
Design Computing and Cognition DCC’22. J.S. Gero (ed),
pp. 359-378. © Springer Nature 2022

359

Data-based generation of residential floorplans using
neural networks

Louise Deprez, Ruben Verstraeten and Pieter Pauwels
University of Ghent, Belgium
louise.deprez@ugent.be, ruben.verstraeten@ugent.be,
pipauwel.pauwels@ugent.be

Most generative design applications used in architectural design are
developed with rule-based approaches, based on rules collected from expert
knowledge and experience. In other domains, machine learning and, more
in particular, neural networks have proven their usefulness and added value
in replacing these hard-coded rules or improving applications when
combining these two strategies. Since the space allocation problem still
remains an open research question and common generative design
techniques showed their limitations trying to solve this problem, new
techniques need to be explored. In this paper, the application of neural
networks to solve the space allocation problem for residential floor plans is
tested. This research aims to expose the advantages as well as the difficulties
of using neural networks by reviewing existing neural network architectures
from different domains and by applying and testing them in this new context
using a dataset of residential floor plans.

Background

During the last decades, generative design (GD), a technique used for the
automatic generation of design proposals, is more and more used when
designing architectural projects. These types of design proposals can vary
from for example the building envelope of the Beijing national stadium
using genetic algorithms [9] to the volume generation of the prairie houses
of Frank Lloyd Wright using shape grammars [26], both automatically
generated by using a GD algorithm. More recently, with the improvement

 L. Deprez, R. Verstraeten and P. Pauwels 360

of computing power and the emergence of more data, artificial intelligence
(AI) is on the rise in many industries, even so in engineering and art.
Architectural design has a long record in exploring the possibilities of AI
within its domain. An old, but still open research question concerns the
space allocation problem [28]. This research objective covers the generation
of floor plans when an architectural program and a fixed building boundary,
two requirements that are hard to unite, are given. An automation of this
process will help the architect to quickly discover the potential of a parcel
when used for a specific building program.

From around 1970 up until now, the automation of the space allocation
problem started without the input constraint of a building boundary, to a
rectangular constraint, later on going to orthogonal boundaries and finally
also irregular boundaries. The possibility to use boundary constraints as an
input for the generative program is important in for example renovation
projects or when considering the context, such as neighboring buildings. The
input constraints concerning the architectural program became also more
complicated during this time span. First, almost no constraints were given,
but later, room definition, room dimensions and adjacencies were also
considered. However, when the complexity of the building boundary arose,
room requirements were kept simple and vice-versa [28]. This resulted in
tools dealing with complex interior layouts where the building boundary is
the direct result of the spatial organization or tools where a fixed boundary
is filled with rooms that could fit into this building, mostly leading to room
adjacencies that do not correspond with the input requirements. A lot of
research has been done on this design problem using common GD
techniques and few good solutions were found merging the complexity of
the building boundary and the room requirements [28]. Therefore, the aim
of this research is to test the applicability of a popular AI technique, namely
neural networks (NNs), for solving the space allocation problem in its full
complexity.

First, the paper will document some disadvantages of common GD
applications used for space allocation, so these can serve as points of
attention when evaluating the different types of NNs. Secondly, related work
will be discussed. Thereafter, pixel-based strategies are reviewed, after
which the same is done for graph-based approaches. The most promising
types of pixel- and graph-based NNs will be tested using a database of
residential floor plans. Finally, the main advantages and difficulties of using
NNs for solving the space allocation problem will be discussed.

Data-based generation of residential floorplans using neural networks 361

Disadvantages of common GD applications

In most GD applications, when used for the automation of space allocation,
input is processed directly into a final result. This full automation results in
a first common problem, namely the lack of control of the architect over the
design process. To resolve this, the design process can be broken down into
several consecutive steps. This allows the architect to interfere between each
step or to only automate certain steps in the process. The idea is based on a
grey boxing method instead of black boxing, which allows the user to
intervene along the way instead of inputting information upfront and getting
a finished design at the end of the process [6]. Within this paper, the process
will be broken down into two steps. First, a building boundary is generated
on a blank page. This step becomes unnecessary when the architect wants
to use the boundary conditions of a project as an input. Secondly, the interior
spaces are filled into this boundary. Each step in this grey boxing method
will be supported by a separate NN to execute a specific task. It is possible
that different types of NNs will be needed for these different steps.

Fig. 1 Chaillou [6] used the grey boxing method to generate floor plans.

