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Abstract 

Background: Insomnia, eating disorders, heart problems and even strokes are just some of the illnesses that reveal 
the negative impact of stress overload on health and well-being. Early detection of stress is therefore of utmost 
importance. Whereas the gold-standard for detecting stress is by means of questionnaires, more recent work uses 
wearable sensors to find continuous and qualitative physical markers of stress. As some physiological stress responses, 
e.g. increased heart rate or sweating and chills, might also occur when doing sports, a more profound approach is 
needed for stress detection than purely considering physiological data.

Methods: In this paper, we analyse the added value of context information during stress detection from wearable 
data. We do so by comparing the performance of models trained purely on physiological data and models trained on 
physiological and context data. We consider the user’s activity and hours of sleep as context information, where we 
compare the influence of user-given context versus machine learning derived context.

Results: Context-aware models reach higher accuracy and lower standard deviations in comparison to the base-
line (physiological) models. We also observe higher accuracy and improved weighted F1 score when incorporating 
machine learning predicted, instead of user-given, activities as context information.

Conclusions: In this paper we show that considering context information when performing stress detection from 
wearables leads to better performance. We also show that it is possible to move away from human labeling and rely 
only on the wearables for both physiology and context.
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Introduction
Stress is defined by Selye [1] as “the non-specific 
response of the body to any demand for change, and 
is the most frequent work-related health problem in 
Europe [2]. Today, 80% of the people experience stress at 
work, which often evolves in long-term stress disorders, 

including burn-out, heart disease, cancer, lung disease, 
accidents, cirrhosis of the liver and suicide [3]. Besides 
the health-related issues, the European Union estimated 
a loss of 240 billion euros per year due to mental illnesses 
where stress is seen as one of the causes or instigators of 
most of these mental illnesses [4].

In the early stages, stress introduces sleeping difficul-
ties, headaches, fatigue and gastrointestinal upsets. To 
timely identify stress, it is essential to detect and analyze 
these symptoms from early on. Current gold-standard 
methods use user-driven interviews and questionnaires, 
such as the Perceived Stress Questionnaire (PSQ). These 
reports have a limited predictive potential because 
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patients often fill them in when their stress-related disor-
ders have already reached a late stage [5].

When experiencing stress a number of bodily changes 
take place. This response consists of changes in several 
physiological biosignals such as skin temperature (ST, 
which is the temperature on the skin surface that touches 
the sensor and not the body core), electrodermal activ-
ity (EDA, also known as Galvanic Skin Response (GSR), 
which is an indicator of sweating), heart rate (HR), blood 
volume pressure (BVP), among others [6].

In recent years, the use of smartphones and wear-
able devices such as chest heart rate monitors and wrist 
worn bands or smartwatches has increased and many 
people own one or several such devices [7, 8]. Most of 
these devices (or a combination thereof ) can measure 
several of the physiological biosignals mentioned. As a 
consequence, more recent works use smartphones and 
wearable heart rate monitors to assess stress and detect 
stress-induced changes in the users’ daily lives [9, 10]. By 
exploiting these smart wearable devices and advanced 
computing algorithms, researchers have come up with 
several automatic stress monitoring schemes to deter-
mine and detect stress in a wide variety of situations [11]. 
Since these wearable devices are most often non-obtru-
sive, they introduce a great opportunity for long term and 
real-life stress monitoring.

However, some changes in physiological biosignals 
are not necessarily the result of experiencing stress. 
For example increased HR and change in ST might also 
occur during a physical exercise [12, 13]. The current 
stress detection tools do not take into account this con-
text information, and therefore make incorrect stress 
predictions for these cases, resulting in a less reliable 
stress detection strategy. Motion artifacts in GSR and 
Photoplethysmogram (PPG, the sensor typically embed-
ded in wrist-worn wearable devices from which the HR is 
derived) additionally distort these signals and make them 
unreliable in situations with increased activity [10].

To cope with these situations, research should go 
beyond the physiological biosignals and consider con-
text information. Context information can help miti-
gate the problems mentioned here above: having the 
information on current or recent physical activities 
allows for a more correct interpretation of the physi-
cal biosignals and avoids certain activities being misin-
terpreted as stress. Getting to know the activities can 
be done through (daily/hourly) questionnaires and/or 
Ecological Momentary Assessments (EMAs, which are 
questions to the user at strategically chosen moments). 
However, traditional questionnaires suffer from recall 
bias [14] and too sparse data if timed infrequently, and 
also increase the user burden and the drop-out (ignor-
ing the questions) rate if asked too frequently. Even 

though the EMAs may reduce some of these problems, 
they may still not be sustainable in long-term monitor-
ing, especially if not implemented properly [15, 16]. 
When aiming for longitudinal and real-world stud-
ies on understanding stress and its consequences, we 
therefore need to move away from user-provided con-
text information and shift towards obtaining this infor-
mation automatically. Besides relieving the user from 
the burden of self-reporting, label quality this way also 
shifts from subjective to objective labels. As smart-
phones and wearable devices are equipped with many 
sensors, this sensor data can be used to infer some of 
this activity information automatically. The accelerom-
eter signal in both the smartphone and the wearable 
device is adequate for detecting the person’s activity 
and sleep period [17, 18].

