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Summary

In this thesis, we tackle the problem of inconsistency in a dataset rep-
resented by an information table, i.e., a finite set of data instances de-
scribed by condition attributes (independent variables) and one deci-
sion attribute (dependent variable). The goal is to identify a causal re-
lationship between the condition and decision attributes based on the
observed set of instances. An information table is consistent if for ev-
ery two instances that relate in a certain way on the condition attributes,
they relate in a similar way on the decision attribute. For example, two
instances that are indiscernible on conditions attributes should have the
same decision. In the opposite case, we call the instances inconsistent.

Tackling the problem of inconsistency means to remove inconsisten-
cies from a dataset by changing values of the decision attribute in order
to obtain a consistent dataset. This problem is approached from mul-
tiple perspectives. First, we recall the traditional rough set approach
and its variations. We discuss how to improve these approaches, make
them more robust, modelling graduality in the information through the
use of fuzzy logic, and perform experiments that empirically test their
robustness. We also discuss their granular properties, i.e., the ability
to represent rough set approximations as unions of simple, meaningful
sets called granules. We explain how the granules can be interpreted
as decision rules and therefore be used in rule induction methods. We
also analyze the granularity properties of the previously discussed ro-
bust versions of rough sets.

On top of the hybrid fuzzy-rough approach, we consider the incon-
sistency problem from the statistical learning perspective. Here, the as-
sumption is that the instances in an information table are realizations
of random variables, or, more precisely, of a fuzzy random variable. We
solve the inconsistency problem as an optimization problem, i.e., we re-
move inconsistencies by minimizing the loss of information. We also
discuss granular properties of this approach, i.e., we study if the pro-

xvii



posed approach has a potential to be used in rule induction methods.
At the end, we develop an instance-based classification procedure

based on the proposed statistical approach to inconsistency handling.
We compare its performance with other similar machine learning classi-
fiers and we stress its biggest strength: interpretability, i.e., the ability to
clearly explain the predicted classification of new instances by similarity
to instances from the original dataset.



Nederlandstalige
samenvatting

In dit proefschrift behandelen we het probleem van inconsistentie in
een dataset die wordt voorgesteld door een informatietabel, d.w.z.,
een eindige verzameling data-instanties die worden beschreven door
conditionele attributen (onafhankelijke veranderlijken) en één beslis-
singsattribuut (afhankelijke veranderlijke). Het doel is het identificeren
van een causaal verband tussen de conditionele attributen en het besliss-
ingsattribuut gebaseerd op de geobserveerde verzameling instanties.
Een informatietabel is consistent als voor elke twee instanties die op
een bepaalde manier met elkaar in verband staan voor de conditionele
attributen, op gelijkaardige wijze kunnen gerelateerd worden voor het
beslissingsattribuut. Bijvoorbeeld, twee instanties die ononderschei-
dbaar zijn voor de conditionele attributen moeten dezelfde beslissing
hebben. In het andere geval noemen we de instanties inconsistent.

Onze aanpak van het consistentieprobleem komt neer op het ver-
wijderen van inconsistenties uit een dataset door de waarden van het
beslissingsattribuut te wijzigen om een consistente dataset te bekomen.
We benaderen dit probleem vanuit verschillende invalshoeken. Eerst
brengen we de traditionele ruwverzamelingenaanpak en diens variaties
in herinnering. We bespreken hoe we deze aanpakken kunnen ver-
beteren, maken ze robuust, waarbij we gradualiteit in de informatie
modelleren aan de hand van vaaglogica, en we voeren experimenten
uit die hun robuustheid empirisch evalueren. We bespreken eveneens
hun granulaire eigenschappen, met andere woorden, we onderzoeken
de mogelijkheid om de benaderingen uit de ruwverzamelingenleer voor
te stellen als unies van eenvoudige, betekenisvolle verzamelingen die we
granules noemen. We leggen uit hoe de granules geïnterpreteerd kun-
nen worden als regels en derhalve gebruikt kunnen worden in regelin-
ductiemethoden. We analyseren eveneens de granulariteitseigenschap-

xix



pen van de eerder besproken robuuste versies van ruwverzamelingen.
Bovenop de hybride vaagruwe aanpak bestuderen we het inconsis-

tentieprobleem ook vanuit het perspectief van statistisch leren. De
aanname hierbij is dat de instanties in een informatietabel uitkom-
sten zijn van toevalsveranderlijken, of, meer precies, van een vaagtoe-
valsveranderlijke. We lossen het inconsistentieprobleem op door mid-
del van optimalisatieproblemen, d.w.z., we verwijderen inconsistenties
door het minimaliseren van het informatieverlies. We bespreken ook de
granulaire eigenschappen van de aanpak, d.w.z., we bestuderen of de
voorgestelde aanpak potentieel bezit om gebruikt te worden in regelin-
ductiemethoden.

Tot slot ontwikkelen we een instantiegebaseerde classificatiemetho-
de gebaseerd op de voorgestelde statistische aanpak van inconsistentie.
We vergelijken de performantie ervan met andere gelijkaardige machine
learning classifiers en we belichten de grootste troef van onze methode:
transparantie, d.w.z., de mogelijkheid om de voorspelde classificatie van
nieuwe instanties uit te leggen a.d.h.v. de gelijkenis met instanties uit de
originele dataset.
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Chapter 1

Introduction

We start this introductory chapter with a discussion in Section 1.1 on the
topics of machine learning and supervised learning problems. Then, we
introduce the concept of data with inconsistencies, which is related to
supervised learning, and we briefly recall how inconsistencies are han-
dled in rough set theory. We also position rough sets within the broader
framework of granular computing. Next, in Section 1.2, we enlarge our
research perspective to the realm of fuzziness: we motivate the use of
fuzzy relations, fuzzy membership degrees and fuzzy granules in data
analysis, and recall the fuzzy rough set approach and its robust exten-
sions for handling graded inconsistencies. In Section 1.3, we recall the
statistical learning approach to inconsistency correction w.r.t. a crisp
preorder relation, which constitutes the basis for the development of
methods for handling inconsistency w.r.t. a fuzzy relation. In Section
1.4, we discuss interpretability methods used in machine learning, and
how methods for inconsistency correction can be used to develop inter-
pretable machine learning models. Finally, in Section 1.5, we provide an
overview of the different chapters of this thesis.

1.1 Data inconsistency in machine learning and
the rough set approach

1.1.1 Introduction to machine learning

Machine learning (ML) is a subfield of artificial intelligence where one
tries to train machines to learn from the available previous experience.
This experience is expressed through data. Such learning from data
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Chapter 1. Introduction

leads to a model that is able to make predictions or decisions without
being explicitly programmed to do so [90]. The area of machine learn-
ing can be roughly divided into three main subfields:

• Supervised learning: here, the computer is presented with a set
of desired input-output or condition-decision pairs and the aim is
to learn a general function that will obtain a decision for the pro-
vided conditions. Such a function should be able to properly map
new, unseen input conditions into correct decisions. Measuring
how close the function output is to the correct decisions on new,
unseen data is the main indicator of quality of a supervised learn-
ing method.

• Unsupervised learning: in this case, the computer is presented
with a set of instances without specific labels (decisions). The goal
is to learn the hidden patterns and structures that the data exhibit.
Usually, there is no exact way to evaluate the quality of unsuper-
vised learning methods and the quality usually depends on indi-
vidual perception.

• Reinforcement learning: in this subfield of machine learning, the
agent interacts with a dynamical environment in which it must
reach a certain goal. The agent receives feedback from the interac-
tions and using this feedback, it adjusts its actions for the future
in order to accomplish the goal. The feedback is in the form of re-
wards, and the actions are adjusted in order to maximize the future
rewards.

Apart from the three main subfields, there are some variations such as
semi-supervised learning, self-supervised learning, etc. In this thesis,
we focus on supervised learning, and more precisely on the prediction
problem, where we want to find a proper mapping from the condition
space to the decision space.

Data in the condition space can be represented using various forms:
tabular, images, text, etc. In the tabular form, every instance in the con-
dition space is represented with a vector of numerical or nominal values.
The description of each entry in such a vector is called a condition at-
tribute of the corresponding instance. All such instances, together with
their vector representation, form a table which is called an information
table.

The decision values can come from different spaces. If the values are
nominal, i.e., they come from a finite discrete space, the prediction prob-

2



Chapter 1. Introduction

lem is called a classification problem. If the values are real numbers, we
deal with a regression problem. These are the two main types of pre-
diction problems. The decision space can also consist of images, text or
some other complex objects. In such case, we deal with structured pre-
diction. The decision attribute, together with the condition attributes
from an information table forms a decision table.

Various algorithms are used to construct such a mapping and all of
them rely on different assumptions. For example, linear models, which
include linear regression and logistic regression, rely on the assump-
tion that the decision is obtained as a linear combination of the condi-
tion attributes, while classification and regression trees (CART) assume
that with a hierarchical set of rules one can describe the influence of
condition attributes on the decision attribute [47, 70]. Other methods
that are widely used in supervised learning are instance-based meth-
ods (k-nearest neighbors (kNN) [46], locally weighted regression (LWR)
[119], isotonic regression [12], ...), kernel-based methods (support vec-
tor machine (SVM) [3, 29], kernel ridge regression [100], ...), sequential
rule-based methods (RIPPER [23], LEM2 [66], FURIA [74], ...), ensemble
methods (random forests [71], AdaBoost [48], ...), etc.

In the last decade, the most popular models for supervised learning
have been those based on artificial neural networks (ANNs) [116, 120].
Such structures, motivated by a simplified analogy to the human brain,
outperform all other methods in many areas of supervised learning, es-
pecially in computer vision (analysis of images) and natural language
processing (analysis of text). Their flexibility and the possibility to ar-
bitrarily increase the number of parameters, enable them to success-
fully mimic human capabilities in certain tasks like face recognition,
machine translation and speech recognition. However, they require sig-
nificantly larger amounts of data, their training is computationally ex-
pensive and may require specialized equipment like graphical process-
ing units (GPUs) or tensor processing units (TPUs) [81, 91, 101].

In this thesis, we want to explore the assumption of consistency be-
tween the condition attributes and the decision attribute. The property
of consistency is introduced in the following subsection.

1.1.2 The assumption of consistency

Assume we have a prediction problem where we wish to assign a de-
cision label to a given instance described by a number of condition at-
tributes. A case at hand may be the patient records of a hospital, where
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patients (instances) are described by their medical parameters (condi-
tion attributes), and the decision attribute refers to a patient’s diagnosis
for a given disease. If two patients exhibit identical medical conditions,
we expect their diagnoses to be the same as well.

In general, we say that two instances are consistent w.r.t. a given re-
lation, if their relation on the condition attributes implies the same type
of relation on the decision attribute. In the opposite case, the instances
are said to be inconsistent. We say that a single instance is consistent if
it is consistent with all other instances as pairs. In the example given
above, the considered relation is indiscernibility, which measures if two
instances (patient records in this case) are identical. However, as we will
see throughout the thesis, other types of relations also arise naturally.

In practice, due to perturbation in data caused by incomplete knowl-
edge or by random effects that occur during data generation, datasets
contain instances that are not consistent. The presence of inconsistent
instances obviously creates obstacles for machine learning algorithms
that try to extract meaningful patterns from data. To make a dataset
consistent, different approaches have been taken.

1.1.3 Consistency in monotone classification problems

An example of inconsistency that is assumed in ordinal classification
problems is the one w.r.t. monotonicity constraints.

Ordinal classification (also called ordinal regression) problems con-
stitute a very important part of machine learning and statistical analysis
[69]. In ordinal classification, the goal is to predict for a certain instance
u from set U , described by its values for a set of condition attributes, one
of K different ordinal class labels y ∈ {1, . . . ,K}.

Ordinal classification problems exploit the existing ordering on the
decision attribute. In some cases, an ordering also exists on the condition
attributes. One way to incorporate this knowledge is through so-called
monotonicity constraints. For a given preorder (dominance) relation on
the set of instances U based on the condition attributes, the monotonic-
ity constraints can be formulated as follows [56]: if instance u1 domi-
nates u2 w.r.t. the given dominance relation on the condition attributes,
then u1 should be assigned to the same or to a better decision class than
u2. In such a case, we may also say that u1 and u2 are consistent w.r.t.
the given dominance relation. Monotonicity constraints are intuitively
desirable; for example, if we have two companies where one of them has
better financial parameters, then it should also have a lower bankruptcy
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risk than the other.
Ordinal classification problems that include monotonicity con-

straints are called monotone classification problems. They arise in many
areas, including medical diagnosis [22], survey data [20], estimation of
bankruptcy risk [62], house pricing [106] and others. A comprehensive
survey of monotone classification methods is given in [19].

1.1.4 Rough sets

One of the first methodologies developed to handle inconsistency with
respect to indiscernibility is the rough set approach, introduced by
Pawlak [103] in 1982. Given a decision table where instances are de-
scribed by a set of attributes, Pawlak’s approach produces two sets,
called lower and upper approximation. They represent elements being,
respectively, necessarily consistent (lower approximation), and possibly
consistent (upper approximation) with knowledge contained in the de-
cision table. The original theory was designed to exploit only nominal
information carried by attributes, and relies on an equivalence relation,
expressing indiscernibility or equality between elements.

Greco et al. [56] extended this framework with their Dominance-
based Rough Set Approach (DRSA) allowing attributes to have ordinal
value sets, and replacing the indiscernibility relation with a dominance
relation. To distinguish between the two approaches, Pawlak’s original
theory is also called Indiscernibility-based Rough Set Approach (IRSA).

1.1.5 Granular computing

Granular computing is a paradigm in information processing which in-
cludes a segmentation of complex information into smaller pieces called
information granules; it has been applied to diverse models in data anal-
ysis [11, 104, 137].

An information granule (or simply a granule) is a collection of in-
stances that can be interpreted jointly. For example, an image of a hu-
man body can be segmented into certain body parts that have precise
meanings. Also, those parts can later be segmented into even smaller
meaningful parts, etc. The previous example shows the hierarchical
nature of granulation, i.e., the definition of granules depends on the
level of detail that we want to capture. Granules are usually constructed
based on a common association (indiscernibility, similarity, functional-
ity, proximity, coherency, etc.) of instances [36, 140].
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Both IRSA and DRSA relate to granular computing, as they possess a
so-called granular representation; indeed, lower and upper approxima-
tions can be represented as unions of simple sets or granules, induced
from the data [138].

The granular representation of rough sets is particularly useful from
the perspective of rule induction. The problem of rule induction for
classification tasks amounts to generating a set of decision rules which
relate descriptions of instances by subsets of attributes with particular
decision classes. Basic granules, from which rough sets are composed,
can be interpreted as human readable “if..., then...” rules, and can be
used to construct a rule-based inference system as a prediction model.
Well-known examples of rule induction algorithms are the LEM2 algo-
rithm [66] and the MODLEM algorithm [67] for IRSA, and the DomLEM
algorithm [60] for DRSA.

1.2 Fuzzy set theory and fuzzy rough sets

1.2.1 Fuzzy sets in supervised learning

Fuzzy logic and fuzzy set theory, introduced by Zadeh [144] in 1965, are
used to model partial truth of logical expressions. In other words, the
expression is not necessarily true or false, but it possesses a degree of
truth represented by a value from the interval [0,1]. Value 0 stands for
a completely false statement, while value 1 represents a completely true
statement.

Two ways to utilize fuzzy logic in data analysis are:

• fuzzy relations,

• fuzzy membership degrees in decision classes.

Fuzzy relations are able to model relationships between instances repre-
sented with attribute vectors. Namely, the usual crisp relations may dis-
tinguish only between two extreme cases: either instances relate or do
not. Fuzzy relations, on the other hand, can express a degree to which
two instances relate on a scale between 0 and 1. This is suitable for
example to model gradual similarity or dominance between vector rep-
resentations of instances or different structural representations (graphs,
strings, DNA chains, ...).

Fuzzy membership degrees can relax the belonging to a particular
decision class in classification problems by assuming that an instance
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can belong to multiple decision classes by different degrees. Usually in
classification problems, we assume that instances belong to a single (or
more in multi-label classification) decision class. However, in some cases
it is more realistic to assume that they belong to a decision class by some
degree which brings the situation where one instance belongs more to a
decision class than another instances. An example for this can be found
in recommender systems.

A degree of preference for a certain product by a user can be mod-
eled using values between 0 and 1. It is also possible that collected data
contain only binary preferences while the underlying degree of prefer-
ence is hidden and can be estimated using machine learning techniques.
For example, when we use a movie streaming service, we are often asked
to rate a movie with either “like” or “dislike”. We have only two options.
But in reality, preference of movies is gradual; we like some movies more
than others, but this graduality cannot be expressed with only two op-
tions: like and dislike.

Another application of membership degrees can be found in senti-
ment analysis problems, where we want to detect the presence of cer-
tain emotions in text. Here, we can also assume that emotions like hate
or joy are present in various degrees in different texts. But very often, we
have the situation as in the previous example where the collected deci-
sion labels are binary and where those decision labels are dependent on
the individual perception of the person that was labeling the text, which
produces an additional perturbation. Therefore, modeling the presence
of emotions with fuzzy membership degrees is suitable in these situa-
tions. We will consider a related didactic example in Chapter 8.

1.2.2 Fuzzy rough set theory

The integration of fuzzy logic and IRSA was initially proposed by Dubois
and Prade [41], allowing to define the rough approximations on decision
values represented with fuzzy membership degrees, using a fuzzy indis-
cernibility relation. A similar extension of DRSA to fuzzy set theory was
proposed by Greco et al. [55].

In a similar way as rough sets produce lower and upper approxi-
mations as sets without inconsistencies, fuzzy rough sets produce fuzzy
lower and upper approximations that do not posses inconsistencies w.r.t.
a fuzzy relation. The ability to use fuzzy relations that are suitable for
modeling similarity between instances with numerical attributes, placed
fuzzy rough sets as an interesting research topic in the machine learn-
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ing community. Apart from being used in usual classification tasks
(e.g. Fuzzy Rough Nearest Neighbour model [78]), Fuzzy IRSA has also
been applied extensively in other machine learning specific domains
like fuzzy rule induction methods [149, 148], instance-based models
[78, 14], attribute selection [26, 108, 130, 131, 142, 143], instance selec-
tion [77, 93], imbalanced classification [111], multi-label classification
[126], and so on.

It is well-known that the classical definitions of fuzzy rough sets in
both the indiscernibility and dominance case are vulnerable to possible
perturbations, in a similar way as their crisp counterparts: small fluc-
tuations in data may cause huge changes in membership values of the
approximations. For this reason, various robust versions of the fuzzy
rough approximations were proposed [25, 27, 43, 97]. In this thesis, we
will focus on the Ordered Weighted Average (OWA) approach. OWA has
been shown to improve fuzzy IRSA in handling outliers and noisy data
[28, 111, 127, 125, 128]. Also, it was shown that the OWA extension pro-
vides the best trade-off between theoretical properties and experimental
performance among robust models [35].

In contrast to crisp sets, the granular properties of fuzzy rough sets
do not stem directly from the proposed definitions. Degang et al. [36]
were the first to show that fuzzy IRSA indeed has a granular representa-
tion, which means that fuzzy rough approximations can be represented
as a union of simple fuzzy sets or fuzzy granules. Later, Yao et al. [139]
pointed out that the symmetry of the fuzzy relation is not essential for
the granular representation, and hence it can be extended to fuzzy DRSA
as well.

The granularity of fuzzy rough sets is also useful for rule induction.
In this case, we obtain a fuzzy inference system, with flexible fuzzy rules
instead of strict ones [79, 149]. The main advantage of fuzzy rules is
that they can model complex patterns of data, and still keep an intuitive
interpretation of these patterns.

1.2.3 Fuzzy sets and granular computing

Zadeh [146] identified granulation as one of three basic concepts in un-
derlying human cognition, the other two being organization and causa-
tion. While organization represents the integration of parts into a whole,
granulation refers to the opposite process. With fuzziness as a key part
of the granulation in human cognition, humans are able to make reason-
able decisions in a world that is characterized with partial knowledge,
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partial certainty, partial truth and imprecision in general.
With the help of fuzzy logic, one can introduce the concept of a fuzzy

granule [145] where every instance has a degree of membership to a
certain granule. Fuzzy granules are useful when it is hard to determine
sharp boundaries of pieces obtained from a segmentation of a complex
object. In such case, soft boundaries are expressed using fuzzy sets.

In this thesis, fuzzy granules are identified in decision tables based
on the concept of data consistency defined in Section 1.1. For a consis-
tent instance (w.r.t. a given fuzzy relation), a fuzzy granule is formed as
a conjunction of two concepts:

• the fuzzy set of instances that relate to the given consistent in-
stance, and

• the association of the consistent instance to a particular decision.

Due to consistency, the instances that relate (w.r.t. a given fuzzy relation,
like, e.g. indiscernibility or dominance) to a given consistent instance
will be associated to the same decision or to a decision that relates to
the decision of the consistent instance. In a classification problem, we
have decision classes and the association of the consistent instance refers
to the membership of the instance to a decision class. In a regression
problem, the association refers to the numerical value that the consistent
instance takes in the decision attribute.

1.3 Kotłowski-Słowiński approach

The rough set methods are considered to be extreme in their way of in-
consistency handling. Namely, the resulting approximations assign all
inconsistent instances to one decision class, either to the approximated
decision class (upper approximation case) or to the opposite class (lower
approximation case). This leads to a situation where the approximations
may be significantly different from the original decision classes. Then,
the question arises if the inconsistency can be corrected with the least
possible amount of change of decision values. This can be achieved if
handling inconsistency is formulated as an optimization problem. For
this purpose, the statistical learning perspective of inconsistency correc-
tion in monotone classification problems was considered by Kotłowski
and Słowiński [89]. They provided statistical foundations of the mono-
tonicity constraints and developed a machine learning method to in-
corporate them into data analysis. In particular, they designed an opti-
mization procedure that removes inconsistencies in data (“monotonizes”
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them) at the least possible cost w.r.t. a certain loss function (used to mea-
sure the difference between the original decision labels and the new de-
cision labels). It produces a new set of labels called a monotone ap-
proximation. The authors also showed that, for a specific family of loss
functions called monotone loss functions, the optimization problem can
be solved efficiently using linear programming. Finally, the relabeled
sets possess the property of granular representation, meaning that they
can be represented as unions of meaningful granules. This approach
also generalizes standard rough sets and provides another probabilistic
view of them. The approach found its application in the same areas as
DRSA [88], as well as in the development of rule induction and ensem-
ble rules methods [37]. A well-known representative of this approach is
the widely used isotonic regression model [12] which uses squared error
loss as its loss function. In the remainder of the thesis, we refer to this
method as the KS approach.

1.4 Interpretability of machine learning
models

1.4.1 Motivation for the interpretability

Many machine learning models have strong prediction performance and
they provide great results in practice. A well-known example are arti-
ficial neural networks, the main tool used in computer vision, natural
language processing, sentiment analysis and many other fields. How-
ever, neural networks are complex structures by their nature, and we do
not know too much about how they learn from data. Sometimes this is
not important (e.g., it is not necessary to know how the face identifica-
tion on a smartphone works) but there are cases where the knowledge
about a model may have a significant impact.

The first case is when we are interested in knowledge generated by
a machine learning algorithm. High prediction performance means that
the algorithm learned a lot about the relationship between data, detected
some trends, found impact of different factors on the output, etc. So, we
would like to extract all that important information from the algorithm
for which we need reliable interpretation methods. For example, if a
client is rejected for a loan in a bank based on a ML algorithm, they
would like to know why that happened.

The second case may be for the purpose of debugging an ML algo-
rithm. Apart from valuable knowledge, the algorithm may also learn
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things which do not correspond to the reality of the problem [113]. This
happens mainly due to poor data quality or due to the lack of robustness
of the model to noise or outliers. We want to avoid making predictions
based on false knowledge, even if prediction performance is high at first
impression. To debug the algorithm, we need to “unpack” it, to see what
it learned and to fix the possible issues.

The third case is when a wrong prediction may have a significant
impact. An example are self-driving cars. It was shown that systems for
recognizing objects on a road that are based on deep learning, are vulner-
able to adversaries [42]. In particular, the authors developed very simple
single-color stickers and positioned them on a STOP sign. While such
stickers would not affect an ordinary human in recognizing the sign, a
self-driving car recognized it as a speed limit. This could lead to fatal-
ities. Therefore, users need to know how ML algorithms used in such
sensitive environment work, to be able to avoid negative consequences.

1.4.2 Interpretable models

The following part is loosely motivated by [98]. The interpretation
methodology can be roughly divided into two families: models that are
interpretable by their construction and methods that are used to inter-
pret models with low interpretability, like ANNs (or black-box models,
as they are sometimes called).

Interpretable models are those whose prediction making process is
understandable by humans to some extent. We identify two types of
interpretability here:

• modular interpretability, where building units, like parameters, can
be interpreted jointly, and

• local interpretability, where making individual predictions can be
comprehended by a human.

The models that are considered as interpretable are linear models, which
include linear and logistic regression [112], and rule-based models like
CART [109] or rough set-based rule induction [66], while the models
interpretable to some extent are instance-based models like kNN [46]
or fuzzy rough set based k-Fuzzy Rough Nearest Neighbour (kFRNN)
[78, 110] and prototype-based models like Learning Vector Quantiza-
tion (LVQ) [87]. The latter two groups are interpretable “to some ex-
tent”, because there are versions of them that are not interpretable. This
happens for example if k is too large for the instance-based methods, or
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when the learned prototypes are meaningless for the prototype-based
methods. More information about interpretability of these methods is
given in Section 8.4.

The linear models are interpretable on a modular level, i.e., the lin-
ear coefficients have a specific interpretation. The rule-based methods
can belong to both types of interpretable methods. They are definitely
locally interpretable since for every prediction, a particular rule can
be identified that leads to that prediction. The decision tree structure
of CARTs can be seen as modularly interpretable, since all splits dur-
ing the training, together with the hierarchical structure, can be under-
standable. Prototype-based methods also belong to both types of inter-
pretability. The local interpretability holds from the fact that for every
new prediction, a prototype that contributed to the prediction can be
identified. Also, the set of prototypes, as a representative of the data
distribution, can be seen as a form of modular interpretability if the
prototypes are interpretable. In all mentioned cases, the interpretabil-
ity is also dependent on the size of the structure, i.e., the number of
parameters (or attributes) in linear models, the number of splits for
CART (or the number of rules in general) and the number of proto-
types. Smaller structures will lead to a better understanding and there-
fore some size constraints are welcome in this case. Finally, instance-
based methods are purely locally interpretable because they are inher-
ently local as such. More technical details on the aforementioned locally
interpretable methods is given in Sections 8.1 and 8.4.

1.4.3 Methods for interpreting black-box models

Methods that are used to explain black-box models are based on the
idea that separating explanations from modeling can lead to better inter-
pretability [114]. Such methods are called model-agnostic. Their biggest
advantage is their flexibility, i.e., a user can use any ML model, since
explanations are independent from them. This family of methods con-
sists of two different subfamilies: global model-agnostic methods and
local model-agnostic methods. Global model-agnostic methods tend to
explain methods as a whole, while the local counterpart concentrates
mainly on individual predictions.

Global model-agnostic methods include various procedures for mea-
suring the contribution of individual attributes like partial dependence
plots [49, 64], accumulated local effects [8], permutation feature impor-
tance [18, 45], etc. All these methods want to assess how individual
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attributes are important to the model as a whole.
Another type of global model-agnostic methods are global surrogate

methods. These are interpretable methods that are applied to predic-
tions of a black-box method [4, 82]. For example, if an ANN is applied
to a dataset, then the decision attribute values are changed based on the
predictions of the model and then, an interpretable model, such as a lin-
ear or rule-based model, is applied using the new decision values. In
this way, one wants to better understand the black-box model using the
interpretable one.

The third type of global model-agnostic methods are prototype-
based methods. We already mentioned a prototype-based interpretable
models like LVQ. While in the case of interpretable models the pro-
totypes are not necessarily instances from the dataset, here they come
from the dataset, which can give better explanations under the assump-
tion that the instances are meaningful. A representative method, based
on maximum mean discrepancy (MMD) [65], is called MMD-critic and
identifies instances that are representatives of the data distribution (pro-
totypes) as well as instances that do not follow the distribution deter-
mined by prototypes (critics). This is a representative of instance-based
methods for interpretation that will be discussed later.

Local model-agnostic methods are concentrated on explaining indi-
vidual predictions of black-box models rather than the model as a whole.
We discuss three representative methods from this group: Local inter-
pretable model-agnostic explanations (LIME), Shapley values and coun-
terfactuals.

LIME methods work under the assumption that a very complex
model can be simple in the neighbourhood of the instance for which
we want to explain the prediction [113]. Therefore, learning an inter-
pretable model in the neighbourhood can explain what drives the pre-
diction of the instance. The interpretable models which are used in this
case are either linear [113] or rule-based [115].

Shapley values, motivated from game theory [122], is a method that
aims to explain how individual attributes contribute to the difference by
which a predicted value is different from the average prediction (mean
of all predictions) [123]. It provides contributions that use the same
measuring unit as the decision attribute (e.g., if the decision attribute
values are prices in euro, the contributions will be expressed in euro
as well) which sum up to the aforementioned difference. This way of
expression gives a very intuitive representation of the contributions.

Counterfactual explanations aim to determine what is the smallest
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possible difference that should be made to the attributes of an instance
for which we want to explain the prediction, in order to change the pre-
diction (e.g., to change the decision class). We want to construct artificial
instances with a different prediction that are least possibly distant from
the given instance. Such artificial instances are called counterfactuals.
Examples of methods that create counterfactuals are given in [30, 129].
This approach is again an example of instance-based methods for inter-
pretability that will be discussed later.

1.4.4 Fuzzy logic and interpretability

In the context of interpretability, this thesis wants to contribute to the
utilization of fuzzy logic in interpretable machine learning. One of the
biggest advantages of fuzzy logic is its possibility to be explained using
linguistic expressions. Fuzzy logic expressions and formulas can usually
be translated into plain words. This advantage is most visible with fuzzy
connectives. Namely, while fuzzy connectives can take rather complex
expressions, their interpretation stays clear and simple. There has been a
lot of discussion if a fuzzy logic can be used for interpretability purposes
[5, 21, 105, 150], and the vast majority of approaches is related to fuzzy
rule-based systems. In this thesis, we theoretically explore the concept
of fuzzy granules which will serve as building blocks in the develop-
ment of the rule based systems, in a similar manner as the granularity
of rough sets served to the development of the LEM2 and MODLEM al-
gorithms. The development of rule-based systems is, however, out of
the scope of this thesis. Apart from the theoretical examination of fuzzy
granules, in Chapter 8 we develop an instance-based method that we
claim is interpretable. We discuss its interpretability and compare its
performance and its interpretablity with other instance-based and lo-
cally interpretable models.

Because of this, we provide a brief overview on instance-based meth-
ods used for interpretability purposes. We already mentioned instance-
based methods that are interpretable up to some extent, like kNN,
kFRNN and LVQ, and methods for interpreting black-box models, like
prototype-based methods and counterfactuals. Other instance-based
methods include adversarial examples and influential instances. Ad-
versarial examples are similar to counterfactuals where the task is to
construct an artificial instance, but the role of the instance in this case
is adversarial, i.e., it is supposed to deceive the model. We already dis-
cussed the example with the STOP sign which is a clear example of an
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adversarial instance. Since this method is used to deceive the model as
a whole, it is more appropriate to classify it as a global method than
as a local method where we include the counterfactuals. However, this
method can only give some insights where the model has a flaw, but
cannot provide any more general information about the behaviour of
the model. The approach with influential instances includes identifying
instances in the training dataset for which removal would significantly
worsen the prediction performance of the model. By identifying the in-
fluential instances, one tries to get to the essence of the model and to
better explain its behaviour. The methods for identifying influential in-
stances were discussed in [24, 86].

The reflection of our interpretable model w.r.t. the methods pre-
sented here will be discussed in Chapter 8.

1.5 Overview of the dissertation

In this thesis, we integrate ideas and contributions of rough sets, fuzzy
sets and machine learning: handling inconsistency and granulation are
main contributions of rough sets; the theory of fuzzy sets allows us to use
fuzzy relations to model a non-binary interaction among instances; and
finally, including statistical/machine learning allows us to make data
consistent, incurring the least possible cost (w.r.t. some loss function)
using optimization methods.

The contribution of the thesis and its distribution over the chapters
is given in Figure 1.1. The major part of the contribution is in providing
a strong theoretical background on the existing and new methods used
for inconsistency correction together with the desired granular proper-
ties. This is shown in yellow rectangles in Figure 1.1. The minor part
is developing an instance-based and interpretable classification method
which is based on the introduced theory, as well as the discussion of the
other possible applications (blue rectangles in Figure 1.1).

Reflecting the described contribution, the thesis is structured as fol-
lows:

• Chapter 2: first, we bring to the reader’s attention the preliminary
material that is needed to understand the concepts developed in
this thesis. In particular, we recall the classical indiscernibility-
based and dominance-based rough set approaches (IRSA and
DRSA); basic notions of fuzzy logic connectives, fuzzy sets and
fuzzy relations; statistical learning for monotone classification,
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Figure 1.1: Contributions distributed over the chapters of the thesis

and monotone approximation; and finally, the ordered weighted
average (OWA) operator that is used in robust extensions of rough
set theory.

• In the first part of Chapter 3 we discuss different ways of how spe-
cific fuzzy relations (T -preorder and T -equivalence relations) can
be constructed and how they are related to metrics and inner prod-
ucts as measures that are widely used to measure how close pairs
of instances are. In the second part of the chapter, we formally de-
fine the inconsistency problem in data w.r.t. a T -preorder relation
and provide classification and regression examples that illustrate
all types of inconsistencies that we identified for different crisp or
fuzzy relations.

• Chapter 4: for practical purposes, we unify the definitions of IRSA
and DRSA into the Preorder-based Rough Set Approach (PRSA)
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and propose an integration of PRSA and fuzzy logic. We exam-
ine the properties of the integration and propose an extension us-
ing Ordered Weighted Average (OWA) operators. We then exam-
ine theoretical properties of this hybridisation of OWA operators
with fuzzy PRSA, and experimentally compare the robustness of
the standard fuzzy DRSA approach with the OWA one.

• Chapter 5: we introduce the concept of a granularly representable
set, i.e., a set that can be represented as a union of simple sets
or granules. We show the relationship of the new definition with
(fuzzy) PRSA, and also explain how the granular approach gives
rise to the induction of decision rules. Then, we show that the
OWA-based robust extension of the (fuzzy) PRSA model also al-
lows for a granular representation. In particular, we prove that
when approximations are defined using a directionally convex t-
norm and its residual implicator, the OWA-based lower and upper
approximations are definable as unions of fuzzy granules.

• Chapter 6: we introduce a new machine learning method for in-
consistency handling with respect to a fuzzy preorder relation.
The novel approach is motivated by the existing machine learn-
ing approach used for crisp dominance relations described in [89].
We generalize the monotonicity constraints using fuzzy preorder
relations, while the ordinal classes are replaced with fuzzy mem-
bership degrees, making our approach appropriate for problems
where the decision attribute can be modeled using values from the
unit interval; concretely, for binary classification and regression
problems. The novel approach generalizes the rough set approxi-
mations and due to the granular properties of its output, we name
the output as granular approximation. We provide statistical foun-
dations for our approach, develop optimization procedures that
can be used to eliminate inconsistencies, prove some important
properties and illustrate the procedures by means of didactic ex-
amples.

• Chapter 7: we introduce the concepts of disjoint and adjacent
granules and we examine how the new definitions affect the gran-
ular approximations. First, we show that the new concepts are
important for binary classification problems since they help to
keep decision regions separated (disjoint granules) and at the same
time to cover as much as possible of the attribute space (adjacent
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granules). Then, we formulate an optimization procedure in or-
der to extend granular approximations to the multi-class classi-
fication problem leading to the definition of multi-class granular
approximations. Such an approximation is a union of granules con-
structed in the way described above; it is a fuzzy set constructed as
a conjunction of a fuzzy relation and an association value. These
association values can be interpreted as the degree up to which
an instance belongs to a certain decision class. Finally, we show
how to efficiently calculate multi-class granular approximations
for Łukasiewicz fuzzy connectives. We also provide graphical il-
lustrations for a better understanding of the introduced concepts.

• Chapter 8: we design a new classification model called Fuzzy
Granular Approximation Classifier (FGAC) based on the previously
introduced (multi-class) granular approximations. First, we show
how FGAC is natively derived from the definition of the granular
approximations and develop the classifier for the binary classifi-
cation case. Then, we extend it for the multi-class classification
case. We also propose to utilize OWA operators and develop OWA-
based FGAC. The next section deals with ways to improve the time
consumption of FGAC at the cost of the precision of the obtained
granular approximations. Then, we compare the performance of
FGAC with other similar ML models. In the final step, we discuss
the interpretability of FGAC and show how the interpretability of
the FGAC is more advantageous than that of other ML models.

• Chapter 9: we provide a summary of the thesis, and for each chap-
ter, we separate the previously known results from the original
contributions of this thesis. At the end, we discuss possible direc-
tions for the continuation of this work.
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Chapter 2

Preliminaries

This chapter provides the prior knowledge necessary for understand-
ing the results of this thesis. We discuss the theories of rough sets, fuzzy
sets, aggregation operators, statistical learning and the KS approach. We
start with rough set theory in Section 2.1 and move on to discuss fuzzy
set theory in Section 2.2. In Section 2.3, we outline the basics of sta-
tistical learning and then zoom in on statistical learning for monotone
classification, developed by Kotłowski and Słowinński. In the last sec-
tion of this chapter, Section 2.4, we discuss the Ordered Weighted Aver-
age (OWA) aggregation operators, used for softening the maximum and
minimum.

2.1 Rough set theory

Rough set theory, introduced by Pawlak [103], is a well-known and
widely applied mathematical framework for handling inconsistencies in
data. In its original formulation, it refers to a set U of instances and an
equivalence relation E on U .

More generally, it is possible to replace E by any binary relation on U ,
not necessarily an equivalence relation. In the next paragraphs, we will
review the specific case of an equivalence relation, and of a dominance
relation.

2.1.1 Indiscernibility-based rough set Approach

We first recall Pawlak’s definition of the Indiscernibility-based Rough
Set Approach (IRSA) [103]. Let U be the set of instances and E an equiv-
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alence relation on U , which is also called indiscernibility relation. Such
relation is

• reflexive: it holds that (u,u) ∈ E,

• symmetric: if (u,v) ∈ E then (v,u) ∈ E,

• transitive: if (u,v) ∈ E and (v,w) ∈ E, then also (u,w) ∈ E,

for all u,v,w ∈ U . By [u]E we denote the equivalence class of E contain-
ing element u, i.e.,

[u]E = {v ∈U ; (u,v) ∈ E}.

In the majority of applications, instances are characterised by their val-
ues for a number of attributes. Every attribute’s domain consists of a fi-
nite number of nominal values and every instance u ∈U on an attribute
q ∈Q takes one of those values denoted with u(q). Then, the equivalence
relation E is constructed as (u,v) ∈ E ⇔ ∀q ∈ Q,u(q) = v(q). In this case,
we say that u and v are indiscernible.

Let A ⊆ U be a subset of instances that belong to the same decision
class. The lower and upper approximation of A are defined as:

apr
E

(A) = {u ∈U : [u]E ⊆ A},

aprE(A) = {u ∈U : [u]E ∩A , ∅}.

2.1.2 Dominance-based rough set approach

In the Dominance-based Rough Set Approach (DRSA), the equivalence
relation E is replaced by a dominance relation D which is a preorder,
i.e., a reflexive and transitive binary relation on U .

In the applications of DRSA, the set of instances U is described by a
finite set of criteria. One criterion’s domain consists of a finite number
of ordinal values and every instance u ∈ U on a criterion q ∈ Q takes
one of these values denoted with u(q). These ordinal values generate the
preorder relation D(q) on attribute q. Then, the dominance relation D is
defined as (u,v) ∈D⇔∀q ∈Q, (u,v) ∈D(q).

On the other hand, there exists a total order among decision classes,
which are denoted by Clt , t ∈ {1, . . . ,K}. The sets which will be approxi-
mated are now upward and downward unions of classes defined respec-
tively as

Cl≥t =
⋃
s≥t

Cls, Cl≤t =
⋃
s≤t

Cls, t = 1, . . . ,K.
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u ∈ Cl≥t means that “u belongs at least to Clt”, while u ∈ Cl≤t means that
“u belongs at most to Clt”. We recall some basic properties of downward
and upward unions:

• Cl≥1 = Cl≤K = U ,

• Cl≥K = ClK and Cl≤1 = Cl1,

• for t = 2, . . . ,K , it holds: Cl≥t−1 = U −Cl≤t and Cl≤t−1 = U −Cl≥t .

For each u ∈U we define the following sets:

• a set D+(u) of instances dominating u, called dominating set,
D+(u) = {v ∈U : (v,u) ∈D},

• a set D−(u) of instances dominated by u, called dominated set,
D−(u) = {v ∈U : (u,v) ∈D}.

The lower approximation apr
D

(Cl≥t ) of Cl≥t and the upper approxima-

tion aprD(Cl≥t ) of Cl≥t are defined as

apr
D

(Cl≥t ) = {u ∈U : D+(u) ⊆ Cl≥t },

aprD(Cl≥t ) = {u ∈U : D−(u)∩Cl≥t , ∅}.

Analogously, we can define the lower and upper approximation of Cl≤t
as

apr
D

(Cl≤t ) = {u ∈U : D−(u) ⊆ Cl≤t },

aprD(Cl≤t ) = {u ∈U : D+(u)∩Cl≤t , ∅}.

2.2 Fuzzy set theory

The definitions and terminology in this section are based on [84].

2.2.1 Fuzzy logic connectives

The fuzzy logic connectives are (unary or binary) operators that are used
as fuzzy counterparts of the basic binary logic connectives: conjunction,
disjunction, implication and negation.
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Triangular norms and copulas

We first recall the notion of a triangular norm, or shortly t-norm T ,
which is an extension of the classical logical conjunction to values in
the unit interval. In particular, T : [0,1]2 → [0,1] is a binary operator
which is commutative, associative, non-decreasing in both arguments,
and for which it holds that ∀x ∈ [0,1], T (x,1) = x.

Since a t-norm is associative, we may extend it unambiguously to a
[0,1]n→ [0,1] mapping for any n > 2. Some commonly used t-norms are
listed in Table 2.1.

Various additional conditions may be imposed on t-norms. We say
that x ∈ [0,1] is a nilpotent element of a t-norm T if there exists a natural
number n such that

T ( x, . . . ,x︸ ︷︷ ︸
n times

) = 0.

A t-norm is called nilpotent if it is continuous and every x ∈ (0,1) is a
nilpotent element. For example, TL from Table 2.1 is nilpotent while the
others are not.

A t-norm is strict if it is continuous and strictly increasing in both
arguments. TP from Table 2.1 is strict while the others are not.

We call a t-norm Archimedean if

(∀(x,y) ∈ (0,1)2)(∃n ≥ 2)(T ( x, . . . ,x︸ ︷︷ ︸
n times

) < y).

TP , TL and TD from Table 2.1 are Archimedean, while TM and TnM are
not. A continuous Archimedean t-norm T has a unique representation:

T (x,y) = f −1(min(f (x) + f (y), f (0))), (2.1)

where f is a decreasing generator, i.e., f : [0,1] → R+ is a strictly de-
creasing continuous [0,1]→ [0,+∞] mapping for which f (1) = 0.

Also, it is known that a t-norm is a continuous Archimedean t-norm
if and only if it is either strict or nilpotent.
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Name Definition R-implicator

Minimum TM(x,y) = min(x,y) ITM (x,y) =
{

1 if x ≤ y
y otherwise

Product TP (x,y) = xy ITP (x,y) =
{

1 if x ≤ y
y
x otherwise

Łukasiewicz TL(x,y) = max(0,x+ y − 1) ITL(x,y) = min(1,1− x+ y)

Drastic TD(x,y) =
{

min(x,y) if max(x,y) = 1
0 otherwise

ITD (x,y) =
{

y if x = 1
1 otherwise

Nilpotent
minimum

TnM(x,y) =
{

min(x,y) if x+ y > 1
0 otherwise

ITnM (x,y) =
{

1 if x ≤ y
max(1− x,y) otherwise

Table 2.1: Some common t-norms and their R-implicators

We call two fuzzy binary operators B1 and B2 isomorphic if there ex-
ists a bijection ϕ : [0,1]→ [0,1] such that B1 = ϕ−1(B2(ϕ(x),ϕ(y))), while
unary operators V 1 and V 2 are called isomorphic if V 1 = ϕ−1(V 2(ϕ(x))).
Moreover, we write B1 ≡ B2

ϕ and V 1 ≡ V 2
ϕ .

Proposition 2.2.1. A strict t-norm is isomorphic to TP while a nilpotent
t-norm is isomorphic to TL.

Given a bijection ϕ : [0,1]→ [0,1], we denote with TL,ϕ, defined by

TL,ϕ(x,y) = ϕ−1(max(ϕ(x) +ϕ(y)− 1,0)) (2.2)

the nilpotent t-norm that is isomorphic to TL with bijection ϕ and we
denote with TP ,ϕ, defined by

TP ,ϕ(x,y) = ϕ−1(ϕ(x)ϕ(y)) (2.3)

the strict t-norm that is isomorphic to TP with bijection ϕ.
Related to the notion of t-norm is that of a copula. A (bivariate)

copula C is a [0,1]2 → [0,1] mapping which satisfies the boundary
conditions ∀x, C(0,x) = C(x,0) = 0, C(1,x) = C(x,1) = x, and the 2-
increasingness property: C(x,y)+C(x′ , y′) ≥ C(x′ , y)+C(x,y′) for all x ≥ x′

and y ≥ y′.
Some t-norms are copulas, while others are not: for example, TM , TP

and TL are copulas, while TD and TnM are not. Vice versa, there also exist
copulas which are not t-norms.

