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Abstract— Non-Line-of-Sight (NLoS) propagation condition is a crucial factor affecting the precision of the localization
in the Ultra-Wideband (UWB) Indoor Positioning System (IPS). Numerous supervised Machine Learning (ML) approaches
have been applied for NLoS identification to improve the accuracy of the IPS. However, it is difficult for existing ML
approaches to maintain a high classification accuracy when the database contains a small number of NLoS signals
and a large number of Line-of-Sight (LoS) signals. The inaccurate localization of the target node caused by this small
number of NLoS signals can still be problematic. To solve this issue, we propose feature-based Gaussian Distribution
(GD) and Generalized Gaussian Distribution (GGD) NLoS detection algorithms. By employing our detection algorithm for
the imbalanced dataset, a classification accuracy of 96.7% and 98.0% can be achieved. We also compared the proposed
algorithm with the existing cutting-edge such as Support-Vector-Machine (SVM), Decision Tree (DT), Naive Bayes (NB),
and Neural Network (NN), which can achieve an accuracy of 92.6%, 92.8%, 93.2%, and 95.5%, respectively. The results
demonstrate that the GGD algorithm can achieve high classification accuracy with the imbalanced dataset. Finally, the
proposed algorithm can also achieve a higher classification accuracy for different ratios of LoS and NLoS signals which
proves the robustness and effectiveness of the proposed method.

Index Terms— Ultra-wideband (UWB), Indoor Positioning System (IPS), Machine Learning (ML), Non-Line-of-Sight (NLoS)
Identification, Gaussian Distribution mixture models, Generalized Gaussian Distribution (GGD).

I. INTRODUCTION

W ith the rapid development of the Internet of Things
(IoT)s, the requirement of a precise indoor posi-

tioning system (IPS) has attracted considerable attention in
the research community and industry [1]–[7]. Several ex-
amples aforesaid, pedestrian tracking systems [4], [8], [9],
autonomous flying drones in warehouses [9]–[11], and social
distancing requirements caused by pandemic such as COVID-
19 [13], [14], etc., require accurate IPS. The Global Navigation
Satellite System (GNSS) provides tremendous convenience to
human life as they provide real-time localization in open space.
Unfortunately, the GNSS signals are attenuated severely by the
wall and fail to achieve the accurate positioning in indoor en-
vironments [2], [15]. Among various indoor positioning tech-
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nologies, Ultra-wideband (UWB) can achieve high accuracy
due to its characteristics of extremely short pulse that provides
good time resolution [6], [9], [16]. However, the accuracy
of UWB IPS could be significantly affected when the NLoS
signal occurs [12], [17], [18]. The NLoS condition exists when
the signals between the transceivers are reflected or blocked
by the obstacles. In this case, signal propagation delay occurs,
resulting in longer Time-of-Flight (ToF) and an estimated
distance error between the transmitter and receiver [17], [18].
Thus, significantly reducing the accuracy of IPS.

The current literature includes several research works that
enhance the accuracy of the UWB IPS by identifying whether
the signal has a LoS or NLoS component [9], [16], [17],
[19]. The methods of NLoS identification can be coarsely
summarised into two types (i) Non-feature based NLoS signal
classification that uses context information and (ii) feature-
based NLoS identification relying on the UWB waveforms.
The non-feature based approach from [19] uses a modified
Kalman filter to classify LoS/NLoS conditions based on the
Bayesian sequential of range measurements. In [20], the au-
thors present a real-time NLoS identification approach based
on the received signal strength without the training phase and
prior knowledge of the environment. In [21] models the NLoS
as a deterministic additive term and identifies NLoS based
on the statistical features of range measurements. In [22], a
fusion technique such as an Inertial Navigation System (INS)
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is combined with UWB for pedestrian tracking. In [9], the
authors apply the floor map injunction with INS and UWB to
predict the state and then determine and recognise the NLoS
signals.

