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 26 

Abstract  27 

Background: Afoxolaner is a novel representative of the isoxazolines, a class of 28 

ectoparasiticides which has been commercialised for the control of tick and flea 29 

infestations in dogs. In this study, the biological efficacy of afoxolaner against the two-30 

spotted spider mite Tetranychus urticae was evaluated. Furthermore, as isoxazolines 31 

are known inhibitors of γ-aminobutyric acid-gated chloride channels (GABACls), the 32 

molecular mode of action of afoxolaner on T. urticae GABACls (TuRdls) was studied 33 

using functional expression in Xenopus oocytes followed by two-electrode voltage-34 

clamp (TEVC) electrophysiology and results were compared with inhibition by 35 

fluralaner, fipronil and endosulfan. To examine the influence of known GABACl 36 

resistance mutations, H301A, I305T and A350T substitutions in TuRdl1 and a S301A 37 

substitution in TuRdl2 were introduced. 38 

Results: Bioasassays revealed excellent efficacy of afoxolaner against all 39 

developmental stages and no cross-resistance was found in a panel of strains resistant 40 

to most currently used acaricides. Laboratory selection over a period of 3 years did not 41 

result in resistance. TEVC revealed clear antagonistic activity of afoxolaner and 42 

fluralaner for all homomeric TuRdl1/2/3 channels. The introduction of single, double or 43 

triple mutations to TuRdl1 and TuRdl2 did not lower channel sensitivity. Contrastingly, 44 

both endosulfan and fipronil had minimal antagonistic activities against TuRdl1/2/3, 45 

and channels carrying single mutations while the sensitivity of double and triple TuRdl1 46 

mutants was significantly increased.  47 

Conclusions: Our results demonstrate that afoxolaner is a potent antagonist of 48 

GABACls of T. urticae and has a powerful mode of action to control spider mites.  49 

Keywords: afoxolaner, laboratory selection, cross-resistance, γ-aminobutyric acid - 50 

gated chloride channel, Tetranychus urticae, two-electrode voltage-clamp 51 

electrophysiology 52 
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1.  INTRODUCTION 56 

The Rdl receptor is an invertebrate γ-aminobutyric acid (GABA) gated chloride channel 57 

expressed throughout the central nervous system (CNS) where it predominantly 58 

mediates inhibitory neurotransmission1, 2. As a member of the cys-loop ligand-gated 59 

ion channel (cysLGIC) superfamily, it is comprised of 5 homologous subunits forming 60 

a selective central pore which allows the influx of chloride ions upon binding the ligand 61 

GABA. The Rdl subunits, encoded by the Rdl gene, have extracellular N- and C-termini 62 

and four transmembrane regions (TM1-4), the second of which lines the ion pore3, 4. 63 

Based on its function, Rdl receptors are related to vertebrate GABAA receptors, but 64 

have a unique pharmacology as they differ in subunit compositions1, 2, 5. Therefore, 65 

GABACls have been an important target of a wide range of neurotoxic insecticidal and 66 

acaricidal compounds like lindane6, picrotoxin7, cyclodienes (such as dieldrin and 67 

endosulfan)8, phenylpyrazoles (such as fipronil)9 and macrocyclic lactones10. These 68 

noncompetitive antagonists (NCAs) or GABA blockers inhibit the GABA-induced influx 69 

of chloride ions into the nerve cells without any effect on the binding of GABA to the 70 

receptor, resulting in hyperexcitation of the nervous system11. Due to their extensive 71 

use over several decades however, many mutations of Rdl subunits associated with 72 

resistance to these GABACl blockers have been reported in agricultural pests. The 73 

term Rdl (Resistance to Dieldrin) itself refers to the first mutation identified in a GABACl 74 

subunit of Drosophila melanogaster, which was associated with high resistance to 75 

dieldrin and limited cross-resistance to fipronil 2, 8, 12, 13. This alanine to serine (A301S) 76 

and by extension alanine to glycine (A301G), asparagine (A301N) or Leucine (A301L) 77 

mutation in TM2 has since been strongly associated with cyclodiene and, at varying 78 

levels, been linked with fipronil resistance in various insect species 3, 14-19. Recent in 79 

vivo and in vitro studies on Drosophila uncovered that the glycine mutation results in 80 

higher fipronil resistance than the serine mutation20. In 2010 a T305L mutation in TM2 81 

was linked with dieldrin resistance in the cattle tick Rhipicephalus (Boophilus) 82 

microplus by Hope et al. (2010)21, while a T350M mutation, located at TM3, was 83 

identified in a laboratory selected Drosophila simulans population, highly resistant to 84 

both dieldrin and fipronil. Further functional experiments revealed that T350M 85 

contributed to fipronil resistance when it co-existed with A301S, as well when present 86 

as a single mutation4, 22. The multitude of emerging resistance cases combined with a 87 

ban of compounds like dieldrin and lindane due to their environmental persistence, 88 
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lowered the interest in these classic GABACl blockers4, 23.  However, in the last decade 89 

the Rdl receptor regained popularity as a target with the emergence of two novel acting 90 

compound classes, the meta-diamides24 and isoxazolines23, 25, both belonging to the 91 

Insecticide Resistance Action Committee (IRAC) mode of action group 3026. These 92 