Triangular conorms and negators

To model fuzzy logic disjunction, we consider a t-conorm S : [0,1]2 →
[0,1]: this is a binary operator which is commutative, associative,
non-decreasing in both parameters and for which holds that ∀x ∈
[0,1], S(x,0) = x.
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A negator (or fuzzy negation) N : [0,1] → [0,1] is a unary non-
increasing operator for which it holds that N (0) = 1 and N (1) = 0. A
negator is involutive if N (N (x)) = x for all x ∈ [0,1]. The standard nega-
tor is defined as Ns(x) = 1− x.

For a given involutive negator N and a t-norm T , we say that a t-
conorm S is the N -dual of T if it holds that S(x,y) = N (T (N (x),N (y))).
In this case, the triplet (T ,N,S) is called a de-Morgan triplet.

Aggregation operators

Triangular norms and conorms are examples of aggregation operators.
A binary aggregation operator A : [0,1]2 → [0,1] (or just aggregation
operator) is an operator which is non-decreasing in both arguments, and
for which A(0,0) = 0 and A(1,1) = 1. For x,y ∈ [0,1], an aggregation
operator is

• conjunctive ifA(x,y) ≤min(x,y),

• disjunctive ifA(x,y) ≥max(x,y),

• averaging if min(x,y) ≤A(x,y) ≤max(x,y).

A t-norm is a conjunctive aggregation operator while a t-conorm is dis-
junctive.

For a given involutive negator N , we say that aggregation operatorA
is N -invariant if

A(x,y) = N (A(N (x),N (y))). (2.4)

It is easy to verify that conjunctive and disjunctive operators cannot be
N -invariant.

Implicators

An implicator (or fuzzy implication) I : [0,1]2→ [0,1] is a binary operator
which is non-increasing in the first component, non-decreasing in the
second one and for which it holds that I(1,0) = 0 and I(0,0) = I(0,1) =
I(1,1) = 1.

Given a t-conorm S and a negator N , the S-implicator induced by S
and N is defined as I(x,y) = S(N (x), y).

The residuation property holds for a t-norm T and an implicator I if

T (x,y) ≤ z⇔ x ≤ I(y,z). (2.5)
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It is satisfied if and only if T is left-continuous and I is defined as the
residual implicator (R-implicator) of T , that is

IT (x,y) = sup{λ ∈ [0,1];T (x,λ) ≤ y}.

The very right column of Table 2.1 shows the residual implicators of the
corresponding t-norms. Note that all of them, except ITD , satisfy the
residuation property.

Given a [0,1]→ [0,1] bijection ϕ, the residual implicators of nilpo-
tent and strict t-norms TL,ϕ and TP ,ϕ will be denoted by IL,ϕ and IP ,ϕ.

For implicator I , we define the negator induced by I as N (x) = I(x,0).
If I is the R-implicator of t-norm T , we will call the triplet (T ,I,N ) a
residual triplet. If the t-norm from a residual triplet is continuous and
Archimedean, then the negator of the triplet is involutive if and only if
the t-norm is nilpotent. In such case, the negator has the form

Nϕ(x) = ϕ−1(1−ϕ(x)).

For a residual triplet, the following properties hold for all x,y,z ∈ [0,1]:

• T (x,y) ≤ x and T (x,y) ≤ y, (2.6a)

• I(x,y) ≥ y, (2.6b)

• T (x, I(x,y)) ≤ y, (2.6c)

• x ≤ y⇔ I(x,y) = 1, (ordering property) (2.6d)

• T (x, I(y,z)) ≤ I(I(x,y), z), (2.6e)

• I(T (x,y), z) = I(x, I(y,z)), (2.6f)

• T (x,N (y)) ≤N (I(x,y)) (consequence of (2.6e) when z = 0), (2.6g)

• N (T (x,y)) = I(x,N (y)) (consequence of (2.6f) when z = 0). (2.6h)

If residual triplet (T ,I,N ) is generated by t-norm T , then the residual
triplet generated by Tϕ is (Tϕ , Iϕ ,Nϕ).

A t-norm for which the induced negator of its R-implicator is invo-
lutive is called an IMTL t-norm. In Table 2.1, TL and TnM are IMTL t-
norms where the corresponding induced negator is Ns. A residual triplet
(T ,I,N ) that is generated with an IMTL t-norm is called an IMTL triplet.
If (T ,I,N ) is an IMTL triplet, then (Tϕ , Iϕ ,Nϕ) is also an IMTL triplet.

For an IMTL triplet, the following properties hold for all x,y,z ∈
[0,1]:

• I(N (x),N (y)) = I(y,x), (2.7a)
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• T (x,N (y)) = N (I(x,y)). (2.7b)

A continuous t-norm is IMTL if and only if it is isomorphic to the
Łukasiewicz t-norm. Such t-norm is strongly max-definable, i.e., for all
x,y ∈ [0,1] and I = IT , it holds that

max(x,y) = I(I(x,y), y) = I(I(y,x),x). (2.8)

The residual triplet generated by TL,ϕ, a t-norm isomorphic to TL, is
denoted by (TL,ϕ , IL,ϕ ,NL,ϕ). Note that NL ≡Ns.

2.2.2 Fuzzy sets and fuzzy relations

Given a non-empty set U , a fuzzy set A in U is an ordered pair (U,mA),
where mA : U → [0,1] is called the membership function and indicates
how much an element from U is contained in A. Instead of mA(u), the
membership degree is often written as A(u). If the image of mA is {0,1},
we obtain a crisp or classical set. The set of fuzzy sets in U , denoted by
F(U ), is thus a superset of P(U ).

For a negator N , the fuzzy complement coA is defined as coA(u) =
N (A(u)) for u ∈ U . If A is crisp then coA reduces to the standard com-
plement. For α ∈ (0,1], the α-level set of fuzzy set A is a crisp set defined
as Aα = {u ∈U ;A(u) ≥ α}.

A fuzzy relation R̃ on U is a fuzzy set on U × U , i.e., a mapping
R̃ : U ×U → [0,1] which indicates how much two elements from U are
related. Some relevant properties of fuzzy relations include:

• R̃ is reflexive if ∀u ∈U, R̃(u,u) = 1.

• R̃ is symmetric if ∀u,v ∈U, R̃(u,v) = R̃(v,u).

• R̃ is T -transitive w.r.t. t-norm T if ∀u,v,w ∈U it holds that
T (R̃(u,v), R̃(v,w)) ≤ R̃(u,w).

A reflexive and T -transitive fuzzy relation is called a T -preorder, while
a symmetric T -preorder is called a T -equivalence. Moreover, if T -
equivalence satisfy that R̃(u,v) = 1⇔ u ≡ v, we call it a T -equality.

If a fuzzy relation R̃ is T -transitive w.r.t. t-norm Tϕ that is isomor-
phic to T , then the transformed relation ϕ(R̃) is T -transitive w.r.t. T .
The transformed relation is denoted with R̃ϕ.
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2.3 Kotłowski-Słowiński approach

2.3.1 Statistical learning for monotone classification

A random variable X is a mapping from a probability space to a certain
codomain X. If the codomain is a subset of the real numbers, X is usually
characterized with a cumulative distribution function (CDF) defined as
FX = P (X ≤ x) for x ∈ X. A CDF is a non-decreasing and right-continuous
function with codomain [0,1]. If the CDF is continuous then we say that
X is continuous, while if the image of the CDF is a finite set, we say that
X is discrete. Based on the CDF, a quantile function may be defined as
follows: QX(p) = inf{y;FX(y) ≥ p} for 0 < p < 1. In other words, if p is
in the image of FX, then QX(p) is the smallest value for which P (X ≤
QX(p)) = p. The value QX(1

2 ) is called the median of X. The expected
value of X can be expressed using the quantile function [53]:

E(X) =
∫ 1

0
QX(p)dp. (2.9)

We say that X1 stochastically dominates X2 if FX1
(x) ≥ FX2

(x) for all
x ∈ X.

Proposition 2.3.1. [121] For two random variables X1 and X2, it holds
that

∀x ∈ X,FX1
(x) ≤ FX2

(x)⇔∀p ∈ (0,1),QX1
(p) ≥QX2

(p).

The above proposition states that the stochastic dominance can be
characterized using quantile functions instead of CDFs.

We now examine the prediction problem. Let X and Y be two random
variables with codomains X and Y respectively. When making predic-
tions, we examine how does X influence Y. Concretely, we are interested
to find a function h such that h(X) is close to Y, i.e., it predicts values of
Y for given values of X. Formally, let L : Y × Y → R+ be a loss function.
A prediction problem consists in finding a function h : X→ Y such that
the risk

R(h) = E(L(Y,h(X)))

is minimized. The optimal h, denoted as h∗, is called the Bayes predictor.
The influence of of random variable X on random variable Y can be rep-
resented by a family of random variables YX=x, which stands for variable
Y conditioned by X = x. Such a random variable, for a fixed x, may be
described by its CDF:

FY|X=x(y) = P (Y ≤ y|X = x).
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Searching for an optimal prediction function h in the learning process
may be seen as an estimation of certain characteristics of the family
of random variables YX=x. For example, when the loss function is the
squared error loss (also known as quadratic loss or l2 loss)

LSEL(y, ŷ) = (y − ŷ)2, (2.10)

for y, ŷ ∈ Y and Y = R, then the Bayes predictor is h∗(x) = E(Y|X = x), i.e.,
the conditional mean, while if the loss function is the absolute error loss
(also known as l1 loss):

LAEL(y, ŷ) = |y − ŷ|, (2.11)

then the Bayes predictor is h∗(x) = QY|X=x(1
2 ), i.e., the conditional median

[16].
In practice, the random variables X and Y are unknown as well as

their joint distribution and the corresponding Bayes predictor. We only
observe their realizations x1, . . . ,xn and y1, . . . , yn. Our goal is then to min-
imize the empirical risk:

R̂(h) =
1
n

n∑
i=1

L(yi ,h(xi)). (2.12)

Minimization of the empirical risk is called learning and it basically
amounts to an estimation of the unknown Bayes predictor. The empir-
ical risk for the squared error loss is called mean squared error (MSE),
while for the absolute error loss is called mean absolute error (MAE).
Also, since multiplying an objective function with positive constant does
not change the solution, factior 1

n is often omitted in 2.12. The examples
of Bayes predictors from before show that a Bayes predictor is a charac-
teristic of family YX=x (conditional mean and median in the examples),
which means that the learning process leads to an estimation of those
characteristics.

Kotłowski and Słowiński [89] introduced a statistical framework for
monotone classification. In this case, it is assumed that there is a pre-
order (dominance) relation ⪰ on codomain X of X while Y consists of
a finite number of totally ordered values that distinguish different or-
dinal classes. Denote these classes by 1, . . . ,K . The monotonicity con-
straint states that if x ⪰ x′ then x has to belong to at least the same class
as x′. This is also called the Pareto principle in decision theory. Let
K−1 = {1, . . . ,K − 1}. In probabilistic terms, the monotonicity constraint
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says that x ⪰ x′ implies

∀k ∈ K−1, P (Y ≤ k|X = x) ≤ P (Y ≤ k|X = x′)
⇔ ∀k ∈ K−1, FY|X=x(k) ≤ FY|X=x′ (k)
⇔ ∀p ∈ (0,1), QY|X=x(p) ≥QY|X=x′ (p).

(2.13)

The previous expression means that the probability that x will be as-
signed to a class at most k is smaller or equal than that x′ will be as-
signed to the same class. A family YX=x is monotonically constrained
if (2.13) is satisfied. A prediction function h is called monotone if
x ⪰ x′ =⇒ h(x) ≥ h(x′). The goal of monotone classification is to find a
proper monotone h under the assumption that the family YX=x is mono-
tonically constrained. Since h, as the output of the learning process,
should be as close as possible to the Bayes predictor h∗, we require that h∗

is also monotone. Given that the form of h∗ depends on the loss function,
choosing a proper loss function is crucial for the learning process. A loss
function for which the Bayes predictor is monotone is called a monotone
loss function. Kotłowski and Słowiński [89] showed that both squared
error loss and absolute error loss are monotone loss functions. They
also examined a family of monotone loss functions called p-quantile loss
(also called pinball loss or linear loss) defined as:

Lp(y, ŷ) = (y − ŷ)(p − 1y−ŷ<0) =

p|y − ŷ| if y − ŷ > 0,

(1− p)|y − ŷ| otherwise.
(2.14)

for p ∈ [0,1], where 1 stands for the indicator function. The name p-
quantile loss is used since the Bayes predictor for such loss function is
the conditional p-quantile h∗p(x) = QY|X=x(p). For p = 1

2 we have that L1/2
is equivalent to the absolute error loss. The empirical risk that corre-
spond to the quantile loss is called mean pinball loss (MPL)

For a given loss function L and increasing function ϕ, we denote
scaled loss as:

Lϕ(y, ŷ) = L(ϕ(y),ϕ(ŷ)), (2.15)

for all y, ŷ ∈ Y . For the p-quantile loss, we have the following important
result proved in [89].

Proposition 2.3.2. Let ϕ : R → R be an increasing function. Then the
loss functions Lp and their scaled versions Lp,ϕ have the same Bayes pre-
dictor.

Proposition 2.3.2 states that a different scaling of ordinal classes does
not change the Bayes predictor, only the order matters.
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Definition 2.3.1. Loss function L is symmetric if L(y, ŷ) = L(ŷ, y).

For any increasing function It is easy to verify that LSEL,ϕ and LAEL,ϕ
are symmetric loss functions, while Lp,ϕ for p , 1

2 is not. However, it can
be observed that Lp,ϕ(y, ŷ) = L1−p,ϕ(ŷ, y).

Definition 2.3.2. We say that loss function L is of ∨-type if for any real
number a, it holds that

• L(a,a) = 0,

• functions L(x,a) and L(a,x) are increasing for x > a and

• functions L(x,a) and L(a,x) are decreasing for x < a.

The previous definition says that the loss is greater if x is more dis-
tant from a. It is easy to verify that the squared error loss and p-quantile
loss for p ∈ (0,1) are of ∨-type. The p-quantile loss for p ∈ {0,1} is not of
∨-type since L0(a,x) = 0 for x < a and L1(a,x) = 0 for x > a.

Definition 2.3.3. A loss function L : [0,1]× [0,1]→ R+ is N -duality pre-
serving if L(y, ŷ) = L(N (ŷ),N (y)) for N from the residual triplet (T ,I,N ).

2.3.2 Monotone approximation

In order to incorporate monotonicity constraints into the learning pro-
cess, the KS approach uses an optimization procedure to “monotonize"
data by eliminating inconsistencies. Let ȳi , i = 1, . . . ,n, be the observed
ordinal labels which do not necessarily satisfy monotonicity constraints
due to possible inconsistency, and let ŷi , i = 1, . . . ,n, be the values that
we want to learn and which satisfy the constraints. Then, for a given
monotone loss function L, the optimization problem can be formulated
as

minimize
n∑
i=1

L(ȳi , ŷi)

subject to xi ⪰ xj =⇒ ŷi ≥ ŷj , i, j = 1, . . . ,n

ŷi ∈ {0, . . . ,K}, i = 1, . . . ,n

(2.16)

In other words, one wants to calculate new labels that are as close as
possible to the original ones w.r.t. loss function L and which satisfy the
monotonicity constraints. The obtained labels are called a monotone ap-
proximation of the original ones. The same authors showed that when L
is monotone, then problem (2.16) can be solved using linear program-
ming.
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2.4 Ordered Weighted Average

In order to avoid exclusive influence of extreme values (minima and
maxima) in decision making, the Ordered Weighted Average (OWA) op-
erator was introduced in [136]. While keeping high influence of the ex-
treme values, the OWA operator also utilizes the values that are non-
extreme. It can be seen as a "softer" version of the min and max op-
erators. We recall the definition from [136]. The OWA aggregation of
set V of n real numbers with weight vector W = (w1,w2, ...,wn), where
wi ∈ [0,1] and Σn

i=1wi = 1, is given by

OWAW (V ) =
n∑
i=1

wiv(i),

where v(i) is the i-th largest element in the set V . Different weight vec-
tors are used depending on whether they are used to replace the min or
max operator. Those operators can be expressed through OWA operators
with the corresponding weights:

Wmin = (0, . . . ,0,1), Wmax = (1,0, . . . ,0)

We call these weights complementary, i.e., it holds that (Wmin)i =
(Wmax)n−i+1. We denote the complementarity with Wmin = Wmax and
Wmax = Wmin. Denote with WL the weights used to replace min and with
WU weights used to replace max. Some well-known weights used in
practice are

• additive: W add
L = ( 2

n(n+1) ,
4

n(n+1) , . . . ,
2(n−1)
n(n+1) ,

2
n+1 ), W add

U = W add
L ,

• exponential: W exp
L = ( 1

2n−1 ,
2

2n−1 , . . . ,
2n−2

2n−1 ,
2n−1

2n−1 ), W exp
U = W

exp
L ,

• inverse additive: W invadd
L = ( 1

nDn
, 1

(n−1)Dn
, . . . , 1

2Dn
, 1
Dn

),

W invadd
U = W invadd

L for Dn =
∑n

i=1
1
i .

OWA operators satisfy the monotonicity property:

Proposition 2.4.1. [136] Let V and V ′ be two sets of n real numbers such
that for some permutation σ we have that ∀i, Vσ (i) ≥ V ′i . If W is a vector
of weights, we have that OWAW (V ) ≥OWAW (V ′).

It is worth noting that the condition from Proposition 2.4.1 is equiv-
alent to saying that ∀i, V(i) ≥ V ′(i).
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For a given OWA weight vector, we may want to evaluate how well
it approximates min and max. For that purpose, the measures andness
and orness are used, where andness evaluates how close an aggregation
vector is to min while orness does the same for max. They are defined
as:

orness(W ) =
1

n− 1

n∑
i=1

(wi(n− i)), andness(W ) = 1− orness(W ).

The range of the measures is the interval [0,1] where value 1 means that
the weight vector is equal to Wmin for andness or to Wmax for orness.
Also, it holds that if WU = WL, then andness(WL) = orness(WU ) and
vice versa. From [125], we get the evaluations of the measures on the
above examples of OWA weights. We have that andness(W add

L ) = 2
3 ,

andness(W exp
L ) = 2n−n−1

(n−1)(2n−1) , andness(W
invadd
L ) = n−Dn

(n−1)Dn
.
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Fuzzy relations and
inconsistency in data

This chapter deals with two crucial components of the thesis: fuzzy re-
lations and data with inconsistencies. In the first part of the chapter,
Section 3.1, we discuss different possibilities to construct T -equivalence
and T -preorder fuzzy relations. The section contains both well-known
results on the topic as well as our original contributions. In the second
part of the chapter, Section 3.2, we provide the formal definition of in-
consistencies in data with respect to fuzzy relations (T -preorder and T -
equivalence). In the same section, we give examples of the four types of
inconsistencies in data that are discussed throughout the thesis; incon-
sistencies w.r.t. an equivalence or indiscernibility relation, a preorder or
dominance relation, a T -equivalence relation and a T -preorder relation.

3.1 Construction of fuzzy relations

3.1.1 Triangular similarity and the corresponding dominance
relation

In this subsection, we discuss a known T -equivalence relation and pro-
vide an example of how to construct a T -preorder relation (i.e., a fuzzy
dominance relation), using the existing work on fuzzy rough set theory.
Although various authors have worked on proving properties of fuzzy
DRSA, none of them constructed a concrete example of a fuzzy domi-
nance relation. We know that for a crisp dominance relation D we may
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induce an equivalence or indiscernibility relation E in the following way:

(u,v) ∈ E⇔ (u,v) ∈D ∧ (v,u) ∈D. (3.1)

In IRSA, rough sets are defined using the above indiscernibility (or
equivalence) relation. In fuzzy IRSA, the indiscernibility relation is re-
placed with a T -equivalence relation R̃ which is usually assumed to be
reflexive, symmetric and T -transitive for some t-norm T . In the case
when data are represented in the form of a decision table, the most used
example of such relation is the so-called triangular similarity. For a par-
ticular attribute q, it is defined as:

Ẽ
γ
q (u,v) = max

(
1−γ |u

(q) − v(q)|
range(q)

,0
)
, (3.2)

where range(q) is the range of attribute q and by γ > 0 we denote the
shrinking parameter. Figure 3.1 illustrates this similarity relation. The

0.0 0.2 0.4 0.6 0.8 1.0 u(q)
0.0

0.2

0.4

0.6

0.8

1.0E q
(u

,v
)

1

v(q)

Figure 3.1: Triangular similarity relation on attribute q for pair of in-
stances (u,v).

smaller γ is, the wider the triangle. To construct a T -equivalence rela-
tion between instances taking into account the set of attributes Q, we
usually use minimum aggregation:

Ẽγ (u,v) = min
q∈Q

Ẽ
γ
q (u,v). (3.3)

Note that such relations are T -transitive when T is equal to the
Łukasiewicz t-norm [32].
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To define a T -preorder relation, we want to follow a similar principle
as in Eq. (3.1). For a T -preorder relation D̃ and a similarity relation Ẽ,
the fuzzy version of (3.1) may be written as:

Ẽ(u,v) = T (D̃(u,v), D̃(v,u)). (3.4)

So, we are looking for a T -preorder relation which satisfies (3.4) for the
previous definition of R̃, and which is reflexive and T -transitive, just
like the crisp dominance relation. For a particular attribute q ∈ Q, we
propose:

D̃
γ
q (u,v) = max

(
min

(
1−γ v(q) −u(q)

range(q)
,1

)
,0

)
. (3.5)

An illustration of Eq. (3.5) is given in Figure 3.2. It is easy to check

0.0 0.2 0.4 0.6 0.8 1.0 u(q)
0.0

0.2

0.4

0.6

0.8

1.0D
q
(u

,v
)

1

v(q)

Figure 3.2: An example of the dominance relation on attribute q for pair
of instances (u,v).

that (3.4) holds in this case and that D̃γ
q is reflexive. For T -transitivity

we have the following result.

Proposition 3.1.1. Let T be the Łukasiewicz t-norm. Then the fuzzy
relation defined by (3.5) is T -transitive, i.e, for elements u,v,w ∈ U and
a attribute q it holds that:

T (Dγ
q (u,v),Dγ

q (v,w)) ≤D
γ
q (u,w)

⇔ D
γ
q (u,v) +D

γ
q (v,w)− 1 ≤D

γ
q (u,w).

Proof. We denote: x = 1 − γ v(q)−u(q)

range(q) , y = 1 − γ w(q)−v(q)

range(q) . Then, we have to
prove that

max(min(x,1),0) + max(min(y,1),0) ≤max(min(x+ y − 1,1),0) + 1.
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We have three possible cases for x: x < 0,0 ≤ x ≤ 1,x > 1 and three analo-
gous cases for y, which leads to nine possible cases by their combination.
We can reduce this to six cases due to symmetry. Simple verification for
each case gives us the desired result.

To construct a fuzzy dominance relation over all attributes Q, we use
min aggregation. We have the following result.

Proposition 3.1.2. Let Dγ (u,v) = minq∈QD
γ
q (u,v). Then Dγ is T -

transitive for T being the Łukasiewicz t-norm, i.e. for elements u,v,w ∈
U , it holds that

T (Dγ (u,v),Dγ (v,w)) ≤Dγ (u,w).

Proof. We have the following:

T (Dγ (u,v),Dγ (v,w)) = T (min
q∈Q

D
γ
q (u,v),min

r∈Q
D

γ
r (v,w))

≤min
q∈Q

min
r∈Q

T (Dγ
q (u,v),Dγ

r (v,w))

≤min
q∈Q

T (Dγ
q (u,v),Dγ

q (v,w))

≤min
q∈Q

D
γ
q (u,w) = Dγ (u,w).

Here we used monotonicity of T and T -transitivity of Dγ
q .

3.1.2 T -equivalences based on distances and
inner products

Distances

In this section we recall the connection between T -equivalences and
distance functions or metrics and discuss which distance-based T -
equivalence will be important for us. The relationship between pseudo-
metrics and T -equivalences was explored in [32], while the relationship
between metrices and T -equalities was explored in [33]. The pseudo-
metric d is a mapping U ×U → [0,∞) which, for u,v,w ∈U , satisfies the
following:

• d(u,u) = 0,

• d(u,v) = d(v,u),

• d(u,v) + d(v,w) ≥ d(u,w).
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Moreover, a pseudo-metric is a metric if satisfies that d(u,v) = 0⇔ u ≡ v.
We note that when calculating distances between instances, we deal
more with pseudo-metrics since instances that are identically evaluated
on all attributes can have distance 0 while still being two separate in-
stances. In table 3.1 we list some well-known metrics (or pseudo-metrics
if they are defined on U ).

Euclidean distance d(u,v) =
√∑

q∈Q
(
u(q) − v(q)

)2

Manhattan distance d(u,v) =
∑

q∈Q
∣∣∣u(q) − v(q)

∣∣∣
Chebyshev distance d(u,v) = maxq∈Q

∣∣∣u(q) − v(q)
∣∣∣

Table 3.1: Well-known metrics

We have the following results.

Proposition 3.1.3. [32] Let T be a continuous Arcimidean t-norm with
generator f , and let d be a pseudo-metric on U . Then the binary relation

R̃(u,v) = f −1(min(d(u,v), f (0)))

is a T -equivalence on U .

Proposition 3.1.4. [33] Let T be a continuous Arcimidean t-norm with
generator f , and let d be a metric on U . Then the binary relation

R̃(u,v) = f −1(min(d(u,v), f (0)))

is a T -equality on U .

We denote T -equivalences and T -equalities obtained using Proposi-
tions 3.1.3 and 3.1.4 as distance-based.

We can immediately notice that TL-equivalence (3.2) together with its
aggregation (3.3) is distance-based for Łukasiewicz generator f (x) = 1−x
and Chebyshev distance multiplied by γ applied on scaled attributes (by
range(q)). Moreover, the general parameterized form of a distance-based
TL-equivalence is

R̃(u,v) = max
(
1−γ · d(u,v),0

)
, (3.6)

for pseudo-metric d. Here, using a positive parameter γ is appropriate
since if d is a pseudo-metric, then γ ·d is a pseudo-metric as well. We will
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call the TL-equivalence based on the Euclidean distance as Euclidean
similarity and the TL-equivalence based on the Chebyshev distance as
Chebyshev similarity. As stated in Section 3.1.1, Chebyshev similarity is
known as triangular similarity from before, and therefore, we may use
both terms interchangeably.

At the end, we introduce one interesting metric (or pseudo-metric if
it is defined on U ) called Mahalanobis distance. It is defined as [94]:

d(u,v)Σ =
√

(u− v)TΣ(u− v), (3.7)

where u is a numerical vector representing the condition attributes of
instance u, while Σ is a symmetric and positive-definite matrix. If Σ is
an identity matrix, then d(u,v)Σ is equal to the Euclidean distance. This
metric will be useful in Chapter 7 where for different matrices Σ we can
obtain different shapes of fuzzy granules.

Inner products

Inner products are often used in machine learning to measure similarity
among instances. Positive definite kernels (PD kernels), as a generaliza-
tion of inner products, are used in the development of ML models which
construes a family of kernel-based models that include Support Vector
Machine, Kernel Logistic Regression and any other method where inner
products of instances appear during the optimization procedure [17].
The inner product of two instances u and v, represented with numerical
attributes that consisutes vectors u and v, is defined as

⟨u,v⟩ =
∑
q∈Q

u(q) · v(q),

while a positive definite kernel is any mapping k : U ×U → R for which
it holds that

n∑
i=1

cicjk(ui ,uj ) ≥ 0

for any n ∈ N, u1, . . . ,un ∈U , and c1, . . . , cn ∈ R. A kernel can be seen as an
inner product in a certain Hilbert space that is uniquely determined by
the given kernel.

Inner products and kernels with codomain [0,1] were also investi-
gated as T -transitive fuzzy relations [99]. Namely, the authors showed
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that for the continuous Archimedean t-norm with generator f (x) =
arccos(x) and with the following form:

Tcos(x,y) = max
(
xy −

√
1− x2

√
1− y2,0

)
,

we have that every kernel with a codomain [0,1] is Tcos-transitive as a
fuzzy relation (bear in mind that every bounded kernel can be extended
to have codomain [0,1] by multiplying it with an appropriate constant).
However, TL is not smaller than Tcos and we cannot claim that the kernels
are also TL-transitive. However, with an appropriate transformation, we
can achieve this. In the same article [99], it was shown that Tcos is a
nilpotent t-norm and therefore, isomorphic to TL. The isomorphism in
this case is ϕcos(x) = 1− arccos(x)

π/2 . Then, for kernel k with codomain [0,1],
we have that transformation ϕcos(k) is T -transitive w.r.t. TL.

Since inner products are widely used as a similarity measure,
we want to exam under which conditions they can be seen as TL-
equivalences. First, inner products have unbounded domain, but if they
are applied on unit vectors, then the codomain is reduced to [−1,1] and
the resulting value is the cosine of the angle formed by the two vectors.
The second thing is the scaling to [0,1] which is achieved by adding 1
and dividing by two. Then the resulting PD kernel is:

kT (u,v) = 1 +
1 + ⟨u,v⟩

∥u∥∥v∥
2

.

This is indeed a PD kernel since every polynomial transformation of a
PD kernel is still a PD kernel [17], and using the transformation with
ϕcos we obtain TL-equivalence relation ϕcos(k).

This relation can be similarly parameterized as above. Namely, in
[32], it was shown that if f is a generator of a continuous Archimidean
t-norm T , and R̃ is a T -equivalence, then f (R̃) is a pseudo-metric.
Since f (x) = 1 − x is a generator of TL, we have that 1 − ϕcos(k) is
a pseudo-metric and using similar reasoning as above, we have that
max(1−γ(1−ϕcos(k)),0) is a TL-equivalence. Therefore, the final form of
a parameterized TL-equivalence based on inner product is:

R̃γ (u,v) = max

1−γ
arccos

(
1 +

1+ ⟨u,v⟩
∥u∥∥v∥
2

)
π/2

,0

 . (3.8)

This TL-equivalence will be used to measure similarity between text
embeddings in the didactic example from Chapter 8.
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3.2 Inconsistencies in data - definition and
didactic examples

In this section, we provide the formal definition of data inconsistency
and illustrate it on two small examples. Let U be a set of instances, R̃
a T -preorder relation on U and let A be a fuzzy set on U that describes
a certain decision using fuzzy membership degrees. We say that a pair
u,v ∈U is consistent if it holds that

T (R̃(u,v),A(v)) ≤ A(u), (3.9)

or equivalently,
R̃(u,v) ≤ I(A(v),A(u)).

Both forms are valid due to the residuation property (2.5). In order to
better understand Eq. (3.9), we first assume that R̃ and A are crisp, i.e.,
they take values from {0,1}. In this case, t-norm T acts as the usual AND
logical operator.

If R̃ is symmetric (i.e, it is an equivalence or indiscernibility relation),
Eq. (3.9) is interpreted as “If u is indiscernible from v, and v is in A, then
u is in A". On the other hand, if R̃ is not symmetric (i.e, it is a preorder or
dominance relation), and we assume that class A is more preferred than
its complement Ac, Eq. (3.9) is interpreted as “If u is at least as good as
v and v is in A, then u is in A”.

Now assume that both R̃ and A are fuzzy. If R̃ is a T -equivalence
i.e., it is symmetric, we interpret it as a similarity relation which mea-
sures how similar two instances are on the [0,1] scale, where 1 stands
for indiscernibility while 0 means complete absence of similarity. The
interpretation of Eq. (3.9) is “If u is similar to v and v is in A, then u is in
A". In this case, “u is in A " is evaluated by means of a membership de-
gree. Analogously, if R̃ is not symmetric, the T -preorder expresses fuzzy
dominance. In this case, Eq. (3.9) can be read as “If u is better than or
similar to v, and v is in A, then u is in A". Again, the membership to A
is expressed in a fuzzy manner.

Next, we show some examples of these four types of inconsistency
(symmetric vs. non-symmetric and crisp vs. fuzzy cases) on two datasets;
the first involves a binary classification problem, while the second is
about regression.
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3.2.1 Binary classification

Consider the binary classification problem in Table 3.2, with six in-
stances that represent different customers that applied for a loan. Each
of them is described with three attributes: credit card debt, monthly net
salary and value of their investment portfolio.

instance
att1

(debt)
att2

(salary)
att3

(portfolio)
decision

1 2200 4200 6000 1
2 7200 2600 7600 1
3 3900 3600 8150 0
4 3900 3600 8150 1
5 10400 3900 9100 0
6 8300 2500 4300 0

Table 3.2: Classification data

The decision attribute expresses if they got the loan (value 1) or not
(value 0). We will now identify the four types of inconsistency discussed
above in the dataset from Table 3.2.

First, consider the crisp equivalence relation R̃ determined by equal-
ity on the condition attributes. Inconsistency w.r.t. R̃ can be observed
for instances 3 and 4: they are identically evaluated on all condition
attributes, while their decision label is different. In other words, these
clients have exactly the same financial parameters, but one client got the
loan, while the other one was rejected.

Next, assume R̃ is the following dominance relation determined by
the condition attributes: (u,v) ∈ R̃ as soon as att1(u) ≤ att1(v), att2(u) ≥
att2(v) and att3(u) ≥ att3(v) simultaneously hold (reflecting that att1
is a cost-type attribute (the smaller the better) while the others are gain-
type attributes (the larger the better)). Instances 2 and 3 are inconsistent
w.r.t. this relation: instance 3 is evaluated better than instance 2 on all
attributes, but the latter is assigned to a better decision (1) than the for-
mer (0). Observe that also instances 3 and 4 are in this relation, which
shows that the indiscernibility relation is a particular case of the consid-
ered dominance relation.

Now, we move on to involve fuzzy relations. In Table 3.3, we cal-
culate pairwise similarities among instances from Table 3.2 using TL-
equivalence (3.2) for γ = 1. If we are dealing with a classification prob-
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lem, as is the case here, two instances that are assigned to different de-
cision classes are inconsistent as soon as their similarity is bigger than
zero, regardless of the choice of the t-norm. For example, if v is in-
stance 2 and u is instance 6, we have that TL(R̃(u,v),A(v)) = TL(1,0.312) =
0.312 > 0 = A(u). Therefore, correction of inconsistencies is needed.

1 2 3 4 5 6
1 1.000 0.059 0.552 0.552 0.000 0.000
2 0.059 1.000 0.412 0.412 0.235 0.312
3 0.552 0.412 1.000 1.000 0.207 0.198
4 0.552 0.412 1.000 1.000 0.207 0.198
5 0.000 0.235 0.207 0.207 1.000 0.000
6 0.000 0.312 0.198 0.198 0.000 1.000

Table 3.3: TL-equivalence matrix on classification data

In Table 3.4, we calculate the pairwise fuzzy dominance values
among instances from Table 3.2 using TL-preorder (3.5) for γ = 1. Using
the same pair of instances, we can identify the inconsistency w.r.t. the
fuzzy dominance relation.

1 2 3 4 5 6
1 1.000 0.667 0.552 0.552 0.354 1.000
2 0.059 1.000 0.412 0.412 0.235 1.000
3 0.647 1.000 1.000 1.000 0.802 1.000
4 0.647 1.000 1.000 1.000 0.802 1.000
5 0.000 0.610 0.207 0.207 1.000 0.744
6 0.000 0.312 0.198 0.198 0.000 1.000

Table 3.4: TL-preorder matrix on classification data

To see the added value of using fuzzy relations, note that similarity
captures more information on the relationship between instances than
indiscernibility. The similarity relation evaluates how close the instances
are, while the indiscernibility only determines if the instances have iden-
tical condition attributes or not.

When a crisp dominance relation is used, we may face the phe-
nomenon where we have a high number of incomparable instances, i.e.,
pairs of instances where one instance can be better on one attribute,
while the other instance is better on a different attribute. Examples are
instances 2 and 5 in Table 3.2, where instance 2 is better on attribute 1
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than instance 5 (smaller debt) while instance 5 is better on the two other
attributes (higher salary and higher portfolio value). Neither 2 domi-
nates 5 nor 5 dominates 2. A fuzzy dominance relation aids to extract
additional information in the form of gradual dominance when we face
incomparability. In that way, fuzzy dominance can relax the strictness
of the crisp dominance relation.

3.2.2 Regression

In the examples derived from the data from Table 3.2, inconsistencies
w.r.t. a fuzzy relation were observed when we deal with a crisp deci-
sion. In Table 3.5, we consider a dataset with fuzzy membership values
for the decision attribute. This small dataset represents 6 apartments
described using 3 condition attributes, while the decision attribute eval-
uates their expensiveness. The 3 condition attributes are: distance from
the nearest public transport station in meters, size of the apartment in
square meters and the distance from the nearest grocery store in meters.
The decision attribute, expressed with values from interval [0,1], can be
obtained using a monotone transformation of the actual prices of the
apartments.

instance
att1

distance to
transport

att2
size

att3
distance to

grocery
decision

1 1200 120 1100 0.770
2 2800 90 900 0.240
3 1900 80 500 0.820
4 2600 60 2200 0.850
5 700 70 3100 0.400
6 3100 50 1400 0.300

Table 3.5: Regression data

Since we are dealing with fuzzy decision labels, it is not possible to
consider inconstencies w.r.t. a crisp relation. Therefore, we will iden-
tify inconsistencies w.r.t. fuzzy relations. Pairwise evaluations of the TL-
equivalence relation (3.2) on instances from Table 3.5 are given in Table
3.6.

43



Chapter 3. Fuzzy relations and inconsistency in data

1 2 3 4 5 6
1 1.000 0.333 0.429 0.143 0.231 0.000
2 0.333 1.000 0.625 0.500 0.125 0.429
3 0.429 0.625 1.000 0.346 0.000 0.500
4 0.143 0.500 0.346 1.000 0.208 0.692
5 0.231 0.125 0.000 0.208 1.000 0.000
6 0.000 0.429 0.500 0.692 0.000 1.000

Table 3.6: TL-equivalence matrix on regression data

Using the evaluations, if u is instance 2 and v is instance 3, they are
inconsistent since TL(R̃(u,v),A(v)) = TL(0.625,0.820) = 0.445 > 0.240 =
A(u).

Pairwise evaluations of the TL-preorder relation (3.2) on instances
from Table 3.5 are given in Table 3.7. Using the same pair of instances,
we have that TL(R̃(u,v),A(v)) = TL(0.571,0.820) = 0.391 > 0.240 = A(u).

1 2 3 4 5 6
1 1.000 0.442 0.442 0.442 0.792 1.000
2 0.429 1.000 0.571 0.976 0.786 1.000
3 0.585 0.817 1.000 0.793 1.000 1.000
4 0.286 0.857 0.429 1.000 0.643 1.000
5 0.390 0.622 0.649 0.598 1.000 1.000
6 0.000 0.000 0.000 0.000 0.351 1.000

Table 3.7: T -preorder matrix on regression data

In the following chapters we show how inconsistencies can be han-
dled using different techniques like rough sets, fuzzy rough sets, OWA-
based fuzzy rough sets and granular approximations.
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Chapter 4

Preorder-Based Rough Set
Approach and its Fuzzy
Extensions

We revisit the widely used method for inconsistency handling - rough
sets. As already discussed in the Chapter 1, there are two main ap-
proaches in the rough set theory that depend on the relation type: the
IRSA and the DRSA.

In this chapter, we generalize the definitions of the IRSA and DRSA
into the Preorder-based Rough Set Approach (PRSA). Properties that
hold for PRSA will automatically transfer to both IRSA and DRSA.

Following the successful hybridisation of fuzzy logic and IRSA, we
propose a similar hybridisation of fuzzy logic and PRSA, obtaining fuzzy
DRSA as a special case. We prove several properties of fuzzy PRSA that
hold for specific fuzzy connectives and we provide counterexamples of
the same properties for other fuzzy connectives.

Additionally, we examine the combination of the OWA aggregation
operator with fuzzy DRSA. OWA operators were shown to improve IRSA
in handling outliers and noisy data [28, 111, 127, 125, 128] by mak-
ing approximations (and thus also machine learning algorithms that use
them) more robust to small changes in the data. Although this goes
at the expense of some desirable properties, it was shown, for IRSA at
least, that the OWA extension provides the best trade-off between theo-
retical properties and experimental performance among robust models
[35]. In this chapter, we evaluate whether a similar performance may be
achieved with fuzzy DRSA. However, the discussion of the connection
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between the OWA-based PRSA and the inconsistency handling is left for
Chapter 5.

After the introduction of the PRSA model in Section 4.1, in Section
4.2, we consider various possibilities of PRSA fuzzification. In Section
4.3 we present the integration of OWA operators with fuzzy PRSA, while
in Section 4.4 we provide an experimental comparison of the robustness
between standard and OWA-based fuzzy DRSA. Section 4.6 is reserved
for the conclusion, while some specific counterexamples were moved to
Section 4.5.

4.1 Preorder-based rough set approach - definition
and basic properties

IRSA and DRSA were formally defined in Section 2.1. In the DRSA defi-
nition, if we denote A = Cl≥t for some t and if D is a symmetric relation,
then D+(u) = D−(u), and the approximations are reduced to the IRSA
definition. So, we may conclude that the DRSA is a generalization of the
IRSA. As mentioned, the DRSA is only applied to upward or downward
unions, and this specification is purely motivated by the practical appli-
cations of the DRSA. As it does not affect any theoretical property of the
DRSA approximations, for further use we will introduce the Preorder-
based Rough Set Approach (PRSA) in which the DRSA is applied to a
general set instead of to an upward or downward union.

The question might be raised whether the PRSA should use the ap-
proximations of A = Cl≥t or those of coA = Cl≤t−1 from the DRSA defini-
tions. However, we may see that they are in fact equivalent: the approx-
imations of coA may be obtained from those of A by replacing relation D
with its inverse relation D−1. Therefore, let R be a preorder relation and
let R+(u) = {v ∈ U, (v,u) ∈ R} and R−(u) = {v ∈ U, (u,v) ∈ R}. The lower
and upper PRSA approximations of set A ⊆U are defined as:

apr
R

(A) = {u ∈U : R+(u) ⊆ A},

aprR(A) = {u ∈U : R−(u)∩A , ∅}.
(4.1)

Due to the nature of the definition of PRSA, it automatically inherits all
the properties of DRSA. We list the main properties of the PRSA lower
and upper approximations [58]:

• (inclusion) apr
R

(A) ⊆ A ⊆ aprR(A).
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• (duality)

apr
R

(A) = U − aprR−1(coA), aprR(A) = U − apr
R−1(coA).

• (relation monotonicity) Assume we have another preorder rela-
tion R∗ ⊆ R. Then we have that

apr
R

(A) ⊆ apr
R∗

(A), aprR(A) ⊇ aprR∗(A).

We briefly motivate the listed properties. The inclusion property
is important as a form to verify that lower and upper approximations
stand for certainly consistent and possibly consistent instances respec-
tively. The duality property helps us to deal with classification tasks i.e.,
when we want to relate the rough approximations of the opposite deci-
sion classes. The relation monotonicity is important in attribute selec-
tion tasks where the corresponding preorder relation is smaller or larger,
w.r.t inclusion, when attributes are added or removed receptively.

Additionally, we also have the properties of exact approximation, de-
cision monotonicity and consistency, idempotence, and interaction be-
tween lower and upper approximation:

Proposition 4.1.1. (exact approximation)

apr
R

(A) = A⇔ A = aprR(A),

Proof. We have the following sequence of equivalences:

apr
R

(A) ⊇ A⇔ (∀u ∈ A) (R+(u) ⊆ A)

⇔ (∀u,v ∈U ) (u ∈ A∧ (v,u) ∈ R⇒ v ∈ A)

⇔ (∀u,v ∈U ) (v < A∧ (v,u) ∈ R⇒ u < A)

⇔ (∀u,v ∈U ) (u < A∧ (u,v) ∈ R⇒ v < A)

⇔ (∀u ∈ coA)(R−(u) ⊆ coA)

⇔ coA ⊆ apr
R−1(coA)⇔ coA ⊆U − aprR(A)

⇔ A ⊇ aprR(A).

In the fourth equivalence we just changed the notation; v is replaced
with u and u with v, while in the seventh equivalence we used the du-
ality property. Using this with the inclusion property, we complete the
proof.
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The previous proposition shows that the approximations can coin-
cide with the approximated set only in the same time.

Proposition 4.1.2. (decision monotonicity) For A∗ ⊆ A, we have that

apr
R

(A∗) ⊆ apr
R

(A), aprR(A∗) ⊆ aprR(A).

Proof. Obvious from the definition.

The decision monotonicity proposition is important for upward and
downward unions, which among themselves exhibit monotonicity w.r.t.
inclusion. Because of that, the decision monotonicity tells us that, e.g.,
the lower approximation of a smaller upward union will be contained in
the lower approximation of a larger one.

The next proposition talks about the consistency of the approxima-
tions.

Proposition 4.1.3. (consistency) Assume that (u,v) ∈ R. Then we have
the following implications.

v ∈ apr
R

(A)⇒ u ∈ apr
R

(A), v ∈ aprR(A)⇒ u ∈ aprR(A).

Proof. If (u,v) ∈ R then we have that R+(u) ⊆ R+(v) and R−(u) ⊇ R−(v).
Putting this into the definitions of the approximations we obtain the
result.

