
 

 

1 INTRODUCTION 
 

Since 2001, wind turbines installed all around the 
world have reached the cumulative capacity of 837 
Giga Watt (GW) by 2021 with a Compound Annual 
Growth Rate (CAGR) of 7 % of new commissioning 
for the past 5 years (Lee & Zhao 2021). By the end 
of 2021, there are 48 GW of capacity in-operation 
that comes from the offshore wind energy globally, 
which almost doubled the capacity compared to the 
year of 2019 (Herzig 2022). Global Wind Energy 
Council (GWEC) projected additional capacities of 
557 GW by the end of 2026 in which 91 GW comes 
from the offshore wind energy (Lee & Zhao 2021). 
There is a growing potential in the use of floating 
structures that would allow installation in deeper 
water depth to be more economically feasible. In 
Europe alone, it is projected to install over 7 GW of 
floating wind farms over the next decade (Ramírez 
et al. 2021). As of late 2020, more than 81% of the 
existing offshore wind turbines are supported by 
monopile foundation with only 0.2 % accounts for 
floating structures of spar-buoy, semi-submersible 
and barge (Ramírez et al. 2021). In the framework of 
the growing industry of floating wind turbines 
(FWT), the different floating structures have their 
advantages and downsides attributed to their 
physical characteristics. In 2011, 1:50 scaled model 
tests were performed in the Maritime Research 

Institute Netherlands (MARIN) ocean basin by the 
DeepCwind consortium for three different floating 
platforms: spar-buoy, tension leg platform (TLP) 
and semi-submersible (Dagher et al. 2013; Goupee 
et al. 2012; Koo et al. 2014). Two objectives were 
set for the tests: to identify the physical 
characteristics of different typical FOWT structures 
and to provide a benchmark data to validate 
numerical tools capable of simulating aero-hydro-
servo-elastic problems (Dagher et al. 2013). From 
the model tests, it was found that the semi-
submersible type induced the lowest bending 
moment at the tower base compared to the TLP and 
spar-buoy structures (Goupee et al. 2012). 
Additional tests were performed in 2013 for the 
semi-submersible platform with an adaption made to 
the turbine that is replaced by the one built by 
MARIN (Goupee et al. 2014), which has better 
correlation to the full-scale performance of the 
National Renewable Energy Laboratory (NREL) 5 
MW turbine  (Jonkman et al. 2009). The same 
DeepCwind semi-submersible with the NREL 5 
MW reference turbine was used as a study case to 
perform code-to-code comparisons between 
different software packages in the Offshore Code 
Comparison Collaboration Continuation (OC4) 
project (Robertson, Jonkman, Masciola, et al. 2014; 
Robertson, Jonkman, Vorpahl, et al. 2014). 
Furthermore, the Offshore Code Comparison 
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ABSTRACT: This paper presents the algorithm of a computationally efficient and reliable time-domain 
numerical tool capable of modelling floating wind turbine (FWT) platforms subjected to waves loads. 
Validation is performed against the experimental data of the DeepCwind semi-submersible. The platform's 
responses are modelled according to the Cummins’ equation of motion using frequency-domain 
hydrodynamic coefficients. Convolution integral of the impulse response functions for radiation forces is 
modelled using the recursive approach. The Morison equation is implemented to account for the drift force 
and viscous damping induced by the large heave plate. Mooring lines are modelled according to the lumped 
mass approach using an adapted version of the open source code MoorDyn. Modifications are done to model 
the hydrodynamic forces in the mooring lines subjected to waves and currents. A comparison is performed 
against DualSPHysics externally coupled with the MoorDyn+. This work is a foundation to further develop an 
FWT design optimization tool. 



 

 

Collaboration, Continued, with Correlation (OC5) 
project validated different numerical approaches and 
compared their accuracies in simulating the aero-
hydro-servo-elastic problems of the DeepCwind 
semi-submersible (Robertson et al. 2017). The 
simulations in OC5 performed by 21 participants 
using different numerical tools shown that on 
average the mooring line tension is 20 % 
underpredicted. This can be acceptable at the early 
design stage, albeit it can be problematic when 
optimizing the system further. Phase I of the on-
going Offshore Code Comparison Collaboration, 
Continued, with Correlation, and unCertainty (OC6) 
project addressed this issue by focusing on the non-
linear hydrodynamic problems and removing the 
uncertainties that come from the turbine and 
mooring lines (Robertson et al. 2020).  