Most algorithms used in the field of architectural design are based on one
or more of the following five GD techniques: shape grammars, L-systems,
cellular automata, genetic algorithms and swarm intelligence [30]. All of
them are rule-based techniques, which reveals a second common problem in
the application of GD techniques concerning the time-consuming task of the
development of new rules by experts, in this case architects. Because the
space allocation problem situates itself in the initial stage of the design
process, during the exploration phase when decision-making still needs to
start, the development of new rules can be even harder and an automation
of this process would help the architect in this phase. Furthermore, since
each algorithm is developed to perform a specific task in a specific project,
rules supporting the algorithm can seldom be used in another context. This
means that for each project, new rules need to be defined and since the rules
are to some extent hard-coded, a lot of reprogramming or even starting from
scratch is needed. To avoid the need of developing new rules for each new
GD algorithm, one could use generic grammars [4], potentially allowing
greater flexibility than shape grammars, or one could use NNs to replace

 L. Deprez, R. Verstraeten and P. Pauwels 362

rule-development with deep learning. In this research the latter is chosen. A
NN is a data-trained method which can, as the word says, learn rules from
real-world data and extract statistical information that can be used in the
generation of new artificial data points, i.e. designs. The advantage of NNs
compared to rule-based systems is that, besides the detection of intentional
rules, NNs could also detect rules that are not consciously used by the
architect [2]. Since data is used to learn a specific task, the execution of a
task is dependent on the data. Other data may lead to the execution of
another task. This means that one sample of code can theoretically train on
different datasets, learning different tasks without the need of rewriting the
whole algorithm [17], saving valuable time for the architect. For example,
the code used in this research for generating residential floor plans could be
used for the generation of another typology of floor plans without the need
of hard-coding new rules. The model only has to be trained and tuned again
within another dataset with the right typology of floor plans.

The dataset

When implementing a data-trained method like NNs a suitable dataset is
needed, in this case a dataset of residential floor plans. The quality of the
final application will also be influenced by the quality of the training data.
Moreover, the format of the data is important to control the type of
information the network will learn. As an example, just showing the model
building footprints will yield a model able to create typical footprints. There
do not exist many, easily accessible, large datasets, that are formatted into a
machine readable way and are at the same time based on real-world
architectural designs. One available dataset is the RPlan dataset. It is a
dataset of more than 80,000 residential floorplans manually collected by Wu
et al. [33] from real-world residential buildings in the real estate market in
Asia. Each data point represents a 255x255 px image existing of four
channels: the building boundary, the interior room types (e.g. living room,
bedroom), their room identities (e.g. id 1 and id 2 to distinguish two rooms
of type bedroom) and the interior-exterior mask (Fig. 2). The channels are
compatible with the grey boxing method mentioned before. This dataset will
be used in the experiments when testing different types of NNs, by which
statistical rules to generate new designs can be extracted from the dataset.

Fig 2. The four channels of one data point in the RPlan dataset [33].

Data-based generation of residential floorplans using neural networks 363

Related work

Space allocation and building massing are old and popular research topics
resolved many times, most of the time leading to an algorithm searching a
restricted design space. In 2003, Hansmeyer [15] developed a flexible
system that generates modular building forms adaptable to the environment
using L-systems. In L-systems, design components are symbolized as
strings and string rewriting mechanisms are applied according to a set of
production rules, resulting in a string that can be translated back to a
graphical representation. Kou et al. [19] used swarm intelligence in 2013 to
find optimal evacuation routes for the Wuhan Sports Center. In 2016,
Govaert [13] designed a building massing tool with hard-coded rules
concerning sunlight, view and access based on cellular automata. Koning
and Eizenberg designed a detailed shape grammar that makes it possible to
generate all prairie houses designed by Frank Lloyd Wright and many more
within his style [26]. These four examples show the possibilities of regular
GD techniques, but despite the promising results, many rule-based systems
still need to be hard-coded separately for each specific design problem.

Strobbe [31] showed the possibilities of machine learning (ML) by
automatically classifying floor plans belonging to the style of the
Malagueira houses designed by the architect Alvaro Siza Viera or to any
other style by using a one-class support vector machine (one-class SVM)
trained on adjacency graphs of floor plans. When using rule-based systems,
these rules would need to be hard-coded for each style separately instead of
being extracted automatically. Related to this, As, Pal and Basu [2] used
GANs, a special type of NNs, to learn the main clusters of rooms in floor
plans. Again, adjacency graphs are used to train the NN.

These deep learning algorithms need large datasets based on real-world
data. Sharma et al. [27] did not only develop DANIEL, a deep learning
application that captures semantic features of floorplans to use in floor plan
retrieval, but they also created their own publicly available benchmark
dataset, called ROBIN. Liu et al. [20] specifically recognized the need for
converting rasterized floorplan images into vector-graphics representations
to use in for example data analysis.

More recent research specifically tries to solve the space allocation
problem. In 2020, Chaillou et al. [7] used Bayesian modeling, a statistical
method, to generate adjacency graphs. However, they did not actually
generate floor plans. In 2010, Merrell et al. [23] generated a floor plan given
a list of rooms and their types, sizes and adjacencies using a Bayesian
network. However, the external appearance of the building was a result of
this layout. Nauata et al. [24] did the same thing only using a GAN, again

 L. Deprez, R. Verstraeten and P. Pauwels 364

the building footprint was not used as an input parameter, but was a result
of the internal layout. Chaillou [6] on the other hand, generated the interior
layout when given a fixed building footprint using GANs. Liu et al. [21]
generated the functional zoning and architectural layout of a campus when
given a campus boundary and the surrounding roads, using Pix2Pix, a
method based on GANs. Both algorithms of Chaillou and Liu cannot take a
desired number of rooms nor their type and size as input restrictions. It
seems that the restriction of a fixed building boundary cannot be united with
the restriction of a specific number of rooms and their properties. It therefore
stays an open research topic.

