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Abstract
In spin frustrated H3-rings, variationally minimal single Slater determinant descrip-
tions break Ŝ2 and Ŝz symmetries in an effort to simultaneously minimize the inter-
actions between all electrons. Given the underlying spin dynamics, it remains unclear
how one can move beyond these symmetry-broken mean-field states and efficiently
introduce electron correlation. Here we show that in frustrated systems the average
longitudinal magnetization is a generator coordinate that is able to capture significant
electron correlation. Our results demonstrate that tightly sampling the generator co-
ordinate around spin phase transitions provides a good subspace for non-orthogonal
configuration interaction. Combining these constrained generator coordinates with
symmetry projection approaches could lead to efficient ansatzes that can incorporate
complicated dynamics while maintaining symmetry quantum numbers.
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1. Introduction

In spin frustrated (sub)systems, the geometry of the (sub)system prevents the simulta-
neous minimization of the interactions between all sites, leading to unexpected phys-
ical properties [1, 2] (see fig. 1). To achieve the variationally minimal mean-field de-
scription of these competing magnetic interactions, each spin quantization axis should
be allowed to rotate freely by breaking the Ŝ2 and Ŝz symmetries [3, 4]. As the un-
derlying molecular spinors are then allowed to exist in a superposition of spin-up
and spin-down states, the resulting states are no longer required to retain the correct
symmetry of the exact solution [5], leading to symmetry-broken solutions. To reach
results that are within chemical accuracy or to restore symmetries, one has to move
beyond a strict mean-field approach by letting configurations interact [6].

When significant parts of the dynamics of the underlying physical processes can be
expressed in terms of a so-called ‘generalized coordinate’, the Generator Coordinate

CONTACT Patrick Bultinck Email: patrick.bultinck@ugent.be
CONTACT Guillaume Acke Email: guillaume.acke@ugent.be



◦

◦ ◦ ?

Figure 1. Visual representation of three sites arranged in an equilateral triangle with antiferromagnetic interactions
between three spins, each of which is localized on one site. As the total energy is minimized when each spin is
oppositely aligned with respect to its neighboring spins, the third spin is frustrated because it cannot simultaneously
minimize its interactions with the other two spins.

Method (GCM) offers a tractable approach by constructing the many-body wavefunc-
tion as a linear superposition of (generally non-orthogonal) generator states that are
labeled by the underlying collective (generator) coordinates and solving the equa-
tions of motion in the space spanned by those generator states [7–11]. Although the
choice of the generator coordinate is essentially arbitrary, ideally the generator states
should span a space that contains significant parts of the dynamics of the underlying
physical processes [11]. For example, in Generator Coordinate Hartree-Fock (GCHF),
one chooses the exponent of the underlying basis functions as a generator coordinate,
leading to a collection of basis functions instead of a single basis function with a fitted
optimal exponent [12, 13]. In another variant of the GCM, one can obtain explicitly
correlated wave functions by constructing a systematic collection of compact wave
functions with explicit dependence on the interelectronic separation [14]. In symme-
try restoring approaches, a parametrized group of symmetry operators are applied on
a symmetry broken (mean-field) reference such that one can recover the correct sym-
metries by diagonalizing the Hamiltonian in the (non-orthogonal) basis formed by
the elements of the group [15–17]. In the general case of collective deformations (i.e.
the ordered movement of many constituent parts of the system), the generator states
are generated by constrained mean-field calculations [18–20]. In this way, the princi-
pal components of the deformation are controlled through the generator coordinate,
while the other degrees of freedom are variationally minimized [11]. Note that the
above strategies to create generator states can be mixed when dealing with several
collective coordinates [10, 21, 22].

In the case of spin-frustrated systems, model Hamiltonians can guide us to param-
eters than can be used as generator coordinate across the phase transitions associated
with spin frustration [23–25]. In the quantum 1D Ising model unrestricted Slater
determinants are eigenfunctions [23], while adding a transverse magnetic field in-
troduces correlations to excited states that are reflected in an increased transverse
magnetization. Similarly, in the Heisenberg model a longitudinal magnetic field can
break its spin-rotational invariance and lead to non-zero longitudinal magnetization
[23]. In this study, we will show that the longitudinal magnetization is a generator
coordinate that is able to capture much of the relevant physics of frustrated H3-rings.
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2. Theory

