourier multiplier with bounded

symbol σ ∈ ℓ∞(L⊥). Then we have

∥A∥L(L2(Ω),L2(Ω)) := sup
f ̸=0

∥Af∥L2(Ω)

∥f∥L2(Ω)

= ∥σ∥ℓ∞(L⊥).

In particular, A can be extended to a bounded linear operator from L2(Ω) to L2(Ω).

Proof. The Plancherel formula (3.1) yields

∥Af∥L2(Ω) = ∥Âf∥ℓ2(L⊥) =

(∑
κ∈L⊥

|σ(κ) f̂(κ)|2
) 1

2

≤ ∥σ∥ℓ∞(L⊥)∥f̂∥ℓ2(L⊥)

= ∥σ∥ℓ∞(L⊥)∥f∥L2(Ω).

This proves that ∥A∥L(L2(Ω),L2(Ω)) ≤ ∥σ∥ℓ∞(L⊥).
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Conversely, choose for every n ∈ N some κn ∈ L⊥ such that

∥σ∥ℓ∞(L⊥) − |σ(κn)| ≤
1

n

and set fn(x) := e2πiκn·x. Then we have

f̂n(κ) =
1

|Ω|

∫
Ω

e2πiκn·x e−2πiκ·x dx = δκ,κn

so that Plancherel’s formula yields

∥Afn∥L2(Ω) = ∥Âfn∥ℓ2(L⊥) =

(∑
κ∈L⊥

|σ(κ) f̂(κ)|2
) 1

2

= |σ(κn)| .

Hence, we find (
∥σ∥ℓ∞(L⊥) −

1

n

)
∥fn∥L2(Ω) ≤ |σ(κn)| = ∥Afn∥L2(Ω)

so that

∥σ∥ℓ∞(L⊥) −
1

n
≤ ∥A∥L(L2(Ω),L2(Ω))

for all n ∈ N. We conclude that ∥σ∥ℓ∞(L⊥) ≤ ∥A∥L(L2(Ω),L2(Ω)). □

Next, we examine the case that Hörmander considered in [15, Theorem 1.11]. Our
proof is similar to that of [7, Theorem 4.8].

Theorem 4.5. Let 1 < p ≤ 2 ≤ q < ∞ with p and q not both equal to 2, and let
A : C∞

per(Ω) → C∞
per(Ω) be a Fourier multiplier with symbol σ satisfying

sup
s>0

s

 ∑
κ∈L⊥

|σ(κ)|≥s

1


1
p
− 1

q

< ∞. (4.3)

Then

∥A∥L(Lp(Ω),Lq(Ω)) := sup
f ̸=0

∥Af∥Lq(Ω)

∥f∥Lp(Ω)

≲ sup
s>0

s

 ∑
κ∈L⊥

|σ(κ)|≥s

1


1
p
− 1

q

.

In particular, A can be extended to a bounded linear operator from Lp(Ω) to Lq(Ω).

Proof. First, we assume that p ≤ q′. Note that q′ ≤ 2. Hence the Hausdorff-Young
inequality (3.3) implies that

∥Af∥Lq(Ω) = ∥F−1
Ω (Âf)∥Lq(Ω) ≤ ∥Âf∥ℓq′ (L⊥) =

(∑
κ∈L⊥

|σ(κ) f̂(κ)|q′
) 1

q′

.

Set 1
r
= 1

p
− 1

q
= 1

q′
− 1

p′
. An application of the Hausdorff-Young-Paley inequality

(3.5) with b := q and φ(κ) = |σ(κ)|r, where we note that 1 < p ≤ q′ ≤ p′ < ∞,
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yields

∥Af∥Lq(Ω) ≤

(∑
κ∈L⊥

|σ(κ) f̂(κ)|q′
) 1

q′

=

(∑
κ∈L⊥

|f̂(κ)φ(κ)
1
b
− 1

p′ |q′
) 1

q′

≲

sup
s>0

s
∑
κ∈L⊥

φ(κ)≥s

1


1
r

∥f∥Lp(Ω).