Besides using context information for correct interpre-
tation or adequate use of the biosignals, and therefore 
possibly reducing false positives, it can also give a prior 
probability or indicate increased chances of a person 
experiencing stress. It is for example known that stress 
and sleep deprivation are linked, sometimes even leading 
to a vicious circle, where lack of sleep causes stress and 
anxieties, which in turn lead to insomnia [19]. Therefore, 
we can expect that a person feels irritable and stressed 
more after (several) nights of short sleep. In a similar 
way as before, this context information can be obtained 
by explicitly asking the user, or it can be automati-
cally derived using smartphone and/or wearable device 
sensors.

This research is two-fold. First, we assess the added 
value of using context data for stress detection. We do 
so by considering two context modalities: (a) the activ-
ity performed by the user and (b) the user’s sleeping 
behavior. We compare the accuracy obtained using (a) 
only physiological features and (b) physiological and con-
text features. Second, we automate the activity and sleep 
detection and perform the same experiments, this time 
incorporating the automatically derived context features 
instead of the user-given ones. We additionally compare 
the results obtained using user-provided versus automat-
ically derived context features.

The rest of the paper is organized as follows: "Related 
work" section  discusses the related work regarding stress 
assessment using wearable devices in various environ-
ments. In "Dataset" section discusses datasets used for 
this research. The activity recognition and sleep detec-
tion modules, which are used to automatically derive 
contextual information, are described in "Automated 
context retrieval" section. In "Experiments and results" 
section describes the two performed experiments to 
assess the impact of context on stress detection and the 
according results. A detailed discussion of the results and 
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final remarks of this research are given in "Discussion" 
and "Conclusion" sections respectively.

Related work
Multiple stress and wearable-related survey papers 
describe the different types of sensors, machine learning 
(ML) techniques and the various purposes for which the 
wearables were used [10, 20–24].

In this section, we briefly summarize the existing 
stress detection studies and their methodologies. Studies 
that use data-driven ML techniques come in two broad 
groups based on a defined (sub)goal and duration. The 
first group, in which the studies are of short duration, 
aims at acute stress detection. In the second group, stud-
ies are longitudinal, and their goal is to identify chronic 
stress.

Short‑term or acute stress detection
The duration of short-term stress detection stud-
ies ranges from several minutes up to several days. The 
experiments in these studies are always performed in 
a controlled lab environment and often try to tackle a 
concrete problem within a specific domain. Holmgard 
et  al.  performed a stress detection experiment to inves-
tigate Post Traumatic Stress Disorder (PTSD) via a com-
puter game [25]. A wearable device which measures the 
skin conductance was used to find (unsupervised) corre-
lations between physiological responses and the subjec-
tive stress evaluations. More recently, heart rate sensors 
are being used to capture PTSD in a supervised manner 
[26].

In the automobile domain, Keshan et  al. applied ML 
methods to detect stress under different driving con-
ditions [27]. The heart rate signals were derived using 
an electrocardiogram (ECG). This work was later on 
improved and used in diverse frameworks to capture 
stress levels while driving [28, 29]. However, ECG is not 
an ideal sensor for daily use and non-intrusive stress 
monitoring. Even with wearable sensors such as the 
Apple Watch, that have ECG sensors embedded, proper 
analysis requires the person to be resting and place the 
arm with the watch flat on a table or lap while touch-
ing the watch with the finger of the opposite hand. As a 
result, this is impossible to perform during driving, or 
even during any other activity, without interruption and 
is thus a major hindrance for adopting these sensors for 
real-life applications of stress detection.

More recently, physiological features that could be 
used as predictors of stressful activities and states of 
anxiety were examined in academic environments 
using an Arduino board and 5 low-cost sensors. The 
stress due to short activities performed by 21 students 
could be identified with an high accuracy using data 

from heart rate, skin temperature and oximetry signals 
and four derived physiological features.

Video-based interrogations are also frequently used 
to detect or analyze stressful events. Carneiro et  al. 
experimented with such an interrogation framework to 
capture human-behavioral stress through cameras and 
touch responsiveness on a tablet or smartphone. They 
showed that each user is affected by stress in a specific 
way [30]. Giakoumis et  al. adopted a similar approach 
to detect stress by using the Stroop color word test [31] 
in their experiments. In this test, the name of a color 
is printed in a color that mismatches its meaning (i.e., 
the term “red” printed in blue ink instead of red ink) 
[32]. The participants were asked to name the color of 
the word. This task takes longer than usual and induces 
stress. The wearable sensors, as well as the camera, 
could capture this stress event. In later studies, the use 
of thermal cameras increased the performance of these 
video-based stress detection studies [33]. Similar to 
ECG is the potential of using cameras for daily stress 
monitoring rather limited.

Besides video, short-term stress studies can also use 
sound to detect short-term stress in controlled environ-
ments. Lu et al. used a smartphone’s microphone to cap-
ture data in 3 situations: (1) an indoor job interview, (2) 
performing a competitive marketing job, (3) a neutral 
task [34]. They used GSR sensor readings as the ground 
truth, where an increase in the GSR values indicated 
stress. Later on, this “in-the-wild” speech recognition 
for stress detection is improved by using more advanced 
techniques, such as modulation spectral features and 
convolutional neural networks (CNN) [35]. While sound 
and speech-based stress detection looks promising, noise 
and external sounds make them impractical outside the 
lab environments.

