# **MAKE**

## **Electric Drivetrain Considering Magnetic Springs for Oscillating Load Applications**

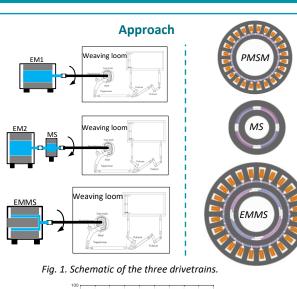
Enabling Fast Design, Verification and Validation of Motion Products

Single Motion

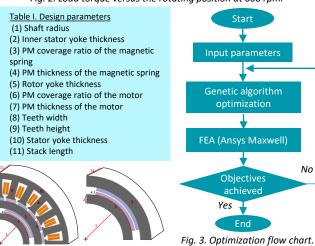
EEDT-MP

Mohamed N. Ibrahim, and Peter Sergeant

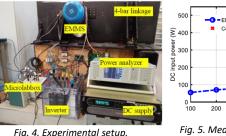
#### Goal

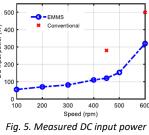

**Benchmarking three** different **solutions** to drive directly (i.e. **without gearbox**) the shedding mechanism of the **weaving looms** applications, which have a strongly oscillating load pattern; the **solutions** are:


- 1) conventional PM synchronous motor (EM1)
- conventional PM synchronous motor with assistance of a separate magnetic spring (EM2MS)
- 3) PM synchronous motor with assistance of integrated magnetic spring (EMMS)


The main performance **indicators** for the benchmarking of this study are the amount of required **materials**, the **consumed power** and the **flexibility**.

#### Motivation


- Electric motor systems consume a large part of the generated energy which is about **46%** of the generated energy worldwide [ref1]. Reducing energy consumption is crucial. This work focuses on applications with cyclic load pattern.
- Recently, passive elements such as magnetic and mechanical springs have received interest for applications with a cyclic load pattern. The main goal of using these passive elements is to store energy and release it when needed.
- In [ref2], a comparison between the energy consumption of a permanent magnet motor with and without magnetic spring for high dynamic industrial applications was reported. It was found that energy consumption and peak torque of the magnetic spring assisted drivetrain are about 6 and 3 times respectively lower than using the conventional servo motor.
- A disadvantage of the spring is that its torque profile is fixed by design of the spring, which reduces the flexibility of the drive system towards other load patterns.








| Results                      |       |                          |       |
|------------------------------|-------|--------------------------|-------|
| Parameter                    | EM1   | EM2+MS                   | EMMS  |
| Outer diameter [mm]          | 192   | 192+116                  | 192   |
| Stack length [mm]            | 110   | 65+80                    | 75    |
| Steel mass [Kg]              | 9.60  | 5.65+3 =8.65             | 8.50  |
| Copper mass [Kg]             | 2.40  | 1.45                     | 1.60  |
| Magnet mass [Kg]             | 0.95  | 0.55+0.75=1.30           | 1.30  |
| Total mass [Kg]              | 12.95 | 11.40                    | 11.40 |
| Motor RMS torque<br>[N.m]    | 63    | 33                       | 33    |
| Inertia [Kg.m <sup>2</sup> ] | 0.010 | 0.0062+0.0032<br>=0.0094 | 0.011 |
| Total losses [W]             | 178   | 89+22 <b>=111</b>        | 121   |
| Flexibility                  | High  | Medium                   | Low   |
| Cost                         | low   | Medium                   | High  |





#### Key take-aways

- The power consumption of the drivetrains that use a **magnetic spring** is **lower** by about **40%** compared to the **conventional electric motor**.
- Introducing a magnetic spring in the drivetrain reduces the flexibility of the system.
- The cost of the magnetic spring assisted drivetrain is higher. However, the higher cost of the drivetrain will be paid back by lower energy consumption.

### **Further reading**

- ref1: <u>https://doi.org/10.1109/MIAS.2010.939427</u>
- ref2: https://doi.org/10.3390/act8010018