Hence we find

∥A∥L(Lp(Ω),Lq(Ω)) ≲

sup
s>0

s
∑
κ∈L⊥

|σ(κ)|r≥s

1


1
r

=

sup
s>0

sr
∑
κ∈L⊥

|σ(κ)|≥s

1


1
r

= sup
s>0

s

 ∑
κ∈L⊥

|σ(κ)|≥s

1


1
r

,

which is finite by assumption. This completes the proof for the case p ≤ q′.
Now we consider the case q′ ≤ p, which is equivalent to p′ ≤ q = (q′)′. It is

well-known [24, Theorem C.4.50] that the dual space of the Banach space Lp(Ω) is
Lp′(Ω). General Banach space theory [23, Theorem 4.10] tells us that the adjoint
operator A∗ satisfies ∥A∗∥L(Lq′ (Ω),Lp′ (Ω)) = ∥A∥L(Lp(Ω),Lq(Ω)).

We now prove that A∗ is a Fourier multiplier with symbol σ. A general property
of an orthonormal basis of a Hilbert space is that it satisfies Parseval’s identity [22,
Theorem 4.18]. Considering the orthonormal basis {e2πiκ·x | κ ∈ L⊥} of L2(Ω) we
get for all f, g ∈ L2(Ω) that

⟨f, g⟩L2(Ω) =
∑
κ∈L⊥

f̂(κ) ĝ(κ).

Hence, on the one hand we find for all f, g ∈ C∞
per(Ω) ⊆ L2(Ω) that

⟨Af, g⟩L2(Ω) =
∑
κ∈L⊥

Âf(κ) ĝ(κ) =
∑
κ∈L⊥

σ(κ) f̂(κ) ĝ(κ) =
∑
κ∈L⊥

f̂(κ)σ(κ) ĝ(κ),

while on the other hand we have

⟨Af, g⟩L2(Ω) = ⟨f, A∗g⟩ =
∑
κ∈L⊥

f̂(κ) Â∗g(κ).

We can choose f̂(κ) = δκ,κ0 for any κ0 ∈ L⊥, where δκ,κ0 is a Kronecker delta, since
such an f belongs to s(L⊥) and thus can be inverted by the Fourier transform.
Hence, we find for all κ ∈ L⊥ that

Â∗g(κ) = σ(κ) ĝ(κ),

which shows indeed that A∗ is a Fourier multiplier with symbol σ.
Of course, |σ(κ)| = |σ(κ)| for all κ ∈ L⊥ so that σ also fulfills the growth condition

(4.3). Thus, if we apply the first case to the Fourier multiplier A∗ with 1 < q′ ≤ 2 <
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p′ < ∞, we obtain

∥A∥L(Lp(Ω),Lq(Ω)) = ∥A∗∥L(Lq′ (Ω),Lp′ (Ω)) ≲ sup
s>0

s

 ∑
κ∈L⊥

|σ(κ)|≥s

1


1
q′−

1
p′

= sup
s>0

s

 ∑
κ∈L⊥

|σ(κ)|≥s

1


1
p
− 1

q

,

where we note again that 1
p
− 1

q
= 1

q′
− 1

p′
. □

Hörmander proved in [15, Theorem 1.12] that we can only derive Lp-Lq bound-
edness from a Hörmander-type condition (4.3) in the setting of the Euclidean space
Rd if p ≤ 2 ≤ q. Moreover, it is shown in [15, Theorem 1.1] that the only Fourier
multiplier that is bounded from Lp(Rd) to Lq(Rd) with p > q is the zero operator.
The situation on fundamental domains of lattices is drastically different because we
now dispose of continuous embeddings between Lebesgue spaces due to the finite
measure of the fundamental domain Ω. The proof of this fact is standard, but we
include it for the convenience of the reader.

Lemma 4.6. Let 1 ≤ p, q ≤ ∞ with q ≤ p. Then we have the continuous embedding

Lp(Ω) ↪→ Lq(Ω).