More standardized tests are based on the Trier Social 
Stress Test (TSST) protocol [36], which includes both 
public speaking and cognitive tasks that place partici-
pants under high cognitive load. Mozos et al. use TSST, 
a variety of sensors and ML to classify stressful and neu-
tral situations [37]. Their setup also indicated that the 
first generation wearable devices could only be useful in 
controlled, short-term tests and are not suitable for lon-
gitudinal monitoring in real-world settings. New stud-
ies show that adaptations of the TSST in and enterprise 
contexts together with wrist-worn wearables, can still be 
beneficial [38].

Acute stress detection research neglect or rarely 
take the user’s profile and contextual information into 
account. Most of the short-term experiments performed 
in a predefined lab setup hold good results within this 
environment. It is, in most cases, somewhat unreal-
istic that such lab environments resemble real-world 
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situations or that cameras and microphones could be 
used in a non-intrusive way.

Long‑term or chronic stress detection
Long-term stress detection tests aim to capture real-life 
stress events. The experiments are, therefore, performed 
in open environments rather than controlled laboratory 
settings. Sano and Picard conducted a 5-day study in 
which the participants were asked at the beginning to fill 
in several questionnaires. They were then given a wrist-
worn wearable and wore it for 5 days [39]. During these 
5 days, every morning and evening, the participants filled 
in a survey in which they reported their sleeping behav-
ior, daily mood and general stress level. Despite the lim-
ited number of participants and data, this study extracted 
stress associated features from the wearable sensor data 
and mobile phone usage.

Garcia-Ceja et  al. used a similar smartphone setup to 
detect work-related stress [40]. The participants collected 
accelerometer data for eight weeks. Stress levels were 
registered three times a day, during their working hours, 
using their phones. Both a user-specific and global ML 
model were designed based on this data.

Muaremi et  al. conducted a more extensive, four 
months study in which they collected audio, communica-
tion and physical activity data during the workday. They 
also collected heart rate variability data at night during 
the sleep period [9]. Four times a day, participants filled 
out the Positive and Negative Affect Schedule (PANAS) 
[41] questionnaire and provided a voice message in which 
they speak about their activity at that time.

Another longitudinal stress study is the SWEET study 
(Stress in the Work EnvironmEnT), a comprehensive, 
cross-sectional study on an office workers’ population of 
1002 healthy volunteers, who were monitored continu-
ously for five consecutive days. SWEET collected baseline 
psychological information together with five consecutive 
days of free-living physiological data through wearables. 
Participants reported their stress, sleeping behavior and 
daily activities using a smartphone application. A stress 
assessment algorithm was developed using only the phys-
iological data collected with the wearable devices [10].

Other long-term studies aim to transfer the controlled 
laboratory assessment into real-world scenarios. Kyri-
akou et  al. proposed a rule-based algorithm based on 
GSR and ST data. They combined empirical findings 
with expert knowledge to ensure transferability between 
laboratory settings and real-world field studies [42]. They 
were also able to detect urban stressors such as traffic 
congestion, dangerous driving situations, and crowded 
areas such as tourist attractions.

More recently, A micro patch was developed to moni-
tor sweat on the fingertip along with heart rate and 

ambient temperature to determine stress events during 
the day (e.g., public speaking during a live-streamed aca-
demic conference or while teaching a class). While the 
biomarker signals look promising, a more thorough eval-
uation of this patch in combination with stress detection 
algorithm was left out of scope [43].

In long-term, real-world studies, sensor data is accom-
panied by a smartphone survey for collecting informa-
tion about possible stress events. The answers in these 
surveys contain information regarding the participant’s 
mood or sleeping behavior. In some works, the stress rec-
ognition models use these additional features as one blob 
of additional context data. In others, they have left aside 
this information due to the low quality of the surveys. To 
our knowledge, no published research has reported the 
influence of specific context information on the models’ 
performance. Context information is however necessary 
to further improve the detection models and provide new 
insights for the treatment of stress-related diseases.

Stress detection using context information
There are very few studies that consider context infor-
mation for the task of stress detection. Many obtain this 
information either by means of questionnaires or using 
preliminary forms to analyze the integrity profile of the 
person who experiences stress [44]. As mentioned in the 
introduction questionnaires or diary based contextual 
information have the additional drawback of being inac-
curate or biased as they can be subjectively interpreted 
[14].

Other studies investigated additional activities and 
additional observational information such as weather or 
sunlight as contextual information [45, 46]. These meth-
odologies were evaluated on a very low number of par-
ticipants and most of the time, the contextual data was 
provided in one big blob to the learning models without 
analyzing which context features lead to improved stress 
detection scores.

Even though it is clear that there is more to detect-
ing stress than just momentarily physiological biosig-
nals, there are very few studies considering the context 
in which these biosignals present themselves. This is the 
case, partially due to the difficulty of obtaining this infor-
mation, as it requires and relies on a lot of human effort, 
which has been shown to be posing burden to people and 
is moreover recall and/or confirmation biased.