GABACl antagonist have the advantage of acting on different binding sites and are 93 

unaffected by Rdl receptors with subunits containing TM2 resistance mutations4.  94 

Here, the biological efficacy of afoxolaner, a novel isoxazoline ectoparasiticide, against 95 

the two-spotted spider mite Tetranychus urticae was studied as isoxazoline 96 

compounds were shown to have acaricidal activities and act as GABACl blockers25. 97 

Furthermore, research by Dermauw et al. (2012)3 has shown that all three T. urticae 98 

Rdl orthologues contain the resistance associated serine (TuRdl2 and TuRdl3) or a 99 

histidine (TuRdl1) at position 301 (TM2). Additionally, the TuRdl1 subunits was found 100 

to contain a T305I and T350A substitution in TM2 and TM3, respectively. To examine 101 

the effect of these mutations on the potency of both classic GABACl blockers and the 102 

isoxazolines afoxolaner and fluralaner, site directed mutagenesis was applied to 103 

introduce the reversed H301A, I305T and A350T substitutions in TuRdl1 and a S301A 104 

substitution in TuRdl2 receptors. 105 

 106 
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2.  MATERIALS AND METHODS 118 

2.1.  Chemicals (Fig. 1) 119 

All chemicals, including y-aminobutyric acid (GABA; CAS number 56-12-2) and the 120 

technical standards of fluralaner (CAS number 864731-61-3), fipronil (CAS number 121 

120068-37-3) and endosulfan (CAS number 959-98-8), were purchased from Sigma–122 

Aldrich (Overijse, Belgium) unless stated otherwise. Afoxolaner (CAS number 123 

1093861-60-9) was kindly provided by Sven Geibel (Bayer, Monheim, Germany)  124 

2.2.  Toxicity bioassays  125 

To assess the baseline toxicity of afoxolaner, bioassays were conducted on a 126 

reference panel of 12 susceptible and acaricide-resistant spider mite strains previously 127 

described and listed in Table 1. All strains were mass reared on potted kidney bean 128 

plants (Phaseolus vulgaris) under controlled conditions (25 ± 0.5 °C, 60% RH and 16:8 129 

h (L:D) photoperiod), fresh bean plants were offered when needed. 130 

Female adulticidal bioassays were performed as previously described by Van 131 

Leeuwen et al. (2004)27. Briefly, afoxolaner was dissolved in a mixture of N,N-132 

dimethylformamide (DMF) and emulsifier W (alkylarylpolyglycolether), 3:1 w/w, 133 

respectively, and subsequently diluted with deionized water 100-fold. About 20–30 134 

young adult female mites were transferred to the upper (adaxial) side of a 9cm2 square 135 

bean leaf discs on wet cotton wool and subsequently sprayed at 1 bar pressure in a 136 

custom-built spray tower (Ghent University, Ghent, Belgium) resulting in 2,00 ± 0,02 137 

mg aqueous acaricide deposit per cm2. The plates were subsequently placed in a 138 

climatically controlled room as described above. Mortality was scored after 24 hours. 139 

For bioassays of the different life stages, 30 adult females of the London strain were 140 

transferred to the upper side of 9 cm2 square bean leaf discs on wet cotton wool, and 141 

permitted to lay eggs for 4-6h, after which they were removed. The plates were then 142 

placed in a climatically controlled room. Immediately after removal of the adults (egg 143 

bioassay), after hatching of the eggs (larval bioassay) or when more than 50% of the 144 

mites were developed into the desired stage (protonymph, deutonymph and adult 145 

male),  the eggs or mites were sprayed with spray fluid at 1 bar pressure (2,00 ± 0,02 146 

mg aqueous acaricide deposit per cm2). Mortality was assessed when the next life 147 

stage appeared in the water sprayed control (egg, larva, protonymph and deutonymph 148 

bioassay) or 24h after treatment (adult male bioassay). For all bioassays, 4 replicates 149 
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per concentration with a minimum of 6 concentrations of afoxolaner plus a control 150 

(deionised water + emulsifier  W + DMF) were tested. Mites were scored as dead if 151 

they did not move one body length within 10 seconds after being prodded with a fine 152 

brush. Mites that had drowned in the water barrier were excluded from the analysis 153 

(less than 5%). 154 

LC50 values and their 95% confidence limits were calculated from probit regression 155 

using the PoloPlus-PC program (LeOra Software, Berkely, USA). Resistance ratios 156 

(RRs) were calculated by dividing the LC50 value of the resistant strain by the LC50 157 

value of the susceptible London strain.  158 

2.3.  Selection for afoxolaner resistance 159 

To select for afoxolaner resistance, both HOL 1 and MAR-AB strains were maintained 160 

on potted bean plants treated with afoxolaner, hereby establishing a continuous 161 

selection pressure. Plants were sprayed with a hand pressurised sprayer (Birchmeyer, 162 

Switzerland) until runoff with approximately 6-8 mg (corresponding to about the LC75) 163 

of afoxolaner L−1 at the start of the experiment, which gradually increased to ± 25 mg 164 

L-1 as susceptibility decreased (Fig. 2). Before spraying, secondary leaf buds were 165 

removed and only the primary leaves were kept on the potted bean plants. Mite 166 

numbers were kept high by maintaining the strain on a minimum of 18 bean plants, 167 

and only replacing with fresh plants when leaves where overgrown. 168 

2.4.  Two-electrode voltage-clamp electrophysiology 169 

2.4.1.  Vector construction and cRNA synthesis  170 

Wild type TuRdl constructs (TuRdl1,TuRdl2 and TuRdl3), translating in homomeric 171 