Proof. Choose q̃ ≥ 1 such that 1
p
+ 1

q̃
= 1

q
, namely q̃ = pq

p−q
. Then, for every f ∈ Lp(Ω)

we have
∥f∥Lq(Ω) ≤ ∥f∥Lp(Ω)∥1∥Lq̃(Ω) = |Ω|

1
q̃ ∥f∥Lp(Ω) ≲ ∥f∥Lp(Ω)

by (a simple generalisation of) Hölder’s inequality. □

These embeddings of Lebesgue spaces on Ω allow us to prove Lp-Lq boundedness
of Fourier multipliers in a broader range for p and q than the case 1 < p ≤ 2 ≤ q < ∞
that Hörmander considered. This idea and our proof originate from [7, Corollary
4.9].

Theorem 4.7. Let 1 < p, q < ∞, and let A : C∞
per(Ω) → C∞

per(Ω) be a Fourier
multiplier with symbol σ. Assuming that the upper bound in each case is finite, we
get the following inequalities, where we interpret this upper bound as in Theorem 4.4
if the exponent is zero.

(1) If 1 < p, q ≤ 2, then

∥A∥L(Lp(Ω),Lq(Ω)) ≲ sup
s>0

s

 ∑
κ∈L⊥

|σ(κ)|≥s

1


1
p
− 1

2

.

(2) If 2 ≤ p, q < ∞, then

∥A∥L(Lp(Ω),Lq(Ω)) ≲ sup
s>0

s

 ∑
κ∈L⊥

|σ(κ)|≥s

1


1
q′−

1
2

.

In particular, A can be extended to a bounded linear operator from Lp(Ω) to Lq(Ω).
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Proof. Consider first the case 1 < p, q ≤ 2. We assume that q ̸= 2, because the
other case is already treated in the previous theorems. By Lemma 4.6 we get the
continuous embedding L2(Ω) ↪→ Lq(Ω) so that

∥A∥L(Lp(Ω),Lq(Ω)) = sup
f ̸=0

∥Af∥Lq(Ω)

∥f∥Lp(Ω)

≲ sup
f ̸=0

∥Af∥L2(Ω)

∥f∥Lp(Ω)

= ∥A∥L(Lp(Ω),L2(Ω)).

Theorem 4.5 yields

∥A∥L(Lp(Ω),Lq(Ω)) ≲ ∥A∥L(Lp(Ω),L2(Ω)) ≲ sup
s>0

s

 ∑
κ∈L⊥

|σ(κ)|≥s

1


1
p
− 1

2

.

For the other case, namely 2 ≤ p, q < ∞, we have 1 < p′, q′ ≤ 2 so that the first
case gives that

∥A∥L(Lp(Ω),Lq(Ω)) = ∥A∗∥L(Lq′ (Ω),Lp′ (Ω)) ≲ sup
s>0

s

 ∑
κ∈L⊥

|σ(κ)|≥s

1


1
q′−

1
2

,

where we have used the same properties of the adjoint operator A∗ as in the proof
of Theorem 4.5. □

Remark 4.8. In fact, we can cover all cases where 1 < p, q < ∞. The only remaining
case is 1 < q ≤ 2 ≤ p < ∞. Suppose A : C∞

per(Ω) → C∞
per(Ω) is a Fourier multiplier

with symbol σ. By Lemma 4.6 we have the continuous embeddings Lp(Ω) ↪→ L2(Ω)
and L2(Ω) ↪→ Lq(Ω) so that

∥A∥L(Lp(Ω),Lq(Ω)) = sup
f ̸=0

∥Af∥Lq(Ω)

∥f∥Lp(Ω)

≲ sup
f ̸=0

∥Af∥L2(Ω)

∥f∥L2(Ω)

= ∥σ∥ℓ∞(L⊥)

if σ is bounded because of Theorem 4.4. Thus, every Fourier multiplier on Ω with
a bounded symbol can be extended to a bounded linear operator from Lp(Ω) to
Lq(Ω) if 1 < q ≤ 2 ≤ p < ∞. Remark that we could choose other embeddings that
would yield other conditions of the type (4.3) on the symbol, but our condition on
boundedness is the weakest one, since it can easily be verified that every Hörmander-
type condition (4.3) implies that the symbol is bounded.