Methods

ML is a broad field of research within AI. ML algorithms build a model,
trained on training data, in order to make predictions or decisions without
being explicitly programmed to do so. NNs are the backbone of deep
learning algorithms that are a subfield of ML. A NN is a layered system of
neurons passing messages from one layer to the next and the “deep” in deep
learning refers to the depth of layers in a NN. By learning the probability
distribution of a set of training data, a data-trained generative model is able
to generate new valid data points that fit the probability distribution of the
model [22]. This generative power is exactly what is needed in the scope of
this research. Because NNs are powerful in the classification of images or
the generation of new images, pixel-based NNs are considered before
looking into graph-based methods.

Pixel-based methods

Image classification using a neural network (NN)

NNs have become extremely powerful in analyzing and even generating
pictures. The most basic NN is a classifier or a prediction network. To
explain the working of a simple NN, one can think of a network that gets a
picture of a digit as an input and gives the digit represented on the picture as
an output. The network is able to classify the picture because it was trained
on a training dataset where each data point contains a picture and the
class/digit, i.e. ground truth, it belongs to. The dataset mentioned here, with
the pictures of digits, is called the MNIST dataset and can be seen as the
“Hello world!” of NNs. At first, the untrained network predicts a random
class when given an input image, the output is evaluated on the basis of a

Data-based generation of residential floorplans using neural networks 365

loss function which compares the predicted digit to the ground truth. This
type of learning is called supervised learning.

Fig 3. A NN trying to predict the correct class of the image at the beginning of
training, thus resulting in a bad prediction [1].

To visualize this abstract concept of NNs, you could think of it as a set of
layers, each with some neurons holding a value between zero (black) and
one (white) (Fig. 3). The neurons of different layers are fully connected, i.e.
each neuron of one layer is connected to each neuron of the next layer, and
these connections each have a learnable weight or strength. The input layer
receives the 28x28 px image of the digit, thus 784 pixels represented as
neurons, communicates it to the first hidden layer and so on, until the last
hidden layer communicates it to the output layer, holding ten neurons
representing the ten digits, which tells us the prediction of the digit. The
prediction can be recognized as the neuron/digit in the output layer with the
highest value, i.e. the strongest signal.

The above NN could also be used to predict an architectural style when
given an image of a floor plan, which was the research objective of Strobbe
in 2016 [31]. Although this could be a possible solution, Strobbe used
another ML technique, namely a one-class SVM. Since our interest is not
simply the classification of images, but rather the generation of new images
that would fit into the original dataset, a more complicated NN architecture
is needed. Therefore, no experiments are done using this simple
classification network.

Image generation using a generative adversarial neural network (GAN)

One very common network for generating pictures, that has furthermore
proven its quality, is the GAN. Where a data point first had two pieces of
information, namely the image and the ground truth, a data point now only
has one piece of information, namely the image. To follow along, one could

 L. Deprez, R. Verstraeten and P. Pauwels 366

think of a database full of images of building boundaries, such as the fourth
channel of the RPlan dataset (Fig. 2), and our goal is to generate a new,
synthetic image of a building boundary. The previous network learned to
generate the ground truth given the input image by comparing them and
calculating the cost. But now, when generating a synthetic image, there is
no right or wrong, there is no clear output that can be compared to a true
value to calculate the cost. And without a clear loss function to calculate the
cost, the network cannot receive feedback to improve its performances.

So, another feedback system needs to make sure the learning process can
happen. For this, two NNs are linked to each other: a generator and a
discriminator. The generator learns to generate a synthetic image that fits
the probability distribution of the original dataset, while the discriminator
learns to separate the false, synthetic images from the true images present in
the original dataset. The feedback from the discriminator helps the generator
to generate better samples, while the discriminator gets more skilled in
separating the real images from the synthetic samples. Increasing the error
rate of the discriminator, i.e. fooling the discriminator, is the learning driver
of the generator, comparable to what the loss function of a standard NN is.
The generator and the discriminator are both separate NNs.

The discriminator is a convolutional neural network (CNN), a simple
classifier with a ground truth, which gets a 28x28 px image as input and
learns to classify the images into a “Real” or a “Fake” category. The
generator is a deconvolutional neural network (DNN) which gets 784 input
neurons filled with random noise and outputs a new synthetic image of a
face as 784 output neurons, which correspond to a new 28x28 px image. The
loss of the generator is solely the predicted label of the discriminator, i.e. the
prediction of a “Real” image is telling the generator it is doing a good job in
tricking the discriminator.