In contrast, in the feature-based NLoS identification, the
UWB waveform signals under the LoS are different from
those under NLoS conditions. These features can be ex-
tracted from the UWB signal to identify NLoS conditions
by employing Machine Learning (ML) algorithms. One of
the early ML-based NLoS identification approaches in UWB
was proposing the Support Vector Machine (SVM) algorithm
as a classifier in [23], [24]. In these papers [23]–[25], the
identification of LoS and NLoS signals was considered as
a binary classification problem. The results proved that the
ML approaches could improve the accuracy of UWB IPS by
identifying the NLoS signals. Different ML techniques like
Naive Bayes (NB) [26], Boosted Decision Tree (BDT) [27],
etc., were also investigated. Deep-learning based approach
such as Convolutional Neural Network (CNN) was developed
in [28]. Furthermore in [29], the authors propose a semi-
supervised based ML approach using autoencoders which
achieves 29% higher accuracy than state-of-the-art deep neural
network algorithm. However, the above-mentioned feature-
based methods have drawbacks, especially when the data
is imbalanced and a small number of NLoS data samples
are present. In such cases, it is hard for such algorithms to
train a robust classifier for NLoS identification. To address
this shortcoming, we propose a Gaussian Distribution (GD)
and Generalized Gaussian Distribution (GGD) algorithms for
NLoS signal detection in the presence of imbalance datasets.
Our proposed GGD is an unsupervised learning algorithm. We
start with the LoS data to build a training dataset, determine
a threshold through density estimation according to the GGD
of each feature, and test the classification of the new data
according to this calculated threshold.

Therefore, the main contributions of this paper are as
follows.

• Study the performance of an unsupervised learning algo-
rithm based on Gaussian Distribution (GD) and General-
ized Gaussian Distribution (GGD) algorithms to discrim-
inate between LoS and NLoS conditions in presence of
imbalance datasets with limited NLoS training data for
IPS.

• Compare the proposed algorithm with the existing super-
vised ML algorithm (SVM, DT, NB, and NN) in terms
of the confusion matrix, receiver operating characteristics
(ROC) curve and the area under the curve (AUC) to show
the superior performance of the proposed algorithms.

The remainder of this paper is organized as follows. Sec-
tion III describes the overall UWB system model and the
principle of UWB localization. In Section IV, our proposed
classification algorithms are discussed. In Section V, the
principle of our proposed algorithms is presented followed by
the features used for NLoS signal classification. In addition,
this section also discusses the environment in which the data
was collected, and the hardware used for this data collection.
Section VI presents the performance evaluation of the pro-

posed algorithms and compare the results with the state-of-art
ML algorithms in detail. The summary of the accomplishment
is given in Section VII.

II. ABBREVIATIONS AND ACRONYMS
Angle-of-Arrival - AOA
Area under the curve - AUC
Additive White Gaussian Noise - AWGN
Boosted Decision Tree - BDT
Channel Impulse Response - CIR
Conventional Neural Network - CNN
Comma-Separated Value - CSV
False Negative - FN
False Positive - FP
False Positive Rate - FPR
Gaussian Distribution - GD
Generalized Gaussian Distribution - GGD
Global Navigation Satellite System - GNSS
Inertial Navigation System - INS
Internet of Things - IoTs
Indoor Positioning System - IPS
Line-of-Sight - LoS
Import Vector Machine - IVM
K-Nearest Neighbor - KNN
Multi-Layer Perceptron - MLP
Naı̈ve Bayes - NB
Non-Line-of-Sight - NLoS
Probability Distribution Function - PDF
Receiver Operating Characteristics - ROC
Support Vector Machine - SVM
Time-of-Arrival - ToA
Time-of-Flight - ToF
True Positive - TP
True Positive Rate - TPR
Ultra-wideband - UWB

III. UWB POSITIONING SYSTEM MODEL

A. Transmitted UWB Signal by the Anchor
We consider an UWB signal waveform s(t) transmitted by

the help of K pulses p with a period of Tp that consists
of transmitted frames [30]. As the transmitted UWB signal
location is known the transmitted signal is modelled as

s(t) =
√
Es

K−1∑
k=1

p(t− kTp), (1)

where Es is the energy of the UWB signal s(t).

B. Received UWB Signal by the Mobile Node
The transmitted signal s(t) experiences multipath channel

effects and the received signal at the i-th mobile node can be
expressed as [31], [32].

ri(t) =

Vi∑
vi=1

hvis(t− τvi) + n(t), i = 1, 2, · · · , N. (2)
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where Vi is the maximum number of multipath experienced by
the i-th mobile node. hvi and τvi represent the amplitude and
delay of the v-th path respectively at the i-th mobile node, and
n(t) is the Additive White Gaussian Noise (AWGN) with zero
mean and two-sided power spectral density N0/2. However,
as this i-th mobile node or referred to a tag in literature will
be moving, therefore, our main interest will be to calculate the
distance between anchor node and the i-th mobile node. The
distance calculation is discussed in the upcoming subsection.