Remark 4.9. Note that Theorems 4.4 and 4.7 give sufficient conditions for Lp-
boundedness. We summarise these results here. Let A : C∞

per(Ω) → C∞
per(Ω) be

a Fourier multiplier with symbol σ.

(1) Consider the case p = 2. Then A has a bounded L2-extension if and only if
its symbol σ is bounded. In this case we have ∥A∥L(L2(Ω),L2(Ω)) = ∥σ∥ℓ∞(L⊥).

(2) If 1 < p < 2, then

∥A∥L(Lp(Ω),Lp(Ω)) ≲ sup
s>0

s

 ∑
κ∈L⊥

|σ(κ)|≥s

1


1
p
− 1

2

.
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(3) If 2 < p < ∞, then

∥A∥L(Lp(Ω),Lp(Ω)) ≲ sup
s>0

s

 ∑
κ∈L⊥

|σ(κ)|≥s

1


1
p′−

1
2

= sup
s>0

s

 ∑
κ∈L⊥

|σ(κ)|≥s

1


1
2
− 1

p

.

Remark in each case that if the upper bound on the norm of the Fourier multiplier
A is finite, then A extends to a bounded linear operator on Lp(Ω).

5. Application to Sobolev space embeddings

As an application of the Lp-Lq boundedness theorems for Fourier multipliers on
a fundamental domain Ω of a lattice L, we present results on Sobolev space embed-
dings. Moreover, these embeddings will indicate the sharpness of the main inequal-
ities in this paper.

First, we need to construct a Laplacian on Ω in order to define Sobolev spaces on
Ω. It is reasonable to construct it as a Fourier multiplier with a symbol that looks
the same as in the Euclidean case.

Definition 5.1. We define the Laplacian ∆Ω : C∞
per(Ω) → C∞

per(Ω) as the Fourier

multiplier on Ω with symbol −4π2 |κ|2.

Remark 5.2. Notice that this Laplacian actually acts on smooth periodic functions
in the way that we would expect. Indeed, if we denote the usual Laplacian by
∆ : C∞

per(Ω) → C∞
per(Ω) : f 7→

∑d
j=1 ∂

2
xj
f , then we find

∆̂Ωf(κ) =
1

|Ω|

∫
Ω

f(x) (−4π |κ|2) e2πiκ·x dx =
1

|Ω|

∫
Ω

f(x)∆e2πiκ·x dx

=
1

|Ω|

∫
Ω

∆f(x) e2πiκ·x dx = ∆̂f(κ)

so that indeed ∆Ωf = ∆f . Note that the boundary terms are indeed zero as
remarked in Example 4.2.

In the definition of Sobolev spaces we want to consider operators of the form
(I−∆Ω)

s/2 with s ≥ 0, so we need to define how functions act on Fourier multipliers.

Definition 5.3. Let φ : C → C be a function, and let A be a Fourier multiplier
on Ω with symbol σ. Then we define φ(A) as the Fourier multiplier with symbol
φ(σ(κ)).

Definition 5.4. Let 1 ≤ p ≤ ∞ and s ≥ 0. The Sobolev space Lp
s(Ω) consists of

all (periodic) functions f ∈ Lp(Ω) such that

(I −∆Ω)
s/2 f ∈ Lp(Ω),

where I is the identity operator. We endow this space with the Sobolev norm

∥f∥Lp
s(Ω) = ∥(I −∆Ω)

s/2f∥Lp(Ω).

Remark 5.5. The Sobolev space Lp
s(Ω) is sometimes referred to as an inhomogeneous

Sobolev space or (inhomogeneous) Bessel potential space.