A CNN is not a fully connected network like a basic NN, but uses a
tensor/filter to reduce the number of learnable parameters/weights. To
clarify this, each connection between two neurons has a learnable strength.
By dropping some of these (less significant) connections, the computational
cost drops significantly, especially for images that tend to have a large
number of input neurons. Interesting is that these filters can pick up on
certain patterns, like horizontal lines or corners, that are in most cases very
important to recognize what is shown on a picture. The generator is a DNN,
which is similar to a CNN but runs in reverse.

Based on the promising results, this paper will test this method twice
using the RPlan dataset [33], once to generate the building footprint,
corresponding to the first step of our grey boxing method, and a second time
to generate the interior layout. Only one channel of the data points is used

Data-based generation of residential floorplans using neural networks 367

to keep the input layer a reasonable size and to support the grey boxing
method.

The fourth channel (Fig. 2), representing the inside mask, will be used as
training data for the GAN in the first experiment when generating the
building footprint. This means that the input neurons only take one of two
values: one (white) for interior and zero (black) for exterior. Important to
notice is that this dataset is highly normalized, by which the input data is
highly controlled, to learn one small task, namely the masking of the
interior. The GAN takes random noise as an input, so requirements
concerning area cannot be inputted upfront, but need to be checked
afterwards. This does not cause any problem since generating multiple
images is a matter of milliseconds and an area check can be quickly done to
filter out irrelevant results.

For the second experiment, the second channel of the RPlan data points
(Fig. 2) representing the interior layout is used. The learning process of the
NN will become more complicated because the pixels can take more values
than strictly one and zero, since each type of room or wall is represented by
a different pixel value, e.g. a value of two for the kitchen and three for the
bathroom. Again, the GAN takes random noise as an input, so no building
boundary will be inputted upfront. The GAN is expected to generate the
building boundary along with the interior layout.

Interior layout generation using Pix2Pix

One major problem with the setup of the second experiment is the absence
of a fixed building boundary as input for the network, a random interior
layout was generated in a random building boundary. In some projects, the
building boundary is a fixed requirement that cannot be changed to satisfy
the interior layout. To constrain the GAN to a fixed building boundary, an
image of it should serve as input. However, the architecture of a GAN
should change since its input can only be random noise. Fortunately, Isola
et al. [17] developed Pix2Pix which can be described as an image-to-image
translation with a conditional GAN (cGAN).

Instead of using random noise as an input, Pix2Pix uses an input image
and learns to map an output image to it. This means that this time, both the
second and the fourth channel (Fig. 2) are used as respectively the ground
truth and the input. One could think that solely using a basic NN could work
since there is a ground truth, however, it would only learn deterministic
outputs, meaning each building boundary only has one correct solution. In
practice, one building boundary should result in different possible interior
layouts. Because of this, Pix2Pix uses a GAN which makes it possible to
implement noise and a less deterministic loss function and, by this, create

 L. Deprez, R. Verstraeten and P. Pauwels 368

variation. The noise is not added as an additional input, like in a basic GAN,
but will be added as dropout, i.e. by randomly dropping some of the neurons
in the network [17].

Pix2Pix is previously used in several contexts for the mapping of labeled
pictures or edges to images (Fig. 4). Within the third experiment, this paper
will generate an interior layout starting from a building boundary, which
corresponds to the second step in our grey boxing method.

Fig 4. Several applications of Pix2Pix [17].

Graph-based methods

When approaching the research question with a pixel-based method, the
input requirements are too limited. Inputting additional requirements such
as room type, room number, areas and orientation are not possible when
using one of the above NNs. Graphs can contain these requirements as node,
edge and graph attributes, by which it is possible to add semantics to the
graph, and they can be used as an input/output of other types of NNs [2].
This is why graph-based methods are considered.

An architectural plan can be represented by two different types of graphs
or variations to them. In the first one, called semantic building footprint
graphs (SBF) [12], rooms are represented by nodes and their adjacencies by
edges. The second type is the one where the corners of the rooms are
represented by the nodes and the lines between them by edges. In the context
of this paper, the first type is used, because it is important for the NN to
learn the adjacencies rather than the geometry of the rooms. As said earlier,
what the NN is able to learn and generate is dependent on the data shown to
it. Besides adding semantics to the data, using graphs has another advantage.
Since each room is represented by one single node, the number of variables
is strongly reduced. In the case of a NN, this means a smaller network with
less neurons and consequently less weights and biases to learn, resulting in
less computation time.

Data-based generation of residential floorplans using neural networks 369

GANs are very powerful in the generation of real valued data, such as
images, but they fail in generalizing to discrete objects, like graphs. The
adaptation of GANs to support this new input format remained an open
research question until 2018 because large repositories of graphs coming
from the same distribution are not easily available. Since 2018, a few new
approaches arose [5].

When representing an image as a graph, its nodes/pixels are fixed in space
and they are always connected with their closest neighbors (Fig. 5) by which
a filter can operate on it to find patterns in the picture. Because nodes in a
graph are not necessarily ordered, do not have a fixed number of adjacent
nodes and the graph does not have a fixed size, a filter cannot operate on
this structure, therefore other methods for grasping the structure of the graph
are needed. There are two possible ways to handle the variable size and
structure of graphs. Common NNs, GANs included, need the input data to
be fixed in size and structure, e.g. a fixed n*m px picture, by which the first
approach is to represent the graph as a fixed matrix, e.g. adjacency matrices
or random walks. A second approach is to use graph neural networks
(GNN), which can handle data with a varying number of nodes and edges.
Depending on the type of GNN, predictions on graphs can be made (like
node attribute prediction, classification of graphs or link prediction) or even
new graphs can be generated.

