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Most generative design applications used in architectural design are 
developed with rule-based approaches, based on rules collected from expert 
knowledge and experience. In other domains, machine learning and, more 
in particular, neural networks have proven their usefulness and added value 
in replacing these hard-coded rules or improving applications when 
combining these two strategies. Since the space allocation problem still 
remains an open research question and common generative design 
techniques showed their limitations trying to solve this problem, new 
techniques need to be explored. In this paper, the application of neural 
networks to solve the space allocation problem for residential floor plans is 
tested. This research aims to expose the advantages as well as the difficulties 
of using neural networks by reviewing existing neural network architectures 
from different domains and by applying and testing them in this new context 
using a dataset of residential floor plans. 

Background 

During the last decades, generative design (GD), a technique used for the 
automatic generation of design proposals, is more and more used when 
designing architectural projects. These types of design proposals can vary 
from for example the building envelope of the Beijing national stadium 
using genetic algorithms [9] to the volume generation of the prairie houses 
of Frank Lloyd Wright using shape grammars [26], both automatically 
generated by using a GD algorithm. More recently, with the improvement 
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of computing power and the emergence of more data, artificial intelligence 
(AI) is on the rise in many industries, even so in engineering and art. 
Architectural design has a long record in exploring the possibilities of AI 
within its domain. An old, but still open research question concerns the 
space allocation problem [28]. This research objective covers the generation 
of floor plans when an architectural program and a fixed building boundary, 
two requirements that are hard to unite, are given. An automation of this 
process will help the architect to quickly discover the potential of a parcel 
when used for a specific building program.  

From around 1970 up until now, the automation of the space allocation 
problem started without the input constraint of a building boundary, to a 
rectangular constraint, later on going to orthogonal boundaries and finally 
also irregular boundaries. The possibility to use boundary constraints as an 
input for the generative program is important in for example renovation 
projects or when considering the context, such as neighboring buildings. The 
input constraints concerning the architectural program became also more 
complicated during this time span. First, almost no constraints were given, 
but later, room definition, room dimensions and adjacencies were also 
considered. However, when the complexity of the building boundary arose, 
room requirements were kept simple and vice-versa [28]. This resulted in 
tools dealing with complex interior layouts where the building boundary is 
the direct result of the spatial organization or tools where a fixed boundary 
is filled with rooms that could fit into this building, mostly leading to room 
adjacencies that do not correspond with the input requirements. A lot of 
research has been done on this design problem using common GD 
techniques and few good solutions were found merging the complexity of 
the building boundary and the room requirements [28]. Therefore, the aim 
of this research is to test the applicability of a popular AI technique, namely 
neural networks (NNs), for solving the space allocation problem in its full 
complexity. 

First, the paper will document some disadvantages of common GD 
applications used for space allocation, so these can serve as points of 
attention when evaluating the different types of NNs. Secondly, related work 
will be discussed. Thereafter, pixel-based strategies are reviewed, after 
which the same is done for graph-based approaches. The most promising 
types of pixel- and graph-based NNs will be tested using a database of 
residential floor plans. Finally, the main advantages and difficulties of using 
NNs for solving the space allocation problem will be discussed. 
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Disadvantages of common GD applications 

In most GD applications, when used for the automation of space allocation, 
input is processed directly into a final result. This full automation results in 
a first common problem, namely the lack of control of the architect over the 
design process. To resolve this, the design process can be broken down into 
several consecutive steps. This allows the architect to interfere between each 
step or to only automate certain steps in the process. The idea is based on a 
grey boxing method instead of black boxing, which allows the user to 
intervene along the way instead of inputting information upfront and getting 
a finished design at the end of the process [6]. Within this paper, the process 
will be broken down into two steps. First, a building boundary is generated 
on a blank page. This step becomes unnecessary when the architect wants 
to use the boundary conditions of a project as an input. Secondly, the interior 
spaces are filled into this boundary. Each step in this grey boxing method 
will be supported by a separate NN to execute a specific task. It is possible 
that different types of NNs will be needed for these different steps. 

 
Fig. 1 Chaillou [6] used the grey boxing method to generate floor plans. 