C. Localization System
UWB-based IPS consists of two different kinds of nodes.

Nodes with a known position are called anchors whereas the
nodes with unknown position are tags and their position is
to be determined. Firstly, time of arrival (ToA) technique can
be used to measure the distance between the anchor and tag.
Secondly, the triangulation technique helps to determine the
position of the tag in a 2-dimensional (2D) environment with
three or more than three anchors.

(a) Propagation time calculations

(b) Range scheme

Fig. 1: UWB localization theory in a 2-dimensional (2D)
environment

1) Time of Arrival (ToA) Approach
The first process of ToA will require both the anchor
and the tag to have synchronized clocks. As shown in
Fig. 1a, a timestamp will be sent by the i-th tag to the

j-th anchor. The timestamp will be processed by the j-
th anchor in Treply seconds and send back to the i-th
tag. The time taken for the i-th tag is Tround and the
propagation time τi,j can be expressed as

τi,j =
Tround − Treply

2
, i = 1, 2, · · · , N, j = 1, 2, 3.

(3)
The estimate distance di,j between the i-th anchor and
j-th tag can be calculated as

di,j = c× τi,j, (4)

where c is the speed of light in meter per seconds (m/s).
Fig. 1b shows the distance between the i-th tag and the
j-th anchor. However, the coordinates of the tag will
be unknown and for that the trilateration approach is
required.

2) Trilateration Approach for UWB Localization
Fig. 1b shows the position of the i-th tag with respect to
the j-th anchor. The coordinates of the j-th anchor are
(xj , yj) which are already known. The coordinates of the
i-th tag are represented as (x̂i, ŷi) , where (̂·) indicates
the estimate of the position. The distance between each
anchor and the tag is calculated as

di,j =
√

(x̂i − xj)2 + (ŷi − yj)2, i = 1, 2, · · · , N,
j = 1, 2, 3. (5)

The position of tag (x̂i, ŷi) can be determined by em-
ploying the least-squares solution.

IV. PROPOSED ALGORITHMS

We are given a UWB training set of size TL such that S =
{sss1, sss2, · · · , sssTL}T . If t represents the index of the dataset S,
then t will consist of M features and will be represented as
ssst = {st,1, st,2, · · · , st,M}. The collection of these features
are discussed in detail in the upcoming Section V. Upon
collection of these features, we need to design ML algorithms
such that we can classify the test data uuui of the i-th tag as LoS
or NLoS signals. After training the dataset on the developed
positioning algorithms we could classify the output of the test
data uuui as {l = 0 or 1}. This classification will indicate the
LoS l = 0 or NLoS l = 1 status of the received signal. Let us
now discuss the proposed positioning algorithms in detail.

A. Gaussian Distribution (GD)

Assuming the feature sm to be Gaussian Distribution (GD)
with mean µm, and variance σ2

m can be written as

P (sm, µm, σ
2
m) =

1√
2πσm

exp

(
− (sm − µm)2

2σ2
m

)
,

m = 1, 2, · · · ,M. (6)

However, we will still require to calculate the mean µm and
the variance σ2

m of the m-th feature. As the exact mean and
variance of the features of the dataset is unknown, we can
incorporate the provided training data TL to calculate their
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estimates. The estimate of the mean µ̂m and variance σ̂2
m for

the m-th feature can be calculated as

µ̂m =
1

TL

TL∑
t=1

st,m, m = 1, 2, · · · ,M, (7)

σ̂2
m =

1

TL

TL∑
t=1

(st,m − µ̂m)
2
,m = 1, 2, · · · ,M. (8)

Once we have the estimates of the mean and variance of each
feature on training data, given a test data uuui we can calculate
the probability as

P (uuui) =

M∏
m=1

P (um, µ̂m, σ̂
2
m), i = 1, 2, · · · , N, (9)

and classify the output as:

l =

{
P (uuui) > ε, LoS
P (uuui) ≤ ε, NLoS

(10)

where ε is judgment boundary and will be discussed in detail
in section V.