Fig 5. A graph is a data type without a fixed size or structure. An image can be
represented by a fixed size matrix.

Adjacency matrix generation using a GAN

The following method is based on molecule generation with GANs, where
atoms are represented by nodes and their bonds by edges [10]. This method
shows the difficulties concerning the representation of a graph as an
adjacency matrix, however, when we choose to continue using GANs, such
a representation is needed. Most researches focus on molecular graphs, since
these datasets are easily accessible, something which is missing in the
domain of architecture. A graph, whether it is representing a molecule or a
floor plan, is defined by its nodes and edges and these two can in turn have
several properties. A fixed size adjacency matrix (! ∈ {0,1}!×!×($%&)) and

 L. Deprez, R. Verstraeten and P. Pauwels 370

a node feature matrix ((∈ {0,1}!×() are able to hold this information [22]
where the graph has a fixed number of nodes n, edge types b (b+1 to include
non-edges) and node types d. When a node or edge has a certain type, the
value 1 is inserted, otherwise 0. This is called one-hot encoding, which has
proven to perform well as training data representation in prediction networks
[12]. The GAN can, after learning, generate these type of matrices
representing new floor plans.

When using adjacency matrices, some challenges occur. First, a graph
with n nodes has to output at least n² values, mostly zeros. Secondly, this
same graph can be represented by n! different matrices depending on the
node ordering [34]. Tavakoli et al. [32] learned the topology of social graphs
by making 10,000 permutations of node orderings over only 4 social graphs.
Imagine the computational power needed to represent a few more graphs.
On top of that, the adjacency matrix is still a very restricted method where
every graph has a fixed number of nodes. When more rooms are present in
a new reference project, the whole model needs retraining on a new dataset
with architectural plans containing an equal number of rooms. This means
that the design space is strongly restricted beforehand. Because of its
limitations, no further experiments are done using GANs to generate
adjacency matrices.

Random walk generation using a GAN

Another possible solution is the transformation of the problem of generating
graphs, to the generation of fixed-length random walks. Two major
advantages are the possibility of inputting graphs with varying dimensions
and avoiding the problems concerning node ordering. This method, called
NetGAN [5], is developed for the generation of large graphs like social
networks, where one graph, represented by a lot of random walks, serves as
input data. The generator learns to generate walks, as a sequence of nodes,
that are plausible in the real graph. After generating a set of walks, they are
assembled in a count matrix and used to produce the adjacency matrix of the
new graph. The resulting graph has a comparable size and connectivity as
the input graph [5].

Since NetGAN is developed for large graphs and these are not the subject
of this research, one can think of an extension of this algorithm to produce
small graphs based on a set of random walks over a set of small input graphs.
However, one major disadvantage remains, this model is developed for
homogeneous graphs, i.e. networks without any edge and node types, so no
further experiments are done using this exact method.

Data-based generation of residential floorplans using neural networks 371

Variational auto-encoders (VAE)

All above mentioned methods are based on GANs, but in reality other
generative structures exist. For the generation of graphs, three structures can
be distinguished: GANs, VAEs and autoregressive models.

VAEs are comparable to GANs, because their key building blocks are the
same: a DNN/decoder and a CNN/encoder. First, the encoder compresses a
given input data point to a lower dimensional space after which the decoder
reconstructs the low D representation back to a high D representation.
Finally, each reconstruction can be compared to its original input data point
and the loss is calculated. This means that a new artificial sample can be
generated when decoding a random point in this low D space.

The graphs are in most cases still represented as adjacency matrices [14,
22], thus a lot of challenges occurring with GANs still remain in VAEs.
Since VAEs still show too much limitations, again, no further experiments
are done using this method.

Autoregressive models

GANs and VAEs are types of NNs that were originally developed for pixel-
based approaches. Autoregressive models, on the other hand, are developed
for more complicated data structures, such as graphs. GraphAF [29], for
example, is especially developed to generate molecules represented by a
graph structure.

In autoregressive models the adjacency matrix is generated by
sequentially generating the adjacency vector of each node considering the
previous state of the graph. Starting from an empty graph, each step a new
node is added after which its edges are computed (Fig. 6). Additional
architectural rules can be added, which can be used to check whether the
addition of a certain node or edge is regulated. These rules could for example
include the need of certain rooms or the avoidance of less desired
adjacencies.

It is the only method that can generate graphs of varying size, with node
and edge types (wall, door) and attributes (area, center coordinates) present.
GraphAF is originally developed to generate molecules, but can be adjusted
to generate interior layout graphs. Thus, in the fourth experiment an
autoregressive model will be trained to generate adjacency matrices of
interior plan layouts. In this paper, the RPlan dataset is automatically
converted from an image dataset to a graph dataset, by first vectorizing the
images and then creating their matrices.