2.1. Generalized Hartree-Fock and spinors

In an orthonormal basis {φφφ P(r) |P = 1 · · ·M} of M two-component spinors [26–29]

φφφ P(r) 7→
(

φ α
P (r)

φ
β

P (r)

)
, (1)

the usual elementary annihilation and creation operators âP and â†
P obey the fermion

anti-commutation relations [30–33]

[âP, â
†
Q]+ = δPQ and [â†

P, â
†
Q]+ = 0 . (2)

Note that in general the individual spinors in eq. (1) are not eigenvectors of the Pauli
matrix σz. Hence, wave functions constructed with these elementary operators âP and
â†

P are symmetry-broken and not necessarily eigenvectors of total projected spin Ŝz.
When one of the spin-components of each spinor is zero, they are eigenvectors of σz
(i.e. they are spin-orbitals), which leads to considerable simplifications in subsequent
second quantized derivations [29].

The generalized Hartree-Fock wave function model can then be expressed as [34,
35]

|GHF(κκκ)〉= exp(−κ̂)

(
∏

I
â†

I

)
|vac〉 , (3)

with |vac〉 the usual Fock vacuum, I a label for a set of orthonormal spinors that are
‘occupied’ in the single-Slater determinant and κ̂ the anti-unitary generator of spinor
rotations [6]

κ̂ = ∑
PQ

κPQâ†
PâQ with κκκ

† =−κκκ . (4)

In practice, each of the spinor components is expanded in a known scalar basis
(usually an atomic orbital (AO) basis) of K (with M = 2K) basis functions {ϕµ(r) |µ =
1 · · ·K}

φ
σ
P (r) = ∑

µ

ϕµ(r)Cσ
µP , (5)

with C the expansion coefficient matrix and where we have used the label σ to desig-
nate either α or β . Optimization of the GHF wave function model with respect to the
spinor expansion coefficients C leads to the GHF self-consistent field (SCF) equations

FC = SCεεε , (6)

formulated in the AO basis. Here, the Fock matrix F has a (2× 2) block matrix spin
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structure of K by K blocks

F =

(
Fαα Fαβ

Fβα Fββ

)
, (7)

whose off-diagonal blocks consist of the off-diagonal core Hamiltonian and two-
electron exchange contributions [26, 27]. In unrestricted Hartree-Fock (UHF) theory,
the off-diagonal blocks are zero while in restricted Hartree-Fock (RHF) theory, the
top-left (αα) and bottom-right (ββ) blocks are also required to be equal.

When performing Hartree-Fock calculations, it may happen that the obtained solu-
tion is not an energy minimum within its own set of constraints (an internal instabil-
ity) or there may be a lower energy solution if one breaks some specific symmetry (an
external instability). As detailed by Stuber and Paldus [4], strictly negative eigenval-
ues in the Hartree-Fock Hessian M

M =

(
A B
B∗ A∗

)
(8)

indicate an instability, and we can follow the eigenvector J corresponding to the low-
est negative eigenvalue by exponentiating the mixing matrix K

K =

(
0 −J†

J 0

)
(9)

and applying the resulting unitary rotation to the expansion coefficients C

C′ = Ce−sK (10)

with s a small step in the direction K [5]. In contrast to RHF and UHF, where following
external instabilities requires breaking symmetries, all instabilities in complex GHF
are internal as this method has broken spin, time-reversal and complex conjugation
symmetries.

2.2. Constraining wave function models

In general, a wave function model |Ψ(p)〉, parametrized by the model parameters p,
can be optimized by solving a particular set of equations

F(p?) = 0 , (11)

where p? denotes the optimal values of the model parameters. The optimized energy
E is then found by evaluating the energy function associated to the model at these
optimal parameters

E = E(p?) . (12)

A feature m is then defined as a function of the optimal parameters

m(p?) = M , (13)
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where M is the value of the feature m that is attained by the optimal model parameters.
In order to constrain the model parameters p? such that a target value M for the

feature m is attained, we introduce the following Lagrangian

L (p,µ) = E(p)−µ(m(p)−M) , (14)

where the stationary condition for the Lagrange multiplier µ yields the original feature
constraint

∂L (p,µ)
∂ µ

∣∣∣∣
µ?,p?

=−(m(p?)−M) = 0⇒ m(p?) = M , (15)

and the stationary condition for the model parameters p can be written as

∂L (p,µ)
∂ pi

∣∣∣∣
µ?,p?

=
∂E(p)

∂ pi

∣∣∣∣
p?
−µ

?