B. Generalized Gaussian Distribution, (GGD)
By using GD algorithm, some abnormal features of LoS

data may be difficult to classify, as a result the model could
wrongly classify it as a NLoS component. Furthermore, the
GD algorithm require two key parameters to be modelled: a)
mean and b) variance of the data as mentioned IV-A. In such
cases, the GD model may not be able to accuracately identify
the NLoS dataset. Therefore, instead of GD, Generalized
Gaussian Distribution (GGD) can be adopted [30]. The GGD
of the m-th feature can be written as

P (sm, µm, αm, βm) =
βm

2αmΓ(1/βm)
exp

(
−|sm − µm|

αm

)βm

(11)

where µm is the mean, βm determines the shape of the PDF,
αm is the scale parameter of the GGD and Γ(·) is the gamma
function. The variance σ2

m and the kurtosis κm if the GGD is
given as

σ2
m =

α2
mΓ(3/βm)

Γ(1/βm)

κm =
Γ(5/βm)Γ(1/βm)

Γ(3/βm)2
− 3. (12)

Given a dataset S, for GGD algorithm we need to estimate the
mean µ̂m, variance σ̂2

m and kurtosis κ̂m which are calculated
as

µ̂m =
1

TL

TL∑
t=1

st,m, m = 1, 2, · · · ,M, (13)

σ̂2
m =

1

TL

TL∑
t=1

(st,m − µ̂m)
2
, m = 1, 2, · · · ,M, (14)

κ̂m =
1
TL

∑TL
t=1 (st,m − µ̂m)

4[
1
TL

∑TL
t=1 (st,m − µ̂m)

2
]2−3,m = 1, 2,· · · ,M,(15)

where the estimate of kurtosis κ̂m can be used to measure the
shape parameter βm and estimate of variance σ̂2

m can help to

Algorithm 1 : Training Stage
Input: Collected dataset of UWB consisting of LoS and NLoS
signal features.
Output: Create model P (sssi) for the i-th tag of the dataset S.
Algorithm

1) Initialize and pre-process the dataset.
2) Select part of LoS as training data.
3) Estimate the mean µ̂m,
4) Estimate the variance σ̂2

m, and
5) Estimate the kurtosis κ̂m,
6) Construct the model P (sm) for the m-th feature.
7) Select the threshold ε by calculating F1-score value.
8) Construct the model P (sssi).

Algorithm 2 : Testing Stage
Input: Test dataset with a mixture of LoS and NLoS signals.
Output: Determine whether it is LoS or NLoS and then
determine the exact location of the tag or the moving node.
Algorithm:

1) Fit the model by calculating the probability P (uuui) of the
testing data as mentioned in (16).

2) If P (uuui) ≤ ε← NLoS signal.
3) Else P (uuui) > ε← LoS signal.
4) Determine the distance between the tag and the respec-

tive anchor using (5).

determine the scale parameter αm of the GGD. Now the test
data uuu can be employed to calculate the probability as

P (uuui) =

M∏
m=1

P (um, µ̂m, α̂m, β̂m), i = 1, 2, · · · , N. (16)

where the classification can be done with the help of (10). For
the sake of clarity, the GGD algorithm is summarised in the
next subsection.

C. Classification Algorithm

For the proposed classification technique, we first extract
the LoS and NLoS signal features from the received dataset
S, then use distribution of each features to establish a model
P (sssi) for the i-th tag. After the model is built and the threshold
is selected, we fit this model with the test dataset uuui and
classify whether the signal experiences a LoS or NLoS signal.
The steps of the training and testing stage of the proposed
GGD algorithm are shown in Algorithm 1 and 2, respectively.
As GGD is the more generalised algorithm we have only
summarised it. For GD algorithm step 5 will not be required
in Algorithm 1. For Algorithm 2 in step-1 we will replace
(16) with (9). Let us now look into the experimental setup
followed by data collection, configuration of the UWB kit and
key feature extractions in detail.

V. EXPERIMENT SETUP
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a-Scenario 1

b-Scenario 2

Fig. 2: The scenarios where training and test data were collected for evaluation:(a) Studio (b) Room

A. Data Extraction and Key Feature Selection Process

In this paper, MDEK-1001 UWB kits from DECAWAVE
company are employed for data preparation. The configuration
of the UWB kit is shown in Table I. All the experiment
is carried out using MATLAB (R2020b). Two separately
independent datasets for evaluation were collected in a small
studio environment of dimensions (3.3× 4.8) m as shown in
Figure 2(a) and a room environment of size (4.8× 5.4) m as
shown in Figure 2(b). In this paper, we have utilised scenario-
1, therefore, the studio environment for all the performance
evaluation. For Table IV and Fig. 11 only scenario-2 is em-
ployed to observe the robustness of the proposed algorithms.
During the LoS data collection, there was absolute clear
environment between the anchors and tag. For NLoS data
collection, there was an iron sheet placed between the anchors
and the tag, so that no direct path of signal can be transmitted
or received by it. The tag was connected to a PC and the
data was logged via the Teraterm software into a comma-
separated value (CSV) file. The collected dataset, had 15000
signals and 1000 LoS and 100 NLoS signals are collected
randomly. This selection results in a ratio of 1 : 0.1 for the
LoS and NLoS signal. Finally, we randomly select different
proportions of LoS and NLoS data to test the robustness of
proposed algorithm.