Most algorithms used in the field of architectural design are based on one 
or more of the following five GD techniques: shape grammars, L-systems, 
cellular automata, genetic algorithms and swarm intelligence [30]. All of 
them are rule-based techniques, which reveals a second common problem in 
the application of GD techniques concerning the time-consuming task of the 
development of new rules by experts, in this case architects. Because the 
space allocation problem situates itself in the initial stage of the design 
process, during the exploration phase when decision-making still needs to 
start, the development of new rules can be even harder and an automation 
of this process would help the architect in this phase. Furthermore, since 
each algorithm is developed to perform a specific task in a specific project, 
rules supporting the algorithm can seldom be used in another context. This 
means that for each project, new rules need to be defined and since the rules 
are to some extent hard-coded, a lot of reprogramming or even starting from 
scratch is needed. To avoid the need of developing new rules for each new 
GD algorithm, one could use generic grammars [4], potentially allowing 
greater flexibility than shape grammars, or one could use NNs to replace 
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rule-development with deep learning. In this research the latter is chosen. A 
NN is a data-trained method which can, as the word says, learn rules from 
real-world data and extract statistical information that can be used in the 
generation of new artificial data points, i.e. designs. The advantage of NNs 
compared to rule-based systems is that, besides the detection of intentional 
rules, NNs could also detect rules that are not consciously used by the 
architect [2]. Since data is used to learn a specific task, the execution of a 
task is dependent on the data. Other data may lead to the execution of 
another task. This means that one sample of code can theoretically train on 
different datasets, learning different tasks without the need of rewriting the 
whole algorithm [17], saving valuable time for the architect. For example, 
the code used in this research for generating residential floor plans could be 
used for the generation of another typology of floor plans without the need 
of hard-coding new rules. The model only has to be trained and tuned again 
within another dataset with the right typology of floor plans. 

The dataset 

When implementing a data-trained method like NNs a suitable dataset is 
needed, in this case a dataset of residential floor plans. The quality of the 
final application will also be influenced by the quality of the training data. 
Moreover, the format of the data is important to control the type of 
information the network will learn. As an example, just showing the model 
building footprints will yield a model able to create typical footprints. There 
do not exist many, easily accessible, large datasets, that are formatted into a 
machine readable way and are at the same time based on real-world 
architectural designs. One available dataset is the RPlan dataset. It is a 
dataset of more than 80,000 residential floorplans manually collected by Wu 
et al. [33] from real-world residential buildings in the real estate market in 
Asia. Each data point represents a 255x255 px image existing of four 
channels: the building boundary, the interior room types (e.g. living room, 
bedroom), their room identities (e.g. id 1 and id 2 to distinguish two rooms 
of type bedroom) and the interior-exterior mask (Fig. 2). The channels are 
compatible with the grey boxing method mentioned before. This dataset will 
be used in the experiments when testing different types of NNs, by which 
statistical rules to generate new designs can be extracted from the dataset. 

 
Fig 2. The four channels of one data point in the RPlan dataset [33]. 
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Related work 

Space allocation and building massing are old and popular research topics 
resolved many times, most of the time leading to an algorithm searching a 
restricted design space. In 2003, Hansmeyer [15] developed a flexible 
system that generates modular building forms adaptable to the environment 
using L-systems. In L-systems, design components are symbolized as 
strings and string rewriting mechanisms are applied according to a set of 
production rules, resulting in a string that can be translated back to a 
graphical representation. Kou et al. [19] used swarm intelligence in 2013 to 
find optimal evacuation routes for the Wuhan Sports Center. In 2016, 
Govaert [13] designed a building massing tool with hard-coded rules 
concerning sunlight, view and access based on cellular automata. Koning 
and Eizenberg designed a detailed shape grammar that makes it possible to 
generate all prairie houses designed by Frank Lloyd Wright and many more 
within his style [26]. These four examples show the possibilities of regular 
GD techniques, but despite the promising results, many rule-based systems 
still need to be hard-coded separately for each specific design problem. 