In the past 10 years, the DeepCwind semi-
submersible has been extensively studied by many 
researchers around the world mainly using  
potential-flow based software, Morison element 
model, hybrid approach of potential-flow based that 
includes Morison drag term (Coulling et al. 2013; 
Gueydon, Duarte, and Jonkman 2014; Hall and 
Goupee 2015; Robertson et al. 2017, 2020; 
Robertson, Jonkman, Vorpahl, et al. 2014); and 
recently higher fidelity hydrodynamics solver (Liu et 
al. 2017; Wang et al. 2022). The results of OC4 and 
OC5 suggest that modelling the mooring line 
dynamics provide superior results to the quasi-static 
approach, especially when the wave induced loads in 
line elements are included in the approach 
(Robertson et al. 2017). For this reason, in this paper 
the authors utilized a validated open-source mooring 
dynamic solver, “MoorDyn” (Hall and Goupee 
2015), and made adaptations to include wave and 
current induced loads and horizontal seabed frictions 
model (Pribadi, Donatini, and Lataire 2019), here 
referred to as “Adapted-MoorDyn”. Present paper 
includes a third variation of MoorDyn, further 
developed by UVIGO and referred to as 
“MoorDyn+”. Furthermore, due to the large heave 
plate as well as considerable drift force, the use of 
hybrid-Morison model results in a better agreement 
than a potential-flow only approach. The hybrid-
Morison approach implemented in this paper has 
been internally coupled with the Adapted-MoorDyn 
and validated against a moored cuboid (Fernandez et 
al. 2021). Further validation is needed especially 
against a more realistic floater geometry for the 

proposed method to be considered as reliable when 
modelling an FWT. For this purpose, the 
DeepCwind semi-submersible is chosen for the 
validation due to the numerous research previously 
done in the past decade, making it a robust study 
case. To compare the algorithm previously validated 
against a moored cuboid, the DualSPHysics 
(Domínguez et al. 2021) code is used, which is a 
Computational Fluid Dynamics (CFD) solver based 
on the Smoothed Particle Hydrodynamics (SPH) 
method. Specifically, the coupling between 
DualSPHysics and a mooring library presented in 
Domínguez et al. (2019), is used to perform the 
proposed comparison. 

Going forward, the numerical approach presented 
in this paper will serve as an early design 
optimization tool to perform extensive number of 
simulations for different FWT mooring 
configurations, due to its time-efficient nature with 
reasonable accuracies for that purpose. In addition, 
simulations input/output will be utilized for 
surrogate model training. It was demonstrated that 
the use of surrogate model in mooring design 
optimization can reduce the computational cost by 
114 times, albeit the author used 2500 mooring 
configurations for the training set of the surrogate 
model (Pillai, et al. 2019). Regardless, with the ever-
growing number of different floating platforms 
design and their data availability, one can benefit 
from a machine-learning algorithm for mooring 
design optimization in the early design process. 

2 NUMERICAL MODEL  
 
This section explains the mathematical models and 
their assumptions used in the numerical tool. An 
open-source code called MoorDyn (Hall 2017; Hall 
and Goupee 2015) is adapted to be a stand-alone tool 
to simulate a moored floating rigid body used in this 
paper. Figure 1 shows the algorithm used in this 
approach. Firstly, the frequency domain calculations 
are performed. Then, based on the frequency domain 
coefficients; the added mass at infinity and impulse 
response functions (IRF) are obtained. The 
frequency domain excitation force, Prony’s 
coefficients and infinite added mass are used as an 
input for the time-domain calculation, marked with a 
shaded rectangle in Figure 1. The internal coupling 
is done inside Adapted-MoorDyn solver to reduce  
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computational cost compared to the external 
coupling approach that the original MoorDyn was 
intended to be used (Hall and Goupee 2015).  At the 
beginning of the time-domain simulation, the 
position of the rigid body is used to update the 
fairleads’ position. Then, based on the new position 
of the fairlead, forces are calculated for the line 
element. The fairlead total force is transferred to the 
rigid body to include in the Cummins’ equation and 
solved using a Runge-Kutta second order (RK2) 
explicit scheme, the same integration scheme used to 
march in time for the mooring lines. This process is 
repeated until it reaches a predetermined simulation 
end time.  

2.1 Mooring lines 

MoorDyn is a mooring line dynamic solver based on 
the lumped-mass approach to model the dynamics of 
mooring lines. Adaptions to MoorDyn were 
implemented as such that wave kinematics, 
calculated using the linear Airy theory (Airy and 
G.B 1841), are included in the Morison equation 
(Morison et al. 1950) to model the hydrodynamics of 
the lines. In addition, seabed contact in the 
horizontal direction is modeled to simulate the 
friction between the lines and the sea bottom. These 
additions to the original MoorDyn have been 

previously used to simulate a mooring system for a 
mussel longline where the modifications to the code 
is explained in details  (Pribadi et al. 2019). A line is 
discretized into S number of segments with their 
internal and external forces transferred into S+1 
number of nodes. A node receives half of the total 
force 𝐹𝑖 transferred from its neighboring segment. 
The force 𝐹𝑖 is the contribution of tension 𝑇, 
numerical damping 𝐶, weight 𝑊, buoyancy 𝐵 and 
hydrodynamic forces from the Morison equation 
𝐹𝑑𝑟𝑎𝑔 and 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 (Fernandez et al. 2021; Morison et 
al. 1950; Pribadi et al. 2019).  𝐹𝑖 is dependent on the 
node’s position 𝑟𝑖, node’s velocity 𝑟̇𝑖, fluid’s velocity 
𝑣𝑖 and fluid’s acceleration 𝑣̇𝑖, as shown in Equation 
(1): 