Remark 5.6. Note that we have the continuous embedding Lp
s(Ω) ↪→ Lq

s(Ω) whenever
q ≤ p. This is an immediate consequence of the Lebesgue space embeddings in
Lemma 4.6.
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Remark 5.7. Note that if A and B are Fourier multipliers with symbols a and b
respectively, then their composition AB is the Fourier multiplier with symbol ab.
This follows easily from

AB = F−1
Ω aFΩ F−1

Ω bFΩ = F−1
Ω abFΩ.

Note that this is no longer true in general for pseudo-differential operators; that is,
when a and b may also depend on the variable x ∈ Ω. In particular, this means that
the Fourier multiplier (I−∆Ω)

s/2 is invertible since it has a strictly positive symbol.

In order to obtain our Sobolev embedding results, we need an estimate on the
Lp-Lq operator norm of the Fourier multiplier (I −∆Ω)

s/2. The following theorem
examines this question for general functions of the negative Laplacian on Ω under
some suitable conditions.

Theorem 5.8. Let 1 < p ≤ 2 ≤ q < ∞, and let φ be any continuous decreasing
function on [0,∞) such that φ(0) > 0 and limu→∞ φ(u) = 0. Then

∥φ(−∆Ω)∥L(Lp(Ω),Lq(Ω)) ≲ sup
u>0

φ(u) (1 + u)
d
2(

1
p
− 1

q ).

Proof. Recall that ∆Ω has symbol −4π2 |κ|2 so that φ(−∆Ω) is the Fourier multiplier
with symbol φ(4π2 |κ|2) =: ϕ(|κ|2). If p = q = 2 then the theorem follows directly
from Theorem 4.4 because the range of φ is contained in [0, φ(0)].
So, suppose p ̸= q. By Theorem 4.5 it follows that

∥φ(−∆Ω)∥L(Lp(Ω),Lq(Ω)) ≲ sup
s>0

s

 ∑
κ∈L⊥

ϕ(|κ|2)≥s

1


1
p
− 1

q

= sup
0<s≤ϕ(0)

s

 ∑
κ∈L⊥

ϕ(|κ|2)≥s

1


1
p
− 1

q

because ϕ is decreasing. Because of the continuity of ϕ, every s ∈ (0, ϕ(0)] can be
written as s = ϕ(u) for some u ∈ [0,∞). Hence we get

∥φ(−∆Ω)∥L(Lp(Ω),Lq(Ω)) ≲ sup
u≥0

ϕ(u)

 ∑
κ∈L⊥

ϕ(|κ|2)≥ϕ(u)

1


1
p
− 1

q

= sup
u≥0

ϕ(u)

∑
κ∈L⊥

|κ|2≤u

1


1
p
− 1

q

by the decreasing character of ϕ.
Our goal now is to find an estimate for the number of points of L⊥ with |κ|2 < u.

Clearly, since |κ| ≤ ∥κ∥∞
√
d with ∥κ∥∞ := max1≤l≤d |κl|, we can enlarge this set by

looking at the points of L⊥ for which

κ ∈
[
−
√

u

d
,

√
u

d

]d
.

Because there is a bijective correspondence between Zd and L⊥ given by κ(j) = A⊥j

for j ∈ Zd, the number of points of L⊥ in
[
−
√
u/d,

√
u/d
]d

is equal to the number

of points of Zd in
(
A⊥)−1

[
−
√

u/d,
√
u/d
]d
. The idea is to consider the point of

the latter domain with maximal distance ρ(u) from the origin so that the domain
is contained in [−ρ(u), ρ(u)]d because ∥κ∥∞ ≤ |κ|. Denote the column vectors of
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A⊥)−1

= AT by aT1 , . . . , a
T
d . Then this maximal distance ρ(u) is at most

d∑
j=1

∣∣aTj ∣∣√u

d
,

which is the length when traversing every column vector aTj with ‘step length’
√
u/d.