 L. Deprez, R. Verstraeten and P. Pauwels 372

Fig 6. Autoregressive model for molecule generation [29].

From graph to plan

When the layout graph is generated together with its desired attributes, like
room area or adjacency type, the graph needs to be mapped into a fixed
building boundary. By breaking down this process into two consecutive
steps, the architect has a lot more flexibility in deciding at which point to
step into the process. The whole graph can for example be generated by the
autoregressive model or the architect could create the graph all by
himself/herself. To map the graph inside a building boundary, two
researches pop out, giving an initial grasp of what a NN performing this task
might look like.

The first research creates an interior layout in a fixed building boundary,
however without using an input graph, but still using a pixel-based
approach. This still remains relevant since a sequential process comparable
to the autoregressive model is used. Wu et al. [33], who put together the
RPlan dataset, trained a NN to first locate the center of the living room inside
a given building boundary, then sequentially determine the next room type
and location based on the current state of the plan and finally generate the
interior walls. They trained an encoder-decoder network by randomly
removing rooms from the dataset and trying to predict the center of these
missing rooms [33] which could also be done with the autoregressive model
by adding the center as an attribute to the graph.

Data-based generation of residential floorplans using neural networks 373

Fig 7. Model architecture used by Wu et al. [33].

A second research, called Graph2Plan, tries to give the designer the
option to add a graph additional to the boundary restriction. The NN serves
as a search algorithm and searches for similar building boundaries and
graphs in the dataset. Then, the layout graph from the similar boundary gets
copied into the input boundary and finally the interior rooms are plotted.
However, except from a well-trained search algorithm, the NN is not used
to its full potential [16].

Fig 8. Model architecture used by Hu et al. [16].

Results

In these experiments, the learning capacity of a basic GAN is evaluated
based on its number of data points, the sizes of the pictures and the number
of epochs while learning. The results will show the influence of these three
parameters.

Within the first experiment a GAN was trained on the fourth channel of
the RPlan dataset. The generator uses convolutional layers to upsample the
input and turn random noise into an image. LeakyReLU is used for the
activation of each layer, except for the output layer that uses tanh as
activation function. The discriminator uses LeakyReLU as activation for
each layer and dropout to lower the computational cost. When using 1,000
data points for 100 epochs, the learning takes a long time and results in
blurry pictures (Fig. 9a). When compressing each picture to a 56x56 px

 L. Deprez, R. Verstraeten and P. Pauwels 374

image, by which the number of trainable parameters is reduced significantly,
the results become much better. The generated pictures are still blurry, but
shapes are recognizable (Fig. 9b). When learning for a longer time, the
results do not improve significantly, but when using the whole 80,000+
dataset, clear shapes can be recognized (Fig. 9c). However, note that a
80,000+ dataset is not common and may not be available in a lot of projects.

(a) (b) (c)

Fig 9. (a) Training 1000 data points for 100 epochs. (b) Training 1000 compressed
data points for 250 epochs. (c) Training 80k+ compressed data points for 100
epochs.

Within the second experiment, the tests done in the first experiment are
repeated, but instead of the fourth channel, the second channel of the RPlan
dataset is used, representing the interior layout. Even when using the best
model of the previous experiment, i.e. when using more than 80,000 data
points, compressing the images and letting the network learn for a long time,
the generated images are still too blurry to identify specific shapes, similar
to the situation in Fig. 9a. Even when learning for a longer time or changing
the architecture of the network, the results are not expected to be excellent
within a reasonable computation time using a reasonable amount of data.

Within the third experiment, the interior layout is generated using
Pix2Pix. Here, the fourth channel of the RPlan dataset is used as an input
and the second channel as the ground truth. The encoder consists of
convolutional layers activated with LeakyReLU and the decoder consists of
transposed convolutional layers activated with ReLU and with dropout
applied to them. Again, several problems occur when the algorithm is tested.
While the model, trained with Pix2Pix, seems to result in acceptable results,
one can see that the interior layout of the two data points as shown in Fig.
10a are almost identical. The model always places the interior walls at the
same location regardless of the building boundary. Moreover, only minor
stochasticity is observed in the output of the network when given the same
input boundary, despite the dropout. This disadvantage was already
observed by Isola et al. [17]. Still, if the network would give the desired
results, only the input boundary is given as a demand, the desired interior
rooms are not considered as an input.

Data-based generation of residential floorplans using neural networks 375

 (a) (b)
Fig 10. (a) In the third experiment Pix2Pix learned to map the interior layout of a
residential unit to a building boundary. From left to right: the input image, the
ground truth and the predicted image. (b) In the fourth experiment the
autoregressive model learned to generate graphs.

When approaching the research question with a pixel-based method, an
enormous amount of data and computation time is needed to avoid blurry
pictures and even so, the input requirements are too limited.