Dataset
For this research, the dataset of [10] is used so the 
added value of the available context information can 
be addressed. Imec’s Stress in the Work Environment 
(SWEET) study captured data from more than 1002 peo-
ple. It is the first large-scale study that used wearables to 
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establish a link between mental stress and physiological 
symptoms in daily life. All participants wore the wear-
able device for 5 days starting from Thursday to capture 
data during weekends and the Monday rush. The wear-
able used in this study is the imec’s chillband, as shown 
in Fig. 1a. This device contains three different sensors: a 
3-axis accelerometer sensor capturing the wrist’s motion 
at 32 Hz, a temperature sensor measuring the skin tem-
perature at 4 Hz and a Galvanic Skin Conductance (GSR) 
sensor measuring changes in sweat gland activity at 4 Hz. 
As reported in [10], this device is able to provide 96.3 
± 2.2% good quality physiological data (good measured 
quality index in ≥80% of data points in a 5 min window).

The participants used a smartphone application, as 
shown in Fig. 1b to report their hourly stress levels and 
additional context information such as activity, food 
intake and sleeping behavior. In this section, we give 
more details on both the raw features derived from the 
wearable as well as more information on the self-reported 
data. An overview of all the data is provided in Table 1.

Physiological features
Five different time series represent the raw data cap-
tured by the wearable, one for each accelerometer axis, 
one for the skin temperature and one for the GSR val-
ues. Since the SWEET participants reported stress lev-
els every hour, features were extracted using a window 
of 1 h. While previous evaluations on this SWEET study 
[10] used manually extracted features, we took advantage 
of recent advances in time series feature extraction tools 
such as the tsfresh Python package [47] to extract a large 

number of time series characteristics from each hour of 
the data. In total, the default tsfresh package extracted 73 
different features for each signal. An overview of these 
features can be found in the Additional file 1: A.

Self‑reported data
In this study, the participants labeled their stress level 
every hour using self-reporting. Five different classes, 
from no stress to severe stress, were annotated. Similar 
to the previous stress study [10], we limited this five-
level scale to three categories (by combining the highest 
three stress levels). Additionally, the participants were 
required to select their main activities every hour. Five 
different activities were listed: lying down, sitting, stand-
ing, walking, running, and biking. The participants could 
choose none, one or more of these activities per hour. 
Every morning, the app asked the participants to register 

Fig. 1 Left a the imec chillband wearable, right b the annotation app built to annotate hourly based stress levels, but also other contextual 
information

Table 1 Overview of all the features derived from the Chillband 
wearable and mobile app

Input Data Features per hour

Wearable Accelormeter 73 tsfresh features (for each axis)

GSR 73 tsfresh features

Skin Temp. 73 tsfresh features

Mobile APP Activity Boolean multilabel: sitting, 
standing, walking, lying_down, 
running

Sleep Two timestamps: Time To Bed, 
Get Up and a derived time 
interval (duration)
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their sleeping behavior, i.e., the time they went to bed and 
the time they woke up in the morning. Based on these 
two times, the duration of a participant’s sleep could be 
derived. Additionally, the app also asked to indicate a 
subjective quality of sleep score.

Beside sleep and activity annotations, the participants 
could also indicate their food intake and also additional 
remarks could be reported. The more subjective features 
and food intake were neglected in this study, as they had 
no to limited influence on any of the physiological meas-
ured wearable sensor values.

Automated context retrieval
Even though a useful mobile app was available to select 
and annotate a lot of contextual information, annotating 
all this information is a rather tedious and cumbersome 
task. As a result, not all participants delivered a high-
quality dataset. Moreover, the participants were unable 
to correctly or in detail remember the context leading 
to incorrect annotations, e.g.  incorrect annotations of 
the time they went to sleep or annotate awake moments 
and toilet visits during the night. To reduce this subjec-
tive labeling approach not matching the objective obser-
vations, we designed two ML models to capture human 
activities and sleeping behavior automatically.

Human Activity Recognition (HAR)
Providing accurate and suitable information on people’s 
activities and behaviors is one of the essential tasks in 
pervasive computing [48]. Innumerable applications use 
HAR directly or as domain context enrichment in medi-
cine, security and entertainment.

There exist many different HAR models and techniques 
to detect a wide variety of activities [49]. Our proposed 
solution is designed on the same Chillband wearable 
used within the SWEET study and detects three differ-
ent human activities: sedentary (sitting and standing), 
walking and biking. Sitting, standing, walking and biking, 
combined with sleeping were the top 5 most registered 
activities within the self-reported SWEET question-
naires. The goal of our HAR model is to keep the human 
labeling bias to a minimum while automatically detect-
ing these activities. This section gives an overview of the 
dataset on which we have trained our HAR model, the 
ML pipeline and the achieved results.

HAR dataset
As the SWEET dataset only contains self-labeled activi-
ties per hour, another dataset was used to train the HAR. 
Our HAR model used a benchmark dataset consisting of 
data collected from 37 different participants in an uncon-
trolled environment [50]. Each subject wore a ChillBand 
for about 8 h and was free to do what they normally do. 