𝐹𝑖(𝑟𝑖(𝑡), 𝑟̇𝑖(𝑡), 𝑣𝑖(𝑡), 𝑣̇𝑖(𝑡)) = 𝐹𝑑𝑟𝑎𝑔(𝑟̇𝑖(𝑡), 𝑣𝑖(𝑡)) 

+ 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎(𝑣̇𝑖(𝑡)) + 𝑇(𝑟𝑖(𝑡)) + 𝐶(𝑟̇𝑖(𝑡)) + 𝑊 + 𝐵  
(1) 

Subscript i represents the spatial dimension of x, y 
and z. Note that 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 takes only the contribution 
of fluid’s acceleration as the contribution from line’s 
acceleration is included in the left-hand-side of 
Equation (2). The node’s acceleration 𝑟̈𝑖 at time t for 
a single node is calculated using the following 
equation: 

(𝑚 + 𝑎)𝑟̈𝑖(𝑡) = 𝐹𝑖( 𝑟̇𝑖(𝑡), 𝑟𝑖(𝑡), 𝑣̇𝑖(𝑡), 𝑣𝑖(𝑡))  (2) 

Figure 1. Flowchart of the algorithm used in this study 



 

 

where 𝑚 = line segment’s mass; 𝑎 = line segment’s 

added mass. Based on the Equation (2), a single 

node’s positions [𝑟𝑥, 𝑟𝑦, 𝑟𝑧] and velocities [𝑟̇𝑥, 𝑟̇𝑦, 𝑟̇𝑧] 

are obtained by constructing a system of Ordinary 

Differential Equations (ODEs) solved using the RK2 

scheme. This is done by introducing a state vector 𝑋 

and a derivative of a state vector 𝑋̇ shown in Eq. (3) 

and (4): 
 

𝑋(𝑡) =

[
 
 
 
 
 
 
𝑟̇𝑥(𝑡)
𝑟𝑥(𝑡)

𝑟̇𝑦(𝑡)

𝑟𝑦 (𝑡)

𝑟̇𝑧(𝑡)

𝑟𝑧 (𝑡)]
 
 
 
 
 
 

  (3) 

Suppose that the integration time-step of ∆𝑡 is used. 
To obtain the state vector 𝑋 at time 𝑡 + ∆𝑡, RK2 
scheme can be divided into two integration steps 
(Press et al. 2007). Firstly, total force 𝐹𝑖 at time 𝑡 is 
calculated using Eq. (1). Secondly, the node’s 
accelerations are calculated using Eq. (2). Thirdly, 
derivative of a state vector 𝑋̇ (𝑡) is constructed by 
substituting Eq. (2) into (4): 

𝑋̇(𝑡) =

[
 
 
 
 
 
 
 
(𝑚 + 𝐶𝑎)−1𝐹𝑥( 𝑟̇𝑥(𝑡), 𝑟𝑥(𝑡), 𝑣̇𝑥(𝑡), 𝑣𝑥(𝑡))

𝑟̇𝑥(𝑡)

(𝑚 + 𝐶𝑎)−1𝐹𝑦 ( 𝑟̇𝑦(𝑡), 𝑟𝑦 (𝑡), 𝑣̇𝑦(𝑡), 𝑣𝑦(𝑡))

𝑟̇𝑦(𝑡)

(𝑚 + 𝐶𝑎)−1𝐹𝑧( 𝑟̇𝑧(𝑡), 𝑟𝑧 (𝑡), 𝑣̇𝑧(𝑡), 𝑣𝑧(𝑡))

𝑟̇𝑧(𝑡) ]
 
 
 
 
 
 
 

 (5) 

Then, the first numerical integration step is 
performed to calculate the state vector 𝑋 at 𝑡 +
 ∆𝑡/2 as follows: 

𝑋 (𝑡 + 
∆𝑡

2
)  =  𝑋(𝑡) +  ∆𝑡 𝑋̇(𝑡) (6) 

In the same manner as the previous steps, the total 
force 𝐹𝑖 at time 𝑡 + ∆𝑡/2 can be calculated to obtain 
𝑋̇(𝑡 + ∆𝑡/2). Finally, the second part of RK2 scheme 
can be performed: 

𝑋(𝑡 + ∆𝑡)  =  𝑋(𝑡) +  ∆𝑡 𝑋̇ (𝑡 +
∆𝑡

2
) (7) 

By substituting (3) and (4) into (7), the positions and 
velocities of a single node at 𝑡 + ∆𝑡 are obtained. 
Same principle applies to obtain the new positions of 
all S+1 number of nodes. In such case, the state 
vector and its derivate have the dimension of 6 x 
(S+1) as opposed to 6 shown in Eq. (3) and Eq.(4).  