Strobbe [31] showed the possibilities of machine learning (ML) by 
automatically classifying floor plans belonging to the style of the 
Malagueira houses designed by the architect Alvaro Siza Viera or to any 
other style by using a one-class support vector machine (one-class SVM) 
trained on adjacency graphs of floor plans. When using rule-based systems, 
these rules would need to be hard-coded for each style separately instead of 
being extracted automatically. Related to this, As, Pal and Basu [2] used 
GANs, a special type of NNs, to learn the main clusters of rooms in floor 
plans. Again, adjacency graphs are used to train the NN.  

These deep learning algorithms need large datasets based on real-world 
data. Sharma et al. [27] did not only develop DANIEL, a deep learning 
application that captures semantic features of floorplans to use in floor plan 
retrieval, but they also created their own publicly available benchmark 
dataset, called ROBIN. Liu et al. [20] specifically recognized the need for 
converting rasterized floorplan images into vector-graphics representations 
to use in for example data analysis.  

More recent research specifically tries to solve the space allocation 
problem. In 2020, Chaillou et al. [7] used Bayesian modeling, a statistical 
method, to generate adjacency graphs. However, they did not actually 
generate floor plans. In 2010, Merrell et al. [23] generated a floor plan given 
a list of rooms and their types, sizes and adjacencies using a Bayesian 
network. However, the external appearance of the building was a result of 
this layout. Nauata et al. [24] did the same thing only using a GAN, again 
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the building footprint was not used as an input parameter, but was a result 
of the internal layout. Chaillou [6] on the other hand, generated the interior 
layout when given a fixed building footprint using GANs. Liu et al. [21] 
generated the functional zoning and architectural layout of a campus when 
given a campus boundary and the surrounding roads, using Pix2Pix, a 
method based on GANs. Both algorithms of Chaillou and Liu cannot take a 
desired number of rooms nor their type and size as input restrictions. It 
seems that the restriction of a fixed building boundary cannot be united with 
the restriction of a specific number of rooms and their properties. It therefore 
stays an open research topic. 

Methods 

ML is a broad field of research within AI. ML algorithms build a model, 
trained on training data, in order to make predictions or decisions without 
being explicitly programmed to do so. NNs are the backbone of deep 
learning algorithms that are a subfield of ML. A NN is a layered system of 
neurons passing messages from one layer to the next and the “deep” in deep 
learning refers to the depth of layers in a NN. By learning the probability 
distribution of a set of training data, a data-trained generative model is able 
to generate new valid data points that fit the probability distribution of the 
model [22]. This generative power is exactly what is needed in the scope of 
this research. Because NNs are powerful in the classification of images or 
the generation of new images, pixel-based NNs are considered before 
looking into graph-based methods. 

Pixel-based methods 

Image classification using a neural network (NN) 

NNs have become extremely powerful in analyzing and even generating 
pictures. The most basic NN is a classifier or a prediction network. To 
explain the working of a simple NN, one can think of a network that gets a 
picture of a digit as an input and gives the digit represented on the picture as 
an output. The network is able to classify the picture because it was trained 
on a training dataset where each data point contains a picture and the 
class/digit, i.e. ground truth, it belongs to. The dataset mentioned here, with 
the pictures of digits, is called the MNIST dataset and can be seen as the 
“Hello world!” of NNs. At first, the untrained network predicts a random 
class when given an input image, the output is evaluated on the basis of a 
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loss function which compares the predicted digit to the ground truth. This 
type of learning is called supervised learning. 

 

 
Fig 3. A NN trying to predict the correct class of the image at the beginning of 
training, thus resulting in a bad prediction [1]. 

To visualize this abstract concept of NNs, you could think of it as a set of 
layers, each with some neurons holding a value between zero (black) and 
one (white) (Fig. 3). The neurons of different layers are fully connected, i.e. 
each neuron of one layer is connected to each neuron of the next layer, and 
these connections each have a learnable weight or strength. The input layer 
receives the 28x28 px image of the digit, thus 784 pixels represented as 
neurons, communicates it to the first hidden layer and so on, until the last 
hidden layer communicates it to the output layer, holding ten neurons 
representing the ten digits, which tells us the prediction of the digit. The 
prediction can be recognized as the neuron/digit in the output layer with the 
highest value, i.e. the strongest signal. 