They also had a GoPro camera attached to their chest so 
the video data could be used to determine the exact tim-
ing and label of each performed activity.

A broad range of activities was annotated in this data-
set: sitting, dynamic sitting, standing, dynamic standing, 
walking upstairs, walking downstairs, walking, running 
and cycling. We grouped all sitting, dynamic sitting, 
standing and dynamic standing activities in the sedentary 
class. The walking upstairs, walking downstairs, walking 
and running activities were all grouped together and con-
sidered as walking in general.

The ChillBand data captured for each person during 
these 8 h was stored offline for evaluation purposes and 
contained GSR, 3-axis accelerometer and skin tempera-
ture data. Activities with a duration less than 1 min were 
removed from this dataset. For the remaining dataset, 
we segmented all five signals into sliding windows of 15 s 
and with 50% overlap as the labels were originally also 
defined for every 15 s and a 50% gap was recommended 
[50]. In total, the HAR model was trained on 90,243 sam-
ples, of which 85,299 are sedentary, 2961 walking and 
1983 cycling.

HAR methodology
Before extracting informative features, we pre-processed 
the accelerometer and GSR signal. To each of the accel-
erometer axis and their euclidean norm, we applied a 
butterworth bandpass filter of 4th order, with 0.3 and 15 
as the low and high cutoff frequencies respectively. For 
each 15  s time window, we extracted a total of 228 sta-
tistical features, for the accelerometer features in both 
time and frequency domain, while for both the GSR and 
skin temperature signals only in the time domain (fea-
tures are available in Additional file  1: B). Extraction of 
appropriate features was mainly based on literature study 
that describe features that are important within the activ-
ity detection domain. Besides time domain features for 
all sensors, we also consider frequency domain features, 
such as dominant frequency, from the accelerometer sig-
nal as they have been shown to discriminate activities 
well [51]. Frequency domain features from the GSR and 
ST signals make less sense as there are no repetitive pat-
terns in these signals when considering windows of 15s. 
Before extracting the features, we z-normalized the GSR 
signal by subtracting the mean and dividing by the stand-
ard deviation. We then split the normalized signal into its 
phasic and tonic components [52]. For each component 
the corresponding features were calculated.

After preprocessing and feature engineering, the 
dataset was split into a train set (31 disjoint subjects) 
and a test set (6 disjoint subjects). We trained a Cat-
boost (gradient boosting on decision trees) model for 
this 3-class classification problem and adopted a group 
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5 fold strategy, in which each fold has 25 (or 24) disjoint 
train subjects, and 6 (or 7) disjoint validation subjects, 
to tune the hyper-parameters on the training set. Given 
that our dataset is highly imbalanced (as the seden-
tary class is the majority class, being almost 95% of the 
whole dataset, while walking is about 3% and cycling 
2%), we had to use an appropriate strategy to mitigate 
this problem. Since the class distribution is similar 
across all users and using  a strictly stratified-group-
5-fold CV could lead to imbalanced folds, we decided 
to use a standard group-5-fold. To address the data 
imbalance we used class-weights when training the 
model.  The final model predicts the activity for every 

window of 15 s. Table 2 shows for each fold the amount 
of train and validation subjects as well as the number 
of samples per class. In the last row the number of sub-
jects and the number of samples per class in the train 
and hold-out test set for the final model are shown. We 
can see that in each fold there are samples from each 
activity in both the training and validating split.

HAR results
On the hold-out test split, we achieved results as shown 
in Table 3 and Fig. 2:

The results show that for all three classes, we achieve 
high precision. For the walking class, the recall is lower, 
which results in an F1 score below 0.9. This can be clar-
ified by the fact that we aggregated the rather diverse 
dynamic walking activities. The results give enough evi-
dence that our model can be used to predict activities 
and use these as additional context within the SWEET 
study, and compare with the results when users self-
label their activities. This was also the goal of this paper, 
rather than building the best performing HAR model.

Table 2 Number of subjects and samples per class, for train/validation in each fold and train/test for final model

Train Test

Subjects Sedentary Walking Cycling Subjects Sedentary Walking Cycling

Fold1 25 58,224 1849 1454 6 14,313 708 409

Fold2 25 57,848 2101 1445 6 14,690 456 418

Fold3 24 58,585 2150 1474 7 13,952 407 389

Fold4 25 57,770 2149 1484 6 14,767 408 379

Fold5 25 57,722 1979 1595 6 14,815 578 268

Final 31 72,537 2557 1863 6 12,762 404 120

Table 3 HAR Catboost results on the hold out test set

Precision Recall F1‑score Support

Sedentary 0.99 1 1 12,762

Walking 0.92 0.78 0.85 404

Cycling 0.98 0.95 0.97 120

Fig. 2 Left a normalized and right b absolute-numbers confusion matrix from the predictions on the hold-out test set
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Sleep detection
As shown in Fig. 1b, the SWEET study participants were 
asked to indicate their sleeping behavior, i.e., start, stop 
and quality of their sleep. Instead of annotating these 
values manually through the app, it would be more ben-
eficial if they can be automatically derived from the wear-
able’s sensor values. Also here, the SWEET dataset did 
not contain labeled sleep data. But instead of building a 
new dataset and training a supervised ML model (as we 
did for the HAR in "Human Activity Recognition (HAR)" 
section), we designed an unsupervised sleep detection 
model directly on the SWEET dataset.