For our analysis, 7 signal components are extracted that are:

1) Amplitude of the first path (F1).
2) Amplitude of the second path (F2).
3) Amplitude of the third path (F3).
4) Preamble accumulation count value.

TABLE I: Configurations of the MDEK-1001 UWB kit.

Properties Values
Chip DW 1000
Transceiver DWM1000
Pulse shape Gaussian pulse
Number of Anchors 4
Data Rate 6.8 Mbps
Frequency 3993.6 MHz
Bandwidth 499.2 MHz
Channel 2
Pulse Repetition Frequency (PRF) 16 MHz

5) Amplitude of the channel impulse response (CIR).
6) Standard noise variance reported in the DW-1000

chipset.
7) The estimated calculated distance.

In brief, among the mentioned NLoS identification methods
in the literature, the threshold difference between the first-
path power and received power have been widely used in
different ML algorithms [17], [33], [34]. In our analysis we
will use the above 7 signal components to calculate our 4 key
features which are the estimated distance (5), first path power
level (17), received power level (18), and the power difference
between the first and the received power level (19). The first-
path power level is calculated as [17], [35]

FP Level = 10× log10

(
F 2
1 + F 2

2 + F 2
3

N2

)
−A dBm, (17)

where F1, F2 and, F3 represent first, second and third har-
monics of the first-path signal amplitudes. A is a constant
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a. Estimated distance b. FP Power Level

c. Received Power Level d. Threshold Power

Fig. 3: Histogram distribution of our 4 key features in LoS environment a) Estimated distance, b) first path power level, c)
received power level, and d) the threshold power.

equivalent to 113.77 when a PRF is 16 MHz as mentioned
in [35] (page-46), and N is the Preamble Accumulation Count
value. The received power level of the signal can be computed
as [35]

RX Level = 10× log10

(
CIR× 217

N2

)
−A dBm, (18)

where CIR is the Channel Impulse Response Power value and
217 is a correction factor so that the register value of DWM
1000 can be converted into the right magnitude for conversion
into dBm. The power dissipation in NLoS environment is
higher than the LoS environment due to multi-path effects,
resulting in the first path of the LoS signal to have more power
than the the first path of the NLoS signal. This knowledge
can now be employed to improve the detection capability of
the algorithm, therefore, the difference between the received
and first-path power can also be employed. The formula is as

shown in

Threshold Power = RX Level - FP Level (19)

Figures 3 and 4 show the probability density function
(pdf) of the selected four features which are the estimated
distance, first-path power, received path power, and the power
difference. Histogram function is employed to generate the
pdfs of these features and are represented by the blue bars. The
GD and GGD distribution is plotted by using the equation (9)
and (16), respectively. For GD distribution, only mean and
variance of the data is required. However, for GGD distribu-
tion, mean, variance, and kurtosis is required. The distribution
of the features can be more closely approximated with the
GGD as it has three parameters to update as compared to GD
which only has two parameters. From these figures, it can
be observed that the selected features follow GD and GGD
distribution, therefore, the proposed algorithms can be used
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a. Estimated distance b. FP Power Level

c. Received Power Level d. Threshold Power

Fig. 4: Histogram distribution of our 4 key features in NLoS environment a) Estimated distance, b) first path power level, c)
received power level, and d) the threshold power.

for the data classification. Let us now look into designing the
selection threshold for these pdfs.