The above NN could also be used to predict an architectural style when 
given an image of a floor plan, which was the research objective of Strobbe 
in 2016 [31]. Although this could be a possible solution, Strobbe used 
another ML technique, namely a one-class SVM. Since our interest is not 
simply the classification of images, but rather the generation of new images 
that would fit into the original dataset, a more complicated NN architecture 
is needed. Therefore, no experiments are done using this simple 
classification network. 

Image generation using a generative adversarial neural network (GAN) 

One very common network for generating pictures, that has furthermore 
proven its quality, is the GAN. Where a data point first had two pieces of 
information, namely the image and the ground truth, a data point now only 
has one piece of information, namely the image. To follow along, one could 
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think of a database full of images of building boundaries, such as the fourth 
channel of the RPlan dataset (Fig. 2), and our goal is to generate a new, 
synthetic image of a building boundary. The previous network learned to 
generate the ground truth given the input image by comparing them and 
calculating the cost. But now, when generating a synthetic image, there is 
no right or wrong, there is no clear output that can be compared to a true 
value to calculate the cost. And without a clear loss function to calculate the 
cost, the network cannot receive feedback to improve its performances. 

So, another feedback system needs to make sure the learning process can 
happen. For this, two NNs are linked to each other: a generator and a 
discriminator. The generator learns to generate a synthetic image that fits 
the probability distribution of the original dataset, while the discriminator 
learns to separate the false, synthetic images from the true images present in 
the original dataset. The feedback from the discriminator helps the generator 
to generate better samples, while the discriminator gets more skilled in 
separating the real images from the synthetic samples. Increasing the error 
rate of the discriminator, i.e. fooling the discriminator, is the learning driver 
of the generator, comparable to what the loss function of a standard NN is. 
The generator and the discriminator are both separate NNs. 

The discriminator is a convolutional neural network (CNN), a simple 
classifier with a ground truth, which gets a 28x28 px image as input and 
learns to classify the images into a “Real” or a “Fake” category. The 
generator is a deconvolutional neural network (DNN) which gets 784 input 
neurons filled with random noise and outputs a new synthetic image of a 
face as 784 output neurons, which correspond to a new 28x28 px image. The 
loss of the generator is solely the predicted label of the discriminator, i.e. the 
prediction of a “Real” image is telling the generator it is doing a good job in 
tricking the discriminator. 

A CNN is not a fully connected network like a basic NN, but uses a 
tensor/filter to reduce the number of learnable parameters/weights. To 
clarify this, each connection between two neurons has a learnable strength. 
By dropping some of these (less significant) connections, the computational 
cost drops significantly, especially for images that tend to have a large 
number of input neurons. Interesting is that these filters can pick up on 
certain patterns, like horizontal lines or corners, that are in most cases very 
important to recognize what is shown on a picture. The generator is a DNN, 
which is similar to a CNN but runs in reverse. 

Based on the promising results, this paper will test this method twice 
using the RPlan dataset [33], once to generate the building footprint, 
corresponding to the first step of our grey boxing method, and a second time 
to generate the interior layout. Only one channel of the data points is used 
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to keep the input layer a reasonable size and to support the grey boxing 
method. 

The fourth channel (Fig. 2), representing the inside mask, will be used as 
training data for the GAN in the first experiment when generating the 
building footprint. This means that the input neurons only take one of two 
values: one (white) for interior and zero (black) for exterior. Important to 
notice is that this dataset is highly normalized, by which the input data is 
highly controlled, to learn one small task, namely the masking of the 
interior. The GAN takes random noise as an input, so requirements 
concerning area cannot be inputted upfront, but need to be checked 
afterwards. This does not cause any problem since generating multiple 
images is a matter of milliseconds and an area check can be quickly done to 
filter out irrelevant results. 

For the second experiment, the second channel of the RPlan data points 
(Fig. 2) representing the interior layout is used. The learning process of the 
NN will become more complicated because the pixels can take more values 
than strictly one and zero, since each type of room or wall is represented by 
a different pixel value, e.g. a value of two for the kitchen and three for the 
bathroom. Again, the GAN takes random noise as an input, so no building 
boundary will be inputted upfront. The GAN is expected to generate the 
building boundary along with the interior layout. 