The following two properties are equivalent to the consistency prop-
erty which will be discussed in more details in the next chapter. Their
which the proof can be found in [59].

Proposition 4.1.4. (idempotence) It holds that

apr
R

(apr
R

(A)) = apr
R

(A), aprR(aprR(A)) = aprR(A).

Proposition 4.1.5. (interaction between lower and upper approxima-
tion) It holds that

aprR(apr
R

(A)) = apr
R

(A), apr
R

(aprR(A)) = aprR(A).

Example 4.1.1. We provide an example of the application of PRSA and
how it handles inconsistencies identified in the data that was introduced
in Section 3.2. Since the PRSA deals only with crisp decision values, we
only use classification data provided in 3.2. The lower approximation
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w.r.t. the indiscernibility relation of the decision class 1 contains in-
stances 1 and 2, while the upper approximation contains instances 1,
2, 3 and 4. We observe that two instances that were inconsistent were
either both left from the approximation (the lower case) or were both
included in the approximation (upper case), leaving the situation that
all pairs of indiscernible instances will have the same decision labels.

If we calculate the approximations w.r.t. a dominance relations, we
have that the lower approximation of the more preferred decision 1 con-
tains only instance 1, while the upper approximation of decision 1 con-
tains instances 1, 2, 3 and 4. We again observe that two pairs of incon-
sistent instances we had 2,3 and 3,4 either both belong to the approxi-
mation (the upper case) or both do not belong to the approximation (the
lower case). Therefore, the pairs of inconsistent instances will have the
same decision label.

Here, we can observe why the PRSA can be seen as an extreme way
to handle inconsistencies. In the lower and upper approximations, we
assign the same decision label to the all pairs of inconsistent instances
without leaving possibilities that some pairs obtain one decision label,
while the others obtain the opposite one.

4.2 Fuzzy extension of the PRSA

Fuzzy rough sets were introduced for T -equivalence relations and their
properties were examined in various publications, see e.g. [35, 41]. In
this section, we want to extend those definitions to the fuzzy PRSA and
to the fuzzy DRSA as its special case. We want to relax the statement
that “u is not worse than v” adding some sort of grading. So, we would
like to measure how much the previous statement is true on a scale from
0 to 1. We can interpret this as the credibility of the statement. We start
by recalling the approach from Greco et al. [54, 55]. Throughout this
section we assume that we are given t-norm T , negator N , t-conorm S,
implicator I and T -preorder fuzzy relation R̃.

If we rewrite the lower approximation definition from Eq. (4.1) as a
statement, we have that: “instance u belongs to the lower approxima-
tion if ∀v ∈ U , for which (v,u) ∈ R, it holds that v ∈ A”. Analogously,
“instance u belongs to the upper approximation if ∃v ∈ U , for which
(u,v) ∈ R, and it holds that v ∈ A.”

In the fuzzy setting, we have to define the membership degree of
an instance to the lower and upper approximation. For that purpose,
we need to fuzzify the logical quantifiers ∀ and ∃. We denote these
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fuzzy quantifiers as qua∀ and qua∃. To fuzzify them, two proposals were
made. The first one is due to Greco et al. [55] where fuzzy logic connec-
tives are used, i.e., qua∀ = T , qua∃ = S. This option is suitable when
the set of instances U is finite as it is in the case of machine learning
applications. The second option is proposed by Greco et al. [54] where
qua∀ = inf, qua∃ = sup. This option is suitable for both cases, when U
is finite or infinite and this definition goes in line with the original fuzzy
rough approximations proposed by Dubois and Prade [41]. However, in
the specific cases where we know that U is finite, we write (min,max)
instead of (inf,sup).

For (qua∀,qua∃) ∈ {(T ,S), (inf,sup)}we have the following definitions
for fuzzy lower and upper approximations:

apr
qua∀,I

R̃
(A)(u) = qua∀(I(R̃(v,u),A(v));v ∈U ), (4.2)

apr
qua∃,T
R̃

(A)(u) = qua∃(T (R̃(u,v),A(v));v ∈U ). (4.3)

In order to adopt the new definitions to fuzzy DRSA, we discuss how to
construct the fuzzy upward and downward unions. Assume that the de-
cision classes Clt , t ∈ {1, . . . , k} are fuzzy sets with degrees of membership
Clt(u) for u ∈U . The value Clt(u) provides the credibility that element u
belongs to class Clt. Greco et al. [55] proposed the concept of cumulative
fuzzy upward and downward unions as:

Cl≥t (u) =

1, if ∃s > t : Cls(u) > 0

Clt(u) otherwise
, (4.4)

Cl≤t (u) =

1, if ∃s < t : Cls(u) > 0

Clt(u) otherwise
. (4.5)

while Du et al. [39] proposed them as fuzzy unions of the classes, i.e.:

Cl≥t (u) = max
s≥t

Cls(u), Cl≤t (u) = max
s≤t

Cls(u). (4.6)

In both of these cases, it holds that for all u ∈ U , Cl≥t (u) ≤ Cl≥s (u) and
Cl≤t (u) ≥ Cl≤s (u) if t ≥ s and this is the minimal requirement we would
ask for any possible definition of Cl≥t (u) and Cl≤t (u). The corresponding
membership degrees to such defined fuzzy sets represent the credibility
of the statement: “u is not worse (not better) than instances from class
Clt”.
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4.2.1 Properties of the fuzzy PRSA

In this section, we provide the list of properties analogous to those from
Section 4.1. Several properties from that list were presented in [55] for
(qua∀,qua∃) = (T ,S) and in [54] for (qua∀,qua∃) = (inf,sup):

• (inclusion) ∀u ∈U :

apr
qua∀,I

R̃
(A)(u) ≤ A(u), apr

qua∃,T
R̃

(A)(u) ≥ A(u). (4.7)

• (duality) Let N be an involutive negator for which it holds that
∀u ∈ U,coA(u) = N (A(u)). If (T ,S,N ) is a de-Morgan triplet and
I the S-implicator induced by S and N , or if (T ,I,N ) is an IMTL
triplet, we have that:

N (apr
qua∀,I

R̃
(A)(u)) = apr

qua∃,T
R̃−1 (coA)(u),

N (apr
qua∃,T
R̃

(A)(u)) = apr
qua∀,I

R̃−1 (coA)(u).
(4.8)

• (relation monotonicity) For two fuzzy dominance relations R̃ and
R̃∗ such that R̃∗ ⊆ R̃, i.e., ∀u,v ∈U,R̃∗(u,v) ≤ R̃(u,v), we have that

apr
qua∀,I

R̃
(A)(u) ≤ apr

qua∀,I

R̃∗
(A)(u),

apr
qua∃,T
R̃

(A)(u) ≥ apr
qua∃,T
R̃∗

(A)(u).
(4.9)

For (qua∀,qua∃) = (inf,sup) we retain the property of exact approxima-
tion, as we show below.

Proposition 4.2.1. (exact approximation) Let T be a left-continuous t-
norm and let I be its R-implicator. Then we have that

(∀u ∈U )(aprinf,I
R̃

(A)(u) = A(u))⇔ (∀u ∈U )(aprsup,T
R̃

(A)(u) = A(u)).

Proof. We will prove the following:

(∀u ∈U )(aprinf,I
R̃

(A)(u) ≥ A(u))⇔ (∀u ∈U )(aprsup,T
R̃

(A)(u) ≤ A(u)).

The above equivalence, together with the inclusion property, provides
the desired result. We have that

(∀u ∈U ) (aprinf,I
R̃

(A)(u) ≥ A(u))
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⇔ (∀u ∈U ) ( inf
v∈U

(I(R̃(v,u),A(v))) ≥ A(u))

⇔ (∀u ∈U ) (∀v ∈U ) (I(R̃(v,u),A(v)) ≥ A(u))

⇔ (∀u ∈U ) (∀v ∈U ) (T (R̃(v,u),A(u)) ≤ A(v))

⇔ (∀v ∈U ) (sup
u∈U

T (R̃(v,u),A(u)) ≤ A(v))

⇔ (∀u ∈U ) (sup
v∈U

T (R̃(u,v),A(v)) ≤ A(u))

⇔ (∀u ∈U ) (aprsup,T
R̃

(A)(u) ≤ A(u)).

The third equivalence holds because of the residuation property. In the
fifth one, we just change the notation where u is replaced with v and v
with u.

In Example 4.5.1, we provide a counterexample to illustrate that the
same property does not hold if (qua∀,qua∃) = (T ,S). In Example 4.5.1,
the applied implicator is both an S-implicator and an R-implicator. Be-
cause of this, we omit using (qua∀,qua∃) = (T ,S) and we continue with
(qua∀,qua∃) = (inf,sup). We want to investigate under which conditions
all properties listed above are satisfied. The properties which require
additional assumptions on fuzzy logic connectives are duality and exact
approximation. We construct counterexamples that illustrate that the
exact approximation property does not hold under the assumptions of
the duality property and vice versa. In Example 4.5.2, we see that un-
der the assumptions of the duality property we do not necessarily have
the exact approximation property while in Example 4.5.3, we may see
that R-implicators cannot be used for the duality property in general.
So, we conclude that the R-implicators used in the exact approximation
property have to be S-implicators in the duality property to have both
properties together. The conclusion below unifies these observations.

Proposition 4.2.2. Let T be an IMTL t-norm, I its R-implicator, N
the negator induced by I , and S the N -dual of T . Assume also that
(qua∀,qua∃) = (inf,sup). Then the four properties listed above hold.

We have the following properties of the fuzzy PRSA

Proposition 4.2.3. (decision monotonicity) For two decision classes A∗

and A for which A∗ ⊆ A and for all u ∈U , we have that

aprinf,I
R̃

(A∗)(u) ≤ aprinf,I
R̃

(A)(u), aprsup,T
R̃

(A∗)(u) ≤ aprsup,T
R̃

(A)(u),

Proof. Obvious from the definition.
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Proposition 4.2.4. (consistency) Let T be a left-continuous t-norm and
let I be its R-implicator. We have that

R̃(u,v) ≤ I(aprinf,I
R̃

(A)(v),aprinf,I
R̃

(A)(u)),

R̃(u,v) ≤ I(aprsup,T
R̃

(A)(v),aprsup,T
R̃

(A)(u)).

Proof. We start with the lower approximation. We fix w ∈ U . We have
that:

T (R̃(u,v), I(R̃(w,v),A(w))) ≤ I(I(R̃(u,v), R̃(w,v)),A(w)))

≤ I(R̃(w,u),A(w)).

The first inequality holds from property (2.6e) while the second one
holds the residuation property applied on the T -transitivity of R̃, i.e.,
from the following expression

T (R̃(w,u), R̃(u,v)) ≤ R̃(w,v)⇔ R̃(w,u) ≤ I(R̃(u,v), R̃(w,v)).

From this we may conclude that:

inf
w1∈U

T (R̃(u,v), I(R̃(w1,v),A(w1))) ≤ inf
w2∈U

I(R̃(w2,u),A(w2)).

Since T is increasing, we have that

inf
w1∈U

T (R̃(u,v), I(R̃(w1,v),A(w1))) ≥ T (R̃(u,v), inf
w1∈U

I(R̃(w1,v),A(w1))).

Taking this into the previous expression, we obtain:

T (R̃(u,v),aprinf,I
R̃

(A)(v)) ≤ aprinf,I
R̃

(A)(u)).

Using the residuation principle we obtain the result. For the upper ap-
proximation, we may conclude:

T (R̃(u,v), R̃(v,w)) ≤ R̃(u,w)

⇒T (T (R̃(u,v), R̃(v,w)),A(w)) ≤ T (R̃(u,w),A(w))

⇒T (R̃(u,v),T (R̃(v,w),A(w))) ≤ T (R̃(u,w),A(w))

⇒ sup
w1∈U

T (R̃(u,v),T (R̃(v,w1),A(w1))) ≤ sup
w2∈U

T (R̃(u,w2),A(w2))

⇒T (R̃(u,v), sup
w1∈U

T (R̃(v,w1),A(w1))) ≤ sup
w2∈U

T (R̃(u,w2),A(w2))
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⇒T (R̃(u,v),aprsup,T
R̃

(A)(v)) ≤ aprsup,T
R̃

(A)(u)

The fourth implication holds because T is left-continuous. Applying the
residuation principle to the last expression, we obtain the conclusion.

We provide two more properties as corollaries of the consistency
property.

Proposition 4.2.5. (idempotence) Let T be a left-continuous t-norm and
let I be its R-implicator. It holds that

aprinf,I
R̃

(aprinf,I
R̃

(A)) = aprinf,I
R̃

(A), aprsup,T
R̃

(aprsup,T
R̃

(A)) = aprsup,T
R̃

(A).

Proof. We will prove the proposition for the left expression. The proof
for the right one stands by analogy. By the inclusion property we have
that

∀u, aprinf,I
R̃

(aprinf,I
R̃

(A))(u) ≤ aprinf,I
R̃

(A)(u).

On the other hand, we may apply the residuation principle to the con-
sistency property. For u ∈U , we have that:

∀v ∈U, R̃(v,u) ≤ I(aprinf,I
R̃

(A)(u),aprinf,I
R̃

(A)(v))

⇔∀v ∈U, T (R̃(v,u),aprinf,I
R̃

(A)(u)) ≤ aprinf,I
R̃

(A)(v)

⇔∀v ∈U, aprinf,I
R̃

(A)(u) ≤ I(R̃(v,u),aprinf,I
R̃

(A)(v))

⇔aprinf,I
R̃

(A)(u) ≤ inf
v∈U

I(R̃(v,u),aprinf,I
R̃

(A)(v))

⇔aprinf,I
R̃

(A)(u) ≤ aprinf,I
R̃

(aprinf,I
R̃

(A)(u)),

which proves the equality.

Proposition 4.2.6. (interaction between lower and upper approxima-
tion) Let T be a left-continuous t-norm and let I be its R-implicator. It
holds that

aprsup,T
R̃

(aprinf,I
R̃

(A)) = aprinf,I
R̃

(A), aprinf,I
R̃

(aprsup,T
R̃

(A)) = aprsup,T
R̃

(A).

Proof. From the inclusion property we have that

∀u ∈U, aprsup,T
R̃

(aprinf,I
R̃

(A))(u) ≥ aprinf,I
R̃

(A)(u).
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On the other hand, by applying the residuation principle to the consis-
tency property and for u ∈U , we have

∀v ∈U, R̃(u,v) ≤ I(aprinf,I
R̃

(A)(v),aprinf,I
R̃

(A)(u))

⇔∀v ∈U, T (R̃(u,v),aprinf,I
R̃

(A)(v)) ≤ aprinf,I
R̃

(A)(u))

⇔ sup
v∈U

T (R̃(u,v),aprinf,I
R̃

(A)(v)) ≤ aprinf,I
R̃

(A)(u))

⇔aprsup,T
R̃

(aprinf,I
R̃

(A))(u) ≤ aprinf,I
R̃

(A)(u),

which proves the equality.

Example 4.2.1. We provide an example of the application of fuzzy PRSA
and how it handles inconsistencies identified in the data that was intro-
duced in Section 3.2. First, we calculate the granular approximation of
the classification dataset from Table 3.2 using TL-equivalence relation
(3.2), IMTL triplet (TL, IL,NL) and ((qua∀,qua∃) = (inf,sup)). The rela-
tion matrix from Table 3.3 is passed together with the decision attribute
to formula (3.3). The obtained lower and upper fuzzy rough approxima-
tions are given in Table 4.1.

approx. type vs.
instance

1 2 3 4 5 6

lower 0.448 0.588 0.000 0.000 0.000 0.000
upper 1.000 1.000 1.000 1.000 0.235 0.312

Table 4.1: The fuzzy PRSA in the classification case for the TL-
equivalence relation

In Table 4.2, we present the calculated fuzzy PRSA approximations
using TL-preorder relation (3.5) while the remaining parameters are the
same as in Table 4.1.

approx. type vs.
instance

1 2 3 4 5 6

lower 0.353 0.000 0.000 0.000 0.000 0.000
upper 1.000 1.000 1.000 1.000 0.610 0.312

Table 4.2: The fuzzy PRSA in the classification case for the TL-preorder
relation

We note that the pairs of instances are now indeed consistent. Fol-
lowing the example from Section 3.2, where we identified that instances
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u ≡ 6 and v ≡ 2 were inconsistent, using results from Table 4.1, for the
lower approximation we obtain T (R̃(u,v), Â(v)) = T (0.312,0.588) = 0 ≤
0 = Â(u), i.e., they are now consistent. For the upper approximation,
we have that T (R̃(u,v), Â(v)) = T (0.312,1) = 0.312 ≤ 0.312 = Â(u), i.e.,
we have the consistency again. If we use the results from Table 4.2, we
have that T (R̃(u,v), Â(v)) = T (0.312,0) = 0 ≤ 0 = Â(u), i.e., they are con-
sistent. For the upper approximation, we have that T (R̃(u,v), Â(v)) =
T (0.312,1.) = 0.312 ≤ 0.312 = Â(u), i.e., we again have the consistency.
The values of the fuzzy relations in these examples are obtained from
Tables 3.3 and 3.4.

We perform the same calculations for the regression data from Sec-
tion 3.2 provided in Table 3.5. In order to compute the lower and upper
approximations w.r.t. TL-equivalence relation (3.2), we pass the relation
values from Table 3.6 and the decision attribute from Table 3.5 formulas
(4.2). The obtained granular approximations are given in Table 4.3.

approx. type vs.
instance

1 2 3 4 5 6

lower 0.770 0.240 0.615 0.608 0.400 0.300
upper 0.770 0.445 0.820 0.850 0.400 0.542

Table 4.3: The fuzzy PRSA in the regression case for the TL-equivalence
relation

In Table 4.4, we calculate the fuzzy PRSA approximations using TL-
preorder relation (3.5) while the other parameters are the same as in
Table 4.3.

approx. type vs.
instance

1 2 3 4 5 6

lower 0.770 0.240 0.615 0.323 0.400 0.240
upper 0.850 0.767 0.850 0.850 0.504 0.642

Table 4.4: The fuzzy PRSA in the regression case for the TL-preorder
relation

We again continue the example from Section 3.2 where we identi-
fied that instances u ≡ 2 and v ≡ 3 are inconsistent. Using values from
Table 4.3, for the lower approximation we have that T (R̃(u,v), Â(v)) =
T (0.625,0.615) = 0.24 ≤ 0.24 = Â(u), i.e., they are now consistent. For
the upper approximation we have that T (R̃(u,v), Â(v)) = T (0.625,0.82) =
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0.445 ≤ 0.445 = Â(u), i.e., we have the consistency again. If we use the
calculated values from Table 4.4 for the lower approximation we have
that T (R̃(u,v), Â(v)) = T (0.571,0.615) = 0.186 ≤ 0.24 = Â(u), while for
the upper one we have that T (R̃(u,v), Â(v)) = T (0.571,0.85) = 0.421 ≤
0.767 = Â(u). In both cases, we corrected the inconsistency.

4.3 Integration with OWA

In this section, we introduce the application of OWA aggregation oper-
ators to the fuzzy PRSA and consequently to the fuzzy DRSA. In many
practical approaches, we may have outliers: instances that do not fol-
low the general distribution of the data and take some extreme values,
e.g., an instance with good values on all considered criteria, assigned to
a worse class than many instances getting worse values on these crite-
ria, or conversely, an instance with bad values on all considered criteria
assigned to a better class than many of the instances getting better val-
ues on these criteria. Because of such instances, many other instances
are excluded from the lower approximations of the unions of decision
classes they typically belong to. Thus, the lower approximations may be
small or even empty. To avoid this, if there is some outlier, we want to
reduce its significance in the calculation of the lower approximation. A
lot of work has been done to handle such issues for the classical version
of DRSA. Some well-known methods include Variable Precision DRSA
[75] and Variable Consistency DRSA [61]. Here, we propose a new
approach suitable for the fuzzy PRSA and consequently for the fuzzy
DRSA, and which is called the OWA approach. OWA operators already
showed promising performance in the IRSA, not only for decreasing an
outlier’s influence in general [35], but also in cases of imbalanced clas-
sification [111] and multi-instance learning [128]. OWA operators are
applied instead of the fuzzy quantifiers used for a final aggregation in
the calculation of the lower and upper approximations.

We recall that the definition and basic properties of the OWA oper-
ator is provided in Section 2.4. Assume now that U is finite and that
we are given two weight vectors WL and WU of size |U |. We propose the
OWA-based fuzzy PRSA approximations:

aprWL,I

R̃
(A)(u) = OWAWL

({I(R̃(v,u),A(v));v ∈U }),

aprWU ,T

R̃
(A)(u) = OWAWU

({T (R̃(u,v),A(v));v ∈U }).

Here, we have more freedom to relax the definition of lower and upper
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approximations in order to decrease the significance of possible outliers.
If we observe the examples of weights provided in Section 2.4, we can
see that the largest weights are multiplied with the possible outliers, but
we are including also the values of the other, non-outlying instances into
our calculation which is not the case in standard fuzzy PRSA. There we
take either the maximum or minimum of the values. An example of how
to calculate the OWA-based approximations may be seen in Example
4.5.4.

The OWA-based fuzzy PRSA, as defined in (4.3), does not necessary
remove inconsistencies in data. An example for that is provided in 4.5.6.
The results on whether OWA-based fuzzy PRSA correct inconsistencies
is discussed in Chapter 5.

We will now check if the same properties hold as before. For every
u ∈U , we first notice the following:

aprWL,I

R̃
(A)(u) ≥ aprmin,I

R̃
(A)(u) ≥ aprT ,I

R̃
(A)(u),

aprWU ,T

R̃
(A)(u) ≤ aprmax,T

R̃
(A)(u) ≤ aprS,T

R̃
(A)(u).

Let us now identify some other properties.

Proposition 4.3.1. (duality) Let WL be a weight vector, T ,S,N a de-
Morgan triplet with N = Ns and let I be the corresponding S-implicator.
Let WU be complementary to WL. Then, for u ∈U it holds that:

N (aprWL,I

R̃
(A)(u)) = aprWU ,T

R̃−1 (coA)(u),

N (aprWL,I

R̃
(A)(u)) = aprWU ,T

R̃−1 (coA)(u).

Proof. We will prove just the first expression while the second one will
follow by analogy. We fix u ∈ U . Without loss of generality we assume
that

I(R̃(u1,u),A(u1)) ≥ · · · ≥ I(R̃(un,u),A(un)).

Using the assumptions of the proposition, we find:

S(N (R̃(u1,u)),A(u1)) ≥ · · · ≥ S(N (R̃(un,u)),A(un))

⇔N (T (R̃(u1,u),N (A(u1)))) ≥ · · · ≥N (T (R̃(un,u),N (A(un))))

⇔1− T (R̃(u1,u),1−A(u1)) ≥ · · · ≥ 1− T (R̃(un,u),1−A(un))

⇔T (R̃(u1,u), coA(u1)) ≤ · · · ≤ T (R̃(un,u), coA(un)).
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Therefore, we have that:

N (aprWL,I

R̃
(A)(u)) = 1−

n∑
i=1

(WL)i · I(R̃(ui ,u),A(ui))

= 1−
n∑
i=1

(WL)i · S(1− R̃(ui ,u),A(ui))

= 1−
n∑
i=1

(WL)i · (1− T (R̃(ui ,u),1−A(ui)))

=
n∑
i=1

(WL)i · T (R̃(ui ,u), coA(ui))

=
n∑
i=1

(WL)n−i+1 · T (R̃(un−i+1,u), coA(un−i+1))

=
n∑
i=1

(WU )i · T (R̃(un−i+1,u), coA(un−i+1)) = aprWU ,T

R̃
(coA)(u).

Proposition 4.3.2. (relation monotonicity) For two fuzzy dominance
relations R̃ and R̃∗ for which it holds that R̃∗ ⊆ R̃, i.e., ∀u,v ∈U,R̃∗(u,v) ≤
R̃(u,v), and for any OWA weight vectors WL and WU we have that

aprWL,I

R̃∗
(A)(u) ≥ aprWL,I

R̃
(A)(u),

aprWU ,T

R̃∗
(A)(u) ≤ aprWU ,T

R̃
(A)(u).

Proof. We use the monotonicity of I and T . For u,v ∈U , we have that

I(R̃∗(v,u),A(v)) ≥ I(R̃(v,u),A(v)),

T (R̃∗(u,v),A(v)) ≤ T (R̃(u,v),A(v)).

Using Proposition 2.4.1 and the previous inequalities, we complete the
proof.

Proposition 4.3.3. (decision monotonicity) For two decision classes A∗

and A for which A∗ ⊆ A and for all u ∈U , we have that

aprWL,I

R̃
(A∗)(u) ≤ aprWL,I

R̃
(A)(u),

aprWU ,T

R̃
(A∗)(u) ≤ aprWU ,T

R̃
(A)(u).
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Proof. Using the monotonicity of T and I , for u,v ∈U it holds that:

I(R̃(v,u),A∗(v)) ≤ I(R̃(v,u),A(v)),

T (R̃(u,v),A∗(v)) ≤ T (R̃(u,v),A(v)).

Using Proposition 2.4.1 and the previous inequalities, we complete the
proof.

Example 4.5.5 shows that the inclusion property does not hold in gen-
eral. However, we may provide a modification such that the inclusion
property holds. We may define:

apr
R̃

(A)(u) = min(A(u),aprWL,I

R̃
(A)(u)),

aprR̃(A)(u) = max(A(u),aprWU ,T

R̃
(A)(u)).

It is obvious that in this case we will have the inclusion property, how-
ever, it is not clear whether this extension is useful in practical appli-
cations. The other properties we listed for the standard fuzzy DRSA
approach do not hold in general. A counterexample for the exact ap-
proximation property is provided in Example 4.5.6 while for the other
properties, counterexamples are given in Example 4.5.7.

4.4 Experimental Evaluation

4.4.1 Experimental setup

The robustness of OWA-based fuzzy IRSA has been tested before [35].
In this section, we will compare the robustness of standard fuzzy DRSA
and OWA-based fuzzy DRSA. For this purpose, we collected six datasets
described in [19] which are used for ordinal classification with mono-
tonicity constraints. Details about these datasets are given in Table 4.5.

name # of instances # of condition criteria # of decision classes
cpu 209 6 4
era 1000 4 9
esl 488 4 9

fame 1328 10 5
lev 1000 4 5
swd 1000 10 4

Table 4.5: Data description
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In this experiment, we will consider only the lower approximations
of both upward and downward unions, since due to the duality property,
the upper approximation performance will be the same. We define the
positive region as the fuzzy union of the lower approximations of the
upward and downward unions, i.e.,

POSD̃,t(u) = max(apr
D̃

(Cl≥t )(u),apr
D̃

(Cl≤t−1)(u)),

where apr may stand for either the standard fuzzy DRSA lower approx-
imation or the OWA-based fuzzy DRSA one. We define the positive re-
gion for each value t = 2,3, . . . , k, and we will compare positive region
membership values in OWA-based fuzzy DRSA and in standard fuzzy
DRSA. If a fuzzy DRSA model is robust, we expect that the positive re-
gion does not change drastically when small changes in the data occur.
This should be the case when both condition and decision criteria are af-
fected by some fluctuations in data. Therefore, we will consider the cases
when the condition and decision criteria are affected by noise separately.

• For the condition criteria, we add Gaussian noise to the data. For
a given standard deviation and for each criterion-value pair, we
generate a random number from the normal distribution with zero
mean and given standard deviation. We add this number to the
criterion-value pair. We do this for different standard deviations,
which represent the level of noise in the criteria.

• In the decision criterion, we are dealing with ordinal classes. So for
a given class in our data, we have three options: it can be increased
by one level, decreased by one level or stay the same. Increasing
and decreasing may happen with the same, fixed probability. This
probability represents the level of noise in the decision criterion.
Again, we consider different values in the experiment.

In the experiments we use the fuzzy dominance relation described in
Section 3.1.1, with γ = 1 and where minimum is used as aggrega-
tion operator over all criteria. We use Łukasiewicz t-norm TL(x,y) =
max(x + y − 1,0) and its R-implicator I(x,y) = min(1 − x + y,1). The
class sets are constructed such that Clt(u) = 1 if u belongs to class t,
while Clt(u) = 0 otherwise. Cumulative upward and downward unions
are then constructed according to Eq. (4.4). The experiments were per-
formed in the Python programming language together with the Numpy
computational library. The seed for the random number generator in
Numpy was set to 0.
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4.4.2 Perturbations in the condition criteria

We first perform the experiment where we add noise to the criteria. By
D̃∗ we denote the fuzzy dominance relation defined on data with Gaus-
sian noise. We define the Cumulative Mass Difference (CMD) as the
value which tells us how much noise affected the positive region of our
data. For standard fuzzy DRSA it is defined as:

CMD =
k∑

t=2

∑
u∈U |POSD̃,t(u)− POSD̃∗,t(u))|

|U |
,

while for OWA-based fuzzy DRSA we have that

CMDOWA =
k∑

t=2

∑
u∈U |POSOWA

D̃,t
(u)− POSOWA

D̃∗,t
(u))|

|U |
.

Figure 4.1: CMD with respect to the noise level on condition criteria
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Since we want to show the robustness of OWA, we compare CMD
and CMDOWA as measures of robustness of standard fuzzy DRSA and
OWA-based fuzzy DRSA, where smaller values of CMD mean more ro-
bustness. In this particular experiment, additive weights are used for
the OWA operator.

Figure 4.2: CMD w.r.t. the noise level on the decision criterion

In Figure 4.1, we show the dependence of the CMD w.r.t. the noise
level, i.e., w.r.t. the standard deviation value given to the Gaussian noise,
for the different datasets described above. As we can see, 5 out of 6 im-
ages reveal that OWA-based fuzzy DRSA is more robust than standard
fuzzy DRSA and that the robustness is increasing as the noise is aug-
mented. Only for the "era" dataset, both approaches show similar ro-
bustness with slightly better performance of standard fuzzy DRSA.
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4.4.3 Perturbations in the decision criterion

Next, we consider the experiment where noise is added to the decision
criterion. By Cl≥t∗ and Cl≤t∗ we denote the respective upward and down-
ward unions after noise is added, while POSD,t∗(u) denotes the positive
region with the noisy decision criterion. We define the CMD similarly
as above, where POSD̃∗,t(u) is replaced with POSD,t∗(u) and POSOWA

D̃∗,t
(u)

is replaced with POSOWA
D,t∗ (u). Again we compare CMD and CMDOWA

to show the robustness of the OWA approcach as we did before. Like
before, additive weights are used in the OWA operator. In Figure 4.2, we
can clearly observe that the OWA-based method outperforms the stan-
dard one on 5 out of 6 datasets. As before, the "era" dataset is differ-
ent, with standard fuzzy DRSA performing better for a small amount
of noise, and OWA-based fuzzy DRSA outperforming it for more noisy
data.

4.4.4 Using different weights on the "era" dataset

Here, we investigate why the OWA-based fuzzy DRSA fails to outper-
form the standard one on the “era” dataset. Checking the dataset, we
noticed that the positive region calculated with standard fuzzy DRSA
has many 0 membership degrees. This indicates a high presence of out-
liers in the "era" dataset, even without adding any artificial noise. One
possibility is that the selection of the weights in this case is not appro-
priate.

As we stressed above, in the case of additive weights, the largest
weights are multiplied with the possible outliers, which still gives some
significance to possible outliers and may affect the calculation. To avoid
that, we perturb the weight vector WU by defining a new weight vector
W ′U in the following way. Let p be a percentage and let n1 = ⌊pn⌋. We
have that:

(W ′U )i =

(WU )n−i+1 if i = 1, . . . ,n1,

(WU )i−n1
if i = n1 + 1, . . . ,n.

In this definition, we take a small percentage (100p%) of values from the
right side of the weight vector, flip them and add them to the left side of
the weight vector. With this definition, we ensure that the small values
from the end of vector WU are now at the beginning of vector W ′U , so
the possible outliers will not have such a high significance as they had
in WU . We repeat the experiments for the "era" dataset, now with W ′U
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weights instead of WU and with complementary weight vector W ′L = W ′U
instead of WL. We perform these experiments for p = 0.05 and p = 0.1.

Figure 4.3: CMD w.r.t. the noise level for the "era" dataset and p = 0.05.

Figure 4.4: CMD w.r.t. the noise level for the "era" dataset and p = 0.1.

Figures 4.3 and 4.4 reveal that giving smaller values to the potential
outliers improves the performance of OWA-based fuzzy DRSA in both
the condition and decision case for the "era" dataset. Moreover, we may
see that moving a bigger portion of smaller values to the left side of the
weight vector gives even better results, which again indicates the high
presence of outliers in the "era" dataset.

4.5 Counterexamples

This section contains a list of counterexamples mentioned earlier in the
chapter.

Example 4.5.1. Consider the Łukasiewicz t-norm and its associated R-
implicator, i.e., T (x,y) = max(x+y−1,0) and I(x,y) = min(1−x+y,1). We
induce N from I as N (x) = 1 − x, which is the standard negator, and we
take S to be the N -dual of T , i.e., S(x,y) = min(x + y,1). Let us assume
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that there are two instances a and b such that A(a) = A(b) = 0.9. Assume
now that the exact approximation property holds, i.e.,

(∀u ∈U )(aprT ,I
R̃

(A)(u) = A(u))

⇔ (∀u ∈U ) (Tv∈U (I(R̃(v,u),A(v))) = A(u)).

We have that

Tv∈U (I(R̃(v,a),A(v)) = T [I(R̃(a,a),A(a)),Tv,a(I(R̃(v,a),A(v)))]

= T [A(a),Tv,a(I(R̃(v,a),A(v)))].

The last expression is equal to A(a) if

Tv,a(I(R̃(v,a),A(v))) = 1⇒ (∀v , a)(I(R̃(v,a),A(v)) = 1)

⇒ (∀v , a)(R̃(v,a) ≤ A(v)).

Now assume R̃(b,a) = 0.9 which satisfies the condition R̃(b,a) ≤ A(b). We
have that T (R̃(b,a),A(a)) = 0.8. Then we will have that

aprS,T
R̃

(A)(b) = Sv∈U (T (R̃(b,v),A(v)))

≥ S[T (R̃(b,b),A(b)),T (R̃(b,a),A(a))]

= S[A(b),T (R̃(b,a),A(a))]

= S(0.9,0.8) = 1 > 0.9 = A(b).

So, we get that for a particular b it holds that aprS,T
R̃

(A)(b) , A(b), which
is a counterexample to the exact approximation property.

Example 4.5.2. Consider the following de-Morgan triplet: T (x,y) =
min(x,y),N (x) = 1−x and S(x,y) = max(x,y), with I as the corresponding
S-implicator, i.e., I(x,y) = max(1− x,y). Assume that

(∀u ∈U ) (aprmin,I
R̃

(A)(u) ≥ A(u))

⇔(∀u ∈U ) (min
v∈U

(I(R̃(v,u),A(v))) ≥ A(u))

⇔(∀u ∈U ) (∀v ∈U ) (I(R̃(v,u),A(v)) ≥ A(u)).

Let a and b be instances such that A(a) = 0.4,A(b) = 0.3 and R̃(b,a) =
0.5. Then, we have that I(R̃(b,a),A(b)) = I(0.5,0.3) = 0.5 > 0.4 = A(a),
so the condition above is satisfied. On the other hand, we have that
T (R̃(b,a),A(a)) = T (0.5,0.4) = 0.4 > 0.3 = A(b). Then, we have that

aprmax,T
R̃

(A)(b) = max
v∈U

(T (R̃(b,v),A(v))) ≥ T (R̃(b,a),A(a)) > A(b),

which is a counterexample.
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Example 4.5.3. Take de-Morgan triplet T (x,y) = min(x,y), S(x,y) =
max(x,y), N = Ns. Let I be the R-implicator of T , i.e., I(x,y) = 1 if
x ≤ y and I(x,y) = y otherwise. It is obvious that in this case (T ,S) =
(min,max). Assume that for a unique instance b we have that coA(b) = 0
and coA(v) = 1 for every v , b. Assume that for some u it holds that
R̃(u,b) < 1. Then, we will have that apr

qua∀,I

R̃−1 (coA)(u) = 0 since the values

of I(R̃(u,v), coA(v)) are all ones with the one 0 value. On the other hand,
we have that

N (apr
qua∃,T
R̃

(A)(u)) = N (qua∃(T (R̃(u,v),A(v))))

= qua∀(S(N (R̃(u,v)),N (A(v))))

= qua∀(S(N (R̃(u,v)), coA(v)))

= S(N (R̃(u,b)), coA(b)) = N (R̃(u,b)) > 0.

So, we find that for some u, N (apr
qua∃,T
R̃

(A)(u)) > apr
qua∀,I

R̃−1 (coA)(u), which
is a counterexample.

Example 4.5.4. We provide an example of how to calculate OWA-based
fuzzy DRSA approximations, and we compare them with the standard
fuzzy DRSA approximations. Let us consider the decision table shown
in Table 4.6.

obj. cond1 cond2 decision
a 0.75 0.75 1
b 0.7 0.5 1
c 0.5 0.6 0
d 0.5 0.5 0

Table 4.6: Example of a decision table

We evaluate fuzzy dominance relations among instances of the de-
cision table. We take a fuzzy dominance relation defined as in Section
3.1.1, where γ = 1 and the aggregation operator is the minimum. We get
the matrix shown in Table 4.7.
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a b c d
a 1 1 1 1
b 0.75 1 0.9 1
c 0.75 0.8 1 1
d 0.75 0.8 09 1

Table 4.7: Pairwise evaluations of the fuzzy dominance relation

In the matrix, the value in cell (a,b), for example, represents the value
of R̃(a,b). For the cumulative upward union, we take the decision vector
(1,1,0,0) and its fuzzy set representation, where vector (1,1,0,0) corre-
sponds to fuzzy membership values of instances (a,b,c,d) in fuzzy set
A. Then, the complementary set coA is characterized by fuzzy mem-
bership values (0,0,1,1). We use additive complementary weight vec-
tors WL = (0.1,0.2,0.3,0.4) and WU = (0.4,0.3,0.2,0.1) for the OWA op-
erators. To calculate the lower and upper approximations, we take
Łukasiewicz t-norm T (x,y) = max(x + y − 1,0) and its R-implicator
I(x,y) = min(1 − x + y,1). We provide the steps for the calculation of
aprmin,I

R̃
(A)(a) and aprWL,I

R̃
(A)(a). For v ∈ {a,b,c,d} we calculate the val-

ues I(R̃(v,a),A(v)). For v ∈ {a,b,c,d} these values are {1,1,0.25,0.25}. The
standard lower approximation is then calculated by taking the small-
est value, i.e., aprmin,I

R̃
(A)(a) = 0.25. For the OWA operation, we sort the

values in descending order, and apply the weights WL. We find

aprWL,I

R̃
(A)(a) = 0.1 · 1 + 0.2 · 1 + 0.3 · 0.25 + 0.4 · 0.25.

For the other instances, we obtain: aprmin,I
R̃

(A)(b) = 0.2, aprmin,I
R̃

(A)(c) =

0, aprmin,I
R̃

(A)(d) = 0, aprWL,I

R̃
(A)(b) = 0.33, aprWL,I

R̃
(A)(c) = 0.2 and

aprWL,I

R̃
(A)(d) = 0.167. For the remaining approximations we get:

aprmax,T
R̃

(A) = {(a,1), (b,1), (c,0.8), (d,0.8)},

aprWU ,T

R̃
(A) = {(a,0.833), (b,0.75), (c,0.65), (d,0.65)},

aprmin,I
R̃−1 (coA) = {(a,0), (b,0), (c,0.2), (d,0.2)},

aprWL,I

R̃−1 (coA) = {(a,0.167), (b,0.25), (c,0.35), (d,0.35)},

aprmax,T
R̃−1 (coA) = {(a,0.75), (b,0.8), (c,1), (d,1)},

aprWU ,T

R̃−1 (coA) = {(a,0.625), (b,0.667), (c,0.8), (d,0.833)}.
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Example 4.5.5. Assume that A is crisp, which means A(u) = 1 if u ∈ A
and A(u) = 0 otherwise. Let us compute I(R̃(v,u),A(v)). If we assume
that I is an S-implicator, we have that:

• if v ∈ A, then I(R̃(v,u),A(v)) = 1,

• if v ∈ coA, then I(R̃(v,u),A(v)) = 1− R̃(v,u).

So the values used for OWA aggregation are either 1 − R̃(v,u) or 1. As-
sume that u < A⇒ A(u) = 0. Then, the lower approximation should be
0, but we can always construct a weight vector for the OWA approach to
obtain a value different from 0 at the end.

Example 4.5.6. Assume as above that A is crisp and assume that both
WL and WU do not contain zero weights. Then the evaluations of the
implicators will be as above. For the evaluations of the t-norm we have
that:

• if v ∈ A, then T (R̃(u,v),A(v)) = R̃(u,v),

• if v ∈ coA, then T (R̃(u,v),A(v)) = 0.

Let u ∈ A. Then we have that aprWL,I

R̃
(A)(u) = A(u) = 1 if and only if

∀v ∈ coA, 1 − R̃(v,u) = 1 ⇒ R̃(v,u) = 0. This holds since aprWL,I

R̃
(A)(u)

is a convex combination of the elements less or equal than 1 and it can
be equal to 1 only if all elements are 1. So, it is possible to satisfy the
condition. On the other hand, it is impossible to satisfy aprWU ,T

R̃
(A)(u) =

A(u) = 1 since we have a convex combination involving zero elements.
Thus, we can conclude that the equivalence does not hold in general.

Example 4.5.7. In this counterexample, we use the same data as in Ex-
ample 4.5.4 as well as the same dominance relation, cumulative upward
union and OWA weights. Because of this, the pairwise comparisons will
be the same as in Table 4.7. To obtain counterexamples for some prop-
erties, we take the left-continuous t-norm T (x,y) =

√
max(x2 + y2 − 1,0)

and its R-implicator I(x,y) =
√

min(1− x2 + y2,1). We check instances a
and d and find that

aprWL,I

R̃
(A)(a) = 0.763, aprWL,I

R̃
(A)(d) = 0.3.

We have that I(aprWL,I

R̃
(A)(a),aprWL,I

R̃
(A)(d)) = 0.7126, so

R̃(d,a) > I(aprWL,I

R̃
(A)(a),aprWL,I

R̃
(A)(d)),
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which provides a counterexample for the consistency property. Further-
more, we have that

aprWL,I

R̃
(aprWL,I

R̃
(A))(a) = 0.7751 , aprWL,I

R̃
(A)(a),

which is a counterexample for the idempotence property while it also
holds that

aprWU ,T

R̃
(aprWL,I

R̃
(A))(a) = 0.6374 , aprWL,I

R̃
(A)(a),

which is a counterexample for the property about the relation between
the lower and upper approximation.

4.6 Conclusion

In this chapter, we presented the main results of the integration of fuzzy
set theory and PRSA. We also proposed some improvements using OWA
operators to construct a more robust version of fuzzy PRSA. We proved
that some properties which hold for classical fuzzy DRSA also hold in
the OWA version under specific assumptions. At the end, we empiri-
cally showed that OWA-based fuzzy DRSA is indeed more noise tolerant
compared to standard fuzzy DRSA.
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Chapter 5

Granular Representation of
OWA-based Fuzzy Rough Sets

Motivated by the property of (fuzzy) rough sets that they can be repre-
sented as a union of simple building blocks i.e., granules, we introduce
the concept of a granularly representable (fuzzy) set. While rough sets
are constructed based on the assumption of consistency, granularly rep-
resentable sets are constructed based on the representability of sets by
means of granules. However, the two concepts coincide for crisp rela-
tions and fuzzy T -preorder relations and this coinciding is being dis-
cussed. Moreover, the granular representation naturally gives way to an
associated set of decision rules.

We show how granularly representable (fuzzy) sets can be related to
(fuzzy) PRSA, i.e., they coincide under specific conditions on the fuzzy
connectives. Moreover, as our main contribution, we show that OWA-
based fuzzy rough approximations also possess such a granular repre-
sentation. This holds for a specific type of a fuzzy connectives and for a
T -preorder relation, which means that OWA-based PRSA, introduced in
Chapter 4, can also be used for inconsistency correction in this case. As
a consequence, this robust extension of the fuzzy PRSA can also poten-
tially be used for induction of a set of associated fuzzy rules.

The remainder of this chapter is structured as follows. Section 5.1
introduces the notion of a granularly representable set, and investigates
its relationship rough approximations. In this way, we provide a new
view on granularity of sets in general, and on the relationship between
granularity and rough approximations. In Section 5.2, we define gran-
ularly representable fuzzy sets and prove analogous propositions as for
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the crisp case. In Section 5.3, we discuss different types of granules and
the corresponding rule types that can be induced. Section 5.4 deals with
the granularity of OWA-based approximations, while Section 5.5 goes
deeper into the topic of characterising convex t-norms which are crucial
for the representation. Section 5.6 contains our conclusion.

5.1 Granular view of PRSA

Granular properties of IRSA have been discussed in [141], while a sim-
ilar analysis was carried out for DRSA in [57]. More recently, the gran-
ular representation of DRSA was also studied from the perspective of
covering-based rough sets in [34]; in particular, the notion of a definable
set was introduced as a union of elementary sets or granules: equiva-
lence classes [u]E in the case of IRSA, and sets D−(u) and D+(u) in the
case of DRSA.

In this section, we introduce the notion of a granularly representable
set: a set which can be disintegrated into building blocks that are in-
terpreted as human readable rules and we observe the granular prop-
erties of the PRSA in view of the new definition. Let U be the set
of instances and let A ⊆ U . Let R be a preorder relation on U and
R+(u) = {v ∈ U ; (v,u) ∈ R}. We say that set A is granularly representable
w.r.t. relation R if

A =
⋃
u∈A

R+(u).