2.2 Rigid body in Adapted-MoorDyn 

The method used to model the rigid body motions in 
this paper has been previously described in greater 
details (Fernandez et al. 2021) with a slight 
difference in the approach to calculate the viscous 
drag moment. As the hybrid approach is used, 

firstly, results from a separate potential-flow-theory 
based software are needed. In this case, an open-
source boundary element method (BEM) solver 
Capytaine (Ancellin and Dias 2019) is used to obtain 
the results in the frequency domain. In the time-
domain, the equation of motions of a rigid body in 
waves can be expressed using the Cummins’ 
equation (Cummins 1962): 

(𝑴 + 𝑨∞)𝒙̈(𝑡) + ∫ 𝑲𝑇

𝑡

0

(𝑡 − 𝜏)𝒙̇(𝜏)𝑑𝜏 + 𝑲𝒉𝒙(𝑡)

=   𝑭𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛   +  𝑭𝑣𝑖𝑠𝑐𝑜𝑢𝑠 +  𝑭𝑚𝑜𝑜𝑟𝑖𝑛𝑔    
(8) 

where 𝑴 = rigid body’s mass matrix; 𝑨∞ = infinite 
added mass matrix; 𝒙̈(𝑡) = rigid body’s acceleration 
vector; and 𝑲𝑇 = impulse response function (IRF) 
for the wave radiation forces; 𝒙̇(𝑡) = rigid body’s 
acceleration vector;  𝑲𝒉 = hydrostatic restoring 
matrix; 𝒙(𝑡) = rigid body’s position vector. The 
complex excitation force  𝑭𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 is calculated as 
the summation of all directional spectral components 
utilizing the frequency-domain excitation force 
amplitude 𝒇𝑒 and phase 𝜀. 

𝑭𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = 

∑∑ 𝜁𝑗,𝑙   𝒇𝑒(𝜔𝑗 , 𝜃𝑙)𝑒
𝑖𝑘𝑗(𝑥𝑐𝑜𝑠𝜃𝑙+𝑦𝑠𝑖𝑛𝜃𝑙)+𝑖(−𝜔𝑗𝑡+𝜑𝑗,𝑙+𝜀𝑗,𝑙)

𝑄

𝑙=1

𝑃

𝑗=1

    
(9) 

where: j = frequency index; l = direction index; 𝜁𝑗,𝑙 = 

wave amplitude; 𝜔𝑗= wave angular frequency; 𝜃𝑙 = 

wave direction; 𝜑𝑗,𝑙 = wave random phase; 𝑘𝑗 = 

wave number. 
𝑨∞ and 𝑲𝑇 are calculated using the frequency 
domain coefficients (Ogilvie 1964) previously 
obtained from Capytaine. To reduce the 
computational effort, the convolution integral in 
Equation (8) is approximated using a recursive 
approach (Sheng, Alcorn, and Lewis 2015) shown in 
Equation (10) and (11): 

∫ 𝑲𝑇

𝑡

0

(𝑡 − 𝜏)𝒙̇(𝜏)𝑑𝜏 =    ∑ 𝐼𝑘

𝑁

𝑘=1

(𝑡) (10) 

𝐼𝑘(𝑡) =  𝐼𝑘(𝑡 − ∆𝑡) 𝑒𝛽𝑘∆𝑡 +   𝛼𝑘𝑒
𝛽𝑘

∆𝑡
2  𝒙̇(𝑡 − ∆𝑡) ∆𝑡 (11) 

where: 𝛼𝑘 and 𝛽𝑘 = Prony’s coefficients (Duclos, 

Clément, and Chatry 2001); 𝑘 = number of Prony’s 

coefficients. This method is derived from the 

Prony’s approach (Duclos et al. 2001) by evaluating 

and approximating the motion changes between two 

consecutive time steps. Thus, it is required to save 

the results of a previous time-step 𝐼𝑘(𝑡 − ∆𝑡), which 

gets renewed on the next time step 𝑡. Compared to 

the direct convolution integral, this approach negates 

the need of saving and renewing all previous time 

history other than the one from a previous time-step 
(𝑡 − ∆𝑡). In addition, unlike the conventional 

Prony’s approach, this does not add extra ODEs to 

𝑋̇(𝑡) =

[
 
 
 
 
 
 
𝑟̈𝑥(𝑡)

𝑟̇𝑥(𝑡)

𝑟̈𝑦(𝑡)

𝑟̇𝑦(𝑡)

𝑟̈𝑧(𝑡)

𝑟̇𝑧(𝑡)]
 