Interior layout generation using Pix2Pix 

One major problem with the setup of the second experiment is the absence 
of a fixed building boundary as input for the network, a random interior 
layout was generated in a random building boundary. In some projects, the 
building boundary is a fixed requirement that cannot be changed to satisfy 
the interior layout. To constrain the GAN to a fixed building boundary, an 
image of it should serve as input. However, the architecture of a GAN 
should change since its input can only be random noise. Fortunately, Isola 
et al. [17] developed Pix2Pix which can be described as an image-to-image 
translation with a conditional GAN (cGAN).  

Instead of using random noise as an input, Pix2Pix uses an input image 
and learns to map an output image to it. This means that this time, both the 
second and the fourth channel (Fig. 2) are used as respectively the ground 
truth and the input. One could think that solely using a basic NN could work 
since there is a ground truth, however, it would only learn deterministic 
outputs, meaning each building boundary only has one correct solution. In 
practice, one building boundary should result in different possible interior 
layouts. Because of this, Pix2Pix uses a GAN which makes it possible to 
implement noise and a less deterministic loss function and, by this, create 
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variation. The noise is not added as an additional input, like in a basic GAN, 
but will be added as dropout, i.e. by randomly dropping some of the neurons 
in the network [17]. 

Pix2Pix is previously used in several contexts for the mapping of labeled 
pictures or edges to images (Fig. 4). Within the third experiment, this paper 
will generate an interior layout starting from a building boundary, which 
corresponds to the second step in our grey boxing method. 

 

 
Fig 4. Several applications of Pix2Pix [17]. 

Graph-based methods 

When approaching the research question with a pixel-based method, the 
input requirements are too limited. Inputting additional requirements such 
as room type, room number, areas and orientation are not possible when 
using one of the above NNs. Graphs can contain these requirements as node, 
edge and graph attributes, by which it is possible to add semantics to the 
graph, and they can be used as an input/output of other types of NNs [2]. 
This is why graph-based methods are considered. 

An architectural plan can be represented by two different types of graphs 
or variations to them. In the first one, called semantic building footprint 
graphs (SBF) [12], rooms are represented by nodes and their adjacencies by 
edges. The second type is the one where the corners of the rooms are 
represented by the nodes and the lines between them by edges. In the context 
of this paper, the first type is used, because it is important for the NN to 
learn the adjacencies rather than the geometry of the rooms. As said earlier, 
what the NN is able to learn and generate is dependent on the data shown to 
it. Besides adding semantics to the data, using graphs has another advantage. 
Since each room is represented by one single node, the number of variables 
is strongly reduced. In the case of a NN, this means a smaller network with 
less neurons and consequently less weights and biases to learn, resulting in 
less computation time. 



 
Data-based generation of residential floorplans using neural networks 369 

GANs are very powerful in the generation of real valued data, such as 
images, but they fail in generalizing to discrete objects, like graphs. The 
adaptation of GANs to support this new input format remained an open 
research question until 2018 because large repositories of graphs coming 
from the same distribution are not easily available. Since 2018, a few new 
approaches arose [5]. 

When representing an image as a graph, its nodes/pixels are fixed in space 
and they are always connected with their closest neighbors (Fig. 5) by which 
a filter can operate on it to find patterns in the picture. Because nodes in a 
graph are not necessarily ordered, do not have a fixed number of adjacent 
nodes and the graph does not have a fixed size, a filter cannot operate on 
this structure, therefore other methods for grasping the structure of the graph 
are needed. There are two possible ways to handle the variable size and 
structure of graphs. Common NNs, GANs included, need the input data to 
be fixed in size and structure, e.g. a fixed n*m px picture, by which the first 
approach is to represent the graph as a fixed matrix, e.g. adjacency matrices 
or random walks. A second approach is to use graph neural networks 
(GNN), which can handle data with a varying number of nodes and edges. 
Depending on the type of GNN, predictions on graphs can be made (like 
node attribute prediction, classification of graphs or link prediction) or even 
new graphs can be generated. 