Sleep detection methodology
The unsupervised sleep detection model uses an activity 
index [53], which is calculated from the raw accelerome-
ter signal. This activity index is defined as the square root 
of the mean variance over a rolling window of 10 min: we 
calculate the variance for each axis along the time dimen-
sion, and then we take the mean across the three axes. 
This yields one value for a window of 10 min. This value 
is later on filtered using a butterworth bandpass filter of 
third order and scaled to a range from 0 to 1. The more 
active a user was at a given moment in time, the higher 
the activity index. While sleeping, this activity index will 
be lower compared to periods in which the participant 
is awake. To define the threshold, a sleep and wake state 
detection methodology was designed based on a heu-
ristic model around the automatic scoring algorithm of 
Cole et  al. [54]. The algorithm defines a score based on 
the activity index, indicating how certain these values 
are associated with an awake or sleep period. Combining 
all these scores reveals the sleep pattern. Figure 3 shows 
these steps on a part of a signal. To determine the begin 

and end period of the sleep patterns, the binary segmen-
tation algorithm of the Python package ruptures was exe-
cuted on the activity index signal [55]. This segmentation 
algorithm searches for 2 change points within the activity 
index signal, with a defined minimal amount of samples 
between these two change points spawning a range of 
5 h.

Sleep detection results
Since our sleep detection uses heuristics and unsuper-
vised techniques, we evaluated it directly on the SWEET 
dataset. Sleeping with the wearable was not mandatory 
during the SWEET study and only 662 unique users did 
so. We used 1777 nights in total during our evaluations. 
The results of this unsupervised approach compared to 
the self-labeled sleep annotations are discussed in the 
SWEET experiments below.

Experiments and results
For the experimental evaluation, we defined the stress 
detection task as a 3 class classification problem (no, 
medium and high stress), similarly as was done in the 
SWEET study and also used the data from this study. We 
trained four different models: 

1. A model trained on only the physiological tsfresh fea-
tures as explained in "Physiological features" section

2. A model trained on the physiological tsfresh features 
and activity features as context information.

3. A model trained on the physiological tsfresh features 
and sleep features as context information.

4. A model trained on the physiological tsfresh features 
and both the activity and sleep features.

Fig. 3 Overview of the performed steps to determine the wake and rest periods based on a three-axis accelerator sensor
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The activity features consist of three values, each corre-
sponding to the number of minutes spent on the corre-
sponding activity in the given hour. There are also three 
sleep features: start hour of sleep, end hour of sleep and 
duration of sleep.

Two different experiments evaluate the added value of 
using this context information in stress detection models. 
In the first experiment, we extracted the context features 
only from the self-reported activity and sleep information 
within the SWEET study. In the second experiment, we 
automatically derived the activity and sleep information, 
as described in "Automated context retrieval" section, on 
the sensor data collected within the SWEET study. We 
then extracted features from this information and used 
them in our models. Finally, we compared both results to 
evaluate the impact of automatically monitoring versus 
self-reported context.

To test whether context information influences the pre-
diction accuracy, we consciously chose to use the same 
algorithm for all the evaluations, more specifically Cat-
Boost, as (1) Gradient Boosted trees, such as CatBoost, 
are considered, in general, to outperform Random For-
ests, (2) CatBoost yields a robust model without having 
to tune too many hyperparameters, and (3) CatBoost is 
fast in both training and inference.

Self‑reported context
From the 1002 participants, 827 had provided complete 
context information that could be linked to reported 
stress events. To avoid the influence of missing values, 
the stress events were aligned with both the activity 
labels of the matching last hour and the sleep patterns 
of the previous night. Since the participants only indi-
cated which activity/activities they mainly performed in 
the last hour, but not specified the duration, we split the 
60 min in the hour equally among all the reported activi-
ties. For example, if the person indicated Sedentary and 
Cycling activity, then Sedentary and Cycling were each 
assigned a corresponding value of 30, while Walking was 
assigned a 0 value. The sleep features, time going to bed 
and time waking up, were literally taken from the reports, 
and the duration of the sleep was derived from these 
two times. These 827 users reported in total 4895 stress 

events (2556 labelled as no stress, 1674 as medium stress 
and 665 as high stress). These aligned stress events form 
the final dataset used for training the four models dis-
cussed above. We chose to use Catboost to combine both 
numerical and the self-reported or derive context labels 
as ML algorithm. To reduce the bias introduced by the 
participants, we performed GroupKfold cross-validation 
with 3 folds, 1 fold for training, 1 fold for validation and 
1 for testing. The validation group was used for optimiz-
ing the tree depth and perform early stopping based on 
the Weighted Kappa metric. The same splits were kept 
over all four models to make a fair comparison. All mod-
els had a maximum iteration of 10,000, but we stopped 
the training process earlier when no improvement on 
the validation set could be noticed for 150 consecutive 
iterations. We provided class weights to address the class 
imbalance in our dataset.