B. Threshold Selection, ε
In order to classify the LoS and NLoS signals, we need to

select an appropriate threshold ε as mentioned in section IV.
For threshold ε selection, we start by constructing a training
set, then use the remaining LoS and NLoS signals to cross-
check and validate the results, and finally carry out the testing
as mentioned above. According to the training data set, we
estimate the mean, variance, and kurtosis of each features
to build function P (sssi) as mentioned in algorithm 1. The
threshold ε was chosen based on the F -Score. F -Score is
defined as the weighted average of precision and recall and
calculated as

F-Score =
2× (Recall × Precision)

Recall + Precision
, (20)

where Precision and Recall are defined as

Precision =
TP

TP + FP
, (21)

Recall =
TP

TP + FN
, (22)

where TP is the True Positive, FP is the False Positive, FN
is the False Negative, and TN is the True Negative, respec-
tively. TP means that the instances are classified as positive
when they are actually positive, TN illustrates the instances
are classified as negative when they are in negative condition.
FP shows that the instances are classified as positive when
they are negative. Similarly, FN represents the instances
classified as negative when they are actually positive. However,
the indoor environment changes and therefore, we have added
a forgetting factor λ for the calculation of threshold ε. In
such a case, the threshold can be updated after training and
therefore can incorporate small changes in the environment.
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a. SVM-based algorithm b. DT-based algorithm

c. NB-based algorithm d. NN-based algorithm

e. GD-based algorithm f. GGD-based algorithm

Fig. 5: Visualization of samples a) SVM-, b) DT-, c) NB-, d) NN-, e) GD-, and f) GGD-based algorithms.

The threshold can be updated by the following equation

εt+1 = εt + λ× et, (23)

where t is the time index and et is the error if we classify
the LoS as NLoS or vice versa. This will help us update the
threshold after training.
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a. SVM algorithm b. DT algorithm

c. NB algorithm d. NN algorithm

e. GD algorithm f. GGD algorithm

Fig. 6: The confusion matrix of the validation data set on six algorithms a) SVM, b) DT, c) NB, d) NN, e) GD, and f) GGD
algorithms. The proposed algorithms improve the classification significantly.

VI. PERFORMANCE EVALUATION

In this section, we examine the performance of proposed
algorithms. We first compare the results of the proposed
classifier with the state-of-the-art machine learning algorithm
based on SVM, DT, NB, and NN and start by computing
two quantitative metrics: (i) confusion matrix that shows the
classification results of each individual classifier, and (ii)

Receiver Operating Characteristics (ROC) curve and corre-
sponding Area-Under-the-ROC curve (AUC) value. Second,
we calculate the performance of these algorithms in terms of
precision, recall and accuracy. Third, the effect of different
ratios of LoS and NLoS is studied for these algorithms and
finally, the effect of change in environment to observe the
robustness of our proposed algorithms.
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The visualization of the samples are shown in Figure 5. The
visualization of the samples is plotted with the help of the
power difference calculated using (19) and the distance error
that is calculated in centimeters. There are 1000 LoS and 100
NLoS signals, respectively. In this figure, the green samples
represent the LoS signals and the blue colour represents the
NLoS signals. The blue samples with red circle are the NLoS
samples which have been falsely classified as LoS. It can be
observed from these figures that the proposed GGD algorithm
can provide a higher classification by setting an appropriate
threshold by training the features as mentioned in section V as
compared to the GD and the classical ML algorithms. For the
SVM-, DT-, NB- and NN-based algorithms the performance
is relatively poor as compared to GD and the GGD algorithm,
this is due to the limited number of NLoS signals in the dataset
failed to train a robust model for classification. Finally, it can
be concluded that for imbalanced dataset the GD and GGD
performs exceptionally better in classifying the LoS and NLoS
signals as compared to conventional ML algorithms such as
SVM-, DT-, NB-, and NN- based algorithms.

TABLE II: Dataset of the LoS and NLoS signals

Signal Distance RX level FP level PD Classified
m dBm dBm dBm

LoS 7.92 -92.72 -89.63 3.09 LoS
LoS 9.98 -94.16 -89.55 4.61 NLoS
NLoS 7.22 -95.27 -88.40 6.87 NLoS
NLoS 7.38 -93.96 -88.53 5.43 LoS

Table II shows an example of LoS and NLoS signal for the
proposed UWB system. From the table it can be observed that
we have distance and three features that are RX power level,
FP power level, and PD power levels followed by how it is
classified by the algorithm. From the table and as mentioned
previously, the PD is more for NLoS signals as compared to
LoS signals. However, still it cannot be simply employed for
classification a signal as LoS or NLoS. Therefore, for accurate
classification of an UWB system we will require a number of
different features.