 
Fig 5. A graph is a data type without a fixed size or structure. An image can be 
represented by a fixed size matrix. 

Adjacency matrix generation using a GAN 

The following method is based on molecule generation with GANs, where 
atoms are represented by nodes and their bonds by edges [10]. This method 
shows the difficulties concerning the representation of a graph as an 
adjacency matrix, however, when we choose to continue using GANs, such 
a representation is needed. Most researches focus on molecular graphs, since 
these datasets are easily accessible, something which is missing in the 
domain of architecture. A graph, whether it is representing a molecule or a 
floor plan, is defined by its nodes and edges and these two can in turn have 
several properties. A fixed size adjacency matrix (! ∈ {0,1}!×!×($%&)) and 
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a node feature matrix (( ∈ {0,1}!×() are able to hold this information [22] 
where the graph has a fixed number of nodes n, edge types b (b+1 to include 
non-edges) and node types d. When a node or edge has a certain type, the 
value 1 is inserted, otherwise 0. This is called one-hot encoding, which has 
proven to perform well as training data representation in prediction networks 
[12]. The GAN can, after learning, generate these type of matrices 
representing new floor plans. 

When using adjacency matrices, some challenges occur. First, a graph 
with n nodes has to output at least n² values, mostly zeros. Secondly, this 
same graph can be represented by n! different matrices depending on the 
node ordering [34]. Tavakoli et al. [32] learned the topology of social graphs 
by making 10,000 permutations of node orderings over only 4 social graphs. 
Imagine the computational power needed to represent a few more graphs. 
On top of that, the adjacency matrix is still a very restricted method where 
every graph has a fixed number of nodes. When more rooms are present in 
a new reference project, the whole model needs retraining on a new dataset 
with architectural plans containing an equal number of rooms. This means 
that the design space is strongly restricted beforehand. Because of its 
limitations, no further experiments are done using GANs to generate 
adjacency matrices. 

Random walk generation using a GAN 

Another possible solution is the transformation of the problem of generating 
graphs, to the generation of fixed-length random walks. Two major 
advantages are the possibility of inputting graphs with varying dimensions 
and avoiding the problems concerning node ordering. This method, called 
NetGAN [5], is developed for the generation of large graphs like social 
networks, where one graph, represented by a lot of random walks, serves as 
input data. The generator learns to generate walks, as a sequence of nodes, 
that are plausible in the real graph. After generating a set of walks, they are 
assembled in a count matrix and used to produce the adjacency matrix of the 
new graph. The resulting graph has a comparable size and connectivity as 
the input graph [5]. 

Since NetGAN is developed for large graphs and these are not the subject 
of this research, one can think of an extension of this algorithm to produce 
small graphs based on a set of random walks over a set of small input graphs. 
However, one major disadvantage remains, this model is developed for 
homogeneous graphs, i.e. networks without any edge and node types, so no 
further experiments are done using this exact method. 
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Variational auto-encoders (VAE) 

All above mentioned methods are based on GANs, but in reality other 
generative structures exist. For the generation of graphs, three structures can 
be distinguished: GANs, VAEs and autoregressive models.  

VAEs are comparable to GANs, because their key building blocks are the 
same: a DNN/decoder and a CNN/encoder. First, the encoder compresses a 
given input data point to a lower dimensional space after which the decoder 
reconstructs the low D representation back to a high D representation. 
Finally, each reconstruction can be compared to its original input data point 
and the loss is calculated. This means that a new artificial sample can be 
generated when decoding a random point in this low D space.  

The graphs are in most cases still represented as adjacency matrices [14, 
22], thus a lot of challenges occurring with GANs still remain in VAEs. 
Since VAEs still show too much limitations, again, no further experiments 
are done using this method. 

Autoregressive models 

GANs and VAEs are types of NNs that were originally developed for pixel-
based approaches. Autoregressive models, on the other hand, are developed 
for more complicated data structures, such as graphs. GraphAF [29], for 
example, is especially developed to generate molecules represented by a 
graph structure. 

