Walk-Through Flat Panel Total Body PET

A novel scanner design for efficient patient throughput and detector usage

Jens Maebe, Florence Muller, Nadia Withofs, Maya Abi Akl, Meysam Dadgar, Christian Vanhove, Stefaan Vandenberghe *MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium*

FlorenceMarie.Muller@UGent.be
Jens.Maebe@UGent.be

Motivation

- **Sub-one minute PET scans** are now possible due to a combination of longer axial fields-of-view and advances in detector technology
- The current limitation for patient throughput is patient preparation and positioning on the bed, rather than scan time
- Current total-body (long axial field-of-view) PET scanners are too expensive for clinics due to high number of expensive detectors and high installation costs

15s acquisition with Biograph Vision Quadra (106 cm field-of-view) \rightarrow

Advantages of this design

- **High patient throughput** (about 3 minutes patient after patient)
- Small footprint (2-4m²) compared to conventional PET/CT (30-40m²)
- Simultaneous head + torso imaging due to 105 cm axial field-of-view
- About 4x higher sensitivity than conventional PET/CT
 → enables faster or lower dose imaging
- Similar cost to conventional PET/CT (only 25 cm axial field-of-view)

System design

Conventional Walk-Through

Two vertical, flat panels

- Two panels (each 70x105 cm²) placed vertically 50 cm apart
- Dimensions chosen based on measurements of 40 PET/CT patients
- Panel position adapts to patient height
- Patient stands still for a 30 second scan
- Flat panel design reduces time for patient positioning and personnel
- → 1.9 x less detector surface for same axial field-of-view in cylindrical total-body PET

Detector design

Monolithic BGO detectors

- **Very good detector spatial resolution** (1-1.5 mm) with deep learning for event positioning, not limited by pixel size (usually around 3mm)
- Decent coincidence time resolution (300 400 ps) due to Cerenkov light
- **Cheaper**: BGO is 3x cheaper than LYSO and fewer electronics required compared to pixelated detectors due to larger SiPMs
- BGO has roughly 20% higher sensitivity and a higher photofraction (40% instead of 32% → less scattering) compared to LYSO
- → Lower cost detectors (4-5 x less for a full system) with better spatial resolution but inferior timing

Ongoing research and results

System characterization

- Monte Carlo simulation in GATE software
- Reconstruction with QETIR software
- Comparison with Siemens Vision Quadra scanner (clinical PET scanner with same axial field-of-view)
- → 1.5 2 mm spatial resolution in all directions
- → Sensitivity only 33% lower than Siemens Quadra

Siemens Quadra
Scatter Fraction: 31.03 %
Randoms fraction: 14 %

Walk-Through PET
Scatter Fraction: 29.6 %
Randoms fraction: 9%

First simulated reconstruction with XCAT phantom

Patient motion study

Patient motion while standing may be increased compared to lying down and could therefore impact scan quality \rightarrow should be minimized

- Measure patient motion during 30s scan
- Motion tracked with 4 webcams and optical markers
- Compare normal breathing with breath-hold

→ Subject motion is limited in upright position for 30s

→ Overall subject motion is reduced with breath-hold

Conclusions

- Walk-Through PET allows for high patient throughput total-body imaging (full torso + head) at affordable costs for the clinic
- Limited drawbacks compared to more expensive cylindrical total-body PET scanners
- Increased patient throughput and lower dose imaging show potential for screening and therapy follow-up