 
 
 
 
 

 (4) 



 

 

solve that can slow down the computational time, 

even compared to the direct integration method for 

higher number of degrees of freedoms (Armesto et 

al. 2015). As previously implemented, viscous 

effects are modelled using the drag term in the 

Morison equation (Fernandez et al. 2021). However, 

for the rotational degrees of freedoms, quadratic 

damping coefficient 𝐵𝑖
𝑣 is used instead: 

 𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠 = 

{

1 

2
𝜌𝐶𝐷𝑖

𝐴𝑖(𝑣𝑖(𝑡) − 𝑥̇𝑖(𝑡))|𝑣𝑖(𝑡) − 𝑥̇𝑖(𝑡)|, 𝑖 = 1,2,3

−𝐵𝑖
𝑣(𝑥̇𝑖(𝑡))|𝑥̇𝑖(𝑡)|, 𝑖 = 4,5,6 

 

(12) 

where 𝐶𝐷𝑖 = drag coefficient; 𝐴𝑖  = projected area; 

𝑥̇𝑖(𝑡) = rigid body’s velocity; 𝑣𝑖(𝑡) = fluid velocity. 
The quadratic damping coefficients used in the 
calculations are described in the sub-section 3.1. The 
wave kinematics above calm water are calculated 
using Wheeler’s approach  (Wheeler 1970). To save 
computational time, wave dispersion relation is 
approximated using Fenton’s approximation (Fenton 
1988). Mooring force  𝐹𝑚𝑜𝑜𝑟𝑖𝑛𝑔 is transferred from 
the total force 𝐹𝑖 at the fairlead node calculated in 
Equation (1). Finally, RK2 scheme is used to obtain 
the positions of the rigid body in time. This is done 
by turning the Equation (8) into a system of ODEs 
and solved in a similar manner as the mooring lines 
shown in the sub-section 2.1. 

2.3 Rigid body in DualSPHysics 

DualSPHysics is a fully Lagrangian and meshless 
code, based on SPH. In DualSPHysics, the fluid is 
discretized into a set of particles and the physical 
properties of each particle a are determined as an 
interpolation of the corresponding values of the 
neighboring particles. The contribution of each 
neighboring particle is weighed based on a kernel 
function that depends on the inter-distance between 
two particles (𝑊) with a characteristic smoothing 
length (ℎ ). 

2.3.1 Governing equations in SPH 
The governing equations in SPH are the Navier-
Stokes equations. Using the kernel function the N-S 
equation can be written in a discrete SPH 
Lagrangian system as: 

𝑑𝜌𝑎

𝑑𝑡
= ∑ 𝒎𝑏(𝐯a − 𝐯𝑏)∇𝑎𝑊𝑎𝑏

𝑏

 (13) 

𝑑𝐯𝑎

𝑑𝑡
= −∑𝒎𝑏 (

𝑷 𝑏 + 𝑷𝑎

𝜌𝑏 ∙ 𝜌𝑎

+ 𝛱𝑎𝑏) 𝛻𝑎𝑊𝑎𝑏 + 𝑔

𝑏

 (14) 

𝑑𝐫𝑎

𝑑𝑡
= 𝐯𝑎  (15) 

Where 𝑎 is the target particle, 𝑏 is the neighbour 
particle, 𝑡 is time, 𝐫  is the position, 𝐯  is the 

velocity, 𝑷  is the pressure, 𝜌  is the density, m is 
the mass, and 𝑔 is the acceleration of gravity and 
𝑊𝑎𝑏 is the kernel function. In this study, the Quintic 
Kernel (Wendland 1995) function was adopted 
where the interaction between two particles a and b 
can be neglected after a distance of 2ℎ. Π𝑎𝑏 is the 
viscous term according to the artificial viscosity 
proposed in (Monaghan 1992). In DualSPHysics, the 
weakly compressible SPH formulation is used to 
solve the fluid. In addition, a Tait’s equation of state 
is used to close the system: 

𝑃 =
𝑐2𝜌0

𝛾
((

𝜌

𝜌0

)
𝛾

− 1) (16) 

where 𝜌0 is the reference fluid density, 𝛾 is the 
polytropic constant and 𝑐 is the speed of sound. A 
more detailed description of the DualSPHysics 
formulation can be found in (Crespo et al. 2015). 