Let C :=
∑d

j=1

∣∣aTj ∣∣. Then the number of points of Zd in
(
A⊥)−1

[
−
√

u/d,
√
u/d
]d

is bounded by

(1 + 2ρ(u))d ≤
(
1 + 2C

√
u

d

)d

≲ (1 + u)
d
2 .

Thus, we obtain the estimate

∥φ(−∆Ω)∥L(Lp(Ω),Lq(Ω)) ≲ sup
u>0

ϕ(u) (1 + u)
d
2(

1
p
− 1

q ) = sup
u>0

φ(4π2u) (1 + u)
d
2(

1
p
− 1

q ).

Finally, the substitution v = 4π2u and a trivial estimate indeed lead to the desired
result. □

We now dispose of all the tools to establish some Sobolev space embedding results.
We will first focus on the case 1 < p ≤ 2 ≤ q < ∞.

Theorem 5.9. Let 1 < p ≤ 2 ≤ q < ∞. Then we have the continuous embedding

Lp
s(Ω) ↪→ Lq

t (Ω)

for all s− t ≥ d
(

1
p
− 1

q

)
with s, t ≥ 0.

Proof. An application of Theorem 5.8 with φ(u) := 1
(1+u)(s−t)/2 gives

∥(I −∆Ω)
(t−s)/2∥L(Lp(Ω),Lq(Ω)) ≲ sup

u>0
(1 + u)

d
2(

1
p
− 1

q )−
s−t
2 ,

which is finite precisely when s − t ≥ d
(

1
p
− 1

q

)
. In this case we find for every

f ∈ Lp
s(Ω) that

∥f∥Lq
t (Ω) ≲ ∥(I −∆Ω)

(t−s)/2∥L(Lp(Ω),Lq(Ω))∥(I −∆Ω)
s/2f∥Lp(Ω) ≲ ∥f∥Lp

s(Ω),

which concludes the proof of this theorem. □

Remark 5.10. We notice that for p = q = 2 we have the continuous embedding
L2
s(Ω) ↪→ L2

t (Ω) for all s ≥ t.

With a completely similar argument as for Theorem 5.9 with an application of
Theorem 4.7 and Remark 4.8 instead of Theorem 4.5 we obtain the following results.

Theorem 5.11. Let 1 < p, q < ∞ and s, t ≥ 0. We have the continuous embedding

Lp
s(Ω) ↪→ Lq

t (Ω)

if any of the following conditions is satisfied:

(1) 1 < p, q ≤ 2 and s− t ≥ d
(

1
p
− 1

2

)
,

(2) 2 ≤ p, q < ∞ and s− t ≥ d
(

1
q′
− 1

2

)
,

(3) 1 < q ≤ 2 ≤ p < ∞ and s ≥ t.

If we set t = 0 in Theorems 5.9 and 5.11 then we get the following corollary about
embeddings of Sobolev spaces in Lebesgue spaces.



REFERENCES 23

Corollary 5.12. Let 1 < p, q < ∞ and s, t ≥ 0. We have the continuous embedding

Lp
s(Ω) ↪→ Lq(Ω)

if any of the following conditions is satisfied:

(1) 1 < p ≤ 2 ≤ q < ∞ and s ≥ d
(

1
p
− 1

q

)
,

(2) 1 < p, q ≤ 2 and s ≥ d
(

1
p
− 1

2

)
,

(3) 2 ≤ p, q < ∞ and s ≥ d
(

1
q′
− 1

2

)
,

(4) 1 < q ≤ 2 ≤ p < ∞ and s ≥ 0 is arbitrary.

Remark 5.13. The Paley-inequality, the Hausdorff-Young-Paley inequality, the Har-
dy-Littlewood inequality and the Lp(Ω)-Lq(Ω) estimate for Fourier multipliers have
sharp exponents. This is known for the torus [20, 21, 26, 14] and one can generalise
these arguments to arbitrary fundamental domains of lattices. Alternatively, we
can remark that these inequalities are locally the same as the Sobolev embedding,
which is known to be sharp. See for example [11] for a proof in the general setting
of graded Lie groups.
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