(
∂m(p)

∂ pi

∣∣∣∣
p?

)
= 0 . (16)

The optimal energy E may then be found by evaluating the Lagrangian at the solution
(µ?,p?)

L (p?,µ?) = E(p?) = E . (17)

Although, in general, any function of the model parameters p can be used as a feature
[36–38], in this study we will only use the expectation value of Ŝz

m(p) =
〈Ψ(p)|Ŝz|Ψ(p)〉
〈Ψ(p)|Ψ(p)〉

. (18)

2.3. Generator Coordinate Method

In the Generator Coordinate Method, the wavefunction ansatz has the form

|Ψ〉=
∫

da f (a) |Φ(a)〉 , (19)

where the generator states |Φ(a)〉 depend on the generator coordinate a [8, 9]. The
weight functions f (a) can be determined by requiring that the expected energies are
stationary

δ

(
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

)
= 0 , (20)

leading to the Hill-Wheeler integral equations [7]∫
da′
[
H (a,a′)−ES (a,a′)

]
f (a′) = 0 , (21)
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with

H (a,a′) =
〈
Φ(a)

∣∣Ĥ∣∣Φ(a′)
〉

(22)

S (a,a′) =
〈
Φ(a)

∣∣Φ(a′)
〉
. (23)

In practice, the generator states are only sampled for a discrete set of values {ai},
which transforms the kernel equation above into a generalized eigenvalue problem

HF = ESF , (24)

with F the coefficients associated with the generator states and S the overlap matrix
of the generator states. As S is not necessarily diagonal, this is formally equivalent to
non-orthogonal configuration interaction (NOCI) in the generated states [39–44].

3. Methodology

As an equilateral H3-ring is a prime example of a geometrically frustrated system, we
will examine a neutral equilateral H3-ring, which is stretched symmetrically during
the dissociation process. Along the dissociation profile the single Slater determinant
variational minimum is given by real valued GHF states which can be obtained by
following any instabilities until the solution is stable.

By imposing an average
〈
Ŝz
〉
, we can obtain the single Slater determinant varia-

tional minimum by following the instabilities of the associated Lagrangian, leading to
the associated Constrained Generalized Hartree-Fock (CGHF) state. As obtaining such
constrained states along the entire dissociation profile can be computationally chal-
lenging, we will use small basis sets for this proof-of-principle (STO-3G and 6-31G).

The resulting symmetry broken constrained states are then used as generator states
in the associated NOCI, with the aim of capturing as much correlation as possible
with as few generator states as possible. As the GCM is also a wavefunction model,
we will also impose average constraints on the ground state of this model by a similar
Lagrangian approach in order to approximate the symmetry in the mean.

We will benchmark our results against FCI results and NOCI calculations in a sym-
metry adapted basis that is constructed by acting the Ĉ1

3 and Ĉ2
3 operators on a UHF

single slater determinant. Such a symmetry adapted basis consists of three (or six if
we include the α/β flipped states) basis states and has already been shown to capture
static correlation [16, 45].

All methods were implemented in the Ghent Quantum Chemistry Package [29].

4. Results

Imposing different
〈
Ŝz
〉
-constraints on the mean-field yields distinct energetic states,

where the
〈
Ŝz
〉
= 0.5 au and

〈
Ŝz
〉
= 1.5 au CGHF states coincide with their respective

UHF Sz = 0.5 and Sz = 1.5 states (see fig. 2). As the CGHF potential energy surfaces
smoothly deform as a function of

〈
Ŝz
〉
,
〈
Ŝz
〉

provides a continuous generator coordi-
nate which supports the deformation of the spin projection. We note that none of the
CGHF states is bound and that each CGHF state is higher in energy than the uncon-
strained GHF

〈
Ŝz
〉
= 0 state.
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Figure 2. Potential energy surfaces for CGHF states in the minimal STO-3G basis set constrained to
〈
Ŝz
〉
’s in the

range of 0.0 au to 1.5 au in steps of 0.1 au. The CGHF states are contrasted with the two UHF states with Sz = 0.5 au
and Sz = 1.5 au.
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Given that this generator coordinate supports a smooth deformation in
〈
Ŝz
〉

for
GHF states, we need to sample this coordinate (see eq. (24)) in such a way that only
those generator states that are the most pertinent for the dynamics at hand are in-
cluded in the associated NOCI. As can be seen in fig. 2, the CGHF states constrained
below the spin-frustrated UHF Sz = 0.5 solution are qualitatively different from those
constrained above, with a marked discontinuity in the energy as a function of