The blocks R+(u) may be interpreted as indiscernibility rules in the case
of IRSA, or monotonic rules in the case of DRSA. Optimality of the rules
in the sense of a minimal number of blocks covering A is not guaranteed,
and while there exist ways to reduce the number of building blocks of
A, this falls outside the scope of this thesis. Here, we focus on the link
between granular representability and rough approximations.

Proposition 5.1.1. Set A is granularly representable if and only if
apr

R
(A) = A = aprR(A).

Proof. For the right side of the equivalence it is enough to prove or as-
sume that apr

R
(A) = A since it holds that apr

R
(A) = A ⇔ A = aprR(A)

due to the exact approximation property.
(⇒) Assume that A is granularly representable. For u ∈ A, we have

that also R+(u) ⊆ A which leads to u ∈ apr
R

(A). Hence A ⊆ apr
R

(A).
Combining this with the inclusion property, we obtain that apr

R
(A) = A.
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(⇐) Assume that apr
R

(A) = A. It holds that

u ∈ A⇒ u ∈ apr
R

(A)⇒ R+(u) ⊆ A.

So we have that
⋃
u∈A

R+(u) ⊆ A. On the other hand, from the reflexivity of

R it holds that A ⊆
⋃
u∈A

R+(u). Therefore, A is granularly representable.

Corollary 5.1.1. apr
R

(A) and aprR(A) are granularly representable sets.

Proof. This follows from the idempotence property of lower and upper
approximation.

Corollary 5.1.2. We may write the rough approximations in the granular
form:

apr
R

(A) =
⋃
{R+(u); u ∈U,R+(u) ⊆ A},

aprR(A) =
⋃
{R+(u); u ∈ A}.

Proof. We have that:

apr
R

(A) =
⋃
{R+(u),u ∈ apr

R
(A)} =

⋃
{R+(u) : u ∈U,R+(u) ⊆ A},

since u ∈ apr
R

(A)⇔ u ∈ U ∧ R+(u) ⊆ A. For the upper approximation,
from the granular representability we have that aprR(A) =

⋃
{R+(u),u ∈

aprR(A)}. From the inclusion property we know that A ⊆ aprR(A), so
we may conclude that

⋃
{R+(u),u ∈ A} ⊆

⋃
{R+(u),u ∈ aprR(A)}. For the

opposite direction we have the following:

v ∈
⋃
{R+(u),u ∈ aprR(A)} ⇔ ∃u ∈ aprR(A),v ∈ R+(u)

⇔∃u ∈U,R−(u)∩A , ∅,v ∈ R+(u)

⇔∃u ∈U,∃w ∈ A,w ∈ R−(u)∧ v ∈ R+(u)

⇔∃u ∈U,∃w ∈ A,u ∈ R+(w)∧ v ∈ R+(u)

⇒∃w ∈ A,v ∈ R+(w)

⇔ v ∈
⋃
{R+(u),u ∈ A},

where for the implication we use the transitivity of R. So, we conclude
that also

⋃
{R+(u),u ∈ aprR(A)} ⊆

⋃
{R+(u),u ∈ A} which gives us the de-

sired result.
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Corollary 5.1.3.
R+(u) ⊆ A⇔ R+(u) ⊆ apr

R
(A).

Proof. The (⇐) part is obvious because of the inclusion property. (⇒)
is a consequence of the definition of the granular representation and
Corollary 5.1.2.

Proposition 5.1.2. Let A ⊆ U and R a preorder on U . The largest gran-
ularly representable set contained in A is apr

R
(A), while aprR(A) is the

smallest granularly representable set containing A.

Proof. Let B be some granularly representable set containing A. We have
that

aprR(A) =
⋃
{R+(u) : u ∈ A} ⊆

⋃
{R+(u) : u ∈ B} = B.

Since aprR(A) is contained in every granularly representable set contain-
ing A, aprR(A) is the smallest such set since it also contains A by the in-
clusion property. On the other hand, let C be a granularly representable
set contained in A. We have that:

u ∈ C⇒ R+(u) ⊆ C⇒ R+(u) ⊆ A⇒ u ∈ apr
R

(A).

So we conclude that C ⊆ apr
R

(A). Since apr
R

(A) contains every gran-
ularly representable set contained in A, apr

R
(A) is the largest such set

since it is also contained in A by the inclusion property.

We have the following result on the relationship between the consis-
tency property and the granular representability.

Proposition 5.1.3. Set A ⊆ U is granularly representable w.r.t. preorder
R if and only if it satisfies the consistency property, i.e.,

A =
⋃
{R+(u);u ∈ A} ⇔ ∀u,v ∈U, (v,u) ∈ R∧u ∈ A⇒ v ∈ A.

Proof. We have the following:⋃
{R+(u);u ∈ A} ⊆ A⇔∀u ∈ A, R+(u) ⊆ A

⇔∀u ∈ A, ∀v ∈U, (v,u) ∈ R⇒ v ∈ A
⇔∀u,v ∈U, (v,u) ∈ R∧u ∈ A⇒ v ∈ A.

Using the previous equivalence, and the fact that it always holds that
A ⊆

⋃
{R+(u);u ∈ A} we finish the proof.
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Example 5.1.1. In this example, we identify the granules that con-
stitute the lower and upper approximations of the data from Section
3.2 provided in Example 4.1.1. If we use the indiscernibility relation,
the granules are the equivalence classes of the instances that belong
to the approximations. The lower and upper approximations of in-
stances with decision 1 from data in Table 3.2 are {1,2} and {1,2,3,4}
respectively. For those instances, we identify the corresponding equiva-
lence classes. The granules that constitute the lower approximation are
{1 : {1},2 : {2}}, while the granules that constitute the upper approxima-
tion are {1 : {1},2 : {2},3 : {3,4},4 : {3,4}}. In both cases, we listed the
instances and the granules that they generate.

If we use the dominance relation, the granules are the dominating
set, i.e., all instances that dominate the instance that generate a granule.
The lower and upper approximations of instances with decision 1 from
data in Table 3.2 are {1} and {1,2,3,4} respectively. For those instances,
we identify the corresponding dominating sets. The single granule that
constitutes the lower approximation is {1 : {1}}, while the granules that
constitute the upper approximation are {1 : {1},2 : {2,3,4},3 : {3,4},4 :
{3,4}}.

In conclusion, we saw that for every set A and preorder R there is
a granular enclosing in the form of rough approximations. They rep-
resent families of building blocks which are necessarily (lower approxi-
mation) or possibly (upper approximation) contained in A. This may be
further translated into possible and certain rules induced from aprR(A)
and apr

R
(A), respectively, as done using LEM2 (for IRSA) or DomLEM

(for DRSA) algorithms.

5.2 Granular representation of fuzzy PRSA

In this section, we extend the granular representation from the previous
section to fuzzy sets and relate it to the fuzzy rough set definitions. Let R̃
be a T -preorder relation for some left-continuous t-norm T , and assume
I is its R-implicator. We replace R+(u) from above with the fuzzy set
R̃+(u) where the membership degree of v ∈ U is given by R̃(v,u). Gran-
ular properties of fuzzy rough approximations were first introduced in
[36], where the authors defined a parameterized family of fuzzy gran-
ules:

R̃+
λ(u) = {(v,T (R̃(v,u),λ));v ∈U }, (5.1)
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where λ is a real parameter from [0,1]. In this definition of a fuzzy
granule, we can observe that the construction is motivated by the dis-
cussion from Section 1.2.3, i.e., it is a conjunction of the fuzzy set
{(v, R̃(v,u));v ∈ U } of instances that relate to the given instance u and
the corresponding association value λ. Later on, we will observe that
the parameter λ associates a granule to a particular decision.

In the original paper, R̃ was also symmetric, but later on it was no-
ticed that symmetry does not contribute to the granular properties of
fuzzy rough approximations [132]. We observe that Eq. (5.1) is not the
only possible way to define fuzzy granules. An alternative was proposed
in [44], using implicators and coimplicators. However, in order to ex-
tend the granular representation introduced in the previous section, we
will focus on the original formula (5.1).

The idea that a set A is granularly representable if it is the union of
building blocks R+(u) with u ∈ A can be fuzzified by putting λ = A(u) in
Eq. (5.1).

Definition 5.2.1. We call A ∈ F(U ) granularly representable if

A =
⋃
{R̃+

A(u)(u);u ∈U }. (5.2)

We first prove two simple lemmas necessary for further proofs.

Lemma 5.2.1. For λ1 ≤ λ2 and for u ∈U we have that:

R̃+
λ1

(u) ⊆ R̃+
λ2

(u).

Proof. Obvious from the monotonicity of a t-norm.

Lemma 5.2.2.
R̃+
λ(u) ⊆ A⇔ λ ≤ aprinf,I

R̃
(A)(u).

Proof. We use the residuation property:

R̃+
λ(u) ⊆ A⇔∀v ∈U, T (R̃(v,u),λ) ≤ A(v)

⇔∀v ∈U,λ ≤ I(R̃(v,u),A(v))

⇔ λ ≤ inf
v∈U

I(R̃(v,u),A(v))⇔ λ ≤ aprinf,I
R̃

(A)(u).

Next, we prove the main result about the granular representability
of fuzzy sets.
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Proposition 5.2.1. Fuzzy set A is granularly representable w.r.t. relation
R̃ if and only if aprinf,I

R̃
(A) = A = aprsup,T

R̃
(A).

Proof. As before, for the right side of the equivalence it is enough
to prove or assume that aprsup,T

R̃
(A) = A since aprinf,I

R̃
(A) = A ⇔ A =

aprsup,T
R̃

(A) due to the exact approximation property.
(⇒) Assume that A is granularly representable. For v ∈U , we have that

A(v) = sup{T (R̃(v,u),A(u));u ∈U } = aprsup,T
R̃

(A)(v).

(⇐) Assume that aprsup,T
R̃

(A) = A. Then, by the same reasoning, we find
that A is granularly representable.

Corollary 5.2.1. Both aprinf,I
R̃

(A) and aprsup,T
R̃

(A) are granularly repre-
sentable fuzzy sets.

Proof. This follows from the idempotence of lower and upper approxi-
mations under the considered conditions (Proposition 4.2.5).

Corollary 5.2.2. We may write the fuzzy rough approximations defini-
tions in the granular form:

aprinf,I
R̃

(A) =
⋃
{R̃+

λ(u); R̃+
λ(u) ⊆ A}, aprsup,T

R̃
(A) =

⋃
{R̃+

A(u)(u)}.

Proof. For the lower approximation we have that:⋃
{R̃+

λ(u); R̃+
λ(u) ⊆ A} =

⋃
{R̃+

λ(u);λ ≤ aprinf,I
R̃

(A)(u)}

=
⋃
{R̃+

aprinf,I
R̃

(A)(u)
(u)} = aprinf,I

R̃
(A).

The first equality holds because of Lemma 5.2.2 while the second one
follows from Proposition 5.2.1. For the upper approximation, it follows
directly from the definitions:⋃

{R̃+
A(u)(u)} = {(v,sup{T (R̃(v,u),A(u));u ∈U });v ∈U }

= aprsup,T
R̃

(A).

Corollary 5.2.3.

R̃+
λ(u) ⊆ A⇔ R̃+

λ(u) ⊆ aprinf,I
R̃

(A).
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Proof. The (⇐) part is obvious since the lower approximation is a subset
of the approximated set. (⇒) is a consequence of the definition of the
granular representation and Corollary 5.2.2.

Proposition 5.2.2. Let A ∈ F(U ) and R̃ a T -preorder relation. The largest
granularly fuzzy representable set contained in A is aprinf,I

R̃
(A), while

aprsup,T
R̃

(A) is the smallest granularly representable fuzzy set containing
A.

Proof. Assume that there is a granularly representable fuzzy set B con-
taining A. We have that:

aprsup,T
R̃

(A)(u) = sup{T (R̃(u,v),A(v));v ∈U }

≤ sup{T (R̃(u,v),B(v));v ∈U }

= aprsup,T
R̃

(B)(u) = B(u).

Hence aprsup,T
R̃

(A) ⊆ B. Since aprsup,T
R̃

(A) is contained in every granularly

representable fuzzy set containing A, aprsup,T
R̃

(A) is the smallest such
fuzzy set since it also contains A by the inclusion property.

On the other hand, assume that C is a granularly representable fuzzy
set contained in A. We have that

aprinf,I
R̃

(A)(u) = inf{I(R̃(v,u),A(v)),v ∈U }

≥ inf{I(R̃(v,u),C(v)),v ∈U }

= aprinf,I
R̃

(C)(u) = C(u).

Since aprinf,I
R̃

(A) contains every granularly representable fuzzy set con-

tained in A, aprinf,I
R̃

(A)(u) is the largest such fuzzy set since it is also
contained in A by the inclusion property.

We have the following result about the relationship between the
fuzzy consistency property and granular representability.

Proposition 5.2.3. A fuzzy set A in U is granularly representable w.r.t.
T -preorder R̃ if and only if it satisfies the consistency property, i.e.,

A =
⋃
{R̃+

A(u)(u);u ∈U } ⇔ ∀u,v ∈U, R̃(v,u) ≤ I(A(u),A(v))

⇔∀u,v ∈U, T (R̃(v,u),A(u)) ≤ A(v).
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Proof.

A =
⋃
{R̃+

A(u)(u);u ∈U }

⇔ ∀v ∈U, A(v) = max(T (R̃(v,u),A(u));u ∈U )

⇔ ∀u,v ∈U, A(v) ≥ T (R̃(v,u),A(u))

⇔ ∀u,v ∈U, R̃(v,u) ≤ I(A(u),A(v)).

The second equivalence holds from the observation that the maximum
is reached for u = v due to reflexivity of R̃. The third equivalence holds
from the residuation property.

Example 5.2.1. In this example, we identify the granules that constitute
the upper fuzzy PRSA approximations of the data from Section 3.2 pro-
vided in Example 4.2.1. In order to maintain the readability, we will not
include the granules of the lower approximations. In tables 5.1, 5.2, 5.3
and 5.4, we have the granules that constitute the upper approximations
of the data from Table 3.2 w.r.t. T -equivalence (3.2), the data from Table
3.2 w.r.t. T -preorder (3.5), the data from Table 3.5 w.r.t. T -equivalence
(3.2) and the data from Table 3.5 w.r.t. T -preorder (3.5) respectively. The
upper approximations are shown in Tables 4.1, 4.2, 4.3, 4.4.

In every row of each table, the first entry represents the generating
instance, while the following 6 entries are the fuzzy membership degrees
of every instance in the granule generated by the generating instance.
For example, In Table 5.3, the first row is a granule generated by instance
1, which is fuzzy set

{(1,0.77), (2,0.103), (3,0.199), (4,0), (5,0.001), (6,0)}.

This granule is obtained in a way that we calculate the T -equivalence
values between instance 1 and all other instances where the resulting
fuzzy set is:

{(1,1), (2,0.333), (3,0.429), (4,0.143), (5,0.231), (6,0)}, (5.3)

and then we evaluate TL operator to the fuzzy degrees from (5.3) and the
upper approximation membership of instance 1 which is 0.77. We can
also observe that if we calculate the maximum of every row, we will get
the upper approximation degrees, i.e., the union of granules is indeed
the upper approximation.
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1 2 3 4 5 6

1 1 0.059 0.552 0.552 0 0
2 0.059 1 0.412 0.412 0.235 0.312
3 0.552 0.412 1 1 0.207 0.198
4 0.552 0.412 1 1 0.207 0.198
5 0 0 0 0 0.235 0
6 0 0 0 0 0 0.312

Table 5.1: Granules of the upper approximation from Table 4.1

1 2 3 4 5 6

1 1 0.667 0.552 0.552 0.354 1
2 0.059 1 0.412 0.412 0.235 1
3 0.647 1 1 1 0.802 1
4 0.647 1 1 1 0.802 1
5 0 0.22 0 0 0.610 0.354
6 0 0 0 0 0 0.312

Table 5.2: Granules of the upper approximation from Table 4.2

1 2 3 4 5 6

1 0.77 0.103 0.199 0 0.001 0
2 0 0.445 0.07 0 0 0
3 0.249 0.445 0.82 0.166 0 0.32
4 0 0.35 0.196 0.85 0.058 0.542
5 0 0 0 0 0.4 0
6 0 0 0.042 0.235 0 0.542

Table 5.3: Granules of the upper approximation from Table 4.3
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1 2 3 4 5 6

1 0.850 0.773 0.619 0.85 0.642 0.85
2 0.1 0.767 0.392 0.683 0 0.767
3 0.279 0.707 0.85 0.85 0.350 0.85
4 0 0.35 0.196 0.85 0.058 0.542
5 0 0 0 0.158 0.504 0
6 0 0.07 0.142 0.433 0 0.642

Table 5.4: Granules of the upper approximation from Table 4.4

As we saw before, for any fuzzy set A, there is a fuzzy granular en-
closing composed of fuzzy rough approximations. With this, we obtain
families of fuzzy building blocks which may be interpreted as certain
and possible fuzzy rules. Concrete examples of fuzzy rough rule induc-
tion may be found in [79, 149].

5.3 Granules and their interpretation

As we mentioned before, granules are important from the perspective
of rule induction. We keep granules simple, such that one granule cor-
responds to one rule. Since a granularly representable set is a union of
granules, it can be seen as a union of rules, so it is fully readable by a hu-
man. With granules in the PRSA and fuzzy PRSA we are able to identify
four types of rules: two types for the crisp case (IRSA and DRSA) and
two types for the fuzzy case (fuzzy IRSA and fuzzy DRSA). The lower
approximations generate certain rules, while the upper approximations
generate possible rules. For every type of granule, we provide directions
how to construct a rule in a classification problem, and an example of
such rule. We provide examples that correspond to the granules of the
upper approximations from Examples 5.1.1 and 5.2.1 of classification
data from Table 3.2. Since the rules are extracted from the upper ap-
proximations, we consider them as possible rules.

We first discuss IRSA granules and rules. Assume that instancess are
described by attributes as explained in Section 1.1.1.

81



Chapter 5. Granular Representation of OWA-based Fuzzy Rough Sets

Figure 5.1: Crisp approximations with equivalence relation

In Figure 5.1, we show an example of binary classification (number
of decision classes is 2) where 250 instances (points) are separated by
the elliptical curve into interior and exterior classes. The equivalence
classes in the set of instances are represented by the squares in the fig-
ure (35 equivalence classes). The lower approximation of the interior
class is marked with light blue color, while its upper approximation is
the union of light green and light blue squares. The approximations
are granularly representable sets so they are equal to the union of the
equivalence classes of their instances. We notice that we can choose one
granule per representative element for each equivalence class. There-
fore, the interior can be represented as a union of three classes as we can
see in the figure. Each such granule can be seen as a rule. Since equiva-
lence classes consist of instances with equal values on all attributes, the
rules have the following form:

IF att1 = val1 AND ... AND attm = valm THEN decision is dec.

Here “att”, “val” and “dec” are abbreviations for “attribute”, “value” and
“decision”. Here “dec” stands for a decision class which is assigned to
the classified instance.

We provide an example of such a rule from the granule that corre-
spond to instance 3 in Example 5.1.1:

IF debt = 3900 AND salary = 3600 AND portfolio = 8150
THEN decision is 1.

This is a possible rule which is fulfilled by the instances that belong to
the corresponding granule, i.e., instances 3 and 4.
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We continue with rules obtained from the DRSA. We now assume
that data are ordinal, i.e., there exists a preorder relation Dq on every
attribute q ∈ Q. That induces preorder relation D on U as explained in
Section 2.1. We recall the dominating set D+(u) = {v ∈ U : (v,u) ∈ D},
which plays the role of a DRSA granule.

Using the DRSA, we can approximate upward and downward
unions, which are sets of instances having at least, resp. at most, a par-
ticular value of the decision attribute. By the granular representation,
their lower and upper approximations are unions of granules. Using
the simple property that (u,v) ∈ D =⇒ D+(v) ⊆ D+(u), we can elimi-
nate redundant granules (those contained in a bigger granule) and re-
duce the number of granules covering lower and upper approximations.
The rules which can be obtained in this case are called monotonic rules,
which have the following form for upward unions:

IF att1 ≥ val1 AND ... AND attm ≥ valm THEN decision is dec.

Here val1, . . . ,valm are obtained from the attribute values of the generat-
ing instance of that particular granule. Analogously, rules with opposite
direction (≤) can be constructed for downward unions.

Again, we provide an example of such a rule from the granule that
correspond to instance 3 in Example 5.1.1:

IF debt ≤ 3900 AND salary ≥ 3600 AND portfolio ≥ 8150
THEN decision is 1.

Here, attribute “debt" is of cost-type and therefore, the inequality sign is
reversed. This is a possible rule which is fulfilled by the instances that
belong to the corresponding granule, i.e., instances 3 and 4.

Now we move to the granules that can be induced in the fuzzy IRSA.
We recall the T -equivalence relation introduced in Eq. (3.2) and illus-
trated in Figure 3.1.

In Figure 5.2, we show an example of the granularity of the lower
approximation. In this example triangular similarity, the Łukasiewicz
t-norm and its R-implicator are used. The top-left sub-figure shows a
fuzzy set denoted by the blue line together with its lower approximation,
denoted by the green line. The top right sub-figure contains examples
of a few granules that can be extracted from the lower approximation.
They are represented by red triangles with points on their top. We dis-
played only seven granules, but in reality every instance generates its
own granule. We may see that some granules are included in others
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(small triangles inside the bigger ones), so we may safely remove them
since they do not contribute to the granular representation of the lower
approximation. In the bottom-left subfigure, we see the same example
where redundant granules are removed. Sometimes, we want to obtain
an even smaller number of granules in order to reduce the number of
rules. For example, we may impose the condition that every instance
which belongs to the lower approximation to degree at least 0.5, is cov-
ered by some granule with degree at least 0.5. In the bottom-right image,
we show the reduced set of granules which satisfies this condition.

0.0 0.2 0.4 0.6 0.8 1.0
attribute

0.0

0.2

0.4

0.6

0.8

1.0

fu
zz
y 
m
em

be
rs
hi
p

0.0 0.2 0.4 0.6 0.8 1.0
attribute

0.0

0.2

0.4

0.6

0.8

1.0

fu
zz
y 
m
em

be
rs
hi
p

0.0 0.2 0.4 0.6 0.8 1.0
attribute

0.0

0.2

0.4

0.6

0.8

1.0

fu
zz
y 
m
em

be
rs
hi
p

0.0 0.2 0.4 0.6 0.8 1.0
attribute

0.0

0.2

0.4

0.6

0.8

1.0

fu
zz
y 
m
em

be
rs
hi
p

Figure 5.2: Example of lower approximation and its granules

If we assume that we use the fuzzy IRSA on crisp decision classes, we
can induce fuzzy rules of the form:

IF att1 ∼ val1 AND ... AND attm ∼ valm
THEN decision is dec with degree at least deg,

where ∼ stands for expression “is similar to". Here, as before, val1, . . . ,
valm are obtained from the instance which generates the granule. We
now have the degree denoted with “deg”, which represents a member-
ship of the instance in the corresponding decision class. As an example
of a such rule, we provide it from the granule generated by instance 3 in
Example 5.2.1.
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IF debt ∼ 3900 AND salary ∼ 3600 AND portfolio ∼ 8150
THEN decision is 1 with degree at least deg.

Here, degree deg is determined by the membership of a particular in-
stance in the granule. For example, instance 1 fulfills the previous pos-
sible rule with degree 0.552. The previous value is obtained from Table
5.1.

The fourth type of rules corresponds to the fuzzy DRSA. We recall
the T -preorder (fuzzy dominance) relation from Eq. (3.5) and its visual-
ization given in Figure 3.2. Such a relation consists of two regions: the
region of strict dominance and the region of similarity. Hence, the inter-
pretation of rules which correspond to the granules obtained from the
fuzzy dominance relation is “greater or similar" (“lower or similar" for
the opposite direction). If we assume that we use fuzzy DRSA on crisp
upward unions, then the induced fuzzy rules are of the form:

IF att1 ≳ val1 AND ... AND attm ≳ valm
THEN decision is dec with degree at least deg.

Here, ≳ stands for the expression “is greater or similar”, and val1, . . . ,
valm are obtained from the instance which generates the granule. Again,
an example of such rule, we provide it from a granule generated by in-
stance 3 in Example 5.2.1.

IF debt ≲ 3900 AND salary ≳ 3600 AND portfolio ≳ 8150
THEN decision is 1 with degree at least deg.

Again, the degree “deg” is determined by the membership of a particular
instance in the granule and attribute “debt” is of cost-type and therefore,
the inequality is reversed. For example, instance 1 fulfills the previous
possible rule with degree 0.647. The previous value is obtained from
Table 5.2.

5.4 Granular representation of OWA-based
approximations

In practice, data collected for real machine learning problems may be
represented as unknown values plus some perturbations. If the amount
of perturbations is negligible, we can use the standard fuzzy PRSA ap-
proach to obtain the lower and upper approximations. In the opposite
case, we require robust methods. As already mentioned in the previ-
ous chapter, the OWA-based approach was identified as the most robust

85



Chapter 5. Granular Representation of OWA-based Fuzzy Rough Sets

known fuzzy rough approach. OWA-based fuzzy PRSA will yield differ-
ent lower and upper approximations. However, in general, we cannot
claim that the new approximations will not posses inconsistencies and
therefore be suitable for the inconsistency correction. In this section,
we prove that under for a specific type of fuzzy connectives and for a
T -preorder relation, OWA-based fuzzy rough approximations does not
posses inconsistencies, i.e., they are granularly representable fuzzy sets.

From Proposition 5.2.1, we already know that a fuzzy set has a gran-
ular representation if and only if it is equal to its standard fuzzy rough
approximations. Therefore, we should find out under which conditions
it holds that:

aprmin,I
R̃

(aprWL,I

R̃
(A)) = aprWL,I

R̃
(A),

aprmax,T
R̃

(aprWU ,T

R̃
(A)) = aprWU ,T

R̃
(A).

To this aim, we recall some definitions and properties about convexity
for binary fuzzy logic connectives.

Definition 5.4.1. [6] We say that a binary operator H : [0,1] × [0,1] →
[0,1] is convex (concave) if for all x1,x2, y1, y2 ∈ [0,1] and w1,w2 ∈ [0,1]
such that w1 +w2 = 1, it holds that:

H(w1x1 +w2x2,w1y1 +w2y2) ≤ (≥) w1H(x1, y1) +w2H(x2, y2).

Definition 5.4.2. [6] We say that a binary operator H : [0,1] × [0,1] →
[0,1] is midpoint convex (concave) if for all x1,x2, y1, y2 ∈ [0,1], it holds
that:

H
(x1

2
+
x2

2
,
y1

2
+
y2

2

)
≤ (≥)

H(x1, y1)
2

+
H(x2, y2)

2
.

Proposition 5.4.1. [6] A continuous midpoint convex (concave) t-norm
is convex (concave).

Definition 5.4.3. [95] We say that a binary operator H : [0,1] × [0,1]→
[0,1] is directionally convex or D-convex (directionally concave or D-
concave) if it is a convex (concave) function in both of its arguments, i.e.,
for all x1,x2, y ∈ [0,1] and w1,w2 ∈ [0,1] such that w1 + w2 = 1, it holds
that:

H(w1x1 +w2x2, y) ≤ (≥) w1H(x1, y) +w2H(x2, y) and

H(y,w1x1 +w2x2) ≤ (≥) w1H(y,x1) +w2H(y,x2).

This definition expresses that the partial mappings of H are convex
(concave) functions. We prove a simple proposition:
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Proposition 5.4.2. Every convex (concave) operator is also D-convex (D-
concave).

Proof. Just take x1 = x2 = x or y1 = y2 = y in the previous definitions.

The reverse implication is not necessarily satisfied. Now, we formu-
late and prove the following important result.

Proposition 5.4.3. Let T be a convex left-continuous t-norm and let I be
its R-implicator. Then I is concave.

Proof. Assume we are given x1,x2, y1, y2,w1,w2 ∈ [0,1] such that w1+w2 =
1. We have to prove that

w1I(x1, y1) +w2I(x2, y2) ≤ I(w1x1 +w2x2,w1y1 +w2y2).

Using the residuation property, we can express this condition as

T (w1I(x1, y1) +w2I(x2, y2),w1x1 +w2x2) ≤ w1y1 +w2y2.

By the convexity of T we have that:

T (w1I(x1, y1) +w2I(x2, y2),w1x1 +w2x2)

≤ w1T (x1, I(x1, y1)) +w2T (x2, I(x2, y2)).

Using the modus ponens property (2.6c), we have that

T (x1, I(x1, y1)) ≤ y1 andT (x2, I(x2, y2)) ≤ y2.

which completes the proof.

Proposition 5.4.4. Let T be a D-convex left-continuous t-norm and I its
R-implicator. Then I is concave in its second argument.

Proof. Similarly as for Proposition 5.4.3.

We recall the following well-known inequality from calculus which
will be needed further on.

Proposition 5.4.5 (Jensen’s inequality). [76] Let f : R → R be a con-
vex (concave) function. Let x1, . . . ,xn be real numbers and w1, . . . ,wn real
weights which sum up to 1. Then we have

f (
n∑
i=1

wixi) ≤ (≥)
n∑
i=1

wif (xi).
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The Jensen’s inequality holds for arbitrary weighted sum. How-
ever, OWA operators will sort the values of the argument set before the
weights are multiplied with them. Because of that, we provide the ad-
justed OWA-Jensen’s inequality.

Proposition 5.4.6. Let f : R→ R be an increasing and convex (concave)
function. Let x1, . . . ,xn be real numbers and let W be an OWA vector of
weights. Then we have

f (OWAW ({x1, . . . ,xn})) ≤ (≥) OWAW ({f (x1), . . . , f (xn)}).

Proof. Without loss of generality, we assume that x1 ≥ · · · ≥ xn and let
W = {w1, . . . ,wn}. Then by the Jensen’s inequality we have that

f (OWAW ({x1, . . . ,xn})) = f (
n∑
i=1

wixi) ≤ (≥)
n∑
i=1

wif (xi).

On the other side, since f is increasing we have that f (x1) ≥ · · · ≥ f (xn).
Therefore, it holds that

n∑
i=1

wif (xi) = OWAW ({f (x1), . . . , f (xn)})

which completes the proof.

Before we proceed to the main theorem, we need to address the in-
terchangeability of OWA operators and the min and max operators. We
have the following.

Proposition 5.4.7. Let {ai,j ; i ∈ I, j ∈ J} be a matrix of values for I and J
being a finite set of indices and let W be an OWA vector of weights. We
have that

OWAW ({min{ai,j ; i ∈ I}; j ∈ J}) ≤min{OWAW ({ai,j ; j ∈ J}); i ∈ I}

OWAW ({max{ai,j ; i ∈ I}; j ∈ J}) ≥max{OWAW ({ai,j ; j ∈ J}); i ∈ I}

Proof. We prove the first expression while the second one holds by anal-
ogy. For fixed i ∈ I , we have that min{ai,j ; i ∈ I} ≤ ai,j for all j ∈ J . From
Proposition 2.4.1, it holds that

OWAW ({min{ai,j ; i ∈ I}; j ∈ J}) ≤OWAW ({ai,j ; j ∈ J}),

for all i ∈ I . By applying min operator on the right side for all i ∈ I , we
finish the proof.
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Theorem 5.4.1. Let T be a D-convex left-continuous t-norm and I its
R-implicator. Then for every A ∈ F(U ) it holds that

aprmin,I
R̃

(aprWL,I

R̃
(A)) = aprWL,I

R̃
(A), aprmax,T

R̃
(aprWU ,T

R̃
(A)) = aprWU ,T

R̃
(A).

Proof. Observe that using T -transitivity of R̃ we find

∀w ∈U,R̃(v,u) ≥ T (R̃(v,w), R̃(w,u))

=⇒ R̃(v,u) ≥max
w∈U

T (R̃(v,w), R̃(w,u)).

Since the equality can be achieved for w = u, we can write

R̃(v,u) = max
w∈U

T (R̃(v,w), R̃(w,u)).

First, we provide the proof for the lower approximation. From the inclu-
sion property we know that

aprmin,I
R̃

(aprWL,I

R̃
(A)) ⊆ aprWL,I

R̃
(A).

We proceed to prove the opposite inequality. Due to Proposition 5.4.4, I
is a concave function in its second argument. Since it is also an increas-
ing function in the second argument, we can apply the OWA-Jensen’s
inequality from Proposition 5.4.6. We find:

aprWL,I

R̃
(A)(u) = OWAWL

({
I(R̃(v,u),A(v)); v ∈U

})
= OWAWL

({
I(max

w∈U
T (R̃(v,w), R̃(w,u)),A(v)); v ∈U

})
≤OWAWL

({
min
w∈U

I(T (R̃(v,w), R̃(w,u)),A(v)); v ∈U
})

≤min
w∈U

OWAWL

({
I(T (R̃(v,w), R̃(w,u)),A(v)); v ∈U

})
= min

w∈U
OWAWL

({
I(R̃(w,u), I(R̃(v,w),A(v))); v ∈U

})
≤min

w∈U
I
(
R̃(w,u),OWAWL

({I(R̃(v,w),A(v)); v ∈U })
)

= min
w∈U

I
(
R̃(w,u),aprWL,I

R̃
(A)(w)

)
= aprmin,I

R̃
(aprWL,I

R̃
(A))(u).

The first inequality follows the monotonicity of I and Proposition 2.4.1.
The second inequality is the consequence of Proposition 5.4.7. The third
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equality holds from property (2.6f) while the third inequality holds from
Proposition 5.4.6.

Next, we provide the proof for the upper approximation. From the
inclusion property we have that:

aprmax,T
R̃

(aprWU ,T

R̃
(A)) ⊇ aprWU ,T

R̃
(A).

We proceed to prove the opposite inequality, using similar argu-
ments:

aprWU ,T

R̃
(A)(u) = OWAWU

({
T (R̃(u,v),A(v)); v ∈U

})
= OWAWU

({
T (max

w∈U
T (R̃(u,w), R̃(w,v)),A(v)); v ∈U

})
≥OWAWU

({
max
w∈U

T (T (R̃(u,w), R̃(w,v)),A(v)); v ∈U
})

≥max
w∈U

OWAWU

({
T (T (R̃(u,w), R̃(w,v)),A(v)); v ∈U

})
= max

w∈U
OWAWU

({
T (R̃(u,w),T (R̃(w,v),A(v))); v ∈U

})
≥max

w∈U
T
(
R̃(u,w),OWAWU

({T (R̃(w,v),A(v)); v ∈U })
)

= max
w∈U

T
(
R̃(u,w),aprWU ,T

R̃
(A)(w)

)
= aprmax,T

R̃
(aprWU ,T

R̃
(A))(u).

Therefore, using Corollaries 5.2.2 and 5.2.3, we have the following
granular representation of the OWA-based approximations.

aprWL,I

R̃
(A) =

⋃
{R̃+

λ(u); R̃+
λ(u) ⊆ aprWL,I

R̃
(A)},

aprWU ,T

R̃
(A) =

⋃
{R̃+

λ(u); R̃+
λ(u) ⊆ aprWU ,T

R̃
(A)}.

With this result, we can conclude that OWA-based approximations
are granularly representable fuzzy sets under specific conditions. The
question remains which connectives preserve the granularity property,
or in other words, which left-continuous t-norms are also D-convex.

Example 5.4.1. In this example, we show the data inconsistency cor-
rection obtained using the OWA-based fuzzy PRSA and we identify the
granules that constitute the OWA-based fuzzy PRSA approximations.
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We first calculate the OWA-based fuzzy PRSA approximations of the
data from Section 3.2. First, we calculate the lower and upper approxi-
mations of the classification dataset from Table 3.2 using TL-equivalence
relation (3.2), IMTL triplet (TL, IL,NL) and exponential OWA weights. As
we will see in Section 5.5, TL is indeed a D-convex t-norm. The relation
matrix from Table 3.3 is passed together with the decision attribute to
formula (4.3). The obtained lower and upper approximations are given
in Table 5.5.

approx. type vs.
instance

1 2 3 4 5 6

lower 0.72 0.682 0.414 0.414 0.439 0.442
upper 0.656 0.62 0.7 0.7 0.172 0.209

Table 5.5: The OWA-based fuzzy PRSA in the classification case for the
TL-equivalence relation

In Table 5.6, we present the calculated fuzzy PRSA approximations
using TL-preorder relation (3.5) while the remaining parameters are the
same as in Table 5.5.

approx. type vs.
instance

1 2 3 4 5 6

lower 0.671 0.298 0.414 0.414 0.288 0.144
upper 0.747 0.62 0.844 0.844 0.362 0.209

Table 5.6: The OWA-based fuzzy PRSA in the classification case for the
TL-preorder relation

We note that the pairs of instances are now indeed consistent. Fol-
lowing the example from Section 3.2, where we identified that instances
u ≡ 6 and v ≡ 2 were inconsistent, using results from Table 5.5, for the
lower approximation we obtain T (R̃(u,v), Â(v)) = T (0.312,0.682) = 0 ≤
0.442 = Â(u), i.e., they are now consistent. For the upper approximation,
we have thatT (R̃(u,v), Â(v)) = T (0.312,0.62) = 0 ≤ 0.209 = Â(u), i.e., we
have the consistency again. If we use the results from Table 5.6, for the
lower approximation we have that T (R̃(u,v), Â(v)) = T (0.312,0.298) =
0 ≤ 0.144 = Â(u), i.e., they are consistent. For the upper approximation,
we have that T (R̃(u,v), Â(v)) = T (0.312,0.62) = 0 ≤ 0.209 = Â(u), i.e., we
have the consistency again. The values of the fuzzy relations in these
examples are obtained from Tables 3.3 and 3.4.
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We perform the same calculations for the regression data from Sec-
tion 3.2 provided in Table 3.5. In order to compute the OWA-based lower
and upper approximations w.r.t. TL-equivalence relation (3.2), we pass
the relation values from Table 3.6 and the decision attribute from Table
3.5 formulas (4.3). The obtained granular approximations are given in
Table 5.7.

approx. type vs.
instance

1 2 3 4 5 6

lower 0.859 0.581 0.731 0.716 0.695 0.597
upper 0.454 0.352 0.492 0.474 0.218 0.395

Table 5.7: The OWA-based fuzzy PRSA in the regression case for the TL-
equivalence relation

In Table 5.8 we calculate the fuzzy PRSA approximations using TL-
preorder relation (3.5) while the other parameters are the same as in
Table 5.7.

approx. type vs.
instance

1 2 3 4 5 6

lower 0.859 0.556 0.731 0.476 0.69 0.396
upper 0.73 0.559 0.694 0.474 0.358 0.445

Table 5.8: The OWA-based fuzzy PRSA in the regression case for the TL-
preorder relation

We again continue the example from Section 3.2 where we identi-
fied that instances u ≡ 2 and v ≡ 3 are inconsistent. Using values from
Table 5.7, for the lower approximation we have that T (R̃(u,v), Â(v)) =
T (0.625,0.731) = 0.356 ≤ 0.581 = Â(u), i.e., they are now consis-
tent. For the upper approximation we have that T (R̃(u,v), Â(v)) =
T (0.625,0.492) = 0.117 ≤ 0.352 = Â(u), i.e., we have the consistency
again. If we use the calculated values from Table 5.8, for the lower
approximation we have that T (R̃(u,v), Â(v)) = T (0.571,0.731) = 0.302 ≤
0.556 = Â(u), while for the upper one we have that T (R̃(u,v), Â(v)) =
T (0.571,0.694) = 0.265 ≤ 0.559 = Â(u). In both cases, we corrected the
inconsistency.

We now identify the granules that constitute the OWA-based PRSA
approximations of data from Section 3.2 provided in Example 4.2.1. As
in Example 5.2.1, in order maintain the readability, we will not include
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the granules of the lower approximations. In tables 5.9, 5.10, 5.11 and
5.12, we have the granules that constitute the upper approximations
from tables 5.5, 5.6, 5.7, 5.8.

The description is the same as in Example 5.2.1. In every row of each
table, the first entry represents the generating instance, while the follow-
ing 6 entries are the fuzzy membership degrees of every instance from
U in the granule generated by the generating instance. For example, In
Table 5.9, the first row is a granule generated by instance 1, which is
fuzzy set

{(1,0.656), (2,0), (3,0.208), (4,0.208), (5,0), (6,0)}

This granule is obtained in a way that we calculate the T -equivalence
values between instance 1 and all other instances where the resulting
fuzzy set is:

{(1,1), (2,0), (3,0.552), (4,0.552), (5,0), (6,0)} (5.4)

and then we evaluate TL operator to the fuzzy degrees from (5.4) and
the OWA-based upper approximation membership degree of instance 1
which is 0.656. As in Example 5.2.1, we observe that if we calculate the
maximum of every row, we will get the OWA-based upper approxima-
tion degrees, i.e., the union of granules is indeed the OWA-based upper
approximation.

1 2 3 4 5 6

1 0.656 0 0.208 0.208 0 0
2 0 0.620 0.032 0.032 0 0
3 0.253 0.112 0.700 0.700 0 0
4 0.253 0.112 0.700 0.700 0 0
5 0 0 0 0 0.172 0
6 0 0 0 0 0 0.209

Table 5.9: Granules of the upper approximation from Table 5.5
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1 2 3 4 5 6

1 0.55 0.216 0.102 0.102 0 0.55
2 0 0.395 0 0 0 0.395
3 0.294 0.647 0.647 0.647 0.449 0.647
4 0.294 0.647 0.647 0.647 0.449 0.647
5 0 0 0 0 0.224 0
6 0 0 0 0 0 0.136

Table 5.10: Granules of the upper approximation from Table 5.6

1 2 3 4 5 6

1 0.454 0 0 0 0 0
2 0 0.352 0 0 0 0
3 0 0.117 0.492 0 0 0
4 0 0 0 0.474 0 0.166
5 0 0 0 0 0.218 0
6 0 0 0 0.087 0 0.395

Table 5.11: Granules of the upper approximation from Table 5.7

1 2 3 4 5 6

1 0.730 0.653 0.499 0.730 0.522 0.730
2 0 0.559 0.184 0.476 0 0.559
3 0.122 0.551 0.694 0.694 0.194 0.694
4 0 0 0 0.474 0 0.166
5 0 0 0 0.011 0.358 0
6 0 0 0 0.237 0 0.445

Table 5.12: Granules of the upper approximation from Table 5.8

5.5 Partial characterization of D-convex t-norms

Convexity is a crucial property for the granularity of the OWA-based
operators. The general characterization of convex t-norms is still an
open problem, but D-convex t-norms with some additional characteris-
tics may be well characterized. The results in this section are mainly an
adaptation of the existing work on characterizing convex copulas [83].
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Assume that we have a continuous D-convex t-norm T . For a t-norm
it is known that it is continuous as a function of two variables, if and
only if its partial mappings are continuous [84]. From basic calculus
we know that convex functions are continuous on the interior of the do-
main, which is in this case the open interval (0,1) [118]. However, we
may have a discontinuity at the points 0 and 1. An example of a discon-
tinuous D-convex t-norm is the drastic t-norm TD .

In this section, we want to characterize left-continuous D-convex t-
norms. The following proposition shows that such t-norms are necessar-
ily continuous.

Proposition 5.5.1. Every left-continuous D-convex t-norm is continu-
ous.

Proof. As we noted before, a D-convex t-norm can only have disconti-
nuities in 0 or 1. Moreover, a left-continuous t-norm cannot have a dis-
continuity in 1. Hence, the only possibility is that it is discontinuous in
0. However, we will prove that the partial mappings of any t-norm are
right-continuous in 0.

Let c ∈ [0,1] be a constant. For every ϵ > 0, we need to find δ > 0 such
that x − 0 < δ =⇒ T (x,c) − T (0, c) < ϵ ⇔ x < δ =⇒ T (x,c) < ϵ. Taking
δ = ϵ/2 we have that

x < ϵ/2 =⇒ T (x,c) ≤min(x,c) ≤min(ϵ/2, c) ≤ ϵ/2 < ϵ,

which is true. From this, we conclude there is no discontinuity in 0, i.e.,
T is continuous in [0,1].

We proceed with the characterization. First, we show that T can-
not have any non-trivial idempotent element. Assume that it has an
idempotent point z ∈ (0,1). From [84], we may then conclude that
T (x,z) = min(x,z) for all x ∈ (z,1]. However, it is easy to see that the
function f (x) = min(x,c) is not convex for any constant c ∈ (0,1], so T is
not a D-convex t-norm. Because of that, we have a contradiction, and T
cannot have idempotent points. In particular, the minimum t-norm TM
is not convex.

Under the assumption of continuity, T does not have idempotent
points if and only if it is Archimedean [84]. In [83], necessary and suf-
ficient conditions for D-convexity of Archimedean copulas are derived.
Here we repeat the proof, adapting it for continuous Archimedean t-
norms.
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Theorem 5.5.1. Let T be a continuous Archimedean t-norm with a twice
differentiable generator f . Then T is D-convex if and only if 1/f ′ is a
convex function.

Proof. We recall a representation of T from (2.1):

T (x,y) = f −1(min(f (x) + f (y), f (0))).

Since f is twice differentiable, T is D-convex if and only if the condi-
tions Txx(x,y) ≥ 0 and Tyy(x,y) ≥ 0 hold for all x,y such that f (x) + f (y) ≤
f (0), where Txx is the second partial derivative for the first component,
while Tyy is the second partial derivative for the second one. Due to the
symmetry of T , it suffices to show that Txx ≥ 0. We find:

Txx(x,y)

=
f ′′(x)(f ′(f −1(f (x) + f (y))))− f ′(x)2f ′′(f −1(f (x) + f (y)))

(f ′(f −1(f (x) + f (y))))3 .