Within the fourth and last experiment a graph-based method is used,
namely an autoregressive model is trained using the adjacency matrices
extracted from the RPlan dataset. Because of how the model is build, it is
only trained during 3 epochs with a batch size of 15. The generated
adjacency matrices have a novelty value of 1, which means no copies are
made from the original dataset, and have a unique rate of 1, which means no
identical data points exist in the set of newly generated graphs.

Conclusion

In this paper, the application of NNs to resolve the space allocation problem
for residential floor plans was tested. This research aims to expose the
advantages as well as the difficulties of using NNs by reviewing existing
NN architectures from other domains and by applying and testing them in
this new context using RPlan, a dataset of real-world residential floor plans.

First, pixel-based approaches were explored and tested. The experiments
demonstrated that (c)GANs can generate acceptable pictures of floor plans
when the model is trained for a rather long time on a large dataset. However,
large, publicly available datasets of real-world floor plans are still rare. At
the beginning of the paper, it was mentioned that the constraint of an
irregular building boundary and the room constraints are hard to unite.
Pix2Pix can handle highly irregular building boundaries, as long as the

 L. Deprez, R. Verstraeten and P. Pauwels 376

training data also contains irregular building boundaries, but using room
restrictions as an input to the model is not possible. Since images do not
contain semantic information, pixel-based approaches are not promising
considering room restrictions. Graphs, on the other hand, can hold this
information and therefore graph-based approaches were explored as a
following step.

Many graph-based approaches, like GANs and VAEs, are based on pixel-
based approaches, resulting in new disadvantages concerning the
representation of the graph. Autoregressive models are developed to handle
complex data types, like graphs, and are able to generate new graphs of
varying size with node and edge attributes. Since geometry is ignored in
these graphs, except for maybe an area attribute or a center attribute, graph-
to-plan methods need to be developed. Two researches give a grasp of what
this might look like, but more research still has to be done on this topic.

To summarize, NNs can only perform well when trained on large, suitable
datasets, which are rarely available. On top of this, the NNs tested within
this research use predefined functions and are built in a way that needs
highly structured data as an input. The experiments show that the tested NNs
can be used to perform small tasks, but a larger program architecture would
be needed to sequentially use networks to perform these small tasks. For
now, the space allocation problem is still not completely solved, when
taking into account both a fixed building boundary and room allocations,
but this research shows the potential of using NNs for solving this problem.
Also, this research, together with previous research, shows that, for now,
NNs are more limited than rule-based methods. In other domains, the
combination of NNs and rule-based systems have led to strong program
architectures. Recently, together with the development of new graph
databases, new researches concerning graph NNs keep popping up in other
domains. Thus, the full potential of NNs are still to be discovered.

References

1. 3Blue1Brown. (2017, November 3). What is backpropagation really doing? |
Chapter 3, Deep learning. Retrieved from YouTube:
https://www.youtube.com/watch?v=Ilg3gGewQ5U

2. As, I., Pal, S., & Basu, P. (2018). Artificial intelligence in architecture:
Generating cenceptual design via deep learning. International Journal of
Architectural Computing: Vol. 16, pp. 306 - 327.

3. Arvin, S. A., & House, D. H. (2002). Modeling architectural design objectives
in physically based space planning. Automation in Construction 11, 213 - 225.

Data-based generation of residential floorplans using neural networks 377

4. Beirão, J.N., Duarte, J.P. & Stouffs, R. Creating Specific Grammars with
Generic Grammars: Towards Flexible Urban Design. Nexus Netw J 13, 73–
111 (2011). https://doi.org/10.1007/s00004-011-0059-3

5. Bojchevski, A., Shchur, O., Zügner, D., & Günnemann, S. (2018). NetGAN:
Generating Graphs via RandomWalks. Proceedings of the 35th International
Conference on Machine Learning, (pp. 609 - 618). Stockholm.

6. Chaillou, S. (2019, Februari 24). AI & Architecture: An Experimental
Perspective. Retrieved June 8, 2021, from towards data science:
https://towardsdatascience.com/ai-architecture-f9d78c6958e0

7. Chaillou, S., Landes, J., Fure, H., & Dissen, H. (2020). Architecture as a Graph
| A Computational Approach.

8. Chakure, A. (2020, January 10). Convolutional Neural Networks (CNN) in a
Brief. Retrieved from Dev: https://dev.to/afrozchakure/cnn-in-a-brief-27gg

9. De Azambuja Varela, P. (2013, April). Genetic algorithms in architecture:
history and relevance. 1ST eCAADe Regional International Workshop, pp. 133
- 142.

10. De Cao, N., & Kipf, T. (2018). MolGAN: An implicit generative model for
small molecular graphs. ArXiv.

11. Deep Convolutional Generative Adversarial Network. (2021, June 17).
Retrieved August 2021, from Tensorflow:
https://www.tensorflow.org/tutorials/generative/dcgan

12. Eisenstadt, V., Arora, H., Ziegler, C., Bielski, J., Langenhan, C., Althoff, K., &
Dengel, A. (2021). Comparative Evaluation of Tensor-based Data
Representations for Deep Learning Methods in Architecture, Proceedings of
the 39th eCAADe Conference – Vol. 1, University of Novi Sad, Novi Sad,
Serbia, pp. 45-54.