〈
Ŝz
〉

at
intermediate bonding distances (see fig. 3). Whereas the UHF(Sz = 0.5) state has two
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Figure 3. Energy of the CGHF states in the minimal STO-3G basis set as a function of
〈
Ŝz
〉

for a range of internuclear
distances.

occupied α-orbitals and one occupied β -orbital, one spinor of the CGHF(
〈
Ŝz
〉
= 0.4)

state gains contributions in its β components (see fig.S.1). On the other hand, when
transitioning to CGHF(

〈
Ŝz
〉
= 0.6), a different spinor gains α components. As the re-

spective constraints are lowered towards
〈
Ŝz
〉
= 0.0 or increased towards

〈
Ŝz
〉
= 1.0,

these components gradually increase, but the changes remain more or less contained
within the same spinors. As these two behaviors represent two different modes of exci-
tation, these results indicate that we should sample the generator states symmetrically
around

〈
Ŝz
〉
.

In order to find the most economical basis in which NOCI calculations can already
capture most of the electron correlation, we vary the number of states and the dis-
tance at which we sample (0.1 au or "wide" sampling versus 0.01 or "tight" sampling).
Although none of the underlying generator states exhibit a bound state (fig. 2), all
NOCI’s that mix these states lead to bound state dissociation profiles (see fig. 4). In
contrast to the nine states required by FCI, a tightly sampled basis consisting of five
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generator states already captures much of the correlation energy. When using widely
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Figure 4. Potential energy surfaces of constrained NOCI calculations in the STO-3G basis set in a tightly sampled
subspace compared to differently sized widely sampled subspaces and FCI.

sampled basis states, seven such generator states are required to achieve similar per-
formance to the tightly sampled basis, with a markedly worse performance when only
five states are used. Based on these results we surmise that by sampling closely to the
spin-phase transition, we are effectively sampling states that have approximately the
same energy, but have very different configurations and are as such ideally suited for
capturing correlation.

Although a NOCI in the proposed CGHF basis adequately captures dynamic correla-
tion in the STO-3G basis, the three-dimensional spatial symmetry adapted UHF basis
is better suited for capturing static correlation (fig. 5). If we include states that have
their spins flipped, we improve further on the CGHF-NOCI performance at the cost
of one additional basis state. In contrast, in the 6-31G basis the NOCI PES calculated
in either basis of spatial symmetry adapted UHF states is unable to adequately mimic
the FCI dissociation profile and only provides a small energetic correction to CGHF-
NOCI (fig. 6). While CGHF-NOCI is unable to account for a considerable amount of
dynamic electron correlation, it does give a balanced description of the dissociation
process in a space of only five basis states instead of the ninety states required by FCI.
These results indicate that by sampling the generator coordinate closely to spin-phase
transitions, we can generate small subspaces in which the associated NOCI is able to
capture significant electron correlation.

As recently shown by Frosini et al. in the context of nuclei [46], constrained gen-
erator states can be combined with a (perturbative) symmetry restoring approach,
leading to an efficient multi-reference many-body perturbation theory. In subsequent
work we will determine to what extent this approach is generally applicable within
electronic structure and what correlations can be captured with local constraints.
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Figure 5. Potential energy surfaces of constrained NOCI calculations in the minimal STO-3G basis set for a CGHF
basis (0.48 au to 0.52 au (tightly sampled)) and two different symmetry adapted UHF subspaces compared to UHF,
GHF and FCI.
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Figure 6. Potential energy surfaces of constrained NOCI calculations in the 6-31G basis set for a CGHF basis (0.48
au to 0.52 au (tightly sampled)) and two different symmetry adapted UHF subspaces compared to UHF, GHF and FCI.
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5. Conclusions

In this work, we have shown that in spin frustrated H3-rings we can recover sig-
nificant electron correlation by tightly sampling the average longitudinal magnetiza-
tion as a generator coordinate and mixing the concomitant generator states in a non-
orthogonal configuration interaction. Our study indicates that constrained states can
provide efficient bases if the constraint is associated with the the dynamics that gov-
ern the chemistry of the system. In subsequent work we will determine to what extent
this approach is generally applicable within electronic structure and what correlations
can be captured when combining this methodology with symmetry projections.
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