It holds that f ′(x) < 0 since f is a strictly decreasing function, so the
condition that Txx(x,y) ≥ 0 is equivalent to

f ′′(x)
f ′(x)2 ≤

f ′′(f −1(f (x) + f (y)))
f ′(f −1(f (x) + f (y)))2 .

We introduce a new variable u = f −1(f (x)+f (y)). From the definition we
conclude that u = f −1(f (x)+f (y)) ≤ f −1(f (x)) = x due to the fact that f −1

is also a strictly decreasing function. Now the condition above becomes

f ′′(x)
f ′(x)2 ≤

f ′′(u)
f ′(u)2 .

We have that f ′′(x)
f ′(x)2 = −( 1

f ′(x) )
′, so the above condition may be rewritten

as  1
f ′(x)

′ ≥  1
f ′(u)

′ . (5.5)

Note that for a fixed x, u can take any value smaller than or equal to x.
Indeed, from the condition that f (x) + f (y) ≤ f (0), it follows that y takes
values from the interval [f −1(f (0)− f (x)),1]. Using this as a domain for
y, we have that the function u(y) = f −1(f (x)+f (y)) is a bijective mapping
[f −1(f (0)− f (x)),1] to [0,x]. So for every u ≤ x, we can choose some y to
obtain u.
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Since u may take all values smaller or equal to x, we have that the

condition (5.5) states that

 1
f ′(x)

′ is an non-decreasing function. This

is further equivalent to

 1
f ′(x)

′′ ≥ 0 which means that 1
f ′(x) is a convex

function.

Example 5.5.1. We present a way to construct a generator satisfying the
conditions of the previous theorem. The construction is also inspired
by [83] but adapted here to t-norms. Let g : [0,1]→ [0,∞] be a convex
function with g(1) > 0. Then the generator can be constructed as:

f (x) =
∫ 1

x

1
g(u)

du.

By the positivity of g, we ensure that f is a decreasing function, while
its convexity ensures that 1

f ′ is a convex function.

To illustrate that our adaptation of the work from [83] brings new
knowledge, we need to show that there exists a D-convex t-norm which
is not a copula. The following example confirms this.

Example 5.5.2. In Example 5.5.1 take g(u) = 2− u. We have the follow-
ing:

f (x) =
∫ 1

x

1
2−u

du = − log(2− 1) + log(2− x) = log(2− x),

while f −1(x) = 2− ex. Using such generator, we construct the associated
t-norm:

T (x,y) = 2− emin(log(2−x)+log(2−y),log(2)) = 2− elog(min((2−x)(2−y),2))

= 2−min((2− x)(2− y),2) = max(2(x+ y − 1)− xy,0).

If we take values x = 0.5, y = 0.9,x′ = 0.4, y′ = 0.8, we can see that the
2-increasingness property does not hold, i.e.

T (x,y) + T (x′ , y′) < T (x′ , y) + T (x,y′).

which means that T is not a copula.
Furthermore, we can easily check, with the same values, that T is not

midpoint convex, which is equivalent to stating that it is not convex.
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Example 5.5.3. We check the D-convexity of the left-continuous t-norms
from Table 2.1.

• Łukasiewicz t-norm TL(x,y) = max(x+y−1,0) is D-convex since its
partial mappings are a composition of a linear function and max,
which are both convex. It was proven in [7] that TL is even convex.

• Product t-norm TP (x,y) = xy is D-convex because its partial map-
pings are linear functions.

• From the above exposition, we already know that the minimum
t-norm TM(x,y) = min(x,y) is not D-convex.

• The nilpotent minimum t-norm

TnM(x,y) =

min(x,y) if x+ y > 1,

0 otherwise.

is not D-convex because its partial mappings have discontinuities
in the interior (0,1) of its domain.

5.6 Conclusion

In this chapter, we analysed the granular representability of crisp and
fuzzy sets w.r.t. a (fuzzy) preorder relation. We introduced the notion
of a granularly representable (fuzzy) set as a union of simple granules,
where granules represent the fuzzy equivalence or dominance classes of
individual instances. As our main contribution, we proved that OWA-
based fuzzy rough approximations are granularly representable fuzzy
sets when we use D-convex left-continuous t-norms and their residual
implicators for calculation of the approximations. Finally, we character-
ized continuous convex t-norms and we presented a method to construct
them.
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Chapter 6

Granular Approximations: a
Statistical Learning Approach
for Inconsistency Handling

This chapter is motivated by the Kotłowski-Słowiński (KS) approach [89]
described in Sections 1.3 and 2.3, in the sense that we generalize the
monotonicity constraints using fuzzy relations while the ordinal classes
are replaced with fuzzy membership degrees. Instead of a crisp pre-
order relation (or an equivalence relation if it is symmetric), we will now
consider a fuzzy T -preorder relation to model the relationship between
different instances on the condition attributes, where T refers to a given
left-continuous t-norm that models conjunction in fuzzy logic. The T -
preorder relations also include T -equivalence relations that can measure
(symmetric) similarity between numerical vectors. Moreover, the new
approach requires that the decision attribute is a fuzzy set, i.e., it has
to take values from interval [0,1]. Hence, it is appropriate for problems
where the decision attribute can be modeled using values from this in-
terval; as we will explain, this is the case for binary classification and
regression problems.

Just like the KS approach, our proposal is also interesting from the
granular computing point of view. In particular, the sets obtained with
the KS approach, as well as with the novel approach, can be represented
as unions of meaningful simple sets, i.e., they are granularly repre-
sentable [63, 138]. Due to the granular properties of our new approach,
we call its result a granular approximation.

The remainder of the chapter is organized as follows. In Section 6.1,
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we develop the statistical foundations of granular approximations. Sec-
tion 6.2 deals with optimization problems that output granular approxi-
mations, while some of their important properties are proven in Section
6.3. In Section 6.4 we deal with the dual formulations of the optimiza-
tion problems introduced in Section 6.2. Using the duality theory, we
obtain greedy algorithms for the optimization problems from Section
6.2 that allow us to prove Proposition 6.3.3. Section 6.5 is reserved for
the conclusion.

6.1 Statistical approach to inconsistency in data

6.1.1 Ontic fuzzy sets and probabilistic uncertainty

Before we proceed with the statistical view on the inconsistency in data,
we have to distinguish between probabilistic uncertainty and fuzziness
since both will be used in the development of the approach. Fuzzy
sets are often related to uncertainty modeling [80, 102, 31]. However,
we should be very careful when mentioning that fuzzy sets are used to
model uncertainty. First, two types of classical (crisp) sets have to be
distinguished: conjunctive and disjunctive sets [135]. A conjunctive set
is a collection of items that represents a well known complex entity, i.e.,
it is a conjunction of its elements. For example, a time interval that
describes a span of some activity. On the other hand, a disjunctive set
describes incomplete information about an ill-known object. The object
of interest is contained in the disjunctive set but we do not know which
element it is, i.e., the set is a disjunction of its elements. For example, an
event that occurred at an unknown moment in time is described with a
time interval that represents our knowledge about the unknown event.
Conjunctive sets are also known as ontic sets while disjunctive sets are
called epistemic sets. Fuzzy sets are used to model gradual information
which is not uncertain by itself. Fuzzy sets may be related to uncertainty
only if the underlying universe, on which a fuzzy set is defined, is a dis-
junctive set. In that case, fuzzy sets make incomplete knowledge more
expressive by allowing gradual information. Such fuzzy sets are usually
known as epistemic fuzzy sets and form the basis of possibility theory
[147]. In the remainder of the thesis, we always use fuzzy sets defined
over a conjunctive universe, i.e., ontic fuzzy sets, while we assume that
the uncertainty in data is of probabilistic nature and it is soley related to
the uknown membership degrees. An example of an ontic fuzzy set is a
set of apartments that are “expensive", i.e., a fuzzy set whose universe is
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some set of apartments and its membership function is a price measure
of those apartments. The price is an actual economical characteristic. In
such settings, no uncertainty or lack of knowledge exists about the set
of apartments which is a conjunctive set. The uncertainty we assume
exists around actual prices of apartments or “degrees of expensiveness",
and such uncertainty will be modeled using probability distributions.

6.1.2 Granularly representable random fuzzy sets

We assume that we observed a finite set of instances U from the un-
derlying universe, i.e., U is a random sample. U is described with con-
dition and decision attributes where the decision attribute takes values
in [0,1], which are interpreted as membership degrees to an unknown
fuzzy set that we want to reconstruct using the observed values. From
the perspective of statistical learning theory introduced in Subsection
2.3.1, condition attributes correspond to random variable X while the
decision attribute corresponds to random variable Y, which now takes
values from interval [0,1]. The fuzzy set that we want to reconstruct
contains uncertainties that are represented in a probabilistic way, i.e.,
we assume that the actual values are altered due to perturbation. Per-
turbation may be caused by incomplete knowledge about data (miss-
ing attributes) or by random effects that occur during data generation.
Such altered values are represented by a family of random variables
{A(u), u ∈ U } which model our uncertainty about the ill-known mem-
bership degrees {A(u), u ∈ U }. In other words, for each instance u, the
ill-known membership degree A(u) is represented with the random vari-
able A(u) having codomain [0,1]. Family {A(u), u ∈ U } is a special case
of a random fuzzy set defined in [107] (the other name is fuzzy random
variable). Hence, we may refer to the family as random fuzzy set A.

The family {A(u), u ∈ U } corresponds to family YX=x from Subsec-
tion 2.3.1. Therefore, we formulate the reconstruction of fuzzy set A
as the problem where for a given set of instances U and its condition
and decision attributes, we want to estimate characteristics of A(u) (like
conditional mean, median and quantiles mentioned above) in order to
describe the ill-known A(u). Knowledge about condition attributes is
represented using a T -preorder relation R̃, i.e., for each pair u,v ∈ U we
are given the value R̃(u,v). We denote the observed decision values as
Ā(u) for u ∈U .

In the first step, we will extend the probabilistic monotonicity con-
straints (2.13) for a T -preorder relation. In order to relate granular rep-
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resentability and the family of random variables {A(u),u ∈U }, we intro-
duce the following definition.

Definition 6.1.1. Random fuzzy set A is granularly representable (does
not posses inconsistencies) if

∀u,v ∈U and∀p ∈ [0,1], R̃(u,v) ≤ I(Ap(v),Ap(u)),

where Ap(u) = QA(u)(p), i.e., Ap is the conditional p-quantile of A.

Definition 6.1.1 is an extension of the third equivalence in (2.13).
It states that A is granularly representable if all its p-quantiles Ap (p ∈
[0,1]) are granularly representable as ordinary fuzzy sets.

The next question is, if the random fuzzy set A is granularly repre-
sentable, is its expected value EA, defined as EA = {E(A(u)),u ∈U }, also
granularly representable? Before answering this question, we recall the
well-known Jensen inequality [117].

Proposition 6.1.1. Let µ be a probability measure on the set of reals, g a
µ-measurable real function and φ a real convex function. It holds that∫

φ(g)dµ ≥ φ

∫ gdµ

.
Since the standard (Lebesgue) measure is equivalent to the probability
measure on [0,1] (measure value of interval [0,1] is 1), the above in-
equality translates to∫ 1

0
φ(g(x))dx ≥ φ

(∫ 1

0
g(x)dx

)
.

Using Jensen’s inequality, we obtain the following result.

Proposition 6.1.2. Let T be a D-convex t-norm and I its R-implicator.
Then EA is granularly representable (does not posses inconsistencies) as
soon as A is.

Proof. For every u,v ∈U , we need to prove that

T (R̃(u,v),EA(v)) ≤ EA(u).

Using (2.9), we have that ∀u ∈U, EA(u) =
∫ 1

0 Ap(u)dp. It follows that

T (R̃(u,v),EA(v)) = T

(
R̃(u,v),

∫ 1

0
Ap(v)dp

)
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≤
∫ 1

0
T (R̃(u,v),Ap(v))dp

≤
∫ 1

0
Ap(u)dp = EA(u).

The first inequality follows from the fact that T (c, ·) is a convex function
for a constant c and Jensen’s inequality. The second inequality follows
from the granularity of Ap.

6.2 Calculation of granular approximations

In this section, we discuss which properties of A can be estimated and
how to do this in practice. In general, the observed fuzzy set Ā is not
granularly representable due to the presence of inconsistency, so our
goal is to find a granularly representable set that is close to it by min-
imizing a certain empirical risk. For given loss function L, the general
form of the optimization problem expressing our goal is

minimize
∑
u∈U

L(Ā(u), Â(u))

subject to T (R̃(u,v), Â(v)) ≤ Â(u), u,v ∈U
0 ≤ Â(u) ≤ 1, u ∈U,

(6.1)

where {Â(u),u ∈U } is the unknown granularly representable set. We will
call the result of optimization problem (6.1) the granular approximation
of fuzzy set {Ā(u),u ∈U }.

Optimization problem (6.1) is the main contribution of the chapter.
It allows us to remove inconsistencies (obtain a granularly representable
set) with the least cost of alteration of values (w.r.t. loss function L). The
remainder of the section investigates specific cases for which problem
(6.1) can be efficiently solved.

Under the assumption that A is granularly representable, it is de-
sirable to use loss functions for which the Bayes predictor is granularly
representable as well.

Definition 6.2.1. We say that a loss function L is granular with respect
to a left-continuous t-norm T and T -preorder R̃ if its Bayes predictor is
granularly representable under the assumption that the underlying fam-
ily of random variables {A(u),u ∈ U } is granularly representable w.r.t. T
and R̃.
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Note that with this definition, the p-quantile loss function (2.14) is
granular, since its Bayes predictor is the quantile fuzzy set Ap, which is
granularly representable by the definition. The squared error loss func-
tion (2.10) is granular for D-convex t-norms since the Bayes predictor
EA is granularly representable in this case by Proposition 6.1.2. Hence,
both loss functions introduced in Subsection 2.3.1 are suitable for the
calculation of granular approximations.

In problem (6.1), both objective function and constraints are not nec-
essarily linear and may take different forms that depend on loss function
L and on the type of fuzzy logic connectives used. However, in case of the
loss functions (2.14) and (2.10), and continuous Archimedean t-norms,
the optimization problem can be efficiently solved.

Indeed, consider t-norms TL,ϕ and TP ,ϕ introduced in Eq. (2.2) and
(2.3). If TL,ϕ is used in (6.1), then the set of constraints that express
granular representability can be simplified in the following way: for all
u,v ∈U ,

R̃(u,v) ≤ IL,ϕ(Â(v), Â(u))

⇔ TL,ϕ
(
R̃(u,v), Â(v)

)
≤ Â(u)

⇔ ϕ−1(max(ϕ(R̃(u,v)) +ϕ(Â(v))− 1,0) ≤ Â(u)

⇔ max(ϕ(R̃(u,v)) +ϕ(Â(v))− 1,0) ≤ ϕ(Â(u))

⇔ max(R̃ϕ(u,v) +αv − 1,0) ≤ αu

⇔ R̃ϕ(u,v) ≤ αu −αv + 1

where we introduced the shorthands R̃ϕ(u,v) = ϕ(R̃(u,v)), αu = ϕ(Â(u))
and αv = ϕ(Â(v)). The last equivalence holds because 0 is always smaller
than αu , hence the max operator can be lifted.

If TP ,ϕ is used then in an analogous way we find

ϕ−1(ϕ(R̃(u,v))ϕ(Â(v))) ≤ Â(u)⇔ αvR̃ϕ(u,v) ≤ αu

for all u,v ∈U .
The border constraints now become 0 ≤ αu ≤ 1 for all u ∈ U . We

can conclude that using continuous Archimedean t-norms leads to lin-
ear optimization constraints. This is a promising result since many op-
timization solvers are very efficient with linear constraints.

In both cases, the empirical risk can be expressed as∑
u∈U

L(Ā(u),ϕ−1(αu)).
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In the empirical risk above, the non-linear term ϕ−1(αu) appears. Func-
tion ϕ−1 is an arbitrary bijection which can lead to a non-convex op-
timization problem. However, Proposition 2.3.2 states that a differ-
ent scaling of values does not change the Bayes predictor delivered
by the p-quantile loss function. To eliminate the non-linearity, we
can use the scaled loss Lp,ϕ(Ā(u),ϕ−1(αu)) = Lp(ϕ(Ā(u)),αu) instead of
Lp(Ā(u),ϕ−1(αu)). Although the value of the estimand (the quantity that
is estimated, i.e., the Bayes predictor Ap) remains unchanged with the
scaled loss function, the estimator (the result of the optimization Âp)
can be different. From the theory of quantile regression, we can ex-
press the optimization of the mean pinball loss as a linear program
[85]. We introduce new variables xu ,u ∈ U and yu ,u ∈ U such that
xu = max(ϕ(Ā(u)−αu),0), yu = max(αu −ϕ(Ā(u)),0), as well as the short-
hand Āϕ(u) = ϕ(Ā(u)). In case TL,ϕ is used, we can reformulate opti-
mization problem (6.1) as

minimize p
∑
u∈U

xu + (1− p)
∑
u∈U

yu ,

subject to αu −αv + 1 ≥ R̃ϕ(u,v), u,v ∈U
xu − yu = Āϕ(u)−αu , u ∈U
0 ≤ αu ≤ 1, xu ≥ 0, yu ≥ 0. u ∈U

(6.2)

In case of TP ,ϕ, optimization problem (6.1) obtains the form

minimize p
∑
u∈U

xu + (1− p)
∑
u∈U

yu ,

subject to αvR̃ϕ(u,v) ≤ αu , u,v ∈U
xu − yu = Āϕ(u)−αu , u ∈U
0 ≤ αu ≤ 1, xu ≥ 0, yu ≥ 0. u ∈U

(6.3)

Summarizing, for mean pinball loss and a continuous Archimedean t-
norm, the optimization problem (6.1) can be expressed as a linear pro-
gram and, therefore, efficiently solved using one of many existing effi-
cient linear programming solvers. We have the following technical re-
sult.

Proposition 6.2.1. Constraints 0 ≤ αu ≤ 1,u ∈ U in (6.2) and (6.3), are
redundant.

Proof. Assume that the constraints are removed and that an optimal so-
lution α∗u ,u ∈ U , has values smaller than 0 or larger than 1. We con-
struct another solution from α∗u ,u ∈ U , by replacing values larger than
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1 by 1, and values smaller than 0 by 0. It is easy to check that the
new solution satisfies the consistency constraints. From the constraints
xu − yu = Āϕ(u) − αu ,u ∈ U , it is easy to see that when αu ≥ 1 then
Āϕ(u) − αu ≤ 0, which leads to xu = 0 and yu = αu − Āϕ(u), and when
αu ≤ 0 then Āϕ(u) − αu ≥ 0, which leads to xu = Āϕ(u) − αu and yu = 0.
Hence, after replacing values larger than 1 by 1, the values of yu will be
reduced and after replacing values smaller than 0 by 0, the values of xu
will also be reduced. In both cases, the value of the objective function
will be reduced. Therefore, we constructed a feasible solution with a
smaller cost which contradicts the optimality of α∗u ,u ∈U .

A solution of linear problems (6.2) and (6.3) is not necessarily unique
as a consequence of linearity of both objective function and constraints.
However, if for some probability parameter p we have infinitely many
solutions, the lower and upper bounds of such family of solutions can
be calculated by running the linear programs with parameters p− ϵ and
p+ ϵ, respectively, for sufficiently small ϵ.

If the squared error loss is used as a loss function, it is obvious
that the objective function will become non-linear. Also, Proposition
2.3.2 does not hold anymore and using scaled loss Lp,ϕ(Ā(u),ϕ−1(αu)) =
Lp(Āϕ(u),αu) instead of Lp(Ā(u),ϕ−1(αu)) will lead to the estimation of a
different Bayes predictor. However, we will include this approach in our
analysis since it may give good results in practical applications. In this
case, the optimization problem for the t-norm TL,ϕ is

minimize
∑
u∈U

(αu − Āϕ(u))2,

subject to αu −αv + 1 ≥ R̃ϕ(u,v), u,v ∈U
0 ≤ αu ≤ 1, u ∈U

(6.4)

while for TP ,ϕ the corresponding problem is

minimize
∑
u∈U

(αu − Āϕ(u))2,

subject to αvR̃ϕ(u,v) ≤ αu , u,v ∈U
0 ≤ αu ≤ 1. u ∈U

(6.5)

Using a similar argument as in Proposition 6.2.1, we may drop the con-
straints 0 ≤ αu ≤ 1,u ∈U .

To solve the proposed linear and quadratic programs, we have two
approaches: geometrical or combinatorial. The combinatorial approach
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for the linear programs is discussed in Section 6.4. Namely, the dual
versions of problems (6.2) and (6.3) can be modeled as the min-cost flow
problem and its variations. We recall the min-cost flow problem and
some algorithms used to solve it in 6.4.1 while we show how to model
dual problems of (6.2) and (6.3) as the min-cost flow problem and a
variation of the min-cost flow problem, respectively, in 6.4.2. In the
same section, we provide a greedy algorithm to solve the aforementioned
variation based on the successive shortest path algorithm that solves the
original min-cost flow problem. Since the algorithm is new, we provide
its proof of correctness in 6.4.3. The combinatorial approach, i.e., the
duality of the quadratic programs were not discussed. Regarding the
time complexity of the combinatorial optimization approach, The suc-
cessive shortest path algorithm posses a pseudo-polynomial complexity,
which depends on the constant we multiply with p and Ā to make them
integers, which is important in the development of the algorithm [1].
However, there are also polynomial algorithms for solving the min-cost
flow problem like repeated capacity scaling algorithm with complexity
O(|U |6 log(|U |)) and enhanced capacity scaling algorithm with complex-
ity O(|U |4 log(|U |)) [2].

The geometrical approach includes the aforementioned simplex
methods. They are based on geometrical structures that are created in
space by the constraints and the objective function. There are many
softwares that are able to solve linear and quadrtic programs like Gurobi
[68] and Mosek [9]. We need to bear in mind that the proposed optimiza-
tion problems have O(|U |) variables and O(|U |2) constraints which leads
to the constraint matrix with O(|U |3) entries. For a large sample size,
dealing with such matrix can be computationally demanding. However,
the matrix is sparse (vast majority of entries are 0) and our internal ex-
periments showed that Mosek solver can be used as a efficient option to
deal with this sparse constraint matrix.

Example 6.2.1. This example continues with the data introduced in Sec-
tion 3.2. We want to calculate granular approximations using optimiza-
tion procedures (6.2) and (6.4) that are developed for the Łukasiewicz
t-norm TL.

First, we calculate the granular approximation of the classification
dataset from Table 3.2 using TL-equivalence relation (3.2) and quantile
loss Lp. The relation matrix from Table 3.3 is passed together with the
decision attribute to the optimization problem (6.2) with probability pa-
rameters p ∈ {0,0.25,0.5,0.75,1}. The obtained granular approximations
are given in Table 6.1.
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p vs.
instance

1 2 3 4 5 6

0.000 0.448 0.588 0.000 0.000 0.000 0.000
0.250 0.448 0.588 0.000 0.000 0.000 0.000
0.500 1.000 0.687 0.552 0.552 0.000 0.000
0.750 1.000 1.000 1.000 1.000 0.235 0.313
1.000 1.000 1.000 1.000 1.000 0.235 0.313

Table 6.1: Granular approximations in the classification case for the p-
quantile loss and T -equivalence relation

In Table 6.2, we present the calculated granular approximations us-
ing TL-preorder relation (3.5) while the remaining parameters are the
same as in Table 6.1.

p vs.
instance

1 2 3 4 5 6

0.000 0.353 0.000 0.000 0.000 0.000 0.000
0.250 0.743 0.390 0.390 0.390 0.000 0.000
0.500 1.000 0.390 0.793 0.793 0.000 0.000
0.750 1.000 1.000 1.000 1.000 0.610 0.313
1.000 1.000 1.000 1.000 1.000 0.610 0.313

Table 6.2: Granular approximations in the classification case for the p-
quantile loss and T -preorder relation

The interpretation of both tables is analogous. In every row, we
have a granular approximation for a corresponding probability param-
eter from the first column. Every entry is a fuzzy membership degree
for the corresponding instance which may be interpreted as the degree
up to which the instance belongs to class with label 1. Since that fuzzy
value is unknown, we have its distribution characterized with quantiles.
For example, in the second row of Table 6.1, we say that with probability
0.25, the degree up to which instance 3 belongs to the class with label 1
is not greater than 0.588, while in the case of Table 6.2, the degree is not
greater than 0.390.

The granular approximations obtained using optimization problem
(6.4) and TL-equivalence relation (3.2) are shown in Table 6.3, while the
output of the same optimization procedure using TL-preorder relation
(3.5) is provided in Table 6.4.
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instance 1 2 3 4 5 6
degree 0.965 0.817 0.517 0.517 0.053 0.130

Table 6.3: Granular approximations in the classification case for the
squared error loss and T -equivalence relation

instance 1 2 3 4 5 6
degree 0.960 0.607 0.607 0.607 0.217 0.000078

Table 6.4: Granular approximations in the classification case for the
squared error loss and T -preorder relation

In this case, we may say that the expected degree to which instance
3 belongs to the class with label 1 is equal to 0.517 in the case of the
TL-equivalence, and it is equal to 0.607 in the case of the TL-preorder.

We note that the pairs of instances are now indeed consistent. Fol-
lowing the example from Section 3.2, where we identified that instances
u ≡ 6 and v ≡ 2 were inconsistent, using results from Table 6.3, we ob-
tain T (R̃(u,v)Â(v)) = T (0.312,0.817) = 0.129 ≤ 0.13 = Â(u), i.e., they
are now consistent. If we use the results from Table 6.4, we have that
T (0.312,0.607) = 0 ≤ 0.000078 = Â(u), i.e., they are consistent. The val-
ues of the fuzzy relations in these examples are obtained from Tables 3.3
and 3.4.

We perform the same calculations for the regression data from Sec-
tion 3.2 provided in Table 3.5. In order to compute the granular ap-
proximations w.r.t. quantile loss and TL-equivalence relation (3.2), we
pass the relation values from Table 3.6 and the decision attribute from
Table 3.5 to optimization procedure (6.2) with probability parameters
p ∈ {0,0.25,0.5,0.75,1}. The obtained granular approximations are given
in Table 6.5.
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p vs.
instance

1 2 3 4 5 6

0.000 0.770 0.240 0.615 0.608 0.400 0.300
0.250 0.770 0.240 0.615 0.608 0.400 0.300
0.500 0.770 0.425 0.800 0.608 0.400 0.300
0.750 0.770 0.445 0.820 0.850 0.400 0.542
1.000 0.770 0.445 0.820 0.850 0.400 0.542

Table 6.5: Granular approximations in the regression case for the p-
quantile loss and T -equivalence relation

In Table 6.6 we calculate the granular approximations using TL-
preorder relation (3.5) while the other parameters are the same as in
Table 6.5.

p vs.
instance

1 2 3 4 5 6

0.000 0.770 0.240 0.615 0.323 0.400 0.240
0.250 0.770 0.300 0.675 0.383 0.400 0.300
0.500 0.770 0.425 0.800 0.508 0.400 0.300
0.750 0.770 0.663 0.820 0.746 0.400 0.538
1.000 0.850 0.767 0.850 0.850 0.504 0.642

Table 6.6: Granular approximations in the regression case for the p-
quantile loss and T -preorder relation

The obtained fuzzy values are estimations of quantiles of the expen-
siveness, under the assumption that it is a random fuzzy set and that its
realizations are given in Table 3.5. We interpret the values in a way that,
for example, in the third row of Table 6.5 we say that the expensiveness
of instance 2 is less than 0.24 with probability 0.25, or in the fourth row
of the table, we say that the expensiveness of instance 4 is less than 0.85
with probability 0.75. In the case of Table 6.6 we say that the expensive-
ness of instance 2 is less than 0.3 with probability 0.25, or in the fourth
row of the table, we say that the expensiveness of instance 4 is less than
0.746 with probability 0.75.

The results for the squared error loss used in optimization procedure
(6.4) are shown in Tables 6.7 and 6.8 for TL-equivalence (3.2) and TL-
preorder (3.5).
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instance 1 2 3 4 5 6
degree 0.770 0.343 0.718 0.729 0.400 0.421

Table 6.7: Granular approximations in the classification case for the
squared error loss and T -equivalence relation

instance 1 2 3 4 5 6
degree 0.770 0.477 0.820 0.560 0.400 0.352

Table 6.8: Granular approximations in the classification case for the
squared error loss and T -preorder relation

In the case of Table 6.7, we say that the expected expensiveness of
instance 4 is equal to 0.729, while in the case of Table 6.8 the expected
expensiveness of instance 4 is equal to 0.56.

We again continue the example from Section 3.2 where we identified
that instances u ≡ 2 and v ≡ 3 are inconsistent. Using estimated values
from Table 6.7 we have that T (R̃(u,v), Â(v)) = T (0.625,0.718) = 0.343 ≤
0.343 = Â(u), i.e., they are now consistent. Also, using estimated values
from Table 6.8 we have that T (R̃(u,v), Â(v)) = T (0.571,0.82) = 0.391 ≤
0.477 = Â(u), i.e., they are also consistent in this case.

Throughout this example, we note that all the estimations and results
we obtained depend on the fuzzy relation that is used, i.e., whether it is a
similarity or a fuzzy dominance relation. The choice of such relation will
depend on the meaning of the particular dataset and the decision by the
creator of the model whether similarity or fuzzy dominance (or some
other fuzzy relation) is more appropriate to describe the relationship
between instances.

6.3 Properties

In this section, we prove some properties of the granular approxima-
tions obtained in Section 6.2. The first two propositions show that the
proposed approach is indeed a generalization of both the KS approach
for the binary classification case, and of the standard fuzzy rough set
approximations.

Proposition 6.3.1. If R̃ and Ā are crisp, then Problem (6.1) is reduced to
Problem (2.16) for K = 2.
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Proof. If Ā is crisp, it is obvious that the objective function from (6.1)
corresponds to the objective function from (2.16) for K = 2, where the
labels with value 1 are those that are more preferred. Regarding the
constraints, we examine the consistency conditions in form R̃(u,v) ≤
I(Â(v), Â(u)). If R̃(u,v) = 0, then there are no restrictions on the implica-
tion, i.e., we do not have a constraint. If R̃(u,v) = 1 then Â(v) ≤ Â(u) from
the ordering property of I (2.6d). Since R̃(u,v) = 1 means that u ⪰ v (u
dominates v) then the condition R̃(u,v) = 1⇒ Â(u) ≥ Â(v) is equivalent
to u ⪰ v⇒ Â(u) ≥ Â(v) which is exactly the condition from (2.16).

Proposition 6.3.2. The respective lower fuzzy rough approximations are
solutions of the optimization problems (6.2) and (6.3) for probability
parameter p = 0, while the respective upper fuzzy rough approximations
are solutions of the same problems for probability parameter p = 1.

Proof. When optimization problems (6.2) and (6.3) are considered in
terms of α and not in terms of Â, they can be seen as problem (6.1)
with t-norm TL or TP , relation R̃ϕ and observations Āϕ. If p = 1, then the
loss function for u ∈U is equal 0 if αu−Āϕ(u) ≥ 0 and to a positive value
otherwise. If for all u ∈ U it holds that αu ≥ Āϕ(u), then the objective is
0 and hence any such α is a solution. Such fuzzy set α contains fuzzy
set Āϕ and is granularly representable w.r.t. t-norm TL or TP and rela-
tion R̃ϕ. From Proposition 5.2.2, the smallest such α is the fuzzy rough
upper approximation, i.e., the smallest solution is

α∗u = max
v∈U

TL(R̃ϕ(v,u), Āϕ(v)),

or with TP instead of TL. Then, the final solution Â∗ is obtained

Â∗(u) = ϕ−1(α∗u)

= ϕ−1(max
v∈U

TL(R̃ϕ(v,u), Āϕ(v)))

= max
v∈U

ϕ−1(TL(ϕ(R̃(v,u)),ϕ(Ā(v))))

= max
v∈U

TL,ϕ(R̃(v,u), Ā(v)) = apr
max,TL,ϕ
R̃

(A)(u).

The derivation for TP is the same.
The proof for the lower approximation is analogous.

We examine Proposition 6.3.2 from the perspective of knowledge
representation. The lower and upper fuzzy rough approximations are
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seen as sets of necessary and possible knowledge respectively. In other
words, the actual ill-known knowledge must contain the lower approx-
imation and be contained in the upper one. In probabilistic terms, the
probability that the actual knowledge is between these approximations
is 1. Hence, the lower and upper approximations are the extreme values
in the probability distributions of the actual knowledge. It means that
the lower approximation is the 0-quantile while the upper approxima-
tion is the 1-quantile.

The inconsistency correction performed by rough set approxima-
tions can be considered as extreme, since the resulting approximations
are either a subset (lower approximation) or a superset (upper approx-
imation) of the original (fuzzy) set. It is this an interesting question
if a family of approximations that lie in between lower and upper ap-
proximations can be constructed in a way that there exists a monotonic
ordering of them. The ordering is motivated by the fact that the lower
approximation is always a subset of the upper one. The following propo-
sition answers this question.

Proposition 6.3.3. For granular approximations obtained with the p-
quantile loss, the monotonicity property holds. More precisely, let p
and q be two real numbers from the unit interval and let Âp and Âq be
the outputs of the optimization problem (6.2) or (6.3) with p and q as
probability parameters. It holds that

p ≤ q⇒∀u ∈U,Âp(u) ≤ Âq(u).

Proof. The proof is provided in Subsection 6.4.4. It relies on the greedy
combinatorial approach presented in the previous subsections of Section
6.4, hence those previous sections are necessary to understand of the
proof.

In Proposition 6.3.3, we first notice that when p = 0, we have the
rough lower approximation, and when p = 1, we have the rough upper
approximation, according to Proposition 6.3.2. If 0 < p < 1, we can ob-
tain different approximations that lie between the lower and the upper
one and which are ordered w.r.t. inclusion.

For the fuzzy rough approximations that are obtained with IMTL
operators, we have the well known duality property as stated in Section
2.2.1. The following lemma and proposition extend that property to
granularly representable sets and granular approximations. The duality
property is particularly important for the binary classification problems.
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It ensures that granular approximations of two different decision classes
are complementary w.r.t. a given fuzzy negation N .

Lemma 6.3.1. If fuzzy set A is granularly representable w.r.t. T -preorder
relation R̃, then coA is granularly representable w.r.t. R̃−1.

Proof. For A being granularly representable, it holds that for all u,v ∈U
we have

T (R̃(u,v),A(v)) ≤ A(u).

Applying negation N on both sides of the inequality, we have

T (R̃(u,v),A(v)) ≤ A(u)⇒N (T (R̃(u,v),A(v))) ≥N (A(u))

⇔ I(R̃(u,v), coA(v)) ≥ coA(u)

⇔ T (coA(u), R̃(u,v)) ≤ coA(v)

⇔ T (R̃−1(v,u), coA(u)) ≤ coA(v).

The first equivalence follows from Proposition (2.6h) while the second
is the residuation property.

In the proof of Lemma 6.3.1, implication becomes an equivalence if
we use IMTL triplets as operators.

Proposition 6.3.4. Let αu ,u ∈ U be a minimizer of the optimization
problem (6.1) with nilpotent t-norm TL,ϕ, relation R̃, observations Ā and
risk

∑
u∈U Lp(ϕ(Ā(u)),αu) (for short Lp problem). Then 1−αu ,u ∈U , is a

minimizer of the optimization problem (6.1) with the same t-norm, re-
lation R̃−1, observations Ā and risk

∑
u∈U L1−p(ϕ(coĀ(u)),αu) (for short

L1−p problem).

Proof. Solution αu ,u ∈ U , is a feasible solution of the Lp problem, i.e., it
satisfies consistency conditions w.r.t. relation R̃

αu −αv + 1 ≥ ϕ(R̃(u,v)).

The expression above is equivalent to

(1−αv)− (1−αu) + 1 ≥ ϕ(R̃−1(v,u)),

which states that 1−αu ,u ∈ U , satisfies the consistency conditions w.r.t.
relation R̃−1 and, therefore, it is a feasible solution of the L1−p problem.
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We observe that ϕ(coĀ(u)) = ϕ(ϕ−1(1−ϕ(Ā(u)))) = 1−ϕ(Ā(u)). Regarding
the empirical risk, we have that

Lp(ϕ(Ā(u)),αu) =

p|ϕ(Ā(u))−αu | if ϕ(Ā(u))−αu ≥ 0,

(1− p)|ϕ(Ā(u))−αu | if αu −ϕ(Ā(u)) ≥ 0,

=

p|(1−αu)− (1−ϕ(Ā(u)))| if (1−αu)− (1−ϕ(Ā(u))) ≥ 0,

(1− p)|(1−αu)− (1−ϕ(Ā(u)))| if (1−ϕ(Ā(u)))− (1−αu) ≥ 0,

=

(1− p)|ϕ(coĀ(u)))− (1−αu)| if ϕ(coĀ(u))− (1−αu) ≥ 0,

p|ϕ(coĀ(u))− (1−αu)| if (1−αu)−ϕ(coĀ(u)) ≥ 0,

= L1−p(ϕ(coĀ(u)),1−αu).

Due to previous equality, we have that non-optimal solution of the Lp
problem different than αu ,u ∈ U , will lead to the higher value of L1−p
loss. This means that 1 − αu ,u ∈ U , as a feasible solution, is indeed an
optimal solution.

Since the optimal fuzzy set Â of the Lp problem is calculated as
Â(u) = ϕ−1(αu), then the optimal fuzzy set of the L1−p is ϕ−1(1 − αu) =
ϕ−1(1−ϕ(Â(u))) = N (Â(u)) = coÂ(u), i.e., we have the duality.

The duality also holds for the mean squared error risk. The proof is
very similar to the proof of Proposition 6.3.4 where the only difference
is that the empirical risk stays the same in the dual problems.

We have the following corollary of Proposition 6.3.4

Corollary 6.3.1. Loss functions LAEL,ϕ and LSEL,ϕ are N -duality preserv-
ing for IMTL triplet (TL,ϕ , IL,ϕ ,NL,ϕ).

Proof. In the proof of Proposition 6.3.4, we showed that for some solu-
tion αu ,u ∈ U defined as αu = ϕ(Â(u)) and loss function LAEL, it holds
that

LAEL(ϕ(Ā(u)),αu) = LAEL(ϕ(coĀ(u)),1−αu).

If we introduce notations y = Ā(u) and ŷ = Â(u), we have that

LAEL(ϕ(y),ϕ(ŷ)) = LAEL(ϕ(NL,ϕ(y)),1−ϕ(ŷ)).

Furthermore, the previous expression is equivalent to:

LAEL,ϕ(y, ŷ) = LAEL,ϕ(NL,ϕ(y),ϕ−1(1−ϕ(ŷ)))

⇔LAEL,ϕ(y, ŷ) = LAEL,ϕ(NL,ϕ(y),NL,ϕ(ŷ)),

which is the N -duality preserving property. Using the analogy, we can
prove the same for LSEL,ϕ.
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6.4 Granular approximations and the
minimum-cost flow problem

In this section, we discuss the combinatorial approach to the optimiza-
tion problems (6.2) and (6.3). We first formulate their dual versions, and
model the dual of (6.2) as the min-cost flow problem while the dual of
(6.3) takes a form of the slightly modified min-cost flow problem. We
provide combinatorial algorithms to solve the newly formulated prob-
lems, prove the correctness of those algorithms and provide the proofs
of certain propositions from 6.3 using the new formulations.

6.4.1 Introduction to the minimum-cost flow problem

This subsection is based on the monograph [1], especially on its 9th
chapter.

A flow network is defined as a directed graph where a real value
called imbalance is assigned to each node. Imbalances split nodes into
two subsets: supply nodes with a positive imbalance (supply value) and
demand nodes with a negative imbalance (demand value). Moreover,
each edge is characterized by a positive real capacity, and a cost value.
We also assign flow amounts to each edge which satisfy the condition
that they are at most as large as capacities. More formally, let G be a
finite set of nodes, E ⊆ G×G the finite set of edges, while F = (G,E) is the
flow network. We denote imbalances with bi for i ∈ G, capacities with
li,j , costs with ci,j and flow with zi,j for (i, j) ∈ E.

The minimum-cost flow problem is an optimization problem defined
on a flow network where we want to transport flow from the supply
nodes to the demand nodes, such that

– the difference between the flow that leaves a node and the flow that
enters the node is equal to the imbalance of this node,

– a flow in a particular edge is at most as large as the capacity of that
edge, and

– the total cost of the flow transportation is minimal.

Formally, we have the following problem:

minimize
∑

(i,j)∈E
ci,jzi,j , (6.6a)
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subject to
∑

j:(i,j)∈E
zi,j −

∑
j:(j,i)∈E

zj,i = bi , i ∈ G (6.6b)

0 ≤ zi,j ≤ li,j . (i, j) ∈ E (6.6c)

We distinguish two sets of constraints in the previous optimization
problem: balance constraints (6.6b) and capacity constraints (6.6c). If
we sum the balance constraints, we get

∑
i∈G bi = 0 which states that the

amount of supply is equal to the amount of demand, which is a necessary
assumption to have a feasible solution.

We say that a flow is feasible if it is a feasible solution of (6.6), while
we say that we have a pseudo-flow if only the capacity constraints are
satisfied.

For a given pseudo-flow z′, a residual network F′ = (G,E′) can be
defined. We have new imbalances:

b′i = bi −
( ∑
j:(i,j)∈E

zi,j −
∑

j:(j,i)∈E
zj,i

)
,

while for each edge (i, j) ∈ E for which z′i,j > 0, we add the reverse edge
(j, i) to the network with cost c′j,i = −ci,j , while keeping the original edge.
The capacity of the original edge (i, j) in F′ is l′i,j = li,j − zi,j , while the
capacity of the added reverse edge (j, i) is l′j,i = zi,j . We may notice that
when adding a new edge (j, i) to E′, there can already exist an edge (j, i)
from E. However, in our case of use, we will not face such an issue, i.e.,
we will have either (i, j) or (j, i) in E and not both at the same time. The
residual network keeps the complete information about flow z′ which
can be reconstructed from F′.

The concept of residual network is important for the development
of algorithms for solving (6.6). In this moment, we will not discuss the
existence of a feasible solution in general since later we will show that it
always exists in our case of use.

A cost of a particular path or cycle in the flow network is calculated
as the sum of the costs of edges in that path or cycle. For an optimal flow
z∗, we have the following result.

Proposition 6.4.1. A flow z∗ is optimal if and only if there are no cycles
of negative cost in the residual network F(z∗).

Bearing in mind Proposition 6.4.1, a simple algorithm can be con-
structed to solve (6.6). Namely, we construct an initial feasible flow in
our network, then search for the negative cycles and eliminate them.
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However, a more useful algorithm for us is the Successive Shortest
Path (SSP) algorithm for solving the minimum-cost flow problem. The
algorithm is provided as Algorithm 1.

Algorithm 1 Successive Shortest Paths

1: Input: Flow network F = (G,E).
2: Output: Flow z.
3: Set initial flow zi,j = 0, (i, j) ∈ E
4: Set initial residual network F′ = F
5: while there exist supply/demand values different from 0 do
6: Pick supply node i and demand node j
7: Calculate the shortest path P from i to j using cost values from

F′

8: Send the largest possible amount of flow through P
9: Update F′

10: Reconstruct z from F′

The shortest path P can be calculated using the Bellman-Ford algo-
rithm since F′ may contain negative values. The largest possible amount
of flow through P is calculated as

δ = min{b′i , |b
′
j |, c
′
i1,j1

for (i1, j1) ∈ P }.

The residual network is then updated such that

• b′i = b′i − δ, b′j = b′j + δ

• c′i,j = c′i,j − δ, c′j,i = c′j,i + δ for (i, j) ∈ P

The idea of the proof of correctness is that sending a flow through the
shortest path does not produce negative cycles in the residual network.
Hence, when all supply is sent to the demand nodes and the feasible
solution is achieved, it will be an optimal one.

We also introduce generalized network flows based on Chapter 15
of [1]. In some cases, the flow in a particular edge may be increased or
decreased by a multiplier after it leaves the left node of the edge. Denote
the multipliers with mi,j for (i, j) ∈ E. The generalized minimum-cost
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flow problem is then formulated as

minimize
∑

(i,j)∈E
ci,jzi,j ,

subject to
∑

j:(i,j)∈E
mi,jzi,j −

∑
j:(j,i)∈E

zj,i = bi , i ∈ G

0 ≤ zi,j ≤ li,j , (i, j) ∈ E.

(6.7)

If the multiplier is greater than 1, then the flow is increased while if it is
smaller than 1, then the flow is decreased.

Different theoretical results hold for the generalized minimum-cost
flow problem (6.7). Fortunately, our particular case of (6.7) allows ob-
taining similar properties as in the ordinary minimum-cost flow prob-
lem (6.6).

6.4.2 Duality and the combinatorial approach

In this subsection, the dual optimization problems of (6.2) and (6.3)
are considered. In our particular case, the dual problems are interest-
ing since they can be modeled using graph theory and can be solved
using combinatorial optimization methods. These combinatorial algo-
rithms may not be more efficient than the simplex method used for
solving linear programs, but their development is important since they
allow us to prove some interesting properties of the estimated fuzzy
set. We examine optimization problem (6.2). First, we eliminate vari-
ables xu ,u ∈ U , using constraints xu = yu + Āϕ(u) − αu and we denote
M(u,v) = 1− R̃ϕ(u,v). Then, the problem is reformulated as

maximize p
∑
u∈U

αu −
∑
u∈U

yu ,

subject to αv −αu ≤M(u,v), u,v ∈U
αu − yu ≤ Āϕ(u), u ∈U
yu ≥ 0 u ∈U.