We calculated four different evaluation metrics which 
we used to analyse the influence of the context features 
on the stress models’ performance:

• Accuracy metric: the number of correctly predicted 
stress labels out of all the stress labels;

• Cohen Kappa score: measures how closely the stress 
labels classified by our model resembles the ground 
truth, compared to the accuracy of a random classi-
fier measured by the expected accuracy;

• Weighted F1 score: the harmonic mean of the preci-
sion and recall.

• Weighted F1 compared to dummy: difference 
between the calculated weighted F1 prediction to the 
weighted F1 calculated by a dummy classifier pre-
dicting the majority class.

The results are visualised in Table  4. We observe that 
incorporating the activity information into our baseline 
model improves stress level classification. Not only the 
values of the metrics increase, but also the standard devi-
ations decrease. Adding sleep features also improves our 
baseline model but slightly less than when incorporating 
the activity information. Incorporating both the activity 
and sleep features yields the best predictive performance.

Table 4 Results comparing the influence of labelled context features on the assessment of stress levels

Model Accuracy (std) Cohen Kappa (std) Weighted F1 (std) Compared to 
dummy (std)

Baseline (physio) 40.57 (3.48) 7.80 (1.98) 42.11 (3.08) 6.31 (2.53)

Baseline + activity 43.09 (0.67) 9.75 (0.09) 44.47 (0.44) 8.68 (0.11)

Baseline + sleep 42.47 (0.72) 9.51 (0.12) 43.88 (0.59) 8.09 (0.03)

Baseline + activity + sleep 45.52 (2.58) 11.19 (1.58) 46.03 (2.12) 10.23 (2.68)
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ML‑based context
To show the added value of using ML derived context, we 
followed a similar approach to the one discussed above. 
To derive the context information by using ML, we need 
sensor data. However, participants did not use the wear-
able device every time they provided context informa-
tion (be it activity or sleep information). This limited our 
dataset to 380 participants, mainly because we had sen-
sor data from only 1777 nights compared to more than 
4000 sleep reports.

To derive the activity information, the sensor data 
was prepared in the same manner as explained in "HAR 
methodology" section, i.e., we pre-processed the data in 
15s sliding windows, with 50% overlap, and calculated 
the necessary features for the activity recognition. After 
applying inference, we have the activity probabilities for 
every 7.5 s. We then aggregate these predictions per hour 
as follows: first we aggregate per minute, by adding the 
probabilities from each prediction and take the activity 
with the highest probability sum as the final prediction 
for that minute. We then count the 1-min predictions 
for each activity in the given hour and these become the 
activity features as described in "Experiments and results" 
section. Similarly, to derive the sleep features, we pre-
pare and process the accelerometer data of a whole day, 
starting from 1 pm till 1 pm the next day, as explained 
in "Sleep detection methodology" section. We then apply 
the same algorithm (see "Sleep detection methodology" 
section) which yields the start and end time of the rest-
ing period. These two times are then used to calculate 
the duration of the sleep, resulting in three sleep features 
(start, end, duration).

In this experiment, the dataset consisted of 618 stress 
events (320 labelled as no stress, 217 as medium stress 
and 81 as high stress). Similarly to "Self-reported context" 
section, also here Catboost models were trained using the 
same hyper-parameters and parameter tuning. We also 
kept the same train, validation and test split to achieve a 
fair comparison.

The same four different metrics described in the previ-
ous section were also here calculated for this experiment. 
We additionally compare the results obtained by using 
ML derived context information with results obtained by 
using self-reported context information. The results are 
presented in Table 5.

The baseline approach for this experiment only uses 
physiological data and is therefore entirely the same for 
both the labelled and predicted context-aware models. 
The baseline results are, however, less accurate than in 
Table 5 due to the reduction of available training data. By 
analysing the comparison to dummy results, we encoun-
ter that adding contextual labelled features or ML derived 
ones hold similar results except that the standard devia-
tion is reduced significantly. Predicted activities improve 
the model significantly over self-labelled activities, but 
combining all predicted features does not reflect this 
advantage. This can be clarified by the implicit duplicate 
information within the sedentary activities and sleep 
duration. The sleeping behaviour also indirectly influ-
ences the stress responses, while the activities are more 
reactive.

Discussion
The main goal of this research was to assess the added 
value of using context in stress detection based on wear-
able device data. Table 4 shows the benefits of using both 
simple activity features and sleep patterns in combination 
with physiological wearable features to determine the 
stress levels. The improved performance is mainly due 
to the reduction of false positives (predictions of stress 
levels when the labels indicated that there was no stress). 
Physiological features are similar when a person is expe-
riencing stress and when they perform an intensive activ-
ity: there is an increase in both GSR and skin temperature 
values. By providing activity information, the model can 
learn to better derive stressful events from pure physical 
activities. Sleep deprivation is also a factor which influ-
ences stress [19]. Therefore taking into account the user’s 

Table 5 Results comparing the labelled contextual features with the derived ML ones

Model Accuracy (std) Cohen Kappa (std) Weighted F1 (std) Compared to 
dummy (std)

Physio (baseline) 40.24 (1.60) 2.05 (1.10) 40.58 (0.81) 5.26 (2.44)