TuGABACl channels, were in silico generated as previously described in Xue et al. 172 

202128. The introduction of substitutions into the TuRdl cDNA sequences were created 173 

using site-directed mutagenesis and both TuRdl1 and TuRdl2 plasmids as a template 174 

(Table 3). All Rdl coding sequences preceded with a KOZAK sequence (‘GCCAC’) and 175 

were codon optimised for Xenopus expression using the OptimumGene™-Codon 176 

Optimization software of GeneScript (Piscataway, NJ,USA). cRNA synthesis was 177 

carried out as previously described28, 29. Quality and quantity of cRNA was evaluated 178 

via a spectrophotometer (Thermo Scientific NanoDrop 2000 or a DeNovix DS-11 179 

(DeNovix, Willmington, DE, USA)) and agarose gel electrophoresis and cRNA was 180 

stored at −80 °C until use. 181 



7 
 

 182 

2.4.2.  Oocyte injection  183 

Mature stage V or VI, defolliculated Xenopus laevis oocytes were purchased from 184 

Ecocyte Bioscience (Castrop-Rauxel, Germany) and incubated for 2h at 19°C upon 185 

arrival. Next, 25 ng cRNA encoding GABAR subunits was injected into the oocytes 186 

using a Nanoject III Programmable Nanoliter Injector (Drummond Scientific Co., 187 

Broomali, PA, USA), the oocytes were incubated in sterile Barth's solution 188 

supplemented with 20 µg/mL gentamycin (Ecocyte Bioscience) for a minimum of 24h 189 

before experimentation. Optimal expression was achieved at 2-3 days post injection.  190 

 191 

2.4.3 TEVC electrophysiology 192 

TEVC recordings were made using the fully automated Roboocyte2 (Multi Channel 193 

Systems MCS GmbH, Reutlingen, Germany) at a holding potential of −60 mV at 19°C. 194 

Oocytes were held in a standard 96-well microtitre plate and impaled with two glass 195 

microelectrodes filled with 0.1 M KCl 1.5 M potassium acetate solution to yield a 196 

resistance of ∼1MΩ.  197 

The natural agonist GABA and the acaricide technical standards afoxolaner, fluralaner, 198 

fipronil, and endosulfan were prepared as 1 mM stock solutions in dimethyl sulfoxide 199 

(DMSO) and dissolved in Normal Frog Ringer (NFR) solution (Ecocyte Bioscience) 200 

resulting in a maximal final DMSO concentration of 1%. Concentration-response 201 

relationships for GABA were carried out by exposing the oocytes to the compound for 202 

30 s in an ascending order of concentration with a 90 s recorded wash-out (NFR) 203 

between applications to allow the current to return to baseline. To analyse the 204 

antagonism of TuGABACls by afoxolaner, fluralaner, fipronil and endosulfan oocytes 205 

were tested as described in Xue et al. 2021. Oocytes were first exposed to GABA 4 206 

times for 30 s every 1.5 min at the beginning of the experiment to test for expression 207 

and to stabilize the response. Subsequently, oocytes were pre-exposed for 75 s to the 208 

antagonist (1nM–10 μM) followed by 30 s of co-application with GABA (EC50). Both 209 

compounds were washed out with NFR (non-recorded) for 30 s before increasing to 210 

the next concentration. 211 

All experiments were replicated using at least 6 oocytes. The data are presented as 212 

the mean ± SEM.  TEVC recordings were analysed using the Roboocyte 2+ V. 1.4.3. 213 
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software (Multi Channel Systems MCSGmbH), EC50 and IC50 values were determined 214 

according to the dose-response relationships by four-parameter logistic curve (Hill 215 

equation) on response data using SigmaPlot software 13.0 (Systat Software, San Jose, 216 

CA, USA).  217 

3 RESULTS 218 

3.1. Toxicity bioassays and selection for afoxolaner resistance 219 

The baseline toxicity of afoxolaner (LC50 and slope) in 10 acaricide-(multi)resistant 220 

strains and two reference susceptible strains is presented in Table 1. GSS was by far 221 

the most susceptible strain under investigation, with an LC50 as low as 0.0191 mg L−1 , 222 

while the London susceptible strain displayed an LC50 of 3.18 mg L−1. The LC50 values 223 

of all resistant strains varied between 2 and 5 mg L-1 except for HOL1, MAR-AB and 224 