(6.8)

Its dual problem is then

minimize
∑
u,v∈U

M(u,v)zu,v +
∑
u∈U

Āϕ(u)z0,u

subject to − z0,u +
∑
v∈U

zu,v −
∑
v∈U

zv,u = −p, u ∈U

z0,u ≤ 1. u ∈U.

(6.9)
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In (6.9), variables zu,v , u,v ∈ U , correspond to the first set of con-
straints from primal (6.8), while variables z0,u ,u ∈ U , correspond to the
second set of constraints from the primal. The first set of constraints
in (6.9) corresponds to variables αu ,u ∈ U , from the primal, while the
second set of constraints corresponds to variables yu ,u ∈ U , from the
primal.

If we sum up the equality constraints, we get
∑

u∈U z0,u = np where
n = |U |. Bearing this in mind, we see that (6.9) is exactly the minimum-
cost flow problem on n + 1 nodes where we have one supply node with
imbalance b0 = np and n demand nodes with imbalances −p. From the
supply node, to all other nodes we have flow z0,u , costs Āϕ(u), while
all capacities are equal to 1. Among the demand nodes, there is a flow
zu,v ,u,v ∈U , costs M(u,v), and there are no capacity constraints.

To make our model even simpler, we utilize the T -transitivity of the
relation R̃. It is easy to verify that the T -transitivity is equivalent to
M(u,v) +M(v,w) ≥M(u,w) for u,v,w ∈ U . Using this fact, we have that
there is an optimal flow which does not use two consecutive edges that
are between demand nodes. Assume that for an optimal flow z∗ we have
z∗u,v > 0 and z∗v,w > 0, and let δ = min(z∗u,v , z

∗
v,w). Then the flow z∗u,v −

δ,z∗v,w − δ,z∗u,w + δ is feasible and at most as expensive as the previous
flow, i.e., it is optimal. The new flow does not use two consecutive edges
since either z∗u,v − δ or z∗v,w − δ is 0. The previous elaboration further
implies that an optimal flow from the supply node can travel through
at most one intermediary node to the destination demand node. Hence,
our initial network flow on n + 1 nodes can be transformed into a flow
network on 2n + 1 nodes which has the form of a bipartite graph plus
the supply node. One independent set in the bipartite graph is formed
by the intermediate nodes, while the other independent set is formed by
the destination nodes.

0

eu1

eu2

eu3

fu1

fu2

fu3

Figure 6.1: Flow modeled as a bipartite graph
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In Figure 6.1, we have an example of a bipartite network on set of
instances U = {u1,u2,u3}. Since n = 3 in this case, the bipartite graph
has 2 · 3 + 1 = 7 nodes. Node 0 is the supply node with imbalance np.
Nodes {eu1

, eu2
, eu3
} are the intermediate nodes without imbalances while

{fu1
, fu2

, fu3
} are the destination nodes with demands −p. For u ∈ U , the

cost of edges (0, eu) is Āϕ(u) while the capacity is 1. For u,v ∈ U , the
cost of edges (eu , fv) is M(u,v) while the capacity is unbounded. The cost
of edges (eu , fu) is then 0. If a flow takes path (0, eu , fv) in the bipartite
graph for u,v ∈ U , and u , v, then in the original network it means that
the flow travels from 0 to v using intermediate node u. If u = v, it means
that there were no intermediate nodes and that the flow travels directly
from 0 to u.

For a given flow in a bipartite network flow, there is also the corre-
sponding residual network. In such a residual network, there are edges
from the destination nodes to the intermediate nodes and from the in-
termediate nodes to the supply. The costs and the capacities of the new
edges are then calculated as was explained in Section 6.4.1.

The bipartite network representation is useful from the perspective
of the flow decomposition. For a feasible flow, it is easy to represent it
as a sum of simple flows that go from the supply node to the destination
node. In the original network, one node can be a destination node for
some flow but also an intermediate node for a different flow. Hence,
the decomposition is harder in the original network. The decomposition
will be important later when dealing with the dual of (6.3).

The next question is how to reconstruct optimal solution of the pri-
mal problem, i.e., to calculate α∗ from a solution of the dual z∗. Fol-
lowing the duality theory provided in [1], an optimal vector α∗ can be
obtained as lengths of shortest paths from the supply node to the corre-
sponding destination nodes in the residual network of z∗.

Now, we examine the dual of (6.3). The linear program here can
be rewritten similarly as (6.8), just with the different granularity con-
straints. Here instead of αv −αu ≤M(u,v) we have αvR̃ϕ(u,v) ≤ αu . The
dual of such formulated problem is then

minimize
∑
u∈U

Āϕ(u)z0,u ,

subject to − z0,u +
∑
v∈U

zu,v −
∑
v∈U

R̃ϕ(v,u)zv,u = −p, u ∈U

z0,u ≤ 1. u ∈U

(6.10)
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The difference between (6.9) and (6.10) is that in the latter, we have
multipliers R̃ϕ(u,v),u,v ∈ U , instead of costs on the edges. More pre-
cisely a flow that goes from node v to node u will be multiplied with
R̃ϕ(u,v). For that purpose, we introduce the new notation for multipliers
J(u,v) = R̃ϕ(u,v), in order to distinguish the contexts of fuzzy relations
and flow networks and to be able to denote the multipliers on paths, not
only on edges. Due to the multipliers, we now deal with the minimum-
cost flow problem on a generalized flow network with n+1 nodes among
which there are n demand nodes with demand −p and one supply node
with an unspecified amount of supply.

We may notice that in this case the edges of the network consist of
two different groups. The first group is formed by the edges from the
supply nodes to the demand nodes. These edges have costs and do not
have multipliers. The second group is formed by the edges among the
demand nodes. These edges, conversely, have multipliers and do not
have costs. Similarly to (6.9), we are able to utilize the T -transitivity of
R̃ϕ w.r.t. TP in a way that there is an optimal flow which does not use
two consecutive edges from the second group. If we have three demand
nodes u,v,w ∈U in a network and an optimal flow that uses edges (u,v)
and (v,w), we can redirect the flow to use only edge (u,w) and the redi-
rected flow will have smaller or equal loss than the original flow. This
will further lead to a smaller or equal cost of the redirected flow which
makes it optimal. Therefore, as above, there is an optimal solution in
which a flow travels from the supply node to the destination demand
node using at most one intermediate node. This again further implies
that the initial general network on n + 1 nodes can be transformed into
a generalized bipartite flow network on 2n + 1 nodes. For the new net-
work, the same model applies as in Figure 6.1. Using this model, we can
clearly see the difference between the two groups of edges introduced
above. The first group is formed by the edges between the supply node
and the left partition of the bipartite graph (intermediate nodes), while
the second group is formed by the edges between the two partitions of
the bipartite graph.

As before, for a given flow on the generalized bipartite network, we
have the corresponding residual network. The same properties apply
as above except in the case when the flow passes through an edge with
multiplier. In that case, if the original edge has multiplier J(u,v) then the
reverse edge in the residual network will have multiplier 1

J(u,v) which is
an edge of a gain type (greater than 1).

We will now construct a new algorithm for solving a generalized
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minimum-cost flow problem on a generalized bipartite flow network.
The algorithm is based on the existing SSP algorithm presented in Algo-
rithm 1. Assume that we have a demand node fu to which we want to
deliver some flow b. We want to deliver the flow at the cheapest possible
price. If we deliver a flow using intermediate node ev , then the amount
of flow that we have to take from the supply node is b

J(v,u) and the cost

of such flow is
bĀϕ(v)
J(v,u) . In general, a price to deliver a unit of flow is a

ratio of the cost of an edge from the supply to the first partition and the
product of multipliers of edges that connect the two partitions. Bear in
mind that in the residual network, a flow may use multiple edges be-
tween partitions (edges with multipliers) to deliver the flow. Using this,
we construct the greedy approach presented as Algorithm 2.

Algorithm 2 Generalized successive shortest paths

1: Input: Bipartite flow network F.
2: Output: Flow z.
3: Set initial flow zi,j = 0, (i, j) ∈ E
4: Set initial residual network F′ = F
5: while there exists demand value different than 0 do
6: Pick a demand node i
7: Calculate the smallest possible cost from the supply node to i
8: Calculate the largest amount of flow that can be sent through the

least costly path
9: Send the calculated flow through the least costly path

10: Update F′

11: Reconstruct z′ from F′

To calculate the smallest possible cost from the supply node, we can
use a shortest path method. We want to minimize the ratio of one cost
value (from the supply to the intermediate nodes) and a product of mul-
tipliers (between intermediate and destination nodes). If we apply loga-
rithms on the cost values and reciprocals of the multipliers, we may ap-
ply the Bellman-Ford algorithm to calculate the shortest path between
the supply node and the chosen demand node in order to obtain a least
costly way to transport the flow.

After the shortest path is determined, we have to calculate the
amount of flow that will be taken from the supply node in order to
deliver the maximal amount of flow to the demand node. In com-
parison with the standard minimum-cost flow problem, here we have
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to take into account all the losses and gains that happen during the
flow transfer. Denote the shortest path in the residual network with
P = (0, eu1

, fu2
, eu3

, . . . , fuk ) and let b be a demand of node fuk . We would
like to deliver |b| (| · | stands for absolute value) amount of flow to the
demand node from the supply node, but this is not always possible due
to the capacities of particular edges on path P . The maximal amount of
flow can be determined recursively. The maximal amount of flow that
can be transferred from node fuk−2

to node fuk is bounded by the capac-
ity of the reverse edge l′fuk−2

,euk−1
and the demand divided with the loses

on the edges in between |b|J(uk−1,uk−2)
J(uk−1,uk) . Using that reasoning, if we set the

initial value z′ = |b|, then we can use the following iteration formula.

z′ = min
(
z′J(uk−2i+1,uk−2i)
J(uk−2i+1,uk−2i+2)

, l′fuk−2i
,euk−2i+1

)
,

for i going from 1 to k
2 − 1. The last step is z′ = min( z′

J(u1,u2) , l
′
0,eu1

) for
subpath (0, eu1

, fu2
).

After z′ is calculated, we have to determine the amount of flow that
will end up in the demand node fuk as well as to update the residual
network on path P . In the first step, z′ leaves the supply node, passes
node eu1

and enters node fu2
. On edge (eu1

, fu2
) it was multiplied with

J(u1,u2): z′ = J(u1,u2)z′. Then we update the residual network on edges
(fu2

, eu1
) and (fu2

, eu3
): l′fu2 ,eu1

= l′fu2 ,eu1
+ z′, l′fu2 ,eu3

= l′fu2 ,eu3
− z′ and we send

the flow to the next node from the second partition and repeat the pro-
cess. After the remaining flow arrives to the demand node, we increase
the imbalance of the demand node.

Since Algorithm 2 is novel, we cannot benefit from the existing the-
ory as we did in the case of Algorithm 1. In Section 6.4.3, we will show
that Algorithm 2 indeed returns an optimal result, as well as how to
construct a solution of the primal problem from the solution of the dual
one. As is shown in Section 6.4.3, α∗ is constructed by performing step
7 (without logarithms) of Algorithm 2 on the residual network of z∗, i.e.,
it is the smallest possible cost of the transport from the supply node to
the destination nodes.

6.4.3 Proof of correctness for Algorithm 2

In this subsection we prove that Algorithm 2 terminates and that it out-
puts an optimal solution. Also, we construct a way to obtain a solution
of the primal problem from the solution of the dual one.
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We first prove the termination.

Proposition 6.4.2. Assume that all parameters in Algorithm 2 are ratio-
nal numbers. Then algorithm 2 terminates.

Proof. It is easy to see that if we multiply the right side of the constraints
in (6.10) with a positive constant C, the optimal solution is Cz∗ where z∗

is the solution of the initial problem. For some parameter a in (6.10)
we have its rational representation a = q

r for q and r being integers. Let
C be the least common multiple (LCM) of all integers q and r for all
parameters in (6.10). If we multiply the right side of the constraints in
(6.10) with C, then all the demand values will become integers and all
intermediate flows in Algorithm 2 will become integers. That further
implies that all the updates on demands in Algorithm 2 will be integers
which further implies that the algorithm will terminate in at most Cpn
steps.

In practice, the termination is always guaranteed since computers
can work only with rational numbers.

Now, let us define a flow cycle in the residual generalized bipartite
network. The cycle starts with an edge from the first part (costly edges
without multipliers) of the network, then it contains edges from the sec-
ond part (edges with multipliers without costs) and ends with a reverse
edge from the first part. A model of such cycle is shown in Figure 6.2.

0

eu1

eu2

Figure 6.2: Cycle in a generalized bipartite network

In Figure 6.2, the dashed line between eu1
and eu2

stands for the sub-
path that contains only the edges from the second part of the residual
network. Also, it may hold that eu1

≡ eu2
. In that case, the cycle consists

only of the edges from the second part. Let J(eu1
, . . . , eu2

) be a multiplier
of the path that consists of the edges from the second part of the residual
network, i.e., a product of the multipliers on the edges from the path. We
say that the cycle is of negative cost if Aϕ(u1) < J(eu1

, . . . , eu2
)Aϕ(u2). As

a reminder, Aϕ(u1) and Aϕ(u2) are the costs on edges (0, eu1
) and (0, eu2

).
The reason why the cycle is of negative cost is that if we send a unit of
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flow along it, the cost of that flow is Aϕ(u1)−J(eu1
, . . . , eu2

)Aϕ(u2), i.e., the
cost is negative. Such flow would not change any demand value on the
destination nodes but it will reduce the overall cost of the flow.

The next proposition utilizes the bipartite representation of the flow
network.

Proposition 6.4.3. Every flow in a generalized bipartite network can be
represented as a sum of a finite number of simple path flows from the
supply node to a destination node.

Proof. Let z be a flow and consider an edge (eu1
, fu2

) from the second part
of the network and its flow value zeu1 ,fu2

. This edge receives a flow from
edge (0, eu1

) which is a part of path flow zP from path P = (0, eu1
, fu2

) that
connects the supply node and the destination node fu2

. zP is then a sum-
mand in the representation while the remaining flow z − zP has no flow
on the edge (eu1

, fu2
) and hence we can remove that edge from the net-

work flow. If we continue, in every step we will construct one summand
and remove one edge from the second part of the network. Since we have
a finite number of edges, we have a finite number of summands.

We have the following result.

Proposition 6.4.4. Solution z∗ is optimal in the generalized bipartite net-
work if and only if its residual network does not contain negative cost
cycles.

Proof. (⇒) When the solution is optimal, there are no negative cost cy-
cles. If otherwise, we could send a flow through a negative cost cycle
and we would decrease the cost of the overall flow as described above.
That contradicts the optimality.

(⇐) Assume that z∗ is a feasible solution whose residual network does
not contain negative cost cycles and let z′ be a feasible solution. Let
z′ = z∗ + z′′. We first show that z′′ is a feasible flow from the residual
network of z∗, i.e., it satisfies its constraints. For an edge (0, eu1

) if the
flows are different, we can have either z′0,eu1

> z∗0,eu1
or z′0,eu1

< z∗0,eu1
. In

the first case, it holds that z′0,eu1
= z∗0,eu1

+z′′0,eu1
, i.e., z′′0,eu1

uses the original

edge. Since z′0,eu1
≤ 1 then z′′0,eu1

≤ 1− z∗0,eu1
which is a constraint from the

residual network. In the second case, it holds that z′0,eu1
= z∗0,eu1

− z′′eu1 ,0
,

i.e., z′′eu1 ,0
uses the reverse edge. Since z′0,eu1

≥ 0 then z′′eu1 ,0
≤ z∗0,eu1

which
is a constraint for the reverse edge from the residual network. Using
similar reasoning, we can conclude the same for the whole network.
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The next step is to show that z′′ is a sum of a finite number of sim-
ple flow cycles, as shown in Figure 6.2, i.e., it has a cycle representation.
Proposition 6.4.3 states that both flows z′ and z∗ are sums of simple flows
on paths from the supply node to a destination node. Take a summand
z′P1

of z′ and summand z∗P2
of z∗ for P1 = (0, eu1

, fu3
) and P2 = (0, eu2

, fu3
).

The paths have the same destination node. Assume that the first sum-
mand delivers amount b1 of flow to the destination node while the sec-
ond delivers amount b2 of flow to the same node. W.L.O.G. assume that
b1 ≥ b2. Then the flow b2

b1
z′P1
−z∗P2

is a flow along cycle (0, eu1
, fu3

, eu2
,0) and

one of the summands in the cycle representation of z′′. After the sum-
mand is identified, we remove its flow from the consideration. In that
moment, z∗P2

is fully removed while we are left with (1− b2
b1

)z′P1
from the

first path. We continue to create flow cycles as summands from the re-
maining path flows from z′ and z∗. Since after every summand is identi-
fied we remove one path flow, the number of summands is finite. Hence,
z′′ is a sum of a finite number of cycle flows. Since z′′ is a flow in the
residual network of z∗, all the cycles from its cycle representation are of
positive cost by the assumption which implies that z′′ is of positive cost.
Since the cost of z′ is a sum of costs of z∗ and z′′, cost of z′ is larger than
the cost of z∗. Since flow z′ was an arbitrary feasible flow, we conclude
that z∗ is an optimal flow.

Proposition 6.4.5. Algorithm 2 returns an optimal solution.

Proof. Assume that in one iteration of Algorithm (2), the shortest path
had the form P1 = (0, eu2

, . . . , fu3
) and that after the step, the negative

cost cycle (0, eu1
, . . . , fu3

, . . . , eu2
,0) was formed. The negative cost cycle

is formed from the path P2 = (0, eu1
, . . . , fu3

) and the reverse path P1. The
model of such cycle is represented in Figure 6.3.

0

eu1

fu3

eu2

Figure 6.3: Cycle after one step of Algorithm 2

The dots in the cycle as well as dashed edges in the figure stand
for edges from the second part of the residual network (edges with
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multipliers). If the cycle is negative, then it holds that Aϕ(u1) <

J(eu1
, . . . , fu3

)J(fu3
, . . . , eu2

)Aϕ(u2). The latter is equivalent to
Aϕ(u1)

J(eu1 ,...,fu3 ) <
Aϕ(u2)

J(eu2 ,...,fu3 ) which states that path P2 is actually shorter than P1 which con-

tradicts the assumption that P1 is the shortest path at this step.
Hence, at every iteration of Algorithm 2, there are no negative cost

cycles and as soon as the feasible solution is achieved, it will be an opti-
mal one according to Proposition 6.4.4.

After we constructed the algorithm that solves the dual optimization
problem, we need to obtain an optimal solution for the primal which
was our initial goal. First, we need one technical proposition.

Proposition 6.4.6. For a given generalized bipartite network, there ex-
ists an optimal solution z∗ for which it holds

z∗0,eu > 0 =⇒ z∗eu ,fu > 0.

Proof. Assume that for some solution z∗ and some instance u we have
that z∗0,eu > 0 and z∗eu ,fu = 0. Then, in the simple path decomposition
of the flow, we have path (0, ev , fu) that delivers flow to fu , and path
(0, eu , fw) that uses flow from edge (0, eu). Then, in the residual network
of z∗, C = (eu , fu , ev , fw, eu) is a cycle. Due to transitivity of R̃, it holds that

J(v,u)J(u,w) ≤ J(v,w).

If J(v,u)J(u,w) < J(v,w), then C is a negative cost cycle which contradicts
the optimality of z∗. If J(v,u)J(u,w) = J(v,w) then cycle C is a zero-cost
cycle and a flow can be sent through the cycle without violating opti-
mality. Hence, sending some amount of flow through the cycle, we will
construct another optimal solution z∗∗ where z∗∗eu ,fu > 0.

In practice, if we obtain an optimal solution containing an edge for
which the previous proposition does not hold, we can get another opti-
mal solution, without such edges, as explained in the proof of the pre-
vious proposition. From now on, we assume that we have an optimal
solution for which the previous proposition holds.

We continue with the duality theory of the linear programs.
According to the strong duality theorem [96], if there exists an opti-

mal solution of the dual problem z∗ then, there exists an optimal solution
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for the primal problem α∗, and it holds that the values of objectives in
(6.8) and in (6.10) are equal, i.e.,∑

u∈U
Āϕ(u)z∗0,u =

∑
u∈U

pα∗u −
∑
u∈U

max(α∗u − Āϕ(u),0). (6.11)

In the previous expression, yu is replaced with its definition. In an opti-
mal solution, for u ∈U , we have that∑

v∈U
z∗u,v = z∗0,u ,

∑
v∈U

R̃ϕ(v,u)z∗v,u = p. (6.12)

We have the following equalities:∑
u∈U

max(α∗u − Āϕ(u),0) =
∑
u∈U

pα∗u −
∑
u∈U

Āϕ(u)z∗0,u

=
∑
u∈U

pα∗u −
∑
u∈U

(Āϕ(u)−α∗u)z∗0,u −
∑
u∈U

α∗uz
∗
0,u

=
∑
u∈U

pα∗u −
∑
u∈U

(Āϕ(u)−α∗u)z∗0,u −
∑
u∈U

α∗u
∑
v∈U

z∗u,v

=
∑
u∈U

pα∗u −
∑
u∈U

(Āϕ(u)−α∗u)z∗0,u

−
∑
u,v∈U

(α∗u − R̃ϕ(u,v)α∗v)z∗u,v −
∑
u,v∈U

R̃ϕ(u,v)α∗vz
∗
u,v

=
∑
u∈U

pα∗u −
∑
u∈U

(Āϕ(u)−α∗u)z∗0,u

−
∑
u,v∈U

(α∗u − R̃ϕ(u,v)α∗v)z∗u,v −
∑
v∈U

α∗v
∑
u∈U

R̃ϕ(u,v)z∗u,v

=
∑
u∈U

(α∗u − Āϕ(u))z∗0,u −
∑
u,v∈U

(α∗u − R̃ϕ(u,v)α∗v)z∗u,v .

The second equality holds because of the left expression in (6.12)
while the last equality holds because the right expression in (6.12). We
have that for all u ∈ U , max(α∗u − Āϕ(u),0) ≥ (α∗u − Āϕ(u))z∗0,u and that
for all u,v ∈ U , α∗u − R̃ϕ(u,v)α∗v ≥ 0, since α∗ is a feasible solution.
Hence, for the previous equality to hold, we need to have that for all
u ∈ U , max(α∗u − Āϕ(u),0) = (α∗u − Āϕ(u))z∗0,u and that for all u,v ∈ U ,
(α∗u − R̃ϕ(u,v)α∗v)z∗u,v = 0. The latter is equivalent to the following set of
conditions.

• z∗0,u = 0 =⇒ α∗u ≤ Āϕ(u),
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• 0 < z∗0,u < 1 =⇒ α∗u = Āϕ(u),

• z∗0,u = 1 =⇒ α∗u ≥ Āϕ(u),

• z∗u,v > 0 =⇒ α∗u − R̃ϕ(u,v)α∗v = 0,

for u,v ∈ U . We have the following conclusion: if we solve the dual op-
timization problem and obtain an optimal solution z∗, then a solution of
the primal optimization problem is any α∗ which satisfies the conditions
listed above.

Moreover, α∗ can be constructed by performing step 7 of Algorithm
2 on the residual network of z∗, i.e., it is the smallest possible cost of
the transport from the supply node to the destination nodes. It is eas-
ily verifiable that such α∗ satisfies the conditions above. The proof of
this verification lies in that if we assume that some condition is not sat-
isfied, then we would have a negative cost cycle which contradicts the
optimality of z∗. To prove the contradiction, we need Proposition 6.4.6.

6.4.4 Proof of Proposition 6.3.3

Let αp
u = ϕ(Âp(u)) and α

q
u = ϕ(Âq(u)) for u ∈ U . Then Âp(u) ≤ Âq(u)⇔

α
p
u ≤ α

q
u . To prove this proposition, we will use Algorithm 1 in case

of TL and Algorithm 2 in case if TP . We apply both algorithms on the
bipartite flow network in the way that we first deliver amount p of flow
to every destination node, then we calculate αp as the smallest cost from
the supply node to the destination nodes in the residual network, then
we deliver additional amount q − p of flow to every destination node
and then we calculate αq in the same way as αp. Using this procedure,
we may notice that to calculate αq we need a few more iterations of the
algorithms after αp. Bearing this in mind, it is enough to prove that
after every iteration of the algorithm, i.e., after sending some amount of
flow to a destination node and updating the residual network, the cost
from the supply node to every destination node stayed the same or is
increased.

When updating residual network F′, the possible changes in the
residual networks are the following:

• Reverse edges between the supply node and the intermediate
nodes can be added while the original edges can be removed.

• Reverse edges between the intermediate and destination nodes can
be added or removed.
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Adding reverse edges between the supply node and intermediate nodes
is not important in this case, since shortest paths do not use these edges.
Removing the original edges between the same nodes will not reduce the
costs since the shortest paths now chose among the smaller set of edges.
The same holds if we remove reverse edges between the intermediate
nodes.

The last step is to prove that adding reverse edges between the inter-
mediate and destination nodes will not reduce the costs from the supply
to the destination nodes.

For that purpose, we consider Figure 6.4.

0

eu1 fu1

fu2

fu3

Cc

Ca

Cy

x

−x

Cb

Cd

Figure 6.4: Flow modeled as a bipartite graph

With dashed lines, we denote certain paths for which the costs are
marked on the figure. In both cases of TL and TP , the costs are the
values used to calculate the shortest paths. Assume that in step i, we
were calculating the shortest path between 0 and fu2

and we obtained
that the shortest path is (0, . . . , eu1

, fu1
, . . . , fu2

) and since some flow is sent
through that path, a reverse edge (fu1

, eu1
) is created with cost −x. As-

sume that before step i, the shortest path from 0 to fu3
was (0, . . . , fu3

)
with cost Cy while after the previous step and after adding reverse edge
(fu1

, eu1
) the shortest path is (0, . . . , fu1

, eu1
, . . . , fu3

) with cost Ca − x + Cb.
Then, we have that Ca + Cb < x + Cy . Since the shortest path in step i
was (0, . . . , eu1

, fu1
, . . . , fu2

), it holds that Cc + x ≤ Ca. Adding this to the
previous expression, we have that

x+Cy > Ca +Cb ≥ Cc + x+Cb⇔ Cy > Cc +Cb.

The last inequality contradicts the assumption that before step i, the
smallest cost between 0 and fu3

is Cy .
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6.5 Conclusion

In this chapter, we introduced a novel statistical learning approach
for handling inconsistencies in prediction problems with respect to a
fuzzy relation. Our work was motivated by the method introduced by
Kotłowski and Słowiński [89] for handling monotone inconsistencies
and we showed that the novel approach is a generalization of the same
method in the binary classification case. Using fuzzy relations, the novel
method is able to handle gradual relationships among instances while
the KS approach can distinguish only two cases: either instances relate
or not.

Our approach produces a granular approximation of a fuzzy set. The
approximation is granularly representable (without inconsistencies) and
as close as possible to the original fuzzy set (w.r.t. a given loss function).
It can be seen as a fuzzy counterpart of the monotone approximation
produced by the KS approach. As in the work of Kotłowski and Słow-
iński, we provided statistical foundations of the granular approxima-
tions. In the next step, we formulated optimization problems in order
to calculate the approximations and we showed some of their impor-
tant properties. The optimization problems were also considered from
the combinatorial perspective. The dual linear programs are formulated
as (modified) min-cost flow problems and solved using combinatorial
techniques. The solutions are then used to prove Property 6.3.3. At the
end, we provided two didactic examples; one for a binary classification
problem and one for a regression problem. In the didactic examples, we
showed how fuzzy relations are used to model relationships among nu-
merical data, how the granular approximations are calculated and how
to interpret them in the two cases for different loss functions.

In the next chapter, the granular properties of the granular approx-
imations are considered. We show that granules form the granular ap-
proximations exhibit specific properties (adjacency) which can be used
to formulate a multi-class classification version of granular approxima-
tion. Machine learning applications of granular approximations will be
explored in Chapter 8 where the instance-based classification method
will be developed.
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Chapter 7

Multi-Class Granular
Approximation by means of
T -disjoint and Adjacent
Fuzzy Granules

In this chapter, we extend the definition of granular approximations to
the multi-class context. We introduce the concepts of T -disjoint and
adjacent fuzzy granules and we discuss how these concepts relate to
the formerly introduced granular approximation. They are important
in classification problems since they help us to keep decision regions
separated (T -disjoint granules) while covering as much as possible of an
attribute space (adjacent granules). Then, we formulate an optimization
procedure in order to extend granular approximations to the multi-class
classification problem leading to the definition of multi-class granular
approximations. Such approximation is a union of fuzzy granules con-
structed in the way described in the previous chapters; it is a fuzzy set
constructed as a conjunction of a fuzzy relation and an association value.
These association values, as discussed in Chapter 6, can be interpreted
as the degree up to which an instance belongs to a certain decision class.

The chapter is structured as follows. Section 7.1 deals with the con-
cept of T -disjoint granules and adjacent granules. It provides definitions
of the concepts together with an analysis of how these definitions per-
tain to the granular approximations introduced in the previous chapter.
Section 7.2 explains how the concepts from the previous sections can be
applied in binary and multi-class classification problems, and it intro-

133



Chapter 7. Multi-Class Granular Approximation by means of T -disjoint
and Adjacent Fuzzy Granules

duces the definition of a multi-class granular approximation. Section
7.3 shows how to efficiently calculate multi-class granular approxima-
tions and provides a graphical illustration of how the granules look in
practice. Section 7.4 concludes the chapter.

7.1 T -disjoint and adjacent granules

7.1.1 Definitions and basic properties

Throughout this chapter, we assume that R̃ is a T -preorder relation for
a residual triplet (T ,I,N ).

Definition 7.1.1. Two fuzzy sets A and B, defined on universe U , are
called T -disjoint if

T (A(u),B(u)) = 0 for every u ∈U.

In (5.1), the fuzzy granule w.r.t. T -preorder R̃ was introduced. We
now define fuzzy granules w.r.t. inverse relation R̃−1 as:

R̃−λ(u) = {(v,T (R̃−1(v,u),λ));v ∈U } = {(v,T (R̃(u,v),λ));v ∈U }. (7.1)

For the fuzzy granules defined by Eq. (5.1), we have the following
property:

Proposition 7.1.1. Let u,v ∈ U . Two fuzzy granules R̃+
λ1

(u) and R̃−λ2
(v)

are T -disjoint if and only if

T (λ1,λ2) ≤N (R̃(v,u)). (7.2)

Proof. The statement that two granules are T -disjoint is equivalent to:

max
w∈U

T (T (R̃(w,u),λ1),T (R̃(v,w),λ2)) = 0

⇔max
w∈U

T (T (R̃(v,w), R̃(w,u)),T (λ1,λ2)) = 0

⇔T
(
max
w∈U

T (R̃(v,w), R̃(w,u)),T (λ1,λ2)
)

= 0

⇔T (R̃(v,u),T (λ1,λ2)) = 0

⇔T (λ1,λ2) ≤ I(R̃(v,u),0)

⇔T (λ1,λ2) ≤N (R̃(v,u)).

The first equivalence holds because of the commutativity and associativ-
ity of T . The second one holds because T is left-continuous. The third
one is a consequence of the T -transitivity of R̃ while the fourth equiva-
lence follows from the residuation property.
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Please note that the T -disjointness is characterised by the above
proposition only for granules of opposite types, i.e., granules w.r.t. rela-
tions R̃ and R̃−1 respectively.

Proposition 7.1.2. Let (T ,I,N ) be an IMTL triplet. Then, fuzzy set A is
granularly representable w.r.t. R̃ if and only if the granules from A (w.r.t.
R̃) and coA (w.r.t. R̃−1) are T -disjoint.

Proof. For u,v ∈U , we have the following equivalences.

A(u) ≥ T (R̃(u,v),A(v))⇔ R̃(u,v) ≤ I(A(v),A(u))

⇔N (R̃(u,v)) ≥N (I(A(v),A(u)))

⇔N (R̃(u,v)) ≥ T (A(v),N (A(u))).

The last equivalence holds because of (2.6g), while the second one fol-
lows from the fact that N is a decreasing function. The equivalences
state that the granular representability of A is equivalent to the T -
disjointness condition of granules R̃+

A(v)(v) from A and R̃−coA(u)(u) from
coA, as formulated in Proposition 7.1.1.

Corollary 7.1.1. Let (T ,I,N ) be an IMTL triplet. The granules from
aprmin,I

R
(A) and aprmax,T

R (coA) are T -disjoint (analogously, the granules

from aprmin,I
R

(coA) and aprmax,T
R (A) are T -disjoint too).

Proof. The result holds from the duality property of the lower and upper
approximations (4.8).

Next, we examine a pair of granules R̃+
λ1

and R̃−λ2
that are not only

T -disjoint, but are adjacent to each other. In other words, if their pa-
rameters are λ1 and λ2, then adding any ϵ to either λ1 or λ2 will cause
the granules to overlap. For fixed λ1, the largest λ2 for which the gran-
ules are still T -disjoint is:

λmax
2 = sup{λ;T (λ1,λ) ≤N (R̃(v,u))} = I(λ1,N (R̃(v,u))).

Obviously,

T (λ1,λ
max
2 ) = T (λ1, I(λ1,N (R̃(v,u)))) ≤N (R̃(v,u)),

due to the modus ponens property (2.6c).
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Definition 7.1.2. Granule R̃−λ2
(v) is adjacent to granule R̃+

λ1
(u) if

λ1 = I(λ2,N (R̃(v,u))),

while R̃+
λ1

(v) is adjacent to R̃−λ2
(u) if

λ2 = I(λ1,N (R̃(u,v))).

We call such defined relationship among granules the adjacency rela-
tion.

Proposition 7.1.3. Every granule is adjacent to all granules with param-
eter 1, under the assumption that they are T -disjoint.

Proof. If λ1 = 1, from the T -disjointness property we have:

T (1,λ2) ≤N (R̃(v,u))⇔ 1 ≤ I(λ2,N (R̃(v,u)))⇒ 1 = I(λ2,N (R̃(v,u))).

From the proof of Proposition 7.1.3, we conclude that granule R̃+
λ1

(u)

for λ1 = 1 is adjacent to R̃−λ2
(v) if and only if λ2 = N (R̃(v,u)).

The previous reasoning also reveals that the adjacency relation is not
necessarily symmetric.

Proposition 7.1.4. For parameters λ1 and λ2 that are smaller than 1 and
for continuous t-norm T from the IMTL triplet (T ,I,N ), we have that the
adjacency relation is symmetric. In other words, if λ1 = I(λ2,N (R̃(v,u))),
then also λ2 = I(λ1,N (R̃(v,u))).

Proof. Ordering property (2.6d) implies that if λ1 < 1, then also λ2 >
N (R̃(v,u)). Using the strong max-definability (2.8), we have that

λ2 = I(I(λ2,N (R̃(v,u))),N (R̃(v,u))) = I(λ1,N (R̃(v,u))).

Example 7.1.1. Figures 7.1 and 7.2 illustrate different relationships be-
tween granules, in one and two dimensions respectively. In Figure 7.1,
objects are represented using one condition attribute q whose range is
1. There are two objects u1 and v1 with respective attribute values 0.4
and 0.6. Their granules R−λ1

(u1) and R+
λ2

(v1) are formed based on a T -
preorder relation (left side of the figure) and on a T -equivalence relation
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Figure 7.1: Granules in one dimension

(right side of the figure), parameter value γ = 3 and the Łukasiewicz t-
norm. We vary parameters λ1 and λ2 in order to represent different
relationship among two granules. We depict the fuzzy granules together
with their 0.5-level sets. In the upper two images, the values of param-
eters are λ1 = 0.95 and λ2 = 0.75 which leads to overlapping granules
(i.e., they are not T -disjoint). In the two images in the middle, the val-
ues of parameters are λ1 = 0.85 and λ2 = 0.65 which leads to T -disjoint
granules, while in the lower two images, the values of parameters are
λ1 = 0.9 and λ2 = 0.7 which leads to adjacent granules (here, the ad-
jacency relation is symmetric). It is easy to verify that in this case, the
0.5-level sets follow the relation between granules, i.e., if the granules
overlap, then the level sets overlap, if the granules are T -disjoint, then
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the level sets are disjoint and if the granules are adjacent, then the level
sets have one common point.
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Figure 7.2: Granules in two dimensions

The use of 0.5-level sets is in particular useful to visualize the gran-
ules in the case of two dimensions. In Figure 7.2, we have four ob-
jects from two classes, described by two condition attributes; u1 and
u2 are from one class and v1 and v2 are from the other one. We illus-
trate the relationship of granules from different classes. The granules
are formed using a T -preorder relation (left side of the figure) and T -
equivalence relation (right side of the figure). While the granules in
one dimension had triangular (T -equivalence) or "half-triangular" shape
(T -preorder), in two dimensions they have pyramidal (T -equivalence)
or "half-pyramidal" (T -preorder) shape. However, for the purpose of
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the visualisation in 2 dimensions of the 3-dimensional granules, we use
0.5-level sets of the granules. The level sets for the T -preorder relation
take the form of quarter-planes (left images) and the rectangular form
(right images) for the T -equivalence relation. Again, we can distinguish
granules from different classes that overlap (upper two images), that are
T -disjoint (two images in the middle) and that are adjacent (lower two
images). In this case, the level sets of adjacent granules share an edge.

In Proposition 7.1.2 we showed that granules from A and coA are
T -disjoint for granularly representable fuzzy set A. Now we examine in
which cases some of them are also adjacent. If R̃−coA(v)(v) is adjacent to

R̃+
A(u)(u) for u,v ∈U , we have that

A(u) = I(N (A(v)),N (R̃(v,u)))⇔ A(u) = I(R̃(v,u),A(v)), (7.3)

where the equivalence holds because of (2.7a). If R̃+
A(v)(v) is adjacent to

R̃−coA(u)(u) then

N (A(u)) = I(A(v),N (R̃(u,v)))⇔ A(u) = N (I(A(v),N (R̃(u,v))))

⇔ A(u) = T (R̃(u,v),A(v)),
(7.4)

where the second equivalence holds because of (2.6h).

7.1.2 Application to granular approximations

In Proposition 7.1.2, we proved that the granules associated with A and
coA are T -disjoint if A is granularly representable. In this section, we
show that when A is a granular approximation, i.e., a solution of opti-
mization problem (6.1), every granule associated with a particular deci-
sion (either A or coA) has at least one granule associated with the oppo-
site decision that is adjacent to it.

In this section, we show that every granule associated with one de-
cision (A or coA) has at least one adjacent granule associated with the
opposite decision.

We first recall the notation from Chapter 6 where with Ā we denote
the observed values of A (those that are approximated) while with Â
we denote the result of optimization procedure (6.1) (the granular ap-
proximation). The next lemma, theorem, and corollary investigate the
adjacency relationship of granules from granular approximations, i.e.,
from the solutions of optimization problem (6.1).
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Lemma 7.1.1. Let loss function L be of ∨-type and let Â be a solution of
optimization problem (6.1). If Â(u) > Ā(u), then it holds that

Â(u) = max{T (R̃(u,v), Â(v));v ∈U,v , u},

while if Â(u) < Ā(u), then it holds that

Â(u) = min{I(R̃(v,u), Â(v));v ∈U,v , u}.

Proof. Let αu = max{T (R̃(u,v), Â(v));v ∈ U,v , u} for some u,Â(u) >
Ā(u). If the first condition of the theorem is not satisfied, then from the
granular representability it holds that αu < Â(u). Replacing Â(u) with
max(αu , Ā(u)) leads to a solution that is also granularly representable
(easily verifiable) and that ensures a smaller value of the objective func-
tion since the loss function L is of ∨-type. That is a contradiction.

Now, let αu = min{I(R̃(v,u), Â(v));v ∈ U,v , u} for some u,Â(u) <
Ā(u). If the second condition of the theorem is not satisfied, then
from the granular representability it holds that αu > Â(u). Replacing
Â(u) with min(αu , Ā(u)) leads to a solution that is also granularly repre-
sentable (easily verifiable) and that ensures a smaller value of the objec-
tive function since the loss function L is of ∨-type. That is a contradic-
tion.

Theorem 7.1.1. Let loss function L be of ∨-type and let Â be a solution
of optimization problem (6.1). We define three sets:

• U− = {u ∈U ; Â(u) < Ā(u)},

• U0 = {u ∈U ; Â(u) = Ā(u)},

• U+ = {u ∈U ; Â(u) > Ā(u)}.

It holds that

Â(u) = max{T (R̃(u,v), Â(v));v ∈U− ∪U0}, (7.5)

for u ∈U+ and

Â(u) = min{I(R̃(v,u), Â(v));v ∈U+ ∪U0}, (7.6)

for u ∈U−.
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Proof. Condition (7.5) can be reformulated as

∀u ∈U+, ∃v ∈U− ∪U0; Â(u) = T (R̃(u,v), Â(v)).

Let U+
1 ⊆U+ be a set of instances that satisfy the previous condition and

let U+
2 = U+−U+

1 . Let u∗ ∈U+
2 be an instance with the largest Â(u). From

Lemma 7.1.1, there is v ∈U,v , u∗ such that Â(u∗) = T (R̃(u∗,v), Â(v)).
By the assumption u∗ ∈ U+

2 , we have that v ∈ U+. If v ∈ U+
1 , then

there is w ∈U− ∪U0 such that Â(v) = T (R̃(v,w), Â(w)). We have that

Â(u∗) = T (R̃(u∗,v), Â(v))

= T (R̃(u∗,v),T (R̃(v,w), Â(w)))

= T (T (R̃(u∗,v), R̃(v,w)), Â(w))

≤ T (R̃(u∗,w), Â(w)).

The last inequality holds because of the T -transitivity of R̃ and the
monotonicity of T .

The opposite inequality holds from the granular representability
which leads to the conclusion that Â(u∗) = T (R̃(u∗,w), Â(w)) which con-
tradicts the assumption that u∗ ∈U+

2 . Hence, v ∈U+
2 .

From Â(u∗) = T (R̃(u∗,v), Â(v)), it holds Â(v) ≥ Â(u∗) due to (2.6a).
Since Â(u∗) is the largest in U+

2 by the assumption, then Â(u∗) = Â(v).
Denote with U+

3 ⊆ U+
2 instances from U+

2 for which the membership
degree in Â is Â(u∗). Every pair of instances from U+

3 satisfies (5.2)
since they have the same membership value in Â. Due to maximal-
ity of Â(u) it holds that for u ∈ U+

3 and for v ∈ U − U+
3 , it holds that

Â(u) > T (R̃(u,v), Â(v)). Denote

β+ = max(max{Ā(u);u ∈U+
3 },

max{max{T (R̃(u,v), Â(v));v ∈U −U+
3 };u ∈U

+
3 }).

From the assumptions above, it holds that β+ < Â(u∗) which implies β+ <
Â(u) for u ∈U+

3 . Now, let Â∗ be a fuzzy set where values Â(u) for u ∈U+
3

are replaced with β+. We observe that Â∗ is granularly representable
since Â∗(u) are pairwise equal for u ∈ U+

3 and also for every u ∈ U+
3 , and

for every v ∈U −U+
3 it holds that

T (R̃(u,v), Â∗(v)) ≤ Â∗(u),

by the definition of β+. Next, we observe that the objective value with Â∗

is smaller than with Â because

Ā(u) < Â∗(u) < Â(u),
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for u ∈U+
3 and due to the fact that L is of ∨-type.

Therefore, we obtained a feasible solution with a smaller objective
function, which contradicts the optimality of Â. This contradiction im-
plies that U+

2 must be empty, which is equivalent to (7.5).
On the other hand, condition (7.6) can be reformulated as

∀u ∈U−, ∃v ∈U+ ∪U0; Â(u) = I(R̃(v,u), Â(v)).

Let U−1 ⊆ U− be the set of instances that satisfy the previous condi-
tion and let U−2 = U− − U−1 . Let u∗ ∈ U−2 be an instance with the
smallest Â(u). From Lemma 7.1.1, there is v ∈ U,v , u∗ such that
Â(u∗) = I(R̃(v,u∗), Â(v)).

By the assumption u∗ ∈U−2 , it holds that v ∈U−. Assume that v ∈U−1 .
Then, there is w ∈U+∪U0 such that Â(v) = I(R̃(w,v), Â(w)). We have that

Â(u∗) = I(R̃(v,u∗), Â(v))

= I(R̃(v,u∗), I(R̃(w,v), Â(w)))

= I(T (R̃(v,u∗), R̃(w,v)), Â(w))

≥ I(R̃(w,u∗), Â(w)).

The last equality holds because of (2.6f), while the last inequality holds
because of the T -transitivity of R̃ and the fact that I is decreasing in its
first argument. The opposite inequality holds from the granular repre-
sentability, which leads to the conclusion that Â(u∗) = I(R̃(w,u∗), Â(w))
which contradicts the assumption that u∗ ∈U+

2 . Because of this, v ∈U−2 .
From Â(u∗) = I(R̃(v,u∗), Â(v)), it holds that Â(v) ≤ Â(u∗) due to (2.6b).

Since Â(u∗) is the smallest by the assumption, then Â(u∗) = Â(v). Denote
with U−3 ⊆ U−2 instances from U−2 that have value Â(u∗). Every pair of
instances from U−3 satisfy (5.2) since they have the same membership
degree in Â. For every u ∈ U−3 and for every v ∈ U −U−3 it holds that
Â(u) < I(R̃(v,u), Â(v)). Denote

β− = min(min{Ā(u);u ∈U−3 },
min{min{I(R̃(v,u), Â(v));v ∈U −U−3 };u ∈U

−
3 }).