Physio + activity Labelled 38.79 (1.47) − 0.94 (0.51) 39.22 (0.75) 3.90 (4.00)

Predicted 43.40 (2.16) 1.14 (1.02) 42.19 (1.54) 6.86 (1.70)

Physio + sleep Labelled 43.96 (1.59) 4.03 (1.25) 43.18 (0.41) 7.85 (2.83)

Predicted 44.20 (2.97) 3.00 (2.89) 43.06 (2.42) 7.74 (0.83)

Physio + activity + sleep Labelled 42.09 (5.08) 3.42 (4.02) 41.88 (4.17) 6.55 (0.92)

Predicted 41.69 (4.35) 1.49 (0.78) 41.48 (2.93) 6.15 (0.31)
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sleeping behaviour also positively affects the perfor-
mance of our models.

Providing contextual information is valuable, but it 
requires a lot of human effort. While filling out multiple 
questionnaires is common in experimental settings, they 
are not useful and too cumbersome for daily life assess-
ments. Therefore, the amount of self-reported context 
should be limited when possible. As shown in Table  5, 
the number of manual annotations for both activities and 
sleep patterns can be limited to zero by using ML based 
activity recognition and sleep detection models.

Besides the reduction of human effort, using automatic 
context retrieval holds additional advantages:

• Fine-grained detection The activity labels within the 
SWEET study only indicated whether or not a cer-
tain activity was performed during the last hour. The 
activity recognition model also indicated the dura-
tion of these activities and could better define the 
active periods of a participant during the day.

• Improved accuracy Annotating the time one fell 
asleep and the moment one woke up is relatively hard 
and introduces some subjective bias. By detecting the 
sleeping patterns using wearable data, we avoid the 
subjectivity. On average, the detected sleep duration 
differed 48 min (std: 52 min) from the self-reported 
one with more faults for wake up (mean 34 min, with 
std: 41 min) than the time to bed times (mean 32 min 
and std: 35 min).

• Information gain In order to not overload the partici-
pants, most questionnaires in the SWEET study were 
asked between 7:00 and 22:00 during the SWEET 
study. Activity annotations before or after this time 
range are therefore missing. Not answering the ques-
tionnaire also leads to missing annotations. Partici-
pants sometimes failed to provide answers due to 
different reasons: being busy, lack of motivation, not 
receiving the notification on time, etc. Automatically 
retrieving this information reduces the need for these 
questionnaires and the accompanying missing values.

The main drawback of automatically retrieving context 
is the need for sensor data. However, as the participants 
already have to wear wearable for the stress estimation, 
the additional impact is limited. Compared to video 
and sound estimation techniques, the used wearable 
approach is also less invasive and more privacy-aware. 
The main reason why here only 618 stress events were 
available in Table 5 is because it was not required to sleep 
with the wearable in the SWEET study. Having shown 
the benefit of having the sleep context info, participants 
can choose to either label their sleep manually or wear 
the wearable overnight.

Since the goal of this paper was to research the influ-
ence of context on stress detection, rather than create 
and present a stress detection model by means of tuning 
all possible hyperparameters, we did not go in depth in 
certain steps such as feature selection and testing differ-
ent algorithms. Instead, we chose a fixed set of physio-
logical features and a single ML algorithm to assure fair 
comparison on the influence of context on stress detec-
tion in all our experiments.

For all of the ML models we used Gradient Boosted 
Trees (GBT), more specifically CatBoost, which have fast 
training time (order of few minutes) and inference time 
(order of just few seconds). This makes GBTs adequate 
algorithms for real world application and edge comput-
ing: their fast inference time allows for near immediate 
assessment to the user, who can be then timely warned of 
their stress onset, allowing for appropriate action. GBTs 
can moreover be explainable, in contrast to more com-
plex models such as Artificial Neural Networks, which is 
highly desired in the field of medical decision making.

Conclusion
To assess the added value of contextual information 
during the detection of stress, we set up experiments in 
which we combined physiological wearable data and con-
textual features. These contextual features are derived 
from hourly activity and daily sleeping information. Both 
activity features and sleeping patterns improve the stress 
detection model by either reducing the number of false 
positives or by providing additional information to pre-
dict the correct stress level.

This study also examined how this contextual informa-
tion can be derived automatically using ML. Wearable 
data was used to derive activities and detect sleeping pat-
terns. Incorporating ML-derived context information, 
especially the performed activities, leads to higher stress 
detection accuracy, as the label quality of the detected 
activities is higher and more fine-grained than when 
using the self-reported label which is on a 1-h basis. 
Besides the impact on predictive accuracy, the biggest 
gain is in moving away from human (subjective) labe-
ling towards automated (objective) labels, which in turn 
lowers the effort burden on the participants, reducing 
chances for dropping out of studies and/or monitoring.

Future work can resolve these problems by encourag-
ing people to use the wearable as much as possible and 
derive even more information using context retrieval 
models. More sleep information, such as awakenings, or 
activity intensity, can be incorporated when the wearable 
is worn when asleep. The research evaluating the benefit 
of contextual information on the prediction of stress can 
also be used in other domains, such as for mood detec-
tion or the detection of headache events.
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