JP-R with a slightly elevated LC50 value of 7.74, 6.02 and 11.3, respectively. None of 225 

the strains showed clear resistance to afoxolaner, hereby excluding cross-resistance 226 

with the acaricides listed in Table 1. Egg and larval toxicity bioassay data indicated that 227 

the eggs and larvae of the London strain are more susceptible to afoxolaner than adults, 228 

proto- and deutonymphs with an LC50 of only 0.651 and 1.05 mg L−1 for London eggs 229 

and larvae, respectively (Table 2). 230 

HOL1 and MAR-AB strains were chosen for laboratory selection since they both 231 

showed elevated LC50 values and heterogeneity in afoxolaner toxicity. Both strains 232 

were maintained on potted bean plants sprayed with afoxolaner at a starting 233 

concentration of 6 and 8 mg L−1 for MAR-AB and HOL1, respectively (Fig 2). Selecting 234 

concentrations of afoxolaner were increased if populations were able to grow to 235 

sufficient numbers resulting in a final LC50 of only 21.9 mg L−1 for MAR-AB and 29.7 236 

mg L−1 for HOL1 after 3 year of continuous selection. Resistance progressed slowly in 237 

both strains during the first 18 months and stagnated despite multiple attempts to 238 

increase selecting concentrations.  239 

3.2 Two-electrode voltage-clamp electrophysiology 240 

3.2.1 Responses of wild type and mutant TuGABACls to GABA 241 

To investigate the effects of (known) mutations on the potencies of GABA, afoxolaner, 242 

fluralaner, endosulfan and fipronil against TuGABACls, 3 substitutions (H301A, I305T 243 

and A350T) in TuRdl1 and 1 substitution (S301A) in TuRdl2 were introduced, 244 

generating 6 mutant TuGABACls (Table 3). In combination with 3 wild type TuGABACls 245 
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(TuRdl1, TuRdl2 and TuRdl3), a total of 9 different TuGABACls were examined. All 246 

wild type and mutant TuGABACls showed robust responses to the natural agonist 247 

GABA as previously described2, generating rapid inward currents with a slow 248 

desensitization as long as the agonist was applied, followed by a very rapid 249 

desensitization once wash-out with NFR was started (Fig. 3-5). The averaged dose-250 

response curves for GABA are listed in Table 4. EC50’s of all mutant TuRdl1 receptors 251 

fell within close range to the EC50 of TuRdl1 (15.5 µM), indicating that substitutions did 252 

not influence GABA sensitivity. The same was observed for TuRdl2 (68.6 µM) and 253 

TuRdl2 S301A (65.8 µM). 254 

3.2.2 Afoxolaner and fluralaner inhibition of GABA induced currents in wild type 255 

and mutant TuGABACls 256 

To assess dose-dependent inhibitory effects of the antagonists, a cumulative exposure 257 

was used where the oocytes were pre-incubated with the antagonist for 75 s followed 258 

by co-application with GABA . Figure 3B,C and D shows the dose-dependent inhibition 259 

curves of afoxolaner and fluralaner for GABA activated currents in TuGABACls. Both 260 

isoxazolines exhibited strong antagonistic activity against all TuGABACls. Fluralaner 261 

turned out to be a more potent inhibitor than afoxolaner with IC50 values of ± 50 nM. 262 

IC50 values for afoxolaner ranged between 100 and 200 nM, with the exception of the 263 

triple mutant TuRdl1 H301A I305T A350T (IC50 = 290 nM) (Table 4). 264 

 265 

3.2.3 Endosulfan and fipronil inhibition of GABA induced currents in wild type 266 

and mutant TuGABACls 267 

Figure 4D and 5D shows that endosulfan and fipronil failed to block GABA-induced 268 

currents in wild type (TuRdl1, TuRdl2 and TuRdl3) and single mutant TuRdls (TuRdl1 269 

H301A, TuRdl1 I305T, TuRdl1 A350T and TuRdl2 S301A) in the nanomolar range (1-270 

100nM). Low antagonistic activity was observed at the highest concentrations (1-10µM) 271 

with a maximum inhibition of ± 20% of the GABA-induced currents at 10µM endosulfan 272 

or fipronil. The IC50 values could therefore not be calculated for TuRdl1, TuRdl2, 273 

TuRdl3, TuRdl1 H301A, TuRdl1 I305T, TuRdl1 A350T and TuRdl2 S301A. 274 

Contrastingly, both endosulfan and fipronil had high inhibitory activity in double 275 

mutants TuRdl1 H301A A350T and TuRdl1 H301A I305T in the nanomolar and 276 

micromolar range with an IC50 of 178 nM and 71 nM respectively for endosulfan and 277 
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58 nM and 125 nM for fipronil (Table 4). The same was observed for the triple mutant 278 

TuRdl1 H301A I305T A350T with an IC50 value of 107 nM for endosulfan and 205 nM 279 

for fipronil. Figure 4D and 5D show no additional effect of the third mutation to the 280 

fipronil and endosulfan inhibitory effect compared to double mutants. 281 
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4.  DISCUSSION 282 

In this study, afoxolaner was shown to have strong acaricidal activity against a 283 

reference panel of resistant T. urticae strains, suggesting that cross-resistance with 284 

commonly used acaricides is not very likely. For other newly launched chemicals, such 285 

as cyflumetofen and cyenopyrafen, cross-resistance was detected using the same 286 

panel30. The LC50 values of adult female bioassays found in this study generally ranged 287 

from 2-5 mg L-1, which coincides with results reported for other group 30 compounds 288 

like fluxametamide and broflanilide on susceptible T. urticae strains with LC50s of 5.02 289 

and 2.07 mg L-1, respectively31, 32. Afoxolaner also proved effective on all 290 

developmental stages with eggs and larvae being the most sensitive. Previous studies 291 

have shown that pesticide susceptibility of T. urticae can vary between sexes or 292 

developmental stages due to morphological/metabolic differences such as body size 293 

or differential expression of detoxification enzymes33, 34. The increased susceptibility 294 