From the above assumption, it holds that β− > Â(u∗), which implies β >
Â(u) for u ∈U−3 . Now, let Â∗∗ be a fuzzy set where values Â(u) for u ∈U−3
are replaced with β−. We observe that Â∗∗ is granularly representable
since Â∗∗(u) are pairwise equal for u ∈ U−3 and also for every u ∈ U−3 and
for every v ∈U −U−3 it holds that

I(R̃(v,u), Â∗∗(v)) ≤ Â∗∗(u),
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by the definition of β−. Next, we observe that the objective value with
Â∗∗ is smaller than with Â because

Ā(u) > Â∗∗(u) > Â(u)

for u ∈U−3 and due to the fact that L is of ∨-type.
Therefore, we obtained a feasible solution with a smaller objective

function, which contradicts the optimality of Â. This contradiction im-
plies that U−2 must be empty, which is equivalent to (7.6).

Coming back to the discussion from the beginning of this section, we
formulate the following corollary in order to identify adjacent granules
associated to opposite decisions.

Corollary 7.1.2. Let loss function L be of ∨-type and let Â be a solution
of optimization problem (6.1) defined w.r.t. an IMTL triplet (T ,I,N ). Let
U−,U0,U+ be defined as in Theorem 7.1.1. Then, the following holds.

• For all u ∈U+, there is v ∈U−∪U0 such that R+
Â(v)

(v) is adjacent to

R−
coÂ(u)

(u).

• For all u ∈ U−, there is v ∈ U+ ∪U0 such that R−
coÂ(v)

(v) is adjacent

to R+
Â(u)

(u).

Proof. The corollary is a direct consequence of Theorem 7.1.1 and equa-
tions (7.3) and (7.4).

Note that Theorem 7.1.1 does not require for residual triplet (T ,I,N )
to be an IMTL triplet, hence it can lead to more general results that are
not related to the granular adjacency relationships.

7.2 Case of a classification problem

First, we consider a binary classification problem, i.e., we distinguish
two observed decision classes in U : Ā and coĀ which are now crisp (or-
dinary) sets. Notations Ā and coĀ will also be used for the fuzzy sets
that encode the corresponding decision class, i.e., Ā(u) = 1 if u ∈ Ā while
Ā(u) = 0 if u ∈ coĀ.

We first adjust Theorem 7.1.1 for the binary classification case.
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Proposition 7.2.1. Let loss function L be of ∨-type and let Â be a granu-
lar approximation of a crisp set A. Then, the following expressions hold:

∀u ∈ coA, Â(u) = max
w∈Ā

T (R̃(u,w), Â(w)),

∀u ∈ A, Â(u) = min
w∈coĀ

I(R̃(w,u), Â(w)).

Proof. Let U+, U0, U− be the sets defined in Theorem 7.1.1. Obviously,
it holds that U− ⊆ Ā and U+ ⊆ coĀ. We prove the first expression, while
the second one holds by analogy. The first expression is equivalent to

∀u ∈ coĀ, ∃v ∈ Ā; Â(u) = T (R̃(u,v), Â(v)).

Assume that u ∈ coĀ.
If u ∈ coĀ −U+ ⇔ Â(u) = 0, then from the granularity property we

have that for all v ∈ coĀ, Â(u) ≥ T (R̃(u,v), Â(v))⇒ Â(u) = T (R̃(u,v), Â(v)).
If u ∈ U+, then from Theorem 7.1.1, there is v ∈ U0 ∪U− such that

Â(u) = T (R̃(u,v), Â(v)). If v ∈U−, then also v ∈ Ā since U− ⊆ Ā. If v ∈U0,
then either Â(v) = 0 or Â(v) = 1. If Â(v) = 0 then we have that

Â(u) = T (R̃(u,v), Â(v)) = T (R̃(u,v),0) = 0,

which contradicts the assumption that u ∈ U+. Therefore, it holds that
Â(v) = 1, which, combined with the fact that v ∈U0, implies v ∈ Ā.

Corollary 7.2.1. Let loss function L be of ∨-type and let Â be a granular
approximation of a crisp set Ā w.r.t. an IMTL triplet (T ,I,N ). Then, the
following holds.

• For all u ∈ Ā, there is v ∈ coĀ such that R−
coÂ(v)

(v) is adjacent to

R+
Â(u)

(u).

• For all u ∈ coĀ, there is v ∈ Ā such that R+
Â(v)

(v) is adjacent to

R−
coÂ(u)

(u).

Proof. The corollary is a direct consequence of Proposition 7.2.1 and
equations (7.3) and (7.4).

For a solution Â of optimization problem (6.1), we have that Â(u) for
u ∈ U represents the degree up to which u belongs to decision class A,
while coÂ(u) represents the degree up to which u belongs to decision
class coA. Denote βu = Â(u) for u ∈ Ā and βu = N (Â(u)) for u ∈ coĀ. We
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refer to the new notation as an alternative notation. While Â(u) stands
for an estimated membership degree of u in A, βu is an estimated mem-
bership degree of u in the observed class of u (it can be either A or coA
if Ā(u) = 1 or Ā(u) = 0 respectively).

The alternative notation is important to extend the optimization pro-
cedure (6.1) to the multi-class classification case.

Proposition 7.2.2. Let L be of ∨-type and N -duality preserving and
symmetric. Then, in the classification case, problem (6.1) is equivalent
to

minimize
∑
u∈U

L(1,βu)

subject to T (βu ,βv) ≤N (R̃(v,u)), u ∈ Ā,v ∈ coĀ
0 ≤ βu ≤ 1, u ∈U.

(7.7)

Proof. With the new notation and for L being N -duality preserving, the
objective function of (6.1) becomes:∑
u∈Ā

L(1,βu) +
∑
u∈coĀ

L(0,N (βu)) =
∑
u∈Ā

L(1,βu) +
∑
u∈coĀ

L(βu ,1) =
∑
u∈U

L(1,βu).

The granularity constraints from (6.1) are now divided into 3 groups:

• Granularity constraints for pairs of objects u,v ∈ Ā:

βu ≥ T (R̃(u,v),βv).

• Granularity constraints for pairs of objects u,v ∈ coĀ:

N (βu) ≥ T (R̃(u,v),N (βv))⇔ βv ≥ T (R̃(v,u),βu).

• Granularity constraints for pairs of objects u ∈ Ā,v ∈ coĀ. In
this case, the granularity condition can be expressed using T -
disjointness (according to Proposition 7.1.2) as:

T (βu ,βv) ≤N (R̃(v,u)).

The goal is to show that the first two groups of constraints are redun-
dant. We first prove that the adjacency from Proposition 7.2.1 still
holds in problem (7.7), i.e., for every u ∈ Ā, there is v ∈ coĀ such that
βu = I(βv ,N (R̃(v,u))) and that for all v ∈ coĀ, there is u ∈ Ā such that
βv = I(βu ,N (R̃(v,u))). Using the residuation property, we have that

T (βu ,βv) ≤N (R̃(v,u))⇔ βu ≤ I(βv ,N (R̃(v,u))).
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If for some u and for all v it holds that βu < I(βv ,N (R̃(v,u))), then there
is ϵ > 0 such that replacing βu with βu + ϵ leads to a smaller objective
function since the loss function is of ∨-type. This leads to a contradic-
tion with the assumption that β is optimal. Again, using the residuation
property we have

T (βu ,βv) ≤N (R̃(v,u))⇔ βv ≤ I(βu ,N (R̃(v,u))).

Using the same arguments as above, we get the second equality.
Next, we prove that the granularity criteria for βu and βv for u,v ∈ Ā

are satisfied. Let w ∈ coĀ such that βu = I(βw,N (R̃(w,u))). From the
constraints, it holds that βv ≤ I(βw,N (R̃(w,v)))⇔ βw ≤ I(βv ,N (R̃(w,v))).
Then, we have that

βu = I(βw,N (R̃(w,u)))

≥ I(I(βv ,N (R̃(w,v))),N (R̃(w,u)))

≥ T (βv , I(N (R̃(w,v)),N (R̃(w,u))))

= T (βv , I(R̃(w,u), R̃(w,v)))

≥ T (βv , R̃(u,v)),

which is exactly the granularity condition for βu and βv . Now, let
u,v ∈ coĀ and let w ∈ Ā be such that βu = I(βw,N (R̃(u,w))). From the
constraints, it holds that βw ≤ I(βv ,N (R̃(v,w))). Using a similar reason-
ing as above, we conclude that the granularity condition is also satisfied
for βu and βv when u,v ∈ coĀ. Since the granularity constraints for pairs
of objects from the same class are a consequence of the T -disjointness
constraints, they can be omitted in the optimization problem.

The next goal is to extend optimization procedure with alternative
notation (7.7) to the ordinary (non-ordinal) multi-class classification.
For that purpose, we assume that R̃(u,v) is also a symmetric relation,
i.e., it is a T -equivalence. In such case, the granules in A and coA are
of the same type. We now consider crisp equivalence relation S on U
defined as S(u,v) = 1 if u and v are from the same decision class, and
S(u,v) = 0 otherwise. If u and v are from different decision classes
then I(R̃(u,v),S(u,v)) = N (R̃(u,v)), while I(R̃(u,v),S(u,v)) = 1 otherwise.
With relation S, the T -disjointness constraints from (7.7) may be refor-
mulated as

T (βu ,βv) ≤ I(R̃(u,v),S(u,v))), u,v ∈U. (7.8)
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Here, we need to note that S, as an equivalence relation, can distin-
guish among more than two decision classes. In other words, S can be
used to model multi-class classification problems. Bearing this in mind,
a multi-class extension of problem (7.7) can be formulated as:

minimize
∑
u∈U

L(1,βu)

subject to T (βu ,βv) ≤ I(R̃(u,v),S(u,v))), u,v ∈U
0 ≤ βu ≤ 1, u ∈U.

(7.9)

We name the result of problem (7.9) a multi-class granular approximation.
We need to stress that while the binary classification problem (7.7)

with a T -preorder relation is suitable for binary monotone classifica-
tion problems, i.e., classification problems where there exists a mono-
tone relationship between condition attributes and a decision attribute,
the problem (7.9) with a T -equivalence relation is suitable for ordinary
classification problems i.e., problems where such monotone relationship
cannot be inferred.

When we introduced the alternative notation, it was indicated that
we interpret βu as the estimated membership degree of u in the observed
decision class of u. This is justified by Proposition 7.2.2 and the equiv-
alence between (7.7) and (6.1). However, we would like to be able to
estimate the membership degree of u in every other decision class.

Assume that we have K decision classes denoted with A1, . . . ,AK . Let
Ā1, . . . , ĀK be observed decision classes from U that are pairwise disjoint
and for which the union is equal to U . Then, for u,v ∈U , relation S from
(7.9) is defined as S(u,v) = 1 if ∃k ∈ {1, . . . ,K} such that u ∈ Āk ∧ v ∈ Āk

and S(u,v) = 0 otherwise. Let βu be a solution of (7.9) with such S. We
have the following definition.

Definition 7.2.1. The estimated membership degree of object u ∈ U in
decision class Ak , denoted by Âk(u), is defined as follows:

Âk(u) =

βu , if u ∈ Āk ,

maxv∈Āk
T (R̃(u,v),βv) otherwise.

(7.10)

The first case from (7.10) is inferred from the interpretation of βu .
The second case is inferred from the second part of Proposition 7.2.1
together with the first case. In order to better clarify the second case,
we observe that Proposition 7.2.1 formulates the relationship between
estimated memberships of two instances in a single decision class when
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they are observed in two different decision classes. With such formula-
tion, we estimate membership degrees of instances in decision class Ak

using membership degrees of instances that were observed in class Ak

and expressed trough values βu .
The previous definition and the possibility to estimate all member-

ship degrees in all decision classes will be important in Chapter 8, where
they will be used to develop a multi-class classification model.

7.3 Calculation

In this section, we will use the following shorthand notation: M(u,v) =
I(R̃(u,v),S(u,v)). We start with an important property.

Proposition 7.3.1. Problem (7.9) has a feasible solution.

Proof. We construct a feasible solution. Let u1, . . . ,un be an ordering of
objects from U . We apply the following procedure.

1) βu1
is a random value from [0,1].

2) For 1 < i ≤ n, βui = min{I(βuj ,M(uj ,ui)); j < i}.

The adjacency property is obvious from the construction. We have
to prove the granularity property. Let ui and uk be two objects for
which k < i. Since βui = minj<i I(βuj ,M(ui ,uj )), it holds that βui ≤
I(βuk ,M(ui ,uk)). From the residuation property, this is equivalent to
T (βui ,βuk ) ≤M(ui ,uk).

For different IMTL fuzzy connectives and for different loss functions
L, problem (7.9) may take forms which cannot be efficiently solved in
practice. However, we will consider the problem for two symmetric loss
function discussed before: absolute error loss (2.11) or squared error loss
(2.10) and T isomorphic to the Łukasiewicz t-norm.

For such fuzzy connectives, the constraints of (7.7) are expressed as

ϕ−1(max(ϕ(βu) +ϕ(βv)− 1,0)) ≤M(u,v)

⇔ max(ϕ(βu) +ϕ(βv)− 1,0) ≤ ϕ(M(u,v))

⇔ ϕ(βu) +ϕ(βv) ≤ 1 +ϕ(M(u,v)),

for isomorphism ϕ and for u,v ∈ U . We introduce new variables
∀u ∈ U, αu = ϕ(βu) and ∀u,v ∈ U, Mϕ(u,v) = ϕ(M(u,v)). With the new
notations, the previous constraints may be expressed as

αu +αv ≤ 1 +Mϕ(u,v).
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For the scaled absolute error loss LAEL,ϕ, the objective function becomes∑
u∈U
|ϕ(1)−ϕ(βu)| = |U | −

∑
u∈U

αu ,

which leads to the optimization problem

maximize
∑
u∈U

αu

subject to αu +αv ≤ 1 +Mϕ(u,v), u,v ∈U
0 ≤ αu ≤ 1, u ∈U.

(7.11)

Optimization problem (7.11) can be solved efficiently using linear pro-
gramming techniques like the simplex method [133].

For the scaled squared error loss LSEL,ϕ, the objective function be-
comes ∑

u∈U
(ϕ(1)−ϕ(βu))2 =

∑
u∈U

(1−αu)2,

which leads to the optimization problem

maximize
∑
u∈U

(1−αu)2

subject to αu +αv ≤ 1 +Mϕ(u,v), u,v ∈U
0 ≤ αu ≤ 1, u ∈U.

(7.12)

Optimization problem (7.12) can be solved efficiently using
quadratic programming techniques like the simplex method variation
for quadratic programming [52].

Example 7.3.1. In Figure 7.3, the objects come from the well-known iris
dataset with, in this case, two features (petal length and petal width) and
three classes (setosa, versicolor and virginica). The multi-class granular
approximation is calculated by solving problem (7.12) for R̃ defined by
Eq. (3.3), and the granules are depicted using the obtained solution. In
this figure, we can observe how granules look on a larger scale (in this
case 150 objects).

Next, we provide an example with more complex shapes of granules.

Example 7.3.2. It is also easy to verify that the shape of the level sets of
granules, used to represent them in 2 dimensions, are in the case of fam-
ily (3.6) equal to the shape of equidistant points from the origin w.r.t.
metric d. In the case of the Mahalanobis distance, the shape of granules
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Figure 7.3: An example of the multi-class granular approximation on
iris dataset constructed with relation (3.3)

will be elliptical. The axis of such ellipses is controlled by the eigenval-
ues of Σ while the rotation is controlled by the eigenvectors of Σ.

In Figure 7.4, we present an example of granules from the multi-
class granular approximation calculated by solving (7.12) and by using
fuzzy relation (3.6) with d the Mahalanobis distance. The approximation
is calculated on the iris dataset with two attributes and three decision
classes as described above. The granules have an elliptical shape where
the ratio of width and height of the ellipses is 2 : 1. The rotation angle
in this case is 45◦.

In Figures 7.3 and 7.4, we can observe that some green points are
depicted without their granules and are completely surrounded by the
granules of red points. This basically means that the multi-class gran-
ular approximation values of these green points are smaller than 0.5
(hence, the granules cannot be drawn), and that the red granules are
covering those green points. In other words, the estimated memberships
degrees of those instances in class "versicolor" are larger than the esti-
mated membership degrees in class "virginica". Therefore, it is suitable
to change the labels of those green points into red. We can conclude that
the learning, characterized by optimization problems (7.11) and (7.12),

150



Chapter 7. Multi-Class Granular Approximation by means of T -disjoint
and Adjacent Fuzzy Granules

-0.47 1.0 2.48 3.96 5.43 6.91 8.39
petal length

-0.51

0.09

0.7

1.3

1.91

2.51

3.11

pe
ta

l w
id

th

setosa

versicolor

virginica

Figure 7.4: An example of the multi-class granular approximation on
iris dataset constructed with relation (3.6)

.

can be applied in classification problems as will be later examined in
Chapter 8.

7.4 Conclusion

We introduced the concepts of T -disjoint and adjacent fuzzy granules
and discussed their connection with the concepts of granularly repre-
sentable fuzzy sets and granular approximations introduced in the pre-
vious chapter. We showed that granules from a granularly representable
fuzzy set and its complement are mutually T -disjoint. Moreover, each
granule from a granular approximation has an adjacent granule from
the complement. Based on this property of granules, a granular approx-
imation concept was applied to the multi-class classification problem
leading to the definition of a multi-class granular approximation. At
the end, we explained how to calculate it efficiently in practice for the
Łukasiewicz t-norm and the other fuzzy connectives that it generates,
using linear and quadratic programming methods. In the next chapter,
the multi-class granular approximation is used to develop an instance-

151



Chapter 7. Multi-Class Granular Approximation by means of T -disjoint
and Adjacent Fuzzy Granules

based classification model.
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Chapter 8

Fuzzy Granular
Approximation Classifier

The goal of this chapter is to extrapolate the granular approximation to
new, unseen data. We design a classifier that estimates the membership
degree of a new instance in a given decision class based on the consis-
tency property. The name of the new classifier is Fuzzy Granular Approx-
imation Classifier - FGAC. The classifier is able to perform binary clas-
sification as well as multi-class classification natively. It belongs to the
family of instance-based classifiers since the prediction is made based
on the comparison of a new instance with those from the training set.

The main advantage of the classifier is its interpretability which re-
sides in the following two properties:

• The explanation of the classifier can be derived from the ability to
translate fuzzy logic into linguistic expressions.

• It is possible to identify training instances that serve as arguments
being in favour or against the prediction, as well as the strength of
these arguments.

The new model belongs to the family of locally interpretable models dis-
cussed in Section 1.4. For this family of models, we are able to identify
how a particular prediction was made. In this chapter, we compare the
prediction performance of FGAC with other locally interpretable mod-
els discussed in the same section, and we show what are the advantages
and disadvantages regarding the interpretability of the FGAC compared
to these models. We also provide a brief discussion on the difference
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between the interpretability of FGAC and methods that are used to in-
terpret black-box models.

The remainder of this chapter is structured as follows. In Section
8.1, we discuss the required preliminaries for understanding this chap-
ter. In Section 8.2, the novel Fuzzy Granular Approximation Classifier
(FGAC) is introduced together with a version enhanced with OWA op-
erators. Section 8.3 contains empirical comparisons between different
versions of FGAC and comparisons of FGAC with other ML models. In
Section 8.4, we explain why we consider FGAC as an interpretable model
and identify its advantages and disadvantages in terms of interpretabil-
ity compared with other locally interpretable ML models. Section 8.5
concludes the chapter.

8.1 Preliminaries

8.1.1 Datasets

We present the datasets that will be used in the experiments. We col-
lected 23 classification datasets that are available in the UCI Machine
Learning repository [40]. Their description is provided in Table 8.1.

name # of instances
# of numerical

attributes
# of nominal

attributes
# of classes

distribution of
instances among classes

australian 690 8 6 2 (383, 307)
balance 625 4 0 3 (288, 288, 49)
breast 277 0 9 2 (196, 81)
bupa 345 6 0 2 (200, 145)
cleveland 297 13 0 5 (160, 54, 35, 35, 13)
crx 653 6 9 2 (357, 296)
german 1000 7 13 2 (700, 300)
glass 214 9 0 6 (76, 70, 29, 17, 13, 9)
haberman 306 3 0 2 (225, 81)
heart 270 13 0 2 (150, 120)
ionosphere 351 33 0 2 (225, 126)
mammographic 830 5 0 2 (427, 403)
pima 768 8 0 2 (500, 268)
saheart 462 8 1 2 (302, 160)
spectfheart 267 44 0 2 (212, 55)

vowel 990 13 0 11
(90, 90, 90, 90, 90,

90, 90, 90, 90, 90, 90)
wdbc 569 30 0 2 (357, 212)
wisconsin 683 9 0 2 (444, 239)
ecoli 336 7 0 8 (143, 77, 2, 2, 35, 20, 5, 52)
dermatology 358 34 0 6 (111, 60, 71, 48, 48, 20)
tic-tac-toe 958 0 9 2 (332, 626)
vehicle 846 18 0 4 (218, 212, 217, 199)
sonar 208 60 0 2 (111, 97)

Table 8.1: Description of datasets
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8.1.2 Methods to compare with

The performance of FGAC will be compared with other (up to some
degree) locally interpretable classification models that were discussed
in Section 1.4.2. These methods are k-Nearest Neigbours [46], k-Fuzzy
Rough Nearest Neighbours [78, 110], Classification and Regression Tree
[109] and Learning Vector Quantization [87].

k-Nearest Neigbours (kNN) is a non-parametric lazy approach where
the decision for a new particular instance is obtained based on the ma-
jority decisions of the k closest instances w.r.t. a given distance metric.
The interpretability of this approach boils down to our ability to detect
the instances based on which the decision was made. However, the inter-
pretability fades as k increases because it becomes hard to understand
how a prediction was made based on a high number of other instances.

Classification And Regression Tree (CART) can be seen as a hierar-
chical rule-based model. In every step of the training phase, a split of
the training set of instances is performed based on a provided criterion.
In the first step, the whole set of instances is split, while in every subse-
quent step, a subset of the previous split is chosen and split. This way
of splitting creates a binary decision tree. Since every split is performed
on a specific attribute, a hierarchical set of rules can be induced in order
to explain a particular prediction made by CART. These rules enable the
interpretability of the model.

Learning Vector Quantization (LVQ) is a prototype based model,
where for each decision class a few points from the attribute space called
prototypes are learned. These prototypes do not necessarily coincide with
the training instances. After the prototypes are learned, a new instance
is classified based on the decision of the nearest prototype. The inter-
pretability of LVQ lies in the fact that one is able to identify the proto-
type responsible for the prediction.

k-Fuzzy Rough Nearest Neighbour (kFRNN) is a lazy approach were
for every new instance and for every decision class, we calculate its fuzzy
rough lower approximation degree, upper approximation degree and
take the mean as the membership degree in that decision class. Then,
the decision class is determined as the one for which the highest mem-
bership degree is achieved. kFRNN also invokes OWA operators as a
replacement for min and max operators in the lower and upper approx-
imations.
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8.1.3 Data preprocessing

First, we notice that some datasets from Table 8.1 have nominal features
which have to be encoded into numerical ones. For that purpose, one
hot encoding is used [51].

We already saw a kind of prepossessing data when defining the tri-
angular similarity in Eq. (3.2) where we divide the values of attribute q
by range(q). In this way, we ensure that the largest absolute difference
of values within one attribute is 1. Looking from the joint perspective
of all attributes, after dividing all of instances by range(q) for the corre-
sponding q, we translate all instances to a unit cube where the largest
Chebyshev distance, on which the T -equivalence is based in this case,
is equal to 1. With this transformation, we ensure that all attributes
contribute to the similarity equally and that γ = 1 is the default pa-
rameter where the T -equivalence is equal to 0 only for the most distant
instances. However, we add one practical adaptation here. The most
distant instances can be outliers, i.e., they do not necessarily follow the
distribution of the data and hence can be misleading in evaluating the
proper range. Because of that, as a more robust estimation of range(q),
we will use the difference between the .99 quantile, (very close to the
maximum) and the .01 quantile (very close to the minimum) to scale the
data. This transformation will be applied only when the T -equivalence
based on Chebyshev distance, i.e., the triangular similarity, is used.

Beside the Chebyshev distance, the T -equivalence based on the Eu-
clidean distance will also be used. As before where we scaled the in-
stances into a unit cube where the largest Chebyshev distance is one,
here we want to scale them such that the largest Euclidean distance will
be 1. We do that by dividing the values of each attribute by the stan-
dard deviation of that attribute’s values. This is done in order to ensure
an equal contribution of each attribute to the T -equivalence. Then, the
maximum Euclidean distance between instances is calculated and all the
instances in all attributes are divided by that value. In this way, we en-
sure that the largest possible distance is 1. As before, there is a possi-
bility that the largest distance is achieved for some outliers. Therefore,
we approximate the largest distance by a high quantile i.e., we calculate
all pairwise distances among instances, and we take the .99 quantile as
the approximation of the largest distance. This preprocessing will be
applied to all methods that are distance based including kNN, kFRNN
and LVQ.
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8.2 Prediction for unseen objects

In this section, we discuss how to classify a set of unseen instances U†

using optimization problem (6.1).

8.2.1 Binary classification

In this case, we need to assign a membership degree in set A to instances
from U†, where A refers to one of the classes. Solving optimization pro-
cedure (6.1) does not return an explicit prediction function f : U → [0,1]
which would assign a membership degree to any new and unseen in-
stance from U†. However, the membership degree of any new instance
has to satisfy the constraints from (6.1).

Let u† ∈ U†. The aim is to estimate the membership degree Â(u†).
Since unseen objects are represented with condition attributes, the val-
ues R̃(u†,u) and R̃(u,u†) can be calculated for all u ∈U and therefore, we
assume that they are known. From the constraints of (6.1), we conclude
that the conditions:

∀u ∈U ; T (R̃(u†,u), Â(u)) ≤ Â(u†),

and

∀u ∈U ; T (R̃(u,u†), Â(u†)) ≤ Â(u)⇔∀u ∈U ; Â(u†) ≤ I(R̃(u,u†), Â(u)),

have to be satisfied. The previous conditions can be rewritten as:

max
u∈U

T (R̃(u†,u), Â(u)) ≤ Â(u†) ≤min
u∈U

I(R̃(u,u†), Â(u)). (8.1)

Expression (8.1) determines a lower and an upper bound for mem-
bership degree Â(u†) which forms an interval to which the degree should
belong. First, we have to show that the interval is well defined.

Proposition 8.2.1. For any u† ∈U†, it holds that

max
u∈U

T (R̃(u†,u), Â(u)) ≤min
u∈U

I(R̃(u,u†), Â(u)).

Proof. An equivalent formulation of the demonstrandum is:

∀u,v ∈U, T (R̃(u†,u), Â(u)) ≤ I(R̃(v,u†), Â(v)). (8.2)

Using granular representability, T -transitivity and associativity of T , we
have that

Â(v) ≥ T (R̃(v,u), Â(u))
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≥ T (T (R̃(v,u†), R̃(u†,u)), Â(u))

= T (R̃(v,u†),T (R̃(u†,u), Â(u)).

The latter is equivalent to the formulation of the proposition due to the
residuation property.

Since the interval is well defined, the next step is to properly aggre-
gate the lower and upper bounds into a single value. Denote

Â(u†) = max
u∈U

T (R̃(u†,u), Â(u)), Â(u†) = min
u∈U

I(R̃(u,u†), Â(u)). (8.3)

LetA be an averaging operator. We construct the prediction of the mem-
bership degree of u† ∈ A as

Â(u†) =A(Â(u†), Â(u†)). (8.4)

The next question is how to construct the averaging operatorA. The
following development holds for IMTL triplets since it is based on the
duality property. Since Â(u†) represents the predicted membership de-
gree of u† to A, then N (Â(u†)) represents the membership degree to coA.
If (8.4) holds, then some sort of duality should also hold, i.e.,

N (Â(u†)) =A(coÂ(u†), coÂ(u†)), (8.5)

where

coÂ(u†) = max
u∈U

T (R̃(u,u†),N (Â(u))),

coÂ(u†) = min
u∈U

I(R̃(u†,u),N (Â(u))).

We have the following result.

Proposition 8.2.2. For every u† ∈U†, it holds that

coÂ(u†) = N (Â(u†)), coÂ(u†) = N (Â(u†)).

Proof. For the left equality, we have that

N (Â(u†)) = N (max
u∈U

T (R̃(u†,u), Â(u)))

= min
u∈U

N (T (R̃(u†,u), Â(u)))

= min
u∈U

I(R̃(u†,u),N (Â(u))) = coÂ(u†).
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The third equality holds from (2.6h). For the right equality, we have that

N (Â(u†)) = N (min
u∈U

I(R̃(u,u†), Â(u)))

= max
u∈U

N (I(R̃(u,u†), Â(u)))

= max
u∈U

T (R̃(u,u†),N (Â(u))) = coÂ(u†).

The third equality holds from (2.7b).

Following Proposition 8.2.2, we conclude that for an aggregation op-

erator A, it should hold that N (Â(u†)) =A(N (Â(u†)),N (Â(u†))), i.e., it is
sufficient thatA is N -invariant.

For an involutive negator N , let ϕN be an isomorphism between N
and Ns, i.e., N = ϕ−1

N (Ns(ϕN )). We define an averaging operator:

AN (x,y) = ϕ−1
N

(
ϕN (x) +ϕN (y)

2

)
. (8.6)

It is easily verifiable thatAN is indeed N -invariant.
Therefore, we predict the membership degree of u† as

Â(u†) =AN (Â(u†), Â(u†)). (8.7)

We first want to verify that the predicted membership degrees will
satisfy the consistency property. We can show that for the Łukasiewicz
triplet (TL,ϕ , IL,ϕ ,NL,ϕ).

Proposition 8.2.3. Let u†,v† ∈ U† and let Â(u†) and Â(v†) be the pre-
dicted membership degrees obtained with IMTL triplet (TL,ϕ , IL,ϕ ,NL,ϕ)
and (8.7). Then, it holds that

TL,ϕ(R̃(u†,v†), Â(v†)) ≤ Â(u†).

Proof. The expression from the proposition is equivalent to:

TL(R̃ϕ(u†,v†),ϕ(Â(v†))) ≤ ϕ(Â(u†)).

We have that:

TL(R̃ϕ(u†,v†),ϕ(Â(v†))) = TL

R̃ϕ(u†,v†),
ϕ(Â(v†)) +ϕ(Â(v†))

2
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≤
TL(R̃ϕ(u†,v†),ϕ(Â(v†))) + TL(R̃ϕ(u†,v†),ϕ(Â(v†)))

2
,

where the inequality holds from the D-convexity of TL. For the first
summand in the numerator of the last ratio, we have that

TL,ϕ(R̃(u†,v†), Â(v†))) = TL,ϕ(R̃(u†,v†),max
u∈U

TL,ϕ(R̃(v†,u), Â(u)))

= max
u∈U

TL,ϕ(R̃(u†,v†),TL,ϕ(R̃(v†,u), Â(u)))

= max
u∈U

TL,ϕ(TL,ϕ(R̃(u†,v†), R̃(v†,u)), Â(u))

≤max
u∈U

TL,ϕ(R̃(u†,u), Â(u)) = Â(u†)).

The second equality holds from the fact that TL,ϕ is left-continuous,
while the third one from the associativity of the t-norm. The inequal-
ity is a consequence of the TL,ϕ-transitivity of R̃. After applying ϕ to
both sides, we obtain TL(R̃ϕ(u†,v†),ϕ(Â(v†))) ≤ ϕ(Â(u†)). For the second
summand we have that

TL,ϕ(R̃(u
†,v†), Â(v†))) = TL,ϕ(R̃(u†,v†),min

u∈U
IL,ϕ(R̃(u,v†), Â(u)))

≤min
u∈U

TL,ϕ(R̃(u†,v†), IL,ϕ(R̃(u,v†), Â(u)))

= min
u∈U

IL,ϕ(IL,ϕ(R̃(u†,v†), R̃(u,v†)), Â(u))

≤min
u∈U

IL,ϕ(R̃(u,u†), Â(u)) = Â(u†)).

The first inequality holds from the fact that TL,ϕ is non-increasing, while
the second equality holds from Property (2.6e). The second inequality is
a consequence of the residuation property applied on TL,ϕ-transitivity of
R̃ (check the proof of Proposition 4.2.4). After applying ϕ to both sides

we obtain TL(R̃ϕ(u†,v†),ϕ(Â(v†))) ≤ ϕ(Â(u†)).
Using the obtained inequality, we have that

TL(R̃ϕ(u†,v†),ϕ(Â(v†))) + TL(R̃ϕ(u†,v†),ϕ(Â(v†)))

2

≤
ϕ(Â(u†)) +ϕ(Â(u†))

2
= ϕ(Â(u†)).
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After obtaining the predicted membership degree, we have to de-
fuzzify it, i.e., to obtain a crisp binary prediction. We return prediction
1, i.e., u† belongs to decision A if Â(u†) > N (Â(u†)), and prediction 0
otherwise. Please note that when Â(u†) = N (Â(u†)), we have a tie and
any prediction can be assigned. However, we will assign prediction 0
in order to keep the deterministic nature of the prediction model. The
condition Â(u†) > N (Â(u†)) can be rewritten as

Â(u†) > N (Â(u†))⇔ Â(u†) > ϕ−1
N (1−ϕN (Â(u†)))

⇔ ϕN (Â(u†)) > 1−ϕN (Â(u†))

⇔ ϕN (Â(u†)) >
1
2
⇔ Â(u†) > ϕ−1

N (0.5).

We obtain that value ϕ−1
N (0.5) is the threshold that determines the deci-

sion.
In order to speed up the calculation, we can use the following propo-

sition.

Proposition 8.2.4. In the binary classification case, it holds that

Â(u†) = max
u∈Ā

T (R̃(u†,u), Â(u)), Â(u†) = min
u∈coĀ

I(R̃(u,u†), Â(u)). (8.8)

Proof. An equivalent formulation of the demonstrandum, which holds
from the granularity property, is

∃u ∈ Ā; Â(u†) = T (R̃(u†,u), Â(u)), ∃u ∈ coĀ; Â(u†) = I(R̃(u,u†), Â(u)).
(8.9)

We prove the first equality from (8.9). If the maximum from (8.3) is
achieved for some u ∈ Ā, the equality is true. Otherwise, we assume that
for some u ∈ coĀ, it holds that

Â(u†) = T (R̃(u†,u), Â(u)).

From Proposition 7.2.1, there exists some v ∈ Ā such that Â(u) =
T (R̃(u,v), Ā(v)). We have that

Â(u†) = T (R̃(u†,u), Â(u))

= T (R̃(u†,u),T (R̃(u,v), Ā(v)))

= T (T (R̃(u†,u), R̃(u,v)), Ā(v))

≤ T (R̃(u†,v), Ā(v)).
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The inequality holds from the T -transitivity property. The opposite in-
equality holds from the granularity property.

For the second inequality from (8.9), assume that the minimum from
(8.3) is achieved for some u ∈ Ā. It holds that

Â(u†) = I(R̃(u,u†), Â(u)).

From Proposition 7.2.1, we find that there exists some v ∈ coĀ such
that Â(u) = I(R̃(v,u), Ā(v)). We have that

Â(u†) = I(R̃(u,u†), Â(u))

= I(R̃(u,u†), I(R̃(v,u), Ā(v)))

= I(T (R̃(v,u), R̃(u,u†)), Ā(v))

≥ I(R̃(v,u†), Ā(v)).

The third equality holds because of (2.6f), while the inequality follows
from the T -transitivity property. The opposite inequality holds from the
granularity property which completes the proof.

8.2.2 Multi-class classification

For the multi-class classification case, we recall the notation from Chap-
ter 7 where we have K decision classes denoted with A1, . . . ,AK . Using
optimization procedure (7.9) and Eq. (7.10) we obtain estimated mem-
bership degrees Âk(u) for each training instance u ∈U and each decision
class k.

Using the same reasoning as for binary classification, for k ∈ {1, . . . ,K}
and using Proposition 8.2.4, a lower and upper bound of a membership
degree of u† in Ak is obtained as

Âk(u†) = max
u∈Āk

T (R̃(u†,u), Âk(u)), Âk(u†) = min
u∈U−Āk

I(R̃(u,u†)), Âk(u)),

while the prediction of the membership degree is obtained using averag-
ing operator (8.6). The decision class is then determined using formula:

decision(u†) = argmax
k∈{1,...,K}

A(Âk(u†), Âk(u†)).

162



Chapter 8. Fuzzy Granular Approximation Classifier

8.2.3 Soft minimum and maximum

From Eqs. (8.1) and (8.4) we observe that the prediction of the member-
ship degree of u† is obtained based on the extreme values, i.e., the maxi-
mum from the left inequality and the minimum from the right inequal-
ity. In order to utilize less extreme values, we replace max and min with
OWA operators. One motivation for using OWA operators and softening
minimum and maximum in general is to reduce the influence of possible
outliers in the dataset. The extreme values may correspond to outliers
which make the predicted membership degree unreliable. Hence, we
wish to explore if using OWA operators will increase the performance of
the classification model.

For given weight vectors WL and WU that correspond to soft min and
max operators respectively, we have the following definitions:

Â
WU (u†) = OWAWU

{T (R̃(u†,u), Â(u));u ∈U },

Â
WL

(u†) = OWAWL
{I(R̃(u,u†), Â(u));u ∈U },

while the estimated membership is obtained in the same way as in Eq.
(8.4). From the definition of OWA, for all u† ∈U† it holds that

Â
WU (u†) ≤ Â(u†), Â

WL
(u†) ≥ Â(u†),

which further implies that Â
WU (u†) ≤ Â

WL
(u†), i.e., the bounds are well-

defined.
The next question is if the duality expressed in analogous form as in

Eq. (8.5) and for N -invariant averaging operatorA will hold for

coÂ
WU (u†) = OWAWU

{T (R̃(u,u†),N (Â(u)));u ∈U },

coÂ
WL

(u†) = OWAWL
{I(R̃(u†,u),N (Â(u)));u ∈U }.

If we consider the proof of Proposition 8.2.2, we conclude that the an-
swer to the previous question depends on whether OWA operators and
negator N are interchangeable. This is not always the case, but we do
have the following proposition.

Proposition 8.2.5.

Let (T ,I,N ) be a residual triplet for which N is the standard negator
and let WU and WL be complementary vectors of weights. Then, it holds
that

coÂ
WL

(u†) = N (Â
WU (u†)), coÂ

WU (u†) = N (Â
WL

(u†)).
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Proof. We prove the first equality, while the second one holds by analogy.
Let u1, . . . ,un be an ordering of instances from U such that

T (R̃(u†,u1), Â(u1)) ≥ · · · ≥ T (R̃(u†,un), Â(un)).

Applying negator N to the previous inequalities and using the fact that
N is decreasing, together with property (2.6h), we have that

I(R̃(u†,u1),N (Â(u1))) ≤ · · · ≤ I(R̃(u†,un),N (Â(un))).

Also,

N (Â
WU (u†)) = 1−

n∑
u=1

(WU )i · T (R̃(u†,ui), Â(ui)))

=
n∑

u=1

(WU )i · (1− T (R̃(u†,ui), Â(ui)))

=
n∑

u=1

(WU )i · I(R̃(u†,ui),N (Â(ui)))

=
n∑

u=1

(WU )n−i+1 · I(R̃(u†,un−i+1),N (Â(un−i+1)))

=
n∑

u=1

(WL)i · I(R̃(u†,un−i+1),N (Â(un−i+1))) = coÂ
WL

(u†).

The third equality holds form property (2.6h) and the fact that N is the
standard negator. In the fourth equality, we replaced indices i with in-
dices n− i + 1 and applied the complementarity of WU and WL.

Proposition 8.2.5 states that if A is N -invariant for N the standard
negator, the duality analogous to Eq. (8.5) holds. An example of such an
averaging operator is the arithmetic mean.

8.3 Experiments

In this section, we evaluate the performance of FGAC from various per-
spectives. First, we evaluate the behaviour of granular approximations
and FGAC on artificially generated simple datasets to get an empirical
impression of how the granular approximations and FGAC handle in-
consistencies. In the next step, we compare the prediction performance
of different versions of the FGAC as well as OWA-based FGAC using real
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data from Table 8.1, together with the encoding of nominal attributes ex-
plained in Subsection 8.1.3. In the last step, we compare the prediction
performance of the best version of FGAC with the other locally inter-
pretable ML methods from Section 8.1.2.

We implemented the granular approximations, FGAC and all the
experiments in the Python programming language [124]. To calculate
granular approximations, we use the aforementioned symmetric loss
functions: absolute error loss (AEL) (2.11) and squared error loss (SEL)
(2.10). The symmetry of the loss functions is important, since we calcu-
late multi-class granular approximations for the purpose of the multi-
class classification. In the current version, we used the Łukasiewicz
t-norm and the corresponding IMTL triplet in order to evaluate the
estimated membership degree (8.4). To solve optimization problems
(7.11) and (7.12), we use the Mosek solver [9] and its API for Python.
The code for the experiments is available at: https://github.com/

markopalangetic/FGAC_experiments.
For every model, we select one hyperparameter which will be tuned.

Hence, the hyperparameter value for which the model performs best
will be chosen. The interpretation of these hyperparameter values is
that they control the bias-variance trade-off, i.e., their tuning is used to
balance between overfitting and underfitting.

For FGAC, γ will be the hyperparameter that is tuned. We provide an
example to illustrate that γ is indeed a parameter that balances between
bias and variance.

= 10.0 = 1.5 = 0.2

Figure 8.1: Illustrations of decision spaces for different γ

In Figure 8.1, we generated 100 synthetic data instances for a binary
classification problem to illustrate the decision areas for different values
of parameter γ . The dataset was generated using the SCIKIT-LEARN
package and the "make_classification" function. The control of the ran-
dom number generator is achieved with the command "rand_state=10".

In the left hand image in Figure 8.1, we can see clear overfitting for
γ = 10, as an example of a high value, where the learning process is
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affected by the noise in data. As γ decreases, we can see that the deci-
sion boundary (the line that separates the two decision classes) becomes
smoother and simpler (middle image and right hand image in Figure
8.1) which indicates a less noise-affected learning process. For a very
small γ parameter (right hand image), we observe an even simpler de-
cision line which may be a sign of underfitting and indicates that the
model did not properly capture the relationship between the condition
attributes and the decision attribute.

8.3.1 Simulation study on FGAC and the granular
approximations

Before we compare FGAC with other ML methods on real data, we want
to observe how it operates and how granular approximations emerge in
a more controllable environment. In particular, we create a binary clas-
sification problem with artificially generated data, and control the level
of inconsistency to observe how FGAC behaves for different levels of in-
consistency. In the case of fuzzy similarity (T -equivalence), the level of
inconsistency is determined by the non-separability of data instances.
The general separability is not formally defined, but we may say that
data instances in a classification problem are separable if there exists a
simple manifold that separates instances of different decision classes. If
there is no such manifold, then the instances from different classes are
mixed in the area of the decision boundary, which makes their classifi-
cation more challenging. If instances from different classes are mixed in
the area of the decision boundary, the amount of inconsistency will be
larger, since there will be many instances from different classes that are
close, and therefore highly similar w.r.t. the given T -equivalence.

In this example, the data is generated in the following way. The in-
stances of two decision classes are generated from two multivariate nor-
mal distributions with means (0, . . . ,0) and (1, . . . ,1) respectively. The
size of the mean vectors is equal to the number of attributes we have
(dimensionality). We ran the experiment for different numbers of at-
tributes, i.e., different dimensions.

The covariance matrix is in both cases the identity matrix multiplied
by a constant variance. This variance, or more precisely the standard
deviation (the square root of the variance) will be manipulated in order
to increase the inconsistency among instances. Namely, when the stan-
dard deviation is higher, the instances of two classes are more dispersed,
which leads to a situation where the instances of the two classes will in-
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Figure 8.2: Position of instances when the standard deviation is changed

teract more, i.e., they are more mixed in the area of the decision bound-
ary. We see an example in Figure 8.2, where data instances are generated
for different values of the standard deviation, which is indicated in the
title of every subfigure. We observe that when the standard deviation
is 0.3, the instances are almost separable, while increasing the standard
deviation leads to instances from different decision classes getting more
mixed in the area of the decision boundary, i.e., we expect to observe
more inconsistency. We run the experiments with a fixed number of in-
stances which is 1000, i.e., 500 instances per class. We generate data
for standard deviations from the set of values {0.3,0.6,0.9,1.2} and for
numbers of attributes from the set of values {3,10,30,100}. Therefore,
we will consider 16 different combinations. For every such combination,
we generate data instances 20 times in order to provide more credibility
to the results. The granular approximations are calculated for Euclidean
and Chebyshev similarities and for AEL and SEL as loss functions. For
each generated dataset, we split it into train data and test data, where
the test data compose 20% of the generated data. On the train data,
we tune the parameter γ that appears in the T -equivalences. This is
obtained using grid search and 5-fold cross validation. After prelimi-
nary tests, we decided to tune γ from the following 11 possible values:
{1/5,1/3,1/2,2/3,1,1,25,1.6,2,3,5,10}. After the optimal γ is obtained,
the granular approximation is calculated on the complete train data us-
ing the optimal γ . Then, FGAC is applied to the test data, i.e., the mem-
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bership degrees are estimated using Eq. (8.7) and compared with the
actual decision labels. The evaluation metric on the test data is the one
that was used for the training, e.g., if the AEL is used for training, then
the performance on the test data will be evaluated using AEL.
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Figure 8.3: Simulation results
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The results are shown in Figure 8.3. We have 8 images organized in
a 4×2 grid. In every row, a different combination of loss functions (AEL
or SEL) and fuzzy similarity (Euclidean or Chebyshev) is used. The com-
bination is indicated in the title of each image. The left hand column of
images represents scores on the training data. Namely, after the training
is performed on the train data, the score (AEL or SEL) is calculated on
both training and test instances. The score on training instances repre-
sents the difference between granular approximations and the original
fuzzy set (which is crisp in this case), i.e., the optimal risk calculated
in Eqs. (6.2) and (6.4). With these scores, we can observe the smallest
possible difference between the original labels and a granularly repre-
sentable set w.r.t. the given loss function. The score on the test instances
shows how different the predicted membership degrees are compared
with the actual crisp decisions. On all images, we see that the risk is
larger for larger standard deviation, which is in line with the reason-
ing related to Figure 8.2. The next thing we observe is that the training
risk is smaller for a larger number of attributes. This is also expected
from the geometrical perspective. The generated instances are with a
high probability positioned inside a ball of radius equal to 3 times the
standard deviation (a well-known statistical rule, [73]). When the di-
mensionality is increased, the intersection of the balls with centers in
(0, . . . ,0) and (1, . . . ,1) and radius equal to 3 times the standard deviation
will be smaller relative to the volume of balls. Therefore, the number
of instances from different decision classes that are mixed in the area of
the decision boundary will be smaller, i.e., the amount of inconsistency
is smaller. This further implies that the calculated training risk will be
smaller. However, we observe the general increase of risk on the test
data when the number of attributes is larger. This means that FGAC can
suffer from the curse of dimensionality, i.e., for higher dimensions we
require more data to generalize properly or, in other words, FGAC tends
to overfit in high dimensions. The last thing we observe is the smaller
variance on the test data. While there are fluctuations in the training
risk for different datasets (the size of a single box plot), the test risk is
more consistent. One possible conclusion from this is that FGAC as a
method is more stable than the calculation of granular approximations.