2.3.2 Boundary Conditions 
The standard method for DualSPHysics boundary 
conditions is the Dynamic Boundary Condition 
(DBC) (Crespo, Gómez-Gesteira, and Dalrymple 
2007). In the DBC the boundary particles satisfy the 
same equations as the fluid particles however they 
do not move due to the forces exerted on them (or 
they move with an externally prescribed motion). 
When a fluid particle approaches a boundary particle 
and the distance between them is smaller than the 
kernel range, the density of the boundary particle is 
increased with a consequent increase in pressure. 
This results in a repulsive force being exerted on the 
fluid particle due to the pressure term in the 
momentum equation. The DBC has proven to be an 
efficient solution for engineering problems 
(Domínguez et al. 2015), however for some specific 
cases a large gap was created between the water 
particles and the boundary particles on transition 
zones between wet and not-wet areas. Recently, a 
novel methodology has been implemented in 
DualSPHysics: the modified Dynamic Boundary 
Conditions (mDBC) (English et al. 2021). The 
mDBC works with the same principle as the DBC, 
however the interaction boundary is defined between 
the outermost fluid and boundary particles. Thus, it 
is possible to mirror the boundary particles inside 
the fluid domain and using these mirrored ghost 
positions extrapolate the density of the solid 
particles evaluating the fluid particles and correct the 
SPH approximation when a fluid particle interacts 
with a boundary particle. The latter has been used in 
this research. 

2.3.3 Rigid Body Dynamics in DualSPHysics 
In DualSPHysics the motions of a rigid body are 
defined by calculating the interaction forces between 
fluid particles and floating boundary particles. The 
geometry of a floating body is discretized by filling 
its volume with boundary particles. The force on 



 

 

each boundary particle is then computed as a sum of 
the contribution of each surrounding fluid particle. 
Thus, each boundary particle k experiences a force 
per unit mass given by: 

𝒇𝑘 = ∑𝒇𝑘𝑎

𝑎

 (17) 

where 𝑓𝑘𝑎 is the force per unit mass exerted by 
the fluid particle a on the boundary particle k. For 
calculating the motions of the body, the standard 
equation of rigid body dynamics are applied:  

𝑴
𝑑𝐯

𝑑𝑡
=  ∑𝑚𝑘𝒇𝑘  (18) 

𝑰
𝑑𝛀

𝑑𝑡
= ∑ 𝑚𝑘(𝒓𝑘 − 𝐑0) × 𝒇𝑘

𝑘

 (19) 

where 𝑴 is the total mass of the floating object, 
while 𝑰 is the moment of inertia, 𝐯 is the 
translational velocity, 𝛀 is the rotational velocity 
and 𝐑0 is the center of mass. Time integration of 
equations (18) and (19) is applied to predict the 
values of 𝐯 and 𝛀 for the beginning of the next time 
step. Every boundary particle in the floating body 
consequently has a velocity given by: 

𝐯𝑘 = 𝐯 +  𝛀 (𝒓𝑘 − 𝑹0) (20) 

And all boundary particles within the floating body 
are finally moved with respect to the body center of 
mass by time integration of Eq. (20). 

2.3.4 Coupling with MoorDyn 
For simulating the mooring lines in this work the 
two-way coupling between DualSPHysics and 
MoorDyn+, which is a mooring library based on the 
original MoorDyn code, is used. A validation of the 
coupling was presented in (Domínguez et al. 2019). 
The coupled implementation is divided in three 
steps: i) the motions and rotations of the body (𝐯, 𝛀 
and 𝐑0) are solved in DualSPHysics and used as 
input for the fairlead kinematics in the mooring 

library, ii) MoorDyn+ solves the mooring line 
behavior computing the forces in the fairlead 
connections and returning them to DualSPHysics 

(𝑑𝐯/𝐝𝐭, 𝐝𝛀/𝒅𝒕) and iii) the forces are returned to 
DualSPHysics and used as external constraints to 
obtain the final positions and rotations of the rigid 
body. Note that MoorDyn+ coupled-to 
DualSPHysics does not include the effects of wave 
and current kinematics acting on the mooring line 
elements. 

3 NUMERICAL SETUP 
 
DeepCwind semi-submersible has undergone 
through many different iterations over the years. The  
version used in this paper is the first iteration tested 
in MARIN basin in 2011 (Goupee et al. 2012). 

3.1 Adapted-MoorDyn 

The difference of the first iteration compared to the 

later versions (Goupee et al. 2014; Robertson et al. 

2017, 2020; Robertson, Jonkman, Masciola, et al. 

2014) is the tower properties whereas the main 

dimensions of the platform remains the same in all 

versions. This changes the center of mass (CM) as 

well as platform’s gross properties, which are 

summarized in  Table 1. 

 
Table 1. Semi-submersible platform properties 

Quantity Unit Value 

Total draft m 20.0 

Total mass kg 13,444,000 

Displacement m3 13,986.8 

Roll inertia around CM kg ∙ m2  8.011  109 

Pitch inertia around CM kg ∙ m2 8.011  109 

Yaw inertia around CM kg ∙ m2 1.301  1010 

CM depth along centerline m 14.4  

 
Figure 2. Mooring lines layout 



 

 

Layout of the mooring configuration used in the 
numerical simulations is visualized in Figure 2 
whereas the coordinates of the anchors and fairleads 
are shown in Table 2. The regular waves train comes 
from negative x-axis to the positive x direction. For 
this study, regular wave height (H) of 10.304 m with 
the wave period (T) of 12.1 s are chosen as defined 
in Hall & Goupee (2015) as Regular wave 5 Sea 
State with no wind-load applied. 
 