In autoregressive models the adjacency matrix is generated by 
sequentially generating the adjacency vector of each node considering the 
previous state of the graph. Starting from an empty graph, each step a new 
node is added after which its edges are computed (Fig. 6). Additional 
architectural rules can be added, which can be used to check whether the 
addition of a certain node or edge is regulated. These rules could for example 
include the need of certain rooms or the avoidance of less desired 
adjacencies.  

It is the only method that can generate graphs of varying size, with node 
and edge types (wall, door) and attributes (area, center coordinates) present. 
GraphAF is originally developed to generate molecules, but can be adjusted 
to generate interior layout graphs. Thus, in the fourth experiment an 
autoregressive model will be trained to generate adjacency matrices of 
interior plan layouts. In this paper, the RPlan dataset is automatically 
converted from an image dataset to a graph dataset, by first vectorizing the 
images and then creating their matrices. 
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Fig 6. Autoregressive model for molecule generation [29]. 

From graph to plan 

When the layout graph is generated together with its desired attributes, like 
room area or adjacency type, the graph needs to be mapped into a fixed 
building boundary. By breaking down this process into two consecutive 
steps, the architect has a lot more flexibility in deciding at which point to 
step into the process. The whole graph can for example be generated by the 
autoregressive model or the architect could create the graph all by 
himself/herself. To map the graph inside a building boundary, two 
researches pop out, giving an initial grasp of what a NN performing this task 
might look like. 

The first research creates an interior layout in a fixed building boundary, 
however without using an input graph, but still using a pixel-based 
approach. This still remains relevant since a sequential process comparable 
to the autoregressive model is used. Wu et al. [33], who put together the 
RPlan dataset, trained a NN to first locate the center of the living room inside 
a given building boundary, then sequentially determine the next room type 
and location based on the current state of the plan and finally generate the 
interior walls. They trained an encoder-decoder network by randomly 
removing rooms from the dataset and trying to predict the center of these 
missing rooms [33] which could also be done with the autoregressive model 
by adding the center as an attribute to the graph. 
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Fig 7. Model architecture used by Wu et al. [33]. 

A second research, called Graph2Plan, tries to give the designer the 
option to add a graph additional to the boundary restriction. The NN serves 
as a search algorithm and searches for similar building boundaries and 
graphs in the dataset. Then, the layout graph from the similar boundary gets 
copied into the input boundary and finally the interior rooms are plotted. 
However, except from a well-trained search algorithm, the NN is not used 
to its full potential [16]. 

 
Fig 8. Model architecture used by Hu et al. [16]. 

Results 

In these experiments, the learning capacity of a basic GAN is evaluated 
based on its number of data points, the sizes of the pictures and the number 
of epochs while learning. The results will show the influence of these three 
parameters. 

Within the first experiment a GAN was trained on the fourth channel of 
the RPlan dataset. The generator uses convolutional layers to upsample the 
input and turn random noise into an image. LeakyReLU is used for the 
activation of each layer, except for the output layer that uses tanh as 
activation function. The discriminator uses LeakyReLU as activation for 
each layer and dropout to lower the computational cost. When using 1,000 
data points for 100 epochs, the learning takes a long time and results in 
blurry pictures (Fig. 9a). When compressing each picture to a 56x56 px 
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image, by which the number of trainable parameters is reduced significantly, 
the results become much better. The generated pictures are still blurry, but 
shapes are recognizable (Fig. 9b). When learning for a longer time, the 
results do not improve significantly, but when using the whole 80,000+ 
dataset, clear shapes can be recognized (Fig. 9c). However, note that a 
80,000+ dataset is not common and may not be available in a lot of projects. 

 
(a)          (b)     (c) 

Fig 9. (a) Training 1000 data points for 100 epochs. (b) Training 1000 compressed 
data points for 250 epochs. (c) Training 80k+ compressed data points for 100 
epochs. 

Within the second experiment, the tests done in the first experiment are 
repeated, but instead of the fourth channel, the second channel of the RPlan 
dataset is used, representing the interior layout. Even when using the best 
model of the previous experiment, i.e. when using more than 80,000 data 
points, compressing the images and letting the network learn for a long time, 
the generated images are still too blurry to identify specific shapes, similar 
to the situation in Fig. 9a. Even when learning for a longer time or changing 
the architecture of the network, the results are not expected to be excellent 
within a reasonable computation time using a reasonable amount of data. 