13. Govaert, E., Verstraeten, R., Wyffels, F., Leenknegt, S., & Strobbe, T. (2016).
Inzetbaarheid van cellulaire automaten in het architecturaal ontwerpproces.
Ghent: Universiteit Gent.

14. Grover, A., Zweig, A., & Ermon, S. (2018). Graphite: Iterative Generative
Modeling of Graphs. arXiv.

15. Hansmeyer, M. (2003). L-Systems in Architecture. Retrieved June 8, 2021,
from michael-hansmeyer: http://www.michael-hansmeyer.com/l-systems

16. Hu, R., Huang, Z., Tang, Y., Van Kaick, O., Ahang, H., & Huang, H. (2020,
July). Graph2Plan: learning floorplan generation from layout graphs. ACM
Transactions on Graphics, 39(4), pp. 118:1 - 118:14.

17. Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-To-Image
Translation With Conditional Adversarial Networks. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 1125 -
1134).

18. Koning H. and Eizenberg J. (1981). The language of the prairie: Frank Lloyd
Wright’s prairie houses. Environment and Planning B Planning and Design 8:
295–323.

19. Kou, J., Xiong, C., Fang, Z., Zong, X., & Chen, Z. (2013). Multiobjective
Optimization of Evacuation Routes in Stadium Using Superposed Potential
Field Network Based ACO. Computational Intelligence and Neuroscience.

 L. Deprez, R. Verstraeten and P. Pauwels 378

20. Liu, C., Wu, J., Kohli, P., & Furukawa, Y. (2017). Raster-to-Vector: Revisiting
Floorplan Transformation, 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 2214-2222.

21. Liu, Y., Luo, Y., deng, Q., & Zhou, X. (2021). Exploration of Campus Layout
Based on Generative Adversarial Network. Proceedings of the 2020
DigitalFUTURES, The 2nd International Conference on Computational Design
and Robotic Fabrication (CDRF 2020), (pp. 169 - 178).

22. Ma, T., Chen, J., & Xiao, C. (2018). Constrained Generation of Semantically
Valid Graphs via Regularizing Variational Autoencoders. 32nd Conference on
Neural Information Processing Systems (NeurIPS 2018). Montréal, Canada.

23. Merrell, P., Schkufza, E., & Koltun, V. (2010, December). Computer-
Generated Residential Building Layouts. ACM Transactions on Graphics,
29(6), pp. 1 - 12.

24. Nauata, N., Chang, K.-H., Cheng, C.-Y., Mori, G., & Furukawa, Y. (2020,
March). House-GAN: Relational Generative Adversarial Networks for Graph-
constrained House Layout Generation.

25. Ozdemir, S., & Ozdemir, Y. (2017). Prioritizing store plan alternatives
produced with shape grammar using multi-criteria decision-making techniques.
Environment and Planning B Urban Analytics and City Science, pp. 1 - 21.

26. Pupo, R., Pinheiro, E., Mendes, G., Kowaltowski, D., & Celani, G. (2007,
November). A design teaching method using shape grammars. Graphica 2007.

27. Sharma, D., Gupta, N., Chattopadhyay, C., & Mehta,S. (2017), DANIEL: A
Deep Architecture for Automatic Analysis and Retrieval of Building Floor
Plans, 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR), pp. 420-425.

28. Shekhawat, K., Upasani, N., Bisht, S., & Jain, R. N. (2021, April 12). A tool
for computer-generated dimensioned floorplans based on given adjacencies.
Automation in construction.

29. Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., & Tang, J. (2020). GraphAF:
a Flow-based Autoregressive Model for Molecular Graph Generation. ArXiv.

30. Singh, V., & Gu, N. (2012, March). Towards an integrated generative design
framework. Design Studies Vol 33, pp. 185 - 207.

31. Strobbe, T., wyffels, F., Verstraeten, R., De Meyer, R., & Van Campenhout, J.
(2016). Automatic architectural style detection using one-class support vector
machines and graph kernels. Automation in Construction, 69, 1 - 10.

32. Tavakoli, S., Hajibagheri, A., & Sukthankar, G. (2017). Learning Social Graph
Topologies using Generative Adversarial Neural Networks. Conference:
International Conference on Social Computing, Behavioral-Cultural Modeling
& Prediction (Late Breaking).

33. Wu, W., Fu, X.-M., Tang, R., Wang, Y., Qi, Y.-H., & Liu, L. (2019,
November). Data-driven Interior Plan Generation for Residential Buildings.
ACM Transactions on Graphics (SIGGRAPH Asia), 38(6), Article 234.

34. You, J., Ying, R., Ren, X., Hamilton, W. L., & Jure, L. (2018). GraphRNN:
Generating Realistic Graphs with Deep Auto-regressive Models. International
Conference on Machine Learning (ICML).

	DCC22_Preprint_PDFA_final_MyArticle