Table 2. Anchor and fairlead positions 

Anchor x (m) y (m) z (m) 

1 -837.6 0.0 -200.0 

2 418.8 725.4 -200.0 

3 418.8 -725.4 -200.0 

Fairlead x (m) y (m) z (m) 

1 -40.87 0.0 -14.0 

2 20.434 35.39 -14.0 

3 20.434 -35.39 -14.0 

 
Table 3. Mooring line properties 

Quantity Unit Value 

Equivalent diameter m 0.134 

Mass per 1 meter length kg/m 116.600 

Equiv. axial stiffness N 753.6  106 

Unstretched length line 1 m 833.6 

Unstretched length line 2 m 834.8 

Unstretched length line 3 m 834.85 

Transverse drag coefficient - 1.080 

Tangential drag coefficient - 0.213 

Transverse added mass coeff. - 0.865 

Tangential added mass coeff. - 0.269 

 
Pretension is applied to each mooring line during the 
experiment, however, the pretension in Line 2 and 
Line 3 are not the same. For this reason, the 
unstretched length of the lines are adapted in the 
numerical simulation to match the pretension in the 
ocean basin test. Hence, the properties of the 
mooring lines used in this study are calibrated 
according to the one in Hall and Goupee (2015) 
instead of the original lengths defined in A. 
Robertson, Jonkman, Masciola, et al. (2014). These 
properties are shown in Table 3. The geometry used 
for the frequency-domain calculations is adapted 
from the example mesh provided by Orcina (2022). 
Adaptations are done in Rhinoceros® (McNeel & 
Others 2020) to include diagonal bracings. 
Additionally, a mesh refinement is performed using 
Gmsh (Geuzaine & Remacle 2009).  The platform’s 
geometry is according to the dimensions described 
in the OC4 project (Robertson, et al. 2014). Figure 3 
shows the comparison of the geometry before (top) 
and after the adaptations (bottom).  

Viscous effect is included by using the combination 
of Morison equation and quadratic damping shown 
in the Eq. (12). In surge, viscous force is due to the 
total frontal area of all the vertical cylinder members 
in YZ projection shown in Figure 2 (bottom). As for 
the heave, the projected area are calculated only for 
the bottom circular area of the large heave plates. 
The coefficients are taken from the values derived in 
Robertson, et al. (2014). In pitch, quadratic drag is 
modeled using the quadratic damping coefficient 
found in Coulling et al. (2013). These properties are 
summarized in Table 4.  

 
Table 4. Variables used to model the viscous force 

Quantity Unit Value 

𝐴1 m2  1066 

𝐴3 m2  1357 

𝐶𝐷1
 − 0.632 

𝐶𝐷3
 − 4.8 

𝐵5
𝑣  Nms2/𝑟𝑎𝑑2  3.35  1010 

3.2 DualSPHysics 

In DualSPHysics the DeepCWind test case 
presented in Section 3.1 has been simulated using a 
numerical wave flume with length of 800 m, width 
of 150 m and a water depth of 100 m. A piston-type 
wave generation was set at the left-hand side of the 
numerical flume and a numerical dissipative beach is 
located at the right hand-side to prevent wave 
reflection. Additionally, periodic boundaries and 
numerical damping are present at the top and bottom 
sides of the numerical flume to absorb the radiated 
and diffracted waves. The water depth was 
decreased from 200 m to a minimum of 100 m to 
achieve the same wave conditions as in the 
experiment while keeping the number of particles of 
the numerical flume limited. 

Figure 3. Orcina example (top) and modified mesh (bottom) 



 

 

The rigid body implemented in DualSPHysics 
corresponds to the adapted geometry. However, note 
that to keep the computational time reasonable the 
truss members were not filled with particles. After a 
convergence study, the inter-distance between two 
particles (dp) was set to dp = 0.8 m. Therefore, when 
using the mDBC boundary conditions the minimum 
number of particles inside these elements will not be 
met. Consequently the mass of the turbine was 
adjusted to achieve a draft of 20 m as in the 
experiment. Finally the mooring lines were defined 
using the same parameters as indicated in  
sub-section 3.1.  