of eggs and larvae for afoxolaner found in this study, might be explained by the higher 295 

surface-to-volume ratio of eggs and larvae compared to larger adult stages resulting 296 

in higher exposure to the compound. The attempt to select in the laboratory for 297 

resistance using two genetically independent populations failed, even when selecting 298 

for an unusual long period of 3 consecutive years. Selection responses have been 299 

considerably high for many other compounds when selected in the laboratory prior to 300 

field application, including bifenazate35, chlorfenapyr36, pyflubumide33 , cyenopyrafen37 301 

and cyflumetofen30 resulting in high resistance levels generally within 10-15 or even as 302 

few as two generations of selection in the case of pyflubumide. This indicates that 303 

afoxolaner resistance is not readily selected based upon genetic variation present in 304 

the MAR-AB and HOL1 strains used for selection and further corroborates its potential 305 

for controlling spider mites in field crops. So far, afoxolaner has mainly been screened 306 

for efficacy via oral administration to dogs against parasitic flea, tick and mite species38-307 

41. Both in vivo and in vitro studies revealed remarkable effectiveness of afoxolaner 308 

against these parasites. In addition, Shoop et al. (2014)38 demonstrated the lack of 309 

cross-resistance with cyclodienes using wild type and cyclodiene-resistant strains of 310 

Drosophila. Other members of IRAC group 30, such as the isoxazolines fluralaner, 311 

fluxametamide and isocycloseram, and the meta-diamide broflanilide, were previously 312 

shown to exhibit excellent acaricidal activity against T. urticae, with in some cases even 313 

higher activity compared to commercially available acaricides31, 32, 42-45.  314 
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Both fluralaner and broflanilide were found to act on insect GABACl’s by using either 315 

binding assays with [(3)H]ethynylbicycloorthobenzoate (EBOB) and/or TEVC assays, 316 

respectively23, 46. The same was observed for fluxametamide, confirming that 317 

isoxazoline and meta-diamides have insect GABACls as a target31. Asahi et al. (2015) 318 

used TEVC to confirm that fluralaner blocked GABA-induced chloride currents in 319 

Xenopus oocytes expressing homomeric T. urticae Rdl1 receptors. In this study, nine 320 

different homomeric TuGABACls  were functionally expressed in Xenopus oocytes and 321 

examined for their sensitivity to fluralaner and afoxolaner, and classical GABACl 322 

blockers such as fipronil and endosulfan. Both afoxolaner and fluralaner strongly 323 

inhibited GABA-induced responses in wild type TuRdl1/2/3 channels, while 324 

antagonistic activities of endosulfan and fipronil were low. Previous studies with 325 

isoxazolines like fluralaner25, lotilaner47 and fluxametamide31 have described similar 326 

strong antagonistic activity against TuGABACls as observed here and linked high 327 

antagonistic activity in vitro with high acaricidal activity in vivo. Further, Asahi et al. 328 

(2015) also described that low acaricidal activity of fipronil against T. urticae is due to 329 

its low inhibitory activity against the TuRdl1 channel. In natural populations, the 330 

presence of A301S/H, T305I and/or T350A substitution’s in TuRdl channels has been 331 

assumed to explain the reduced sensitivity of spider mites to both fipronil and 332 

endosulfan3. Our data confirms these previous reports as both endosulfan and fipronil 333 

had minimal antagonistic activities against wild type TuRdl1/2/3, and both compounds 334 

were found not to be toxic to the spider mite populations available in our laboratory 335 

(data not shown). Noteworthy, the above mentioned Rdl substitutions or variants 336 

thereof are also present in orthologous Rdl subunits of other spider mites, such as 337 

Tetranychus evansi, Panonychus citri, the false spider mite Brevipalpus yothersi, and 338 

the bulb mite Rhizoglyphus robinii (Fig. S1) and might, to some extent, explain why 339 

endosulfan has only moderate acaricidal activity against spider mites and the bulb 340 

mite48-50 and has not been recommended for spider mite control 51, 52. In contrast, 341 

endosulfan has been frequently used to control bud-and rust mites (Eriophydiae) and 342 

cyclamen/broad mites (Tarsonemidae)52-55 and for those Eriophyidae for which 343 

transcriptomic/genomic data is available, at least one Rdl subunit with no or only 344 

favoured substitutions (i.e. A301, T305 and T350S)56 could be identified. However, 345 

such subunits could also be identified in Galendromus occidentalis and Amblyseius 346 

swirskii, predatory mites for which endosulfan is considered as low to moderately 347 
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toxic57-59, and suggests that endosulfan susceptibility is not only target-site related (Fig. 348 

S1). 349 

The distinctive antagonism of afoxolaner and fluralaner on T. urticae GABACls  350 

confirms that these isoxazolines do not share binding sites with fipronil and endosulfan. 351 

Cyclodienes and fenylpyrazoles have been assumed to act on binding sites which 352 

reside within the channel pore (formed by the TM2s of the different subunits)4, 25, 60, 353 

while previous research61-63 suggested that the binding site of fluralaner and meta-354 

diamides is located in the outer half of the transmembrane subunit interface of TM1 355 

and/or TM3, as amino acid substitutions in this region had significant effect on the 356 

potency of fluralaner64 and meta-diamides24, 65, 66. They reported that a G271L 357 

substitution in TM1 and G333M/S/A substitutions in TM3 of Musca domestica 358 

GABACl’s resulted in a significant reduction in the potency of fluralaner, while G336 359 

substitutions in Drosophila Rdl or a G319M substitution in Spodoptera Rdl abolished 360 

the inhibitory activity of metadiamides. Similar results were observed on honeybee 361 