Figure 6 plots the confusion matrix of the four known ML
algorithms (SVM, DT, ND, and NN) followed by the two
proposed algorithms GD and GGD. All these algorithms are
based on 1000 LoS and 100 NLoS signals. From these confu-
sion metrics, it can be concluded that the worst performance
in terms of True Positive Rate (TPR) for LoS components
is achieved by SVM which is 94.9%. NB algorithm performs
0.01% better than DT in terms of TPR, however, NN algorithm
achieves the best performance of 96.1% as compared to
traditional ML algorithms. We can observe that the proposed
GD and GGD performance is better than the existing ML
algorithms and in terms of TPR in LoS components is 97.3%
and 98.3%, respectively. Similarly, for NLoS components the
performance of NN is much superior as compared to the SVM,
DT, and NB. SVM and DT can correctly classify only 69% of
NLoS components. NB classifies only 72% of TNs. NN can
classify 89% while GD and GGD can classify more than 90%
NLoS components accurately. Therefore, from Fig. 6 it can
be observed that for both the LoS and NLoS components GD
and GGD algorithms perform much superior to the classical

ML algorithms such as SVM, DT, NB, and NN.

Fig. 7: Receiver Operating Characteristics (ROC) and Area
under the curve (AUC) comparison of the algorithms

Figure 7 plots the receiver operating characteristics (ROC)
curve. With these ROC curves, area under the curve (AUC)
can be studied for the proposed and ML based positioning
algorithms. The ROC curve is plotted with respect to the true
positive rate (TPR) versus the false positive rate (FPR). Gen-
erally, in a ROC curve the best classifier is closer to the upper
left corner, resulting in a larger AUC. From figure 7 it can be
observed that the GGD algorithm is closer to the upper left
corner as compared to other algorithms. Furthermore, the AUC
of GGD algorithm is 0.982 which is more than any compared
algorithm. As a result, the overall GGD algorithm will be
superior in terms of classification accuracy as compared to
other algorithms. The second best performance was achieved
by the GD algorithm that was around 0.965 and the SVM
performance was the worst despite achieving a value of 0.916.
Out of all the ML algorithms NN performed superior as the
area under the curve was equivalent to 0.957. Finally, it can
be observed that the proposed algorithms, therefore GD and
GGD, perform superior to the other ML algorithms as they
can classify the data more accurately.

Figure 8 shows the evaluation results of these algorithms in
terms of precision, recall, and accuracy. All these confusion
matrices are formed by the help of 1100 classified samples
consisting of 1000 LoS and 100 NLoS signals. From the
figure, it can be observed that the accuracy of the SVM-based
algorithm is equivalent to 92.6%. The accuracy of the DT-
based, NB-based, and NN-based algorithms is 92.8%, 93.2%,
and 95.5%, respectively. The GD-based algorithm results in
more than 96.5%. The overall accuracy achieved with the
GGD-based algorithm is around 98% which shows the GGD-
based algorithm is superior to the classical ML and GD-based
algorithms. Finally, Table III summarizes and represents the
performance of all these algorithms in numbers. It can be
observed from the table that GGD algorithm has superior TPR,
TNR, Precision, Recall, Accuracy and AUC as compared to
all the algorithms. Furthermore, the FPR and FNR are also
the lowest as compared to GD and classical ML algorithms.
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Fig. 8: Performance comparison in terms of Precision, Recall,
and Accuracy.

Fig. 9: Classification accuracy with different ratios of LoS and
NLoS for different algorithms.

However, in this case, the accuracy of the algorithms is
dominated by the LoS signals, therefore, in our next figure we
observe the impact of increasing NLoS signals as compared
to LoS signals.

Figure 9 graphically shows the classification accuracy of
different ratios of LoS and NLoS samples for the classical
ML, GD, and GGD algorithms. The reason for plotting this
curve is to see the effect of the imbalanced dataset. From the
figure, it can be observed that we have five different ratios
0.1, 0.2, 0.5, 0.8, and 1.0, respectively. With a ratio of 0.1,
we will have 1000 LoS and 100 NLoS signals. However, as
the ratio increases the number of NLoS signals increases.
Therefore, for a ratio of 1, we have 1000 LoS and 1000
NLoS signals. From the figure, it can be observed that the
classification accuracy significantly improves as the ratio in
the imbalanced datasets decreases. For the SVM algorithm,
the improvement in classification accuracy performance is
significantly more as compared to the other algorithms. For a

Fig. 10: Comparison of static and dynamic threshold ε

ratio of 0.1, the accuracy is around 92.6%, while the maximum
accuracy is achieved when we have a balanced dataset with
a ratio of 1, therefore, around 97.2%. For the GD algorithm,
the classification accuracy improves from 96.7% to 98% when
the imbalance in the dataset is improved. Finally, for the
GGD algorithm, the worst classification is around 98% and
the best is around 99.3% for the balanced dataset. The total
improvement in classification accuracy is around 3.6% for the
SVM algorithm, 2.5% for the GD algorithm, and 1.5% for
the GGD algorithm. This indicates that the GGD algorithm is
more robust as compared to GD and NB algorithms for a given
imbalanced or balanced dataset. Finally, this simulation result
proves that the GD and GGD can guarantee better results for
NLoS identification under different situations compared to the
ML algorithms especially when the dataset is imbalanced.