4 RESULTS AND DISCUSSIONS 

In this section, the simulation results from  
Adapted-MoorDyn and DualSPHysics are compared 
with data from the experiment conducted in MARIN 
in 2011. The motions are with respect to the center 
of the domain (0,0,0) shown in Figure 2 where the 
calm water elevation is located at z = 0. The model 
tests results are digitized from the figures in Hall and 
Goupee (2015) using an open-source software called 
WebPlotDigitizer (Rohatgi 2021). Figure 4 and 
Figure 5 show the sensitivity analysis performed to 
investigate the influence of line discretization and 
time steps used in the simulation in the  
Adapted-MoorDyn. These two variables affect 
computational time linearly, thus, finding the 
balance between accuracy while maintaining 
computational efficiency is important in developing 
a time-efficient software. Figure 4 shows the 
comparison of fairleads’ tension for three different 
line discretization. While fairlead 1 sees no 
difference in tension, increasing the segment number 
to 40 and 60 does slightly change the peak tension of 
fairlead 2 and fairlead 3. The same trend can be seen 
when observing the influence of time steps as shown 
in Figure 5 where the changes in peak tension of 
fairleads are less noticeable. In this case, running the 
simulation at 0.8 ms is preferable when considering 
the computational gain with not much accuracy 
improvement when going to a lower time steps. 

Figure 9 show the results for the DeepCWind 
motions in surge, heave and pitch. For surge motion 
it can been seen that both Adapted-MoorDyn and 
DualSPHysics are capturing the surge motion 
correctly. During the experiments it was noticed that 
the surge motion is highly influenced by a viscous 
drift force. By considering the Morison equation in 
the Adapted-MoorDyn the time-varying wave orbital 
velocities capturing the drift force acting on the rigid 
body is considered. In heave motion, DualSPHysics 
is able to properly capture the body motions despite 
not including the truss members. Adapted-MoorDyn 
provides a better general agreement than the coupled 
numerical model in Hall & Goupee (2015). 

However, the minimum amplitude of heave motion 
is underpredicted by 24 %. In pitch motion, the 
highest amplitude of pitch is overpredicted by 35% 

compared to the experiment for both Adapted-
MoorDyn and DualSPHysics. Both numerical 
models excluded viscous effect from the diagonal 
members, which likely to be the reason for the 
discrepancies with results from the experiment. A 
phase shift is noticeable when observing pitch 
motions predicted by the Adapted-MoorDyn, but not 
in DualSPHysics. Figure 8 shows the fairlead 
tensions comparison between both numerical models 
and the experiments. For all fairleads, both Adapted-
MoorDyn and DualSPHysics underpredicted the 
highest tensions by just less than 5 % . Nevertheless, 
the lowest tension in fairlead 1 is overpredicted by 
75 % compared to the experiment for Adapted-
MoorDyn and 85% for DualSPHysics. Finally, the 
lowest tension in farleads 2 and 3 is overpredicted in 
DualSPHysics by a 9%. The overprediction in the 
Adapted-MoorDyn can be due to not achieving the 
same slack in the numerical simulation as in the 
experiment as it can be inferred for the small 
disagreement in the heave motion and the phase shift 
in the pitch motion. For DualSPHysics the 
overprediction may be caused by the overestimation 
of the pitch motion. 
 

Figure 4. Influence of line discretization 

Figure 5. Influence of time steps 



 

 

 
 
 
 
 

 
 

Figure 6. Snapshots of the simulation at t = 326.7s (27.00T) until t = 335.8 s (27.75T) 

Figure 7. Snapshot of the DualSPHysics simulation domain 

Figure 8. Fairleads' tension comparison Figure 9. Platform's motion comparison 



 

 

5 CONCLUSIONS AND FUTURE WORK 

A time-efficient algorithm, Adapted-MoorDyn, 
capable of modelling the hydrodynamics of a 
floating wind turbine platform has been presented in 
this paper. Adapted-MoorDyn has been compared to 
the fully non-linear solver DualSPHysics and 
experimental results. The FWT motions and 
fairleads tensions have been studies. General 
agreement in terms of motions is found between 
Adapted-MoorDyn, DualSPHysics and the 
experiments except for pitch motions that are out-of-
phase for Adapted-MoorDyn and overpredicted in 
DualSPHysics. The mooring line peak tensions in all 
fairleads are predicted well with the largest 
discrepancies of 5 % found in fairlead 1 for both 
numerical models. Nonetheless, lowest tension in 
the fairleads is overpredicted due to the 
discrepancies in pitch that have been observed for 
both models. Modelling the truss diagonal members 
would likely to solve this issue.  

This investigation has shown that it is possible to 
replicate the same simulation in Adapted-MoorDyn 
and DualSPHysics under linear wave conditions and 
validated it. Future work will focus on establishing a 
methodology to use Adapted-MoorDyn to simulate 
multiple different mooring configuration layouts 
against different load cases to find the most cost-
effective mooring design. Then, this mooring layout 
configuration will be simulated in DualSPHysics 
under extreme load conditions to ensure the integrity 
of the system under extreme load cases considering 
viscous effects, wave run-up and wave breaking. 
Additionally, further investigation will be performed 
to test the robustness of this algorithm against 
different wave conditions including the irregular 
wave cases.w. 
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