(Apis mellifera L) by Sheng et al. (2019)67, who used docking simulations to suggest 362 

that fluralaner binds TM1 and TM3. More recently, Huang et al. (2022)68 demonstrated 363 

that glycine at the third position of TM3 determines the action of fluralaner and 364 

therefore should be the exact binding site of fluralaner in insect GABACl’s. 365 
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In this research the effect of A301S/H, I305A (TM2) and T350A (TM3) mutations on 366 

channel sensitivity was examined by introducing reversed single, double and triple 367 

mutations in TuRdl1 and TuRdl2. None of the reversed mutations had any effect on 368 

channel inhibition by afoxolaner and fluralaner. By contrast, TuRdl1 sensitivity to 369 

fipronil and endosulfan was partially restored when double and triple reversed 370 

mutations were introduced without any additional effect of the third mutation. Similar 371 

findings were recently reported by Kobayashi (2020)69 where single and multiple 372 

mutations (A301S/H and I305A) were introduced in TM2 of TuRdl to examine their 373 

sensitivities to picrotoxinin and fipronil and the cyclodiene dieldrin. The double (H301A 374 

and I305T) mutation significantly increased the channels sensitivity to all three 375 

compounds, but the introduction of single mutations had no effect. Additionally, our 376 

data revealed that there was no difference in restored sensitivity when both TM2 377 

mutations where introduced in TuRdl1 compared to the combination of one TM2 378 

(H301A) and the TM3 (T350A) mutation, indicating that the A350T substitution 379 

contributes equally to fipronil and endsulfan resistance compared to the combination   380 

of TM2 mutations (H301A and I305T).  381 

Remarkably, the introduction of the TM2 S301A mutation in TuRdl2 had little influence 382 

on endosulfan and fipronil sensitivity even though TuRdl2 naturally carries T305, 383 

suggesting that mutations at these positions (301 and 305) are of little importance for 384 

TuRdl2 sensitivity. Ozoe et al. (2009)70 describes that the channel pore is formed by 385 

the TM2 segments of the five subunits and amino acids at the 1’, 2’ (corresponding to 386 

301 in TuRdl), 6’ (corresponding to 305 in TuRdl), 9’, 13’ and 16’ position face the 387 

channel pore. As mutations at the 2’ and 6’ positions influence the sensitivity of 388 

GABACl to NCAs like fipronil and endosulfan, the channel-lining region formed by 2’ 389 

and 6’ amino acids must contain these NCA binding sites. On the other hand, our 390 

results suggest that T350A at TM3 also influences fipronil and endosulfan sensitivity 391 

which coincides with the findings of Le Goff et al (2005)22 for fipronil activity on D. 392 

simulans Rdl. However, whether or not this amino acid residue in the TM3 segment is 393 

located in the fipronil and/or endosulfan TuGABACl binding site remains to be 394 

determined.  395 

 396 
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5. CONCLUSION 397 

In conclusion, this study reveals that afoxolaner is an excellent candidate for control of 398 

T. urticae as it is a potent noncompetitive antagonist of TuGABACls, unaffected by 399 

resistance associated TM2 and TM3 mutations. Furthermore, in vivo assays have 400 

revealed that afoxolaner shows no cross-resistance with the most commonly used 401 

acaricides and despite its reputation to rapidly develop resistance, a decreased 402 

efficacy of afoxolaner against T. urticae could not be observed after long-time exposure 403 

to increasing concentrations.   404 
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8. TABLES LEGENDS 671 

 672 

Table 1. Adult female probit mortality data for afoxolaner on susceptible and characterised resistant strains of T. urticae. 673 

Strain Resistance Maintenance†  LC50
‡ (95% CI) (mg L−1) Slope + SE RR§ (London) 

GSS71  susceptible - 0.0191 (0.0044 - 0.0491) 3.07 ± 0.31 - 

London72 susceptible - 3.18 (2.83 -3.52) 3.82 ± 0.21 - 

SR-TK73  spirodiclofen spirodiclofen (1200  mg L−1) 2.44 (2.18 - 2.66) 5.95 ± 0.62 0.8 

MR-VP74  multi resistant tebufenpyrad (500 mg L−1) 5.26 (4.32 - 6.04) 3.48 ± 0.37 1.3 

Akita75  METIs (fenpyroximate) fenpyroximate ( 500 mg L−1) 4.14 (3.81 - 4.47) 4.79 ± 0.50 1.3 

MR-VL76  multi resistant bifenthrin (359 mg L−1) 4.11 (3.54 - 4.59) 4.08 ± 0.45 1.3 

JP-R37  cyenopyrafen. cyflumetofen. pyridaben cyenopyrafen (200 mg L−1) 11.2 (9.5 - 13.0) 2.55 ± 0.22 3.5 

EtoxR77  etoxazole. clofentezine etoxazole (1100 mg L−1) 3.66 (3.23 - 4.07) 3.05 ± 0.20 1.2 