Within the third experiment, the interior layout is generated using 
Pix2Pix. Here, the fourth channel of the RPlan dataset is used as an input 
and the second channel as the ground truth. The encoder consists of 
convolutional layers activated with LeakyReLU and the decoder consists of 
transposed convolutional layers activated with ReLU and with dropout 
applied to them. Again, several problems occur when the algorithm is tested. 
While the model, trained with Pix2Pix, seems to result in acceptable results, 
one can see that the interior layout of the two data points as shown in Fig. 
10a are almost identical. The model always places the interior walls at the 
same location regardless of the building boundary. Moreover, only minor 
stochasticity is observed in the output of the network when given the same 
input boundary, despite the dropout. This disadvantage was already 
observed by Isola et al. [17]. Still, if the network would give the desired 
results, only the input boundary is given as a demand, the desired interior 
rooms are not considered as an input.  
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     (a)           (b) 
Fig 10. (a) In the third experiment Pix2Pix learned to map the interior layout of a 
residential unit to a building boundary. From left to right: the input image, the 
ground truth and the predicted image. (b) In the fourth experiment the 
autoregressive model learned to generate graphs. 

When approaching the research question with a pixel-based method, an 
enormous amount of data and computation time is needed to avoid blurry 
pictures and even so, the input requirements are too limited.  

Within the fourth and last experiment a graph-based method is used, 
namely an autoregressive model is trained using the adjacency matrices 
extracted from the RPlan dataset. Because of how the model is build, it is 
only trained during 3 epochs with a batch size of 15. The generated 
adjacency matrices have a novelty value of 1, which means no copies are 
made from the original dataset, and have a unique rate of 1, which means no 
identical data points exist in the set of newly generated graphs. 

Conclusion 

In this paper, the application of NNs to resolve the space allocation problem 
for residential floor plans was tested. This research aims to expose the 
advantages as well as the difficulties of using NNs by reviewing existing 
NN architectures from other domains and by applying and testing them in 
this new context using RPlan, a dataset of real-world residential floor plans. 

First, pixel-based approaches were explored and tested. The experiments 
demonstrated that (c)GANs can generate acceptable pictures of floor plans 
when the model is trained for a rather long time on a large dataset. However, 
large, publicly available datasets of real-world floor plans are still rare. At 
the beginning of the paper, it was mentioned that the constraint of an 
irregular building boundary and the room constraints are hard to unite.  
Pix2Pix can handle highly irregular building boundaries, as long as the 
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training data also contains irregular building boundaries, but using room 
restrictions as an input to the model is not possible. Since images do not 
contain semantic information, pixel-based approaches are not promising 
considering room restrictions. Graphs, on the other hand, can hold this 
information and therefore graph-based approaches were explored as a 
following step. 

Many graph-based approaches, like GANs and VAEs, are based on pixel-
based approaches, resulting in new disadvantages concerning the 
representation of the graph. Autoregressive models are developed to handle 
complex data types, like graphs, and are able to generate new graphs of 
varying size with node and edge attributes. Since geometry is ignored in 
these graphs, except for maybe an area attribute or a center attribute, graph-
to-plan methods need to be developed. Two researches give a grasp of what 
this might look like, but more research still has to be done on this topic.  

To summarize, NNs can only perform well when trained on large, suitable 
datasets, which are rarely available. On top of this, the NNs tested within 
this research use predefined functions and are built in a way that needs 
highly structured data as an input. The experiments show that the tested NNs 
can be used to perform small tasks, but a larger program architecture would 
be needed to sequentially use networks to perform these small tasks. For 
now, the space allocation problem is still not completely solved, when 
taking into account both a fixed building boundary and room allocations, 
but this research shows the potential of using NNs for solving this problem. 
Also, this research, together with previous research, shows that, for now, 
NNs are more limited than rule-based methods. In other domains, the 
combination of NNs and rule-based systems have led to strong program 
architectures. Recently, together with the development of new graph 
databases, new researches concerning graph NNs keep popping up in other 
domains. Thus, the full potential of NNs are still to be discovered. 
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