Figure 10 shows the impact of the updating the threshold ε
after every time instant. There are two approaches shown in
the figure that are static and dynamic threshold ε approach.
In the static-threshold approach, the ε is not updated after
training and therefore can not update itself if there is any
change in the environment. However, in the dynamic threshold
approach the ε is updated after training by employing a
forgetting factor λ = 0.95 as mentioned in (23). It can be
observed from the figure that for both the GD and GGD
algorithms, the dynamic threshold performs better than the
static threshold. An improvement of approximately 0.04 and
0.02 is achieved in terms of accuracy by adopting the dynamic
threshold approach as compared to static approach for GD and
GGD algorithms. Therefore, in this paper dynamic threshold
approach is employed.

In order to examine the proposed algorithm, we carried out
experiments in two different scenarios as shown in Figure 11.
The configuration of the UWB devices remained the same
during the measurements. We build the UWB model using the
studio dataset and then tested it on the room data-set. The
results are shown in Table IV and plotted in Figure 11. From
Table IV and Figure 11 it can be observed that the performance
of GD and GGD-based algorithms is not impacted much by
changing the environment. It can be observed that the accuracy
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TABLE III: Comparison of the proposed GD and GGD with SVM, DT, NB, and NN algorithms.

Algorithms TPR FPR FNR TNR Precision Recall Accuracy AUC
SVM 949 51 31 69 0.968 0.949 0.926 0.916
DT 952 48 31 69 0.968 0.952 0.928 0.923
NB 953 47 28 72 0.971 0.953 0.932 0.93
NN 961 39 11 89 0.989 0.961 0.955 0.957
GD 973 27 9 91 0.990 0.973 0.967 0.965
GGD 983 17 4 96 0.995 0.983 0.980 0.982

TABLE IV: Performance comparison of the two different environments.

Algorithm Training Testing TP FP FN TN Precision Recall Accuracy AUC
Scenario Scenario

GD Studio Studio 973 27 9 91 0.990 0.973 0.967 0.965
GD Studio Room 964 36 11 89 0.987 0.964 0.956 0.96
GGD Studio Studio 983 17 4 96 0.996 0.983 0.98 0.982
GGD Studio Room 974 26 7 93 0.993 0.974 0.97 0.975

Fig. 11: Accuracy results of two different environments

of training in the studio and testing at room did not had a big
impact. It can be observed from the figure and the table that
the accuracy reduced by 0.011 and 0.01 when employing the
GD- and GGD- based algorithm, respectively.

VII. CONCLUSIONS

In this paper, a featured-based method for the UWB
localisation is proposed. The main aim is to improve the
classification of the UWB IPS especially when the dataset is
imbalanced, therefore, having a large number of LoS signals
as compared to NLoS signals. Initially, in this work seven
UWB signal components were collected, and based on these
seven signal components, four key features were selected
such as estimated distance, first path power level, received
power level, and threshold power. With these key features,
the joint probability densities for Gaussian and generalised
Gaussian are calculated. In order to classify the LoS and
NLoS signals a threshold is computed. From the simulation
and experimental results, and it can be observed that the
performance of the UWB localisation system was significantly
improved by designing the GD and the GGD algorithms as
compared to the existing SVM, DT, NB, and NN algorithms.

The confusion matrix, ROC, and AUC area for these classi-
fication algorithms were compared. In addition, we computed
the different ratios of LoS and NLoS signals in the dataset. It
can be observed that the classification accuracy improves as
the imbalance in dataset is removed, therefore, having same
number of LoS and NLoS signals. Finally, from this paper,
it can be concluded that the GGD algorithm is effective for
NLoS signal identification with balanced Los-NLoS mixed
data and remain highly accurate even if we have unbalanced
data. For future work, the data can be extended to a large
dataset with more signal features to evaluate the classification
accuracy. Furthermore, the assumption that all the features are
independent will also be removed.
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