TU008R72  Cyflumetofen cyflumentofen (500 mg L−1) 0.596 (0.356 - 0.800) 0.784 ± 0.073 0.2 

SR-VP78  spirodiclofen spirodiclofen (1200 mg L−1) 2.79 (1.91 - 3.29) 5.15 ± 0.72 0.9 

HOL171  bifenazate bifenazate (720 mg L−1) 7.74 (5.93 - 9.35) 2.68 ± 0.24 2.4 

MAR-AB74 multi resistant abamectin (9 mg L−1) 6.02 (4.97 - 6.95) 2.99 ± 0.22 1.9 

† Acaricide exposure of resistant mite strains for maintenance.  674 

‡Median lethal concentration (expressed as mg L−1), with 95% confidence interval.  675 

§Resistance Ratio: LC50 relative to the LC50 of the susceptible population London676 
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 677 

Table 2. Probit mortality data for afoxolaner on different life stages of London T. 678 

urticae strain. 679 

  Life stage LC50 (95% CI) (mg L−1) Slope + SE 

  egg 0.651 (0.552 - 0.759) 2.15 ± 0.11 

  larvae 1.05 (0.88 - 1.24) 2.39 ± 0.16 

  protonymph 2.53 (1.18 - 4.23) 1.14 ± 0.08 

  deutonymph 3.26 (2.61 - 3.97) 2.30 ± 0.14 

  adult male 2.42 (2.03 – 2.77) 4.46 ± 0.24 

  adult female  3.18 (2.83 -3.52) 3.82 ± 0.21 

 680 

 681 

 682 

Table 3. Aligned amino acid sequences of transmembrane domain (TM) 2 and 3 683 

of the coding sequence in 3 wild type and 6 mutant TuRdl plasmids. 684 

Substitutions are highlighted in red. Transmembrane domain regions were 685 

predicted using DeepTMHMM79 and TuRdl1 as input. 686 

  TM2  TM3   
TuRdl1 272… PARVHLGVITVLTMTTLMSST   NSQLPKISYVK SIDVFLGTCFVMVFAALLEYAAV GYIG …332 

TuRdl1 A350T 272… PARVHLGVITVLTMTTLMSST NSQLPKISYVK SIDVFLGTCFVMVFAALLEYATV GYIG …332 

TuRdl1 H301A 272… PARVALGVITVLTMTTLMSST NSQLPKISYVK SIDVFLGTCFVMVFAALLEYAAV GYIG …332 

TuRdl1 H301A A350T 272… PARVALGVITVLTMTTLMSST NSQLPKISYVK SIDVFLGTCFVMVFAALLEYATV GYIG …332 

TuRdl1 H301A I305T 272… PARVALGVTTVLTMTTLMSST NSQLPKISYVK SIDVFLGTCFVMVFAALLEYAAV GYIG …332 

TuRdl1 H301A I305T A350T 272… PARVALGVTTVLTMTTLMSST NSQLPKISYVK SIDVFLGTCFVMVFAALLEYATV GYIG …332 

TuRdl2 266… PARVSLGVTTVLTMTTLMSST NAQLPKISYIK SIDVFLGTCFVMVFASLLEYATV GYLG …326 

TuRdl2 S301A 266… PARVALGVTTVLTMTTLMSST NAQLPKISYIK SIDVFLGTCFVMVFASLLEYATV GYLG …326 

TuRdl3  265… PARVSLGVTTVLTMTTLMSST NAQLPKISYIK SIDVFLGTCFVMVFASLLEYATV GYLG …325 

       

 687 

 688 

 689 

 690 

 691 
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Table 4. Responses of Tetranychus urticae GABACls expressed in Xenopus oocytes. 692 

 693 

pEC50 = the negative logarithm of EC50 694 

pIC50 = the negative logarithm of IC50 695 

Data are the mean of 6–8 oocytes ± SEM. nH. Hill coefficient696 

 GABA  afoxolaner  fluralaner  fipronil  endosulfan 

  EC50 (μM)  pEC50  nH   IC50 (μM)  pIC50  nH   IC50 (μM)  pIC50  nH   
IC50 

(μM)  pIC50  nH   IC50 (μM)  pIC50  nH 

TuRdl1 15.5 4.81 ± 0.01 5.61 ± 0.56  0.0751 7.11 ± 1.65 -0.632 ± 0.171  0.0212 7.67 ± 0.36 -0.292 ± 0.081  - - -  - - - 

TuRdl1 H301A 13.1 4.88 ± 0.05 4.53 ± 1.44  0.0602 7.21 ± 0.05 -0.514 ± 0.143  0.0644 7.18 ± 0.05 -0.491 ± 0.343  - - -  - - - 

TuRdl1 A350T 13.2 4.88 ± 0.01 2.87 ± 0.15  0.118 6.92 ± 0.01 -0.442 ± 0.181  0.0752 7.12 ± 0.28 -0.592 ± 0.274  - - -  - - - 

TuRdl1 H301A A350T 14.1 4.85 ± 0.03 3.97 ± 1.01  0.126 6.91 ± 0.13 -0.343 ± 0.074  0.0684 7.16 ± 0.01 -0.778 ± 0.013  0.0581 7.25 ±1.31 -0.201 ± 0.341  0.178 6.74 ± 0.11  -0.321 ± 0.042 

TuRdl1 H301A I305T 14.4 4.82 ± 0.02 4.41 ± 0.95  0.0664 7.17 ± 0.38 -0.454 ± 0.288  0.0415 7.39 ± 0.29 -0.473 ± 0.295  0.125 7.13 ± 0.13 -0.494-± 0.104  0.0712 7.13 ± 0.38 -0.474 ± 0.281 

TuRdl1 H301A I305T A350T 18.0 4.74 ± 0.03 2.97 ± 0.51  0.290 6.53 ± 0.05 -0.434 ± 0.046  0.0387 7.41 ± 0.05 -0.532 ± 0.035  0.205 6.90 ± 0.82 -0.396 ± 0.423  0.107 6.96 ± 0.05 -0.547 ± 0.046 

TuRdl2 68.6 4.16 ± 0.03 1.56 ± 0.16  0.116 6.95 ± 0.25 -0.571 ± 0.232  0.0561 7.59 ± 0.45 -0.378 ± 0.279  - - -  - - - 

TuRdl2 S301A 65.8 4.18 ± 0.03 1.82 ± 0.19  0.133 6.81 ± 0.04 -0.594 ± 0.094  0.0660 7.00 ± 0.14 -0.320 ± 0.112  - - -  - - - 

TuRdl3 140 3.85 ± 0.04 3.36 ± 0.65   0.188 6.92 ± 0.21 -0.824 ± 0.362   0.0616 7.21 ± 0.49 -0.484 ± 0.342   - - -   - - - 
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10. FIGURES  697 

 698 

Fig. 1. Chemical structures of afoxolaner, fluralaner, firponil and endosulfan. 699 

 700 

 701 

 702 

Fig. 2. Selection for afoxolaner resistance.  703 

Changes in estimated LC50 values of afoxolaner for the HOL1 and MAR-AB T. urticae 704 

strains over 3 consecutive years are presented by the black squares (■). The dotted 705 

line indicates the selecting concentrations (ppm) sprayed on potted bean plants.  706 

 707 

 708 

 709 

 710 

 711 
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Fig. 3. Antagonistic activity of afoxolaner and fluralaner on the TuGABACls 713 

expressed in Xenopus oocytes. 714 

(a) Representative current traces from cumulative exposure to increasing dosage of 715 

afoxolaner and fluralaner obtained for Xenopus oocytes expressing TuRdl1 (WT). The 716 

bars indicate the time period of co-application of GABA (15 μM) and increasing 717 

concentrations of afoxolaner or fluralaner(1 nM–10 μM); (b) Inhibition dose–response 718 

curves measured for afoxolaner and fluralaner obtained from oocytes expressing 719 

TuRdl1. TuRdl2 or TuRdl3; (c) Inhibition dose–response curves measured for 720 

afoxolaner and fluralaner obtained from oocytes expressing single, double and triple 721 

mutant TuRdl1 receptors; (d) Inhibition dose–response curves measured for 722 

afoxolaner and fluralaner obtained from oocytes expressing TuRdl2 and TuRdl2 723 

S301A. Error bars indicate SEM (n = 6–8). 724 

 725 

 726 

 727 

 728 

 729 

 730 

 731 
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 732 

Fig. 4 Antagonistic activity of endosulfan on the TuGABACls expressed in 733 

Xenopus oocytes.  734 

(a) Inhibition dose–response curves measured for endosulfan obtained from oocytes 735 

expressing TuRdl1. TuRdl2 or TuRdl3; (b) Inhibition dose–response curves measured 736 

for endosulfan obtained from oocytes expressing single, double and triple mutant 737 

TuRdl1 receptors; (c) Inhibition dose–response curves measured for endosulfan 738 

obtained from oocytes expressing TuRdl2 and TuRdl2 S301A; (d) Representative 739 

current traces from cumulative exposure to increasing dosage of endosulfan obtained 740 

for Xenopus oocytes expressing TuRdl1 (WT), TuRdl1 A350T (single), TuRdl1 H301A 741 

A350T (double) and TuRdl1 H301A I305T A350T (triple). The bars indicate the time 742 

period of co-application of GABA (15 μM) and increasing concentrations of endosulfan 743 

(1 nM–10 μM). Error bars indicate SEM (n = 6–8). 744 

 745 

 746 

 747 

 748 
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 749 

 750 

Fig. 5. Antagonistic activity of fipronil on the TuGABACls expressed in Xenopus 751 

oocytes.  752 

(a) Inhibition dose–response curves measured for fipronil obtained from oocytes 753 

expressing TuRdl1. TuRdl2 or TuRdl3; (b) Inhibition dose–response curves measured 754 

for fipronil obtained from oocytes expressing single, double and triple mutant TuRdl1 755 

receptors; (c) Inhibition dose–response curves measured for fipronil obtained from 756 

oocytes expressing TuRdl2 and TuRdl2 S301A. (d) Representative current traces from 757 

cumulative exposure to increasing dosage of fipronil obtained for Xenopus oocytes 758 

expressingTuRdl1 (WT), TuRdl1 A350T (single), TuRdl1 H301A A350T (double) and 759 

TuRdl1 H301A I305T A350T (triple). The bars indicate the time period of co-application 760 

of GABA (15 μM) and increasing concentrations of fipronil (1 nM–10 μM). Error bars 761 

indicate SEM (n = 6–8). 762 

 763 

 764 