8.3.2 Comparison on the real data - setup

Next, we compare different versions of FGAC between themselves, as
well as with the other locally interpretable ML model.
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As we mentioned before, one hyperparameter will be tuned for ev-
ery model. For the kNN approach, the obvious choice is the number
of neighbours k. For the decision tree classifier, we use the maximum
depth of the decision tree, while for the LVQ, we choose the number of
prototypes trained per decision class.

For the kFRNN models, we are faced with two options. One option
is a parameter which controls the number of non-zero instances in OWA
vectors. The approach is motivated by [111]. The other approach is
the parameter γ from the fuzzy similarity that is used by both kFRNN
and FGAC. We choose the first option for two reasons. The first one is
that the developers of the kFRNN never used a parameterized version
of the fuzzy similarity relation (it was not necessarily a T -equivalence
in that case). The second one, which is more important, is that using
the γ parameter, while applying OWA-weights on all instances (without
zero weights), will lead to a non-interpretable version of kFRNN which
makes it incomparable with FGAC in this setting.

In the chosen case, only the first k values of WU (last k values of WL)
are non-zero. In these experiments, the non-zero values will be those
introduced in Section 2.4 (additive, exponential, inverse additive).

We observed that the methods that are based on empirical risk mini-
mization, like FGAC and LVQ are more sensitive to class imbalance that
exists in some data sets. Class imbalance is the situation where there is
a significantly larger number of instances that are assigned to one deci-
sion class than instances assigned to a different one. The larger class is
called the majority class while the smaller is the minority class. Because
of the class imbalance, an additional preprocessing is desirable.

The most suitable way to handle this for the FGAC is to add extra
weight to summands in the empirical risk that correspond to the minor-
ity class or classes. However, that would induce an additional advantage
to the methods that are based on the empirical risk minimization com-
pared to the other methods. In order to ensure the fairness in the com-
parison of the ML models, we use the random oversampling method that
can be applied to all of them. With random oversampling, we randomly
sample instances from the minority classes and add copies of them to
the dataset until all decision classes from the training set have an equal
amount of instances that is equal to the size of the majority decision
class. However, random oversampling may negatively affect some meth-
ods and therefore it will not be applied by default; we will keep it as an
additional hyperparameter, i.e., the method will decide by itself during
the tuning phase if it will apply the random oversampling or not. To
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implement the random oversampling, the Python package Imblearn is
used.

8.3.3 Comparison of the different versions of FGAC

In order to evaluate the performance of each model, 5-fold cross-
validation is used, i.e., the models are trained on 4 folds and evaluated
on the fifth one. During each of 5 cross-validation phases, parameter γ
is tuned on 4 folds dedicated to training using another, internal 5-fold
cross validation. That means that those 4 folds are merged and then
split into 5 new folds in order to tune the parameter. This is usually
called nested cross-validation. The performance evaluation metric used is
the balanced accuracy. Parameter γ will be tuned using the same values
as before: {1/5,1/3,1/2,2/3,1,1,25,1.6,2,3,5,10}. The fine-tuning and
cross-validation are implemented in the Scikit-Learn package. The ini-
tial seed for the random number generator is set with "rand_state=10" in
every situation where required. The names of the columns in the table
are composed from the type of the loss function used ("ael" or "sel"), the
type of the similarity relation ("Chebyshev" or "Euclidean").

We test if their performance is significantly different from each other.
For that purpose, we use the non-parametric Friedman chi-squared test
[50]. The null hypothesis of this test is that the performances of the
models is indifferent. After running the test, we get that the p-value is
of order 10−8, which means that we strongly reject the null hypothesis,
i.e., the models are significantly different. The next step is to recognize
the best model and to test if it is significantly better than the others. If
we look at the average rankings of the models, we have the following:

ael_Chebyshev ael_Euclidean sel_Chebyshev sel_Euclidean
average rank 3.63 2.109 2.804 1.457

We observe that the model which uses squared error loss and Eu-
clidean similarity has the best average ranking. We hypothesize that
this model is the best performing one and we test if this is statistically
significant. We use Holm post-hoc analysis [72] as well as its adaptation
for comparing machine learning models from [38]. Following the criti-
cism of [38] expressed in [15], we use the Wilcoxon test for the pairwise
comparisons. After the Holm procedure is applied, the obtained final p-
value is 0.007, which means that we can confidently claim that the best
ranked model is significantly the best performing one. The final p-value
in this case is obtained as a maximum of the adjusted p-values calculated
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during the Holm procedure. We will use the best performing model as
a representative version of the FGAC in the comparison with the other
ML models.

The next step is to test how the use of OWA operators affects the per-
formance of FGAC. In Table 8.3, we list the results of OWA-based FGAC
when min and max are replaced with OWA operators with weights from
Section 2.4. As before, the results are given for both SEL and AEL
loss functions, as well as for both Chebyshev and Euclidean similarities.
First, we test if the 4 models for fixed OWA weights perform differently
from each other using the Friedman test. We obtain the following re-
sults:

weight: add exp invadd
p-value: 1.74 · 10−5 4.8 · 10−6 1.42 · 10−6

All p-values are very close to 0 which means that the performances
are indeed significantly different. If we calculate the average rankings,
we find:

ael_Chebyshev ael_Euclidean sel_Chebyshev sel_Euclidean
add 3.217 2.022 3.087 1.674
exp 3.457 2.196 2.783 1.565
invadd 3.609 2.087 2.652 1.652

As in the non-OWA version of the FGAC, we observe that the best
average ranking is achieved for the SEL loss function and the Euclidean
similarity. As before, using post-hoc analysis we test if the performance
of the best ranked model is significantly better than others. We obtain
the following p-values:

add exp invadd
p-value: 0.112 0.035 0.012

From these p-values, we can conclude that for the exponential and
inverse additive weights, we can confidently say that the best ranking
model performs better than the other models. For the additive weights,
the p-value is slightly higher than the usual significance level (0.05). In
any case, we will use the best ranking models as representatives of the
particular OWA-weights in further comparisons.

In the next step, we compare the performances of the chosen models
for different OWA weights with the chosen FGAC model from before. To
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recall, we have 4 different models, 3 with different OWA weights (add,
exp, invadd) where all 4 models use the SEL loss and Euclidean similar-
ity. After performing the Friedman test on their performances, we get a
p-value equal to 0.396 which can be considered high. In other words, we
confidently claim that we do not have enough evidence to conclude that
using OWA-operators instead of extrema operators will lead to different
results. The reason for that may lie in the fact that the learning process
is based on the constraints that use extrema instead of OWA operators.
The latter are only used in the prediction phase and not in the learning
phase. In other words, the learning phase is the key part and adding the
OWA operators during the prediction phase cannot improve the results.

For this reason, we exclude OWA-based FGAC from the further anal-
ysis.
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name fgac_ael_triangular fgac_ael_quadratic fgac_sel_triangular fgac_sel_quadratic

australian 0.862 0.836 0.868 0.848
breast 0.514 0.634 0.520 0.653
crx 0.729 0.775 0.767 0.778
german 0.506 0.665 0.520 0.666
saheart 0.649 0.687 0.652 0.675
ionosphere 0.931 0.942 0.929 0.937
mammographic 0.792 0.802 0.794 0.801
pima 0.700 0.717 0.709 0.727
wisconsin 0.955 0.973 0.962 0.972
vowel 0.957 0.964 0.961 0.975
wdbc 0.902 0.926 0.900 0.928
balance 0.640 0.678 0.629 0.718
glass 0.596 0.630 0.638 0.639
cleveland 0.319 0.313 0.324 0.315
bupa 0.550 0.564 0.598 0.603
haberman 0.589 0.644 0.613 0.610
heart 0.768 0.807 0.783 0.815
spectfheart 0.585 0.635 0.735 0.741
dermatology 0.918 0.950 0.935 0.950
ecoli 0.665 0.683 0.685 0.716
tictactoe 0.500 0.726 0.500 0.884
vehicle 0.676 0.695 0.685 0.696
sonar 0.771 0.804 0.764 0.876

Table 8.2: FGAC results

name
fgac_ael

Chebyshev_add
fgac_ael

Euclidean_add
fgac_sel

Chebyshev_add
fgac_sel

Euclidean_add
fgac_ael

Chebyshev_exp
fgac_ael

Euclidean_exp
fgac_sel

Chebyshev_exp
fgac_sel

Euclidean_exp
fgac_ael

Chebyshev_invadd
fgac_ael

Euclidean_invadd
fgac_sel

Chebyshev_invadd
fgac_sel

Euclidean_invadd

australian 0.854 0.856 0.853 0.840 0.856 0.846 0.864 0.833 0.858 0.850 0.870 0.845
breast 0.514 0.571 0.516 0.625 0.526 0.645 0.520 0.655 0.514 0.627 0.520 0.648
crx 0.729 0.773 0.728 0.819 0.729 0.758 0.764 0.777 0.729 0.767 0.748 0.779
german 0.504 0.695 0.555 0.650 0.504 0.683 0.525 0.667 0.504 0.689 0.534 0.681
saheart 0.654 0.672 0.668 0.675 0.646 0.674 0.667 0.686 0.660 0.677 0.664 0.684
ionosphere 0.925 0.940 0.929 0.942 0.931 0.940 0.929 0.937 0.931 0.940 0.929 0.937
mammographic 0.792 0.803 0.788 0.816 0.793 0.805 0.791 0.808 0.789 0.805 0.793 0.810
pima 0.710 0.715 0.702 0.699 0.705 0.716 0.709 0.734 0.711 0.715 0.699 0.708
wisconsin 0.942 0.966 0.950 0.962 0.959 0.972 0.956 0.969 0.953 0.970 0.954 0.963
vowel 0.952 0.953 0.954 0.966 0.957 0.960 0.965 0.972 0.956 0.960 0.957 0.971
wdbc 0.893 0.909 0.889 0.909 0.903 0.926 0.904 0.926 0.897 0.920 0.898 0.919
balance 0.800 0.724 0.800 0.759 0.742 0.717 0.719 0.649 0.733 0.700 0.746 0.684
glass 0.570 0.575 0.549 0.574 0.587 0.635 0.624 0.624 0.562 0.584 0.604 0.660
cleveland 0.334 0.394 0.306 0.348 0.313 0.333 0.318 0.325 0.325 0.337 0.337 0.356
bupa 0.558 0.585 0.532 0.552 0.580 0.577 0.613 0.589 0.571 0.582 0.546 0.586
haberman 0.619 0.612 0.597 0.622 0.611 0.591 0.614 0.626 0.583 0.613 0.623 0.609
heart 0.776 0.825 0.784 0.829 0.762 0.810 0.776 0.837 0.765 0.815 0.774 0.838
spectfheart 0.523 0.518 0.637 0.616 0.569 0.628 0.720 0.732 0.546 0.546 0.687 0.691
dermatology 0.917 0.964 0.932 0.967 0.932 0.950 0.943 0.954 0.940 0.950 0.944 0.955
ecoli 0.653 0.692 0.698 0.712 0.668 0.684 0.712 0.714 0.634 0.685 0.709 0.693
tictactoe 0.500 0.801 0.500 0.956 0.500 0.773 0.500 0.895 0.500 0.797 0.500 0.944
vehicle 0.666 0.676 0.682 0.692 0.675 0.695 0.678 0.701 0.672 0.689 0.697 0.706
sonar 0.730 0.740 0.713 0.810 0.766 0.783 0.762 0.881 0.738 0.773 0.747 0.866

Table 8.3: FGAC results for different OWA weights
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8.3.4 Comparison of FGAC with other ML methods

We first discuss how the hyperparameters are tuned. We already stated
previously that every model depends on one parameter and we tune that
parameter using 5-fold cross-validation. They are selected from a finite
set of values based on their performance. In the following table, we
list the models and the corresponding sets of possible values of their
hyperparameters.

models possible hyperparameter values
FGAC {1/5, 1/3, 1/2, 2/3, 1, 1,25, 1.6, 2, 3, 5, 10 }
kFRNN { all, 1, 3, 5, 10, 15, 20, 25, 30, 40, 50}
kNN {1, 3, 5, 7, 10, 15, 20, 25, 30, 40, 50}
LVQ {1,2,3,4,5,6,7,8, 9,10, 11}
CART {2,3,4,5,6,7,8, 9,10, 11,12}

The possible values are constructed based on the preliminary analy-
sis. Every model is provided with 11 possible hyperparameters. Value
"all" in the kFRNN hyperparameters set indicates that the OWA weights
were applied to all instances. Also, after preliminary analysis, we con-
cluded that the best performing version of kFRNN is the one with OWA
additive weights and that uses Euclidean similarity and hence, it is used
in the comparison process as the representative of kFRNN.

In Table 8.4, we show the performances of the models. In every row,
with the black bold font, we label the best performing model. After
running the Friedman test on the results, we obtain a p-value equal to
0.0235, which implies that there is some evidence to claim that the mod-
els are significantly different.

In the next table, we show the average rankings of these models.

models FGAC kFRNN kNN LVQ CART
average rank 2.565 3.696 2.37 2.978 3.391

First, we observe that FGAC has the second best performance based
on the average rank; the only better model is kNN. However, if we ap-
ply the post-hoc test to check if kNN is indeed better than all the other
methods, the obtained p-value is 0.3, i.e., we do not have evidence to
claim that.
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name FGAC kFRNN kNN LVQ CART

australian 0.848 0.816 0.867 0.834 0.853
breast 0.653 0.639 0.632 0.644 0.637
crx 0.778 0.732 0.835 0.760 0.861
german 0.666 0.612 0.683 0.684 0.648
saheart 0.675 0.672 0.680 0.674 0.624
ionosphere 0.937 0.850 0.830 0.853 0.879
mammographic 0.801 0.800 0.817 0.802 0.829
pima 0.727 0.711 0.745 0.719 0.702
wisconsin 0.972 0.963 0.970 0.970 0.953
vowel 0.975 0.977 0.986 0.809 0.785
wdbc 0.928 0.936 0.956 0.937 0.929
balance 0.718 0.793 0.717 0.615 0.596
glass 0.639 0.609 0.641 0.572 0.654
cleveland 0.315 0.308 0.339 0.328 0.254
bupa 0.603 0.611 0.628 0.602 0.623
haberman 0.610 0.593 0.595 0.632 0.643
heart 0.815 0.778 0.829 0.841 0.754
spectfheart 0.741 0.694 0.737 0.662 0.642
dermatology 0.950 0.934 0.944 0.953 0.959
ecoli 0.716 0.743 0.677 0.712 0.598
tictactoe 0.884 0.900 0.877 0.973 0.930
vehicle 0.696 0.681 0.710 0.622 0.695
sonar 0.876 0.757 0.862 0.825 0.709

Table 8.4: Comparison of the FGAC with the other ML models based on
the balanced accuracy

kNN kFRNN LVQ CART
p-values: 0.3 0.016 0.134 0.065

Table 8.5: Pairwise comparison of the FGAC with other models

We check if FGAC is significantly different from the other methods.
If we apply the Wilcoxon test to make pairwise comparisons of FGAC
with the remaining models, we obtain the p-values in Table 8.5. We ob-
serve that FGAC is only significantly better than kFRNN. If we run the
post-hoc analysis to check if FGAC is better than all the others models
except the kNN, the obtained p-value is 0.134 which means that we can-
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not support such a claim.
In the next section, we discuss the greatest advantage of the FGAC -

its interpretability.

8.4 Interpretability

In this section, we discuss the interpretability of the proposed FGAC
method and we compare it with the interpretability of the other meth-
ods. We first discuss the method from the fuzzy logic perspective, i.e., its
possibility to be translated into linguistic expressions. These linguistic
expressions can provide insight about how the model works as a whole,
but since they do not interpret the parameters of the model, we cannot
consider this as a modular interpretability.

The second part of the section is related to the local interpretability
of FGAC. We try to identify arguments, which are instances from the
training set, that are “in favour" or “against" the estimated membership
degree of a new instance. In this way, we show that sometimes other
instances can be used to explain a particular prediction and we discuss
when this is suitable. At the end, we compare the local interpretability
of FGAC with the ML methods from Section 8.1.2.

8.4.1 Fuzzy logic and linguistics

The goal of this section is to interpret the expression (8.1) and its multi-
class version, i.e., we explain these inequalities by utilizing the ability
to express the fuzzy connectives using plain words. We interpret a T -
equivalence relation as “similarity”, t-norms as the “and” connective
and implicators as IF-THEN rules.

First, we interpret the well-definedness of the bounds expressed
through Proposition 8.2.1, as well as the proof of the proposition.

An equivalent form of the well-definedness of the bounds is given in
Eq. (8.2). For some u,v ∈U , the interpretation of that expression is:

IF u ∼ u† and u ∈̃A THEN IF v ∼ u† THEN v ∈̃A, (8.10)

where ∼ means “is similar to” and ∈̃ stands for fuzzy membership, i.e.,
we read it as “belongs to”. Therefore, we read the previous expression as
“If u is similar to u† and u belongs to A then, if v is similar to u† then v
is in A”.
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Following the proof of the proposition, the previous expression is
equivalent to (residuation property):

IF u ∼ u† and v ∼ u† and u ∈̃A THEN v ∈̃A,

which is true from the T -transitivity of ∼ and the granularity property.
Since expression (8.10) holds for all u and v, it can be translated to:

IF ∃u ∈U s.t. u ∼ u† and u ∈̃A THEN ∀v ∈U IF v ∼ u† THEN v ∈̃A.

Here, the symbols ∃ and ∀ have their usual meanings: “there exists”
and “for all” respectively, while “s.t.” is an abbreviation for “such that”.
Putting back the membership degree of u†, the two inequalities of (8.1)
can be interpreted as follows. For the left inequality we have:

IF ∃u ∈U s.t. u ∼ u† and u ∈̃A, THEN u† ∈̃A, (8.11)

while for the right inequality, we have that:

IF u† ∈̃A, THEN ∀v ∈U , IF v ∼ u† THEN v ∈̃A. (8.12)

We apply the previous expressions on our example with the movie
streaming service. From (8.11) we have that: if there exists a movie u
that is similar to movie u† and the user likes movie u, then the user will
also like movie u†. From (8.12) we have that: if the user likes movie u†

then they should also like all movies that are similar to u.

8.4.2 Instance-based interpretability

Getting the arguments

The next step is to identify and to interpret the training instances based
on which the decision for a new instance was made. These instances
are argmax from the left equation and argmin from the right equation
in (8.1). The argmax is the instance that supports the decision u† ∈ A,
since it is at the same time the most similar to u† and has the highest
estimated membership in A. All other instances are either less simi-
lar to u†, or less present in A. Hence, the argmax is the argument in
favour of decision u† ∈ A. The argmin is the instance that objects the
decision u† ∈ A, since it supports the decision u† ∈ coA. This is visi-
ble by applying negator N to the right inequality of (8.1) and obtain-
ing N (Â(u†)) ≥ maxu∈U T (R̃(u,u†),N (Â(u))). After obtaining the previ-
ous expression, we can use the reasoning from above to justify that the
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argmin indeed supports u† ∈ coA, i.e., objects u† ∈ A. In other words,
the argmin is the argument against the decision u† ∈ A.

The conclusion of the previous paragraph is that we are able to find
arguments in favour of the decision, as well as arguments against the
particular decision. If we need more than one argument for the deci-
sion, we can consider a few top instances (not only minimum and maxi-
mum) that support and that object the decision. In our example of movie
recommendations, for every movie for which we predict the degree of
allure to the user, we can identify the movies that support this degree
and the movies that object the degree from the movies that the user al-
ready watched and rated. Moreover, for arguments that are in favour of
a decision, value T (R̃(u†,u), Â(u)) can be seen as the strength of the ar-
gument. The greater the strength, the more confident we are about our
decision. On the other hand, for arguments that go against the decision,
value T (R̃(u,u†),N (Â(u))) can be seen as the strength of the argument. If
the value is greater, then value I(R̃(u,u†), Â(u)) is smaller which further
implies that the confidence in our decision is also smaller.

Since we are able to precisely identify the arguments based on which
the decision was made and since those arguments can be well compre-
hended by a human, we may say that FGAC is fully locally interpretable.

Didactic example

Here we demonstrate how classification arguments are identified in
practice. Suppose we have a task to identify hate speech from text.
The dataset consists of short texts that were found on social networks
together with labels indicating if a particular text is considered hate
speech or not. The labeling of text is done manually and therefore it
depends on an individual’s interpretation of hate speech and personal
political beliefs. The dataset was a part of the Semeval-2019 competition
and it was downloaded from the official website of the competition [13].
The complete dataset consists of 13 000 instances divided into 3 groups:
train, development and test data of the corresponding sizes 9000, 1000
and 3000. However, for didactic purposes, we use only the development
set with 1000 instances. We also note that hate speech detection may be
seen in a gradual manner and that different texts may possess different
amounts of hate speech, which makes it a suitable task for using fuzzy
membership degrees.

The first step is to perform an embedding of text into a high dimen-
sional Euclidean space such that the cosine similarity of the instances
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corresponds to the semantic similarity of the text fragments, i.e., to de-
termine whether the fragments are talking about a similar topic or not.
For this purpose, we use the language model RoBERTa and its version
that is specialized for hate speech [92, 10]. Using the RoBERTa model,
we assign to each text fragment a numerical vector of size 768 that rep-
resents its embedding. At the end, we have 1000 instances with 768
attributes that are labelled with 1 (hate speech) or 0 (no hate speech).
Therefore, we deal with a binary classification problem where we will
apply FGAC with the similarity relation based on the inner product
(3.8).

The data is first split into train and test sets where the test set pos-
sesses 20% of all data. On the train data, we perform grid search using
5-fold cross validation in order to tune the parameter from Eq. (3.8).
After the model is trained and the parameter is tuned, the model is eval-
uated on the test set and the obtained balanced accuracy score is 0.786.
We now provide two examples how particular predictions are obtained.
In the first example, we have the following text fragment from the test
set.

We had plenty of diversity before the #Globalist
elites started to import the 3rd world.

#StopMassMigration #BuildTheWall #DeportThemAll
#DeportIllegalAilens #NoAmnesty #NoDACA #BuildTheWall

Figure 8.4: Example - first text fragment

The text from Figure 8.4 evidently possesses a negative sentiment on
the illegal immigration issue in the United States of America (USA). It
was considered as hate speech during the labeling process and it was
predicted as hate speech by FGAC.

In Table 8.6, we can see the 3 text fragments from the training set
that are considered as the strongest arguments in favour of classifying
the fragment from Figure 8.4 as hate speech. Besides that, in the column
“similarity”, we have the evaluation of the T -equivalence between the
text from Figure 8.4 and the fragment from the corresponding row. In
column “degree of hate speech”, we show the estimated level of hate
speech present in the corresponding fragment, while column “argument
strength” contains the values obtained using the aggregation with TL of
the values from the columns “similarity” and “degree of hate speech”.
These values are the actual strengths of the arguments, i.e., they show
how much the fragments from the corresponding rows “drag” the text
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from Figure 8.4 into class “hate speech”. We see that all the arguments
exhibit a negative view towards the immigration in the USA and they
support building a wall at the border with Mexico, in the same manner
as the text fragment from Figure 8.4.

In Table 8.7, we show the 3 text fragments from the training set that
are considered as the strongest arguments against of classifying the text
from Figure 8.4 as hate speech. The description of the table is the same
as for Table 8.6, were the only difference is that now we have “degree
of non-hate speech”, which is the membership degree to the opposite
class. It is obtained as the fuzzy negation of the degree of hate speech.
We now see that all the arguments have a very low strength (close to 0).
The strongest argument is the one that is still relatively similar to the
text from Figure 8.4 (they both call to “build the wall”), but the argu-
ment does not have a high membership in the non-hate speech class and
therefore the total strength is small. This leads to the conclusion that no
instances strongly oppose to classifying the text from Figure 8.4 as hate
speech. The resulting degree of hate speech is obtained as the average
of the largest strength in favour and the negation of the largest strength
against, i.e., 0.612+1−0.024

2 = 0.794. This expression is in accordance with
Eqs. (8.4) and (8.6).
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1

DACA-age illegals far more likely to commit crimes,be in jail
@POTUS@WhiteHouse@HouseGOP @SenateGOP #EndDACA #NoAmnesty

#EnforceUSLaws8USC1324-25#EVerify#EndChainMigration #EndVisaLottery
#BuildTheWall Immigration reform starts with clean slate

0.688424 0.923594 0.612018

2
@realDonaldTrump #MyBad #StopTheInvasion #GreenCardsForDACA

#NewChainMigration No-Lottery #IllegalSentHome get in Line #BuildTheWall
0.682003 0.925965 0.607968

3
@FoxNews We have enough of our own Monsters why do we continue to import

more Monsters from other Countries? #BuildTheWall, #SecureTheBorder,
#EnforceImmigrationLaws, #EndChainMigration, #MakeEVerifyMandatory

. 0.611523 0.950577 0.562100

Table 8.6: Top 3 arguments in favour of labeling the text from Figure 8.4 as hate speech

text similarity
degree of

non-hate speech
argument
strength

1

Texas woman, 21, dies after falling from moving SUV, may have been
pushed by illegal alien driverhttps://t.co/3t0PH9Hd0s #InOurBackyard
#BuildTheWall #PreventableDeath #SecureTheBorder #StopTheInvasion

#TherIsMoreOfThemOutThere #AllIllegalAliensAreLawbreakers

0.570377 0.453507 0.023884

2

@RealDonaldTrump Lowest Black Unemployment in History!
Enforcing #Immigration laws means Illegals are no longer taking jobs,

lowering American Wages and destorying Black ommunities likeCompton
CA No #DACA #WalkAway #BlackTwitter #BlacksForTrump @RealC

0.467787 0.535955 0.003743

3
@MSNBC If the refugees dont get food and water - they will

go back quick, here the President havnt to do much !
0.000000 0.260544 0.000000

Table 8.7: Top 3 arguments against labeling the text from Figure 8.4 as hate speech
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Next, we present an example where FGAC classified the given text
fragment differently than the original labeling. Consider the text dis-
played in Figure 8.5. At first glance, the text looks as a small report (or
as the beginning of a report) about the illegal immigration and not as
a hate speech as such. However, in the training set it is labeled as hate
speech.

About 25% of illegal crossers have a criminal
record in the US and an unknown percentage have committed

crimes in their home countries. Of the 92 migrants, 65 had
no criminal records. Ten were parents, all...

Figure 8.5: Example - second text

In Table 8.8, we can find arguments in favour of FGAC’s decision,
while in Table 8.9, the arguments appear against classifying the text
from Figure 8.5 as hate speech. Among the arguments in favour, we see
some fragments considered as hate speech with a high degree, but with
a low similarity to the text from Figure 8.5, leading to a weak strength
of the best argument (0.247). The arguments against are fragments that
are also reports on illegal immigration and are considered to display a
very low level of hate speech. As can be noticed, they are also not con-
sidered as similar to the text from 8.5. However, the strongest argument
possesses a sufficiently high similarity of 0.455 in order to boost its argu-
ment strength to 0.296. This strength is larger than the highest strength
of arguments in favour (0.247) which will lead to an estimated degree
of non-hate speech of 0.296+1−0.247

2 = 0.5245 > 0.5, i.e., the text fragment
from Figure 8.5 will be classified as non-hate speech.
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1

US immigrants ’living in fear’ of Trump’s deportation drive
@AJENews https://t.co/HROiJwCczUThere’s no need to live in fear.

All these illegals can pack up and leave. Take your parents,
siblings, aunts and uncles, even your friends. Don’t live in fear just leave.

0.408164 0.838343 0.246507

2
India should be tough on illegal immigration from Bangladesh
and deport the immigrants. Once these people settle down they

slowly move south. https://t.co/qcDP8pTC8G
0.377761 0.863047 0.240808

3

#IllegalImmigrants #IllegalAliens #ElectoralSystem #ElectoralCollege
I’m going to shock some people here: America is NOT a #Democracy,

America is a #Republic. Even more defined America is a Representative
Republic. In a TRUE... https://t.co/kcZqVEaR93

0.389923 0.849346 0.239269

Table 8.8: Top 3 arguments in favour of labeling the text from Figure 8.5 as hate speech

184



C
hapter

8.Fuzzy
G

ranular
A

pproxim
ation

C
lassifier

text similarity
degree of

non-hate speech
argument
strength

1
As a devastating report reveals 300,000 illegal migrants are

living in one French suburb https://t.co/swLCtPvQIC
0.455458 0.840934 0.296392

2

* Sweden: The Afghan migrant whose deportation was thwarted by a naive
and “attention-seeking” student activist was actually sentenced for

assault and received a prison sentence in Sweden. https://t.co/hccQmt7KMT
#v4 #visegrad https://t.co/2Qo8friTwB

0.370020 0.866108 0.236128

3

What is actually happening is very different. According to the
U.N.H.C.R the breakdown of refugees are 13% women, 12% children,

75% men aged between 19 to 45. These are not the demographics of people
fleeing a war. https://t.co/295OTvmhmv

0.331276 0.895162 0.226439

Table 8.9: Top 3 arguments in favour of labeling the text from Figure 8.4 as hate speech
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8.4.3 Interpretability comparison with other models

We discuss the position of FGAC w.r.t. instance-based models and meth-
ods discussed in Section 1.4. FGAC is a locally interpretable model,
trained directly on data and it is not used in explaining other black-box
models in this setting. Therefore, we can compare FGAC with locally in-
terpretable instance-based models directly, and we can compare it with
instance-based methods for explaining black-box models from the per-
spective of the approach they undertake to complete their tasks. We first
discuss the latter.

The four approaches for explaining black-box models that were
discussed in Section 1.4.3 are counterfactuals, adversarial examples,
prototype-based methods and influential instances.

The methods based on counterfactuals from Section 1.4.3 generate
new artificial instances as explanations. In this case, one solves an op-
timization problem for which the solutions are instances from the at-
tribute space that are assigned to the opposite decision class (multi-
ple solutions of the optimization problem are possible). There are two
ways to report explanations with counterfactuals: using the generated
instances or identifying attributes that have been changed. The gener-
ated instances, similarly as prototypes in LVQ discussed in Section 1.4.2,
do not have to be meaningful as they are the output of an optimization
problem. For example, if pixels of an image are changed, the resulting
image does not have to represent any meaningful object. Therefore, re-
porting such counterfactual does not contribute to the interpretation.
A similar conclusion can be derived when reporting the changed at-
tributes; identifying pixels in an image that changed does not necessary
lead to any meaningful conclusion if those pixels do not form a recogniz-
able object. From this reasoning, we see that counterfactuals are useful
when the vast majority of possible instances from the attribute space are
meaningful, which is usually the case for tabular data with numerical
attributes. On the other hand, FGAC is independent from the attribute
representation of the instances, but it suffers if training instances are not
meaningful for the explanations.

The other three instances-based methods discussed in Section 1.4.3
can be considered as globally oriented, i.e., they tend to explain mod-
els as a whole. The adversarial examples create meaningful instances
in order to deceive the model as a whole. However, as already noted
in the introduction, these examples are giving just the basic insights
and cannot provide an overall interpretation of the model, which is not
their primary aim. The prototype-selection methods also tend to ex-
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plain the model globally by identifying the representatives of the data
distribution (prototype and critics) from the training dataset. The influ-
ential instances, as the last such method, aim to find the instances which
removal can severely affect the prediction performance of the whole
model. Again, we spot the tendency towards global explanations here.
As methods that want to explain black-box models as a whole, they are
essentially different from FGAC which is oriented to explain individual
predictions.

In the remainder of this subsection, we compare the interpretability
of the proposed FGAC method with the ML models from Section 8.1.2.
These models are divided into three groups: instance-based (kFRNN
and kNN), prototype-based (LVQ) and rule-based (CART). All these
types of models possess some form of local interpretability and this is
the reason they are selected for this comparison experiment.

In the case of CART, for every performed classification, we are able
to identify the corresponding decision rule from the tree structure of the
classifier based on which the classification is performed. At the global
level, the set of all decision rules, together with the hierarchical struc-
ture, can be seen as a form of global interpretability. However, in prac-
tice, the number of rules can be very large which aggravates the under-
standing of the model as a whole. If the number of rules is kept relatively
small (e.g. less than 10), we may say that we also achieve global inter-
pretability. On the other side, decision rules depend on the attributes
used in the modeling and any feature engineering process may affect the
interpretability of CART. On the other side, FGAC is not dependent on
the attribute space used for modeling and therefore, it can be advanta-
geous in a context where we have meaningful instances without mean-
ingful attributes (like texts or images). However, the interpretation of
rules has its advantages in a way that we are able to exactly identify the
way one attribute affects the final decision.

For the LVQ method, we observe that during the training phase, few
points in the attribute space are learned as prototypes for every deci-
sion class. Later on, the decision is made based on the closest prototype.
Prototype-based and instance-based (like FGAC) methods share similar-
ities in a way that both methods make predictions based on the closest
points from the attribute space. The difference is that in prototype-based
methods, these points are not from the set of training instances, but they
can be any points from the space. This is a huge disadvantage if a certain
amount of feature engineering is applied and the original attribute space
is changed: the learned prototypes lose their meaning and the method
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loses interpretability. On the other hand, the interpretability of FGAC
does not depend on feature engineering. Therefore, the interpretability
of FGAC showes some advantages compared to LVQ.

Now we move to the remaining methods, kNN and kFRNN, which
are both instance-based, i.e., of the same type as FGAC. Their possible
interpretability lies in identifying instances based on which a prediction
was made. Their interpretability heavily depends on the number of in-
stances used for prediction making, i.e., hyperparameter k. If k is high,
it is really hard to identify how the prediction is made. We observed that
during training of kNN and kFRNN, the majority of performances from
Table 8.4 are achieved for higher values of k (k > 5) which means that in
the majority of cases, the prediction process in both kNN and kFRNN is
barely interpretable. Also, kNN and kFRNN are not significantly better
than FGAC according to Table 8.5.

Now, we want to compare the FGAC with the more interpretable
variants of kNN and kFRNN. We consider a similar interpretability level
as for FGAC, i.e., k = 1 and a less interpretable case when k ≤ 5. The
comparison results are shown in Table 8.10. Bold values indicate the
best performing model. After applying the Friedman test to the results
in Table 8.10, we get a p-value of order 10−9, which means that the per-
formances are indeed different. From the table, we observe that FGAC
is the best model in most occurrences. Using Holm post-hoc analysis,
we test if FGAC is indeed the best model and we get that the p-value
is equal to 0.038. This means that FGAC is indeed the best performing
model among the selected interpretable instance-based classifiers.

8.5 Conclusion

In this chapter, we introduced the Fuzzy Granular Approximation Clas-
sifier (FGAC) based on granular approximations and their multi-class
version introduced in Chapter 6 and 7, respectively. We also introduced
a version that uses OWA operators. Furthermore, we discussed ways to
speed up the training of the classifier. The empirical comparisons led to
the following main conclusions:

• The best performing version of FGAC is the one that uses SEL as
the loss function and the Euclidean similarity.

• Adding OWA operators does not change the performance of FGAC.

• In comparison with other models, FGAC was the second best
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FGAC kNN (k ≤ 5) kFRNN (k ≤ 5) kNN (k = 1) kFRNN (k = 1)

australian 0.848 0.830 0.808 0.805 0.780
breast 0.653 0.591 0.600 0.575 0.568
crx 0.778 0.829 0.727 0.784 0.732
german 0.666 0.617 0.586 0.631 0.560
saheart 0.675 0.621 0.617 0.611 0.576
ionosphere 0.937 0.881 0.850 0.829 0.839
mammographic 0.801 0.804 0.785 0.744 0.730
pima 0.727 0.708 0.664 0.658 0.641
wisconsin 0.972 0.966 0.966 0.945 0.938
vowel 0.975 0.986 0.976 0.986 0.977
wdbc 0.928 0.957 0.933 0.948 0.929
balance 0.718 0.611 0.623 0.571 0.555
glass 0.639 0.654 0.626 0.663 0.615
cleveland 0.315 0.303 0.320 0.279 0.291
bupa 0.603 0.642 0.614 0.635 0.613
haberman 0.610 0.565 0.530 0.536 0.522
heart 0.815 0.813 0.758 0.771 0.744
spectfheart 0.741 0.702 0.656 0.600 0.634
dermatology 0.950 0.940 0.915 0.943 0.904
ecoli 0.716 0.680 0.702 0.675 0.675
tictactoe 0.884 0.746 0.885 0.750 0.864
vehicle 0.696 0.719 0.685 0.688 0.664
sonar 0.876 0.862 0.744 0.872 0.725

Table 8.10: Comparison of FGAC with the interpretable versions of kNN
and kFRNN

model. However, after pairwise significance testing with other
models, we cannot claim that FGAC significantly different than
the other models.

Later, we showed that FGAC can be presented using plain words due
to the linguistic nature of fuzzy logic. We also classified the method as
locally interpretable where for every prediction we are able to identify
the arguments for that prediction that are both in favour and against.
Finally, we discussed in which cases FGAC is more advantageous com-
pared to other models regarding local interpretability.
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Epilogue

9.1 Conclusion and contributions

In this dissertation, we tackled the problem of inconsistency in data
from various perspectives including traditional rough sets and fuzzy
rough sets, as well as new approaches based on statistical learning and
optimization. Also, we dedicated a significant amount of work to the
exploration of the granular properties of the proposed methods. At the
end, we explored how the newly developed approaches can be used in
classification problems.

For each out of the 5 main chapters, we highlight our main contribu-
tions:

• In Chapter 4, we first unified the definition of IRSA and DRSA
into PRSA. While the definition of fuzzy IRSA existed previously,
we extended it to DRSA as well through the definition of fuzzy
PRSA. We proved various important properties and discussed how
fuzzy PRSA can be enriched with the OWA approach in order to
make it more robust. While OWA-based fuzzy IRSA was investi-
gated in literature, OWA-based fuzzy DRSA is a novelty. We also
provided empirical evidence that adding OWA to fuzzy DRSA in-
deed enhances its robustness.

• In Chapter 5, we discussed the granular properties of fuzzy PRSA
and OWA-based fuzzy PRSA. While the granular properties of
IRSA, DRSA and fuzzy IRSA were already known, we provided
a new view of the granularity from the perspective of the newly
introduced PRSA and fuzzy PRSA models. On the other side,
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as a completely new result, we discussed the granular properties
of OWA-based fuzzy PRSA. In particular, we showed that for D-
convex t-norms, the OWA-based fuzzy PRSA approximations are
also granularly representable fuzzy sets. At the end of the chap-
ter, we provided a characterization of D-convex t-norms and an
example how such fuzzy connectives can be constructed.

• In Chapter 6, we tackled the problem of inconsistency from
the statistical learning perspective, motivated by the Kotłowski-
Słowiński approach that considered the same problem for crisp re-
lations. We extended their approach for general fuzzy T -preorder
relations. The concept of granular approximation was introduced
as a generalization of the fuzzy rough approximations; it is ob-
tained as a result of an optimization problem developed using the
statistical learning theory. We also showed how to solve such opti-
mization problems in practice and provided didactic examples to
illustrate what can be modeled with the approach.

• In Chapter 7, we examined granular properties of the granular ap-
proximations. We introduced the concepts of disjoint and adjacent
granules which are defined based on the relationships among the
granules. These new concepts then helped us to extend the granu-
lar approximations to the multi-class classification case, leading to
the definition of the multi-class granular approximation. We for-
mulated an optimization problem which enables us to obtain the
approximation and we discussed how to solve such problem. At
the end, visual examples of the new granular concepts were pro-
vided.

• In Chapter 8, we tested how the granular approximations perform
in prediction tasks. A Fuzzy Granular Approximation Classifier
(FGAC) was introduced as a native extension of the granular ap-
proximation for prediction purposes. We compared its classifica-
tion performance with other similar ML methods and we discussed
its biggest strength: transparency, i.e., the ability to clearly explain
how a particular prediction was obtained. We showed that while
other similarly transparent methods do not perform significantly
different than FGAC, the transparency of the latter is superior.
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9.2 Future challenges

The results we presented can be expanded in various directions. Dur-
ing our work, we identified several candidate problems where further
contributions can be achieved.

9.2.1 Classification

First, we discuss the possibilities to improve the presented classification
model FGAC. We list the following options.

• In the experimental evaluation of FGAC, a T -equivalence relation
was used that is suitable for ordinary classification problems. On
the other side, using a non-symmetric T -preorder relation is more
suitable for monotone classification problems. Since the binary
version of FGAC is developed also for non-symmetric relations, a
direction for future research is to explore its performance in mono-
tone classification problems.

• In the same experiments, we used fuzzy connectives based on the
Łukasiewicz t-norm. Another possibility is to explore if using dif-
ferent fuzzy connectives, isomorphic to the Łukasiewicz ones, or
in general different fuzzy connectives, can lead to better results.

• In order to obtain granular approximations, the corresponding op-
timization problems are solved by putting their formulations to
an existing optimization solver. Despite the fact that modern-
day solvers are very efficient in solving optimization problems,
smarter, purpose-built implementations can lead to higher time
savings during the training phase of FGAC.

9.2.2 Regression

Another important question is how can granular approximations be
used for regression problems. We saw a didactic example of inconsis-
tency in a regression problem in Subsection 3.2.2 as well as how it was
handled by granular approximations in Section 6.2. However, the whole
application in the regression problems depends on the transformation of
the eventual decision values into fuzzy membership degrees (e.g., trans-
formation of prices to a degree of expensiveness in Subsection 3.2.2).
We here present a possibility to formulate an inconsistency correction
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optimization problem by using a fuzzy relation on the decision attribute
instead of the transformation.

Granular approximations rely on the consistency property which can
be formulated as:

R̃(u,v) ≤ I(A(u),A(v)),

for instances u and v. If R̃ is symmetric, we can exchange the positions
of u and v on the right side and we have the combined condition

R̃(u,v) ≤min(I(A(u),A(v)), I(A(v),A(u))) = Eq(A(u),A(v)).

Operator Eq on the right side is a fuzzy equivalence relation which mea-
sures "how identical" or, in other words, how similar A(u) and A(v) are.
This reasoning can further be extended to a general regression problem.
Instead of measuring similarity of two fuzzy values, we can measure
the similarity of two arbitrary real values that we observe in a regression
problem. In other words, let ȳu ∈ R,u ∈U be observed values of the deci-
sion attribute in a regression problem while ŷu ∈ R,u ∈ U are the values
that should be estimated. Let L be a loss function, R̃X a T -equivalence
relation on the condition attributes and R̃Y a T -equivalence relation on
the decision attribute (that depends on ŷu and ŷv). Then, the regression
problem can be formulated as

minimize
∑
u∈U

L(ȳu , ŷu)

subject to R̃X(u,v) ≤ R̃Y(u,v), u,v ∈U.
(9.1)

Such problem requires a lot of restrictions on relation R̃Y in order
to formulate the constraints as linear or to ensure the convexity of the
optimization space.

With (9.1) we formulated the learning procedure of a new regres-
sion model. The natural next step would be to develop the prediction
phase and to compare its performance to that of other similar ML mod-
els. Also, in the same way we formulated the transparency of FGAC,
it would be interesting to investigate if similar transparency properties
can be inherited for this regression model.

9.2.3 Rule induction

Two chapters of this thesis were dedicated to the granular properties
of the obtained granular and fuzzy rough approximations. As already
stressed, these granular properties are important since they enable us to
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develop prediction models based on rule induction. The interpretation
of such rules was recalled in Chapter 5.

Therefore, some of the challenges to tackle include:

• We observed that in the granular representation, every instance
generates a rule. That implies that the number of possible rules
is equal to the number of instances which is infeasible in practice.
One of the challenges is to find a proper rule induction algorithm
to reduce the number of covering rules. It would be desirable to
explore how such algorithm would perform in classification tasks
as well as if it is possible to control the trade-off between trans-
parency and predictive capability.

• Apart from the rule selection procedure discussed in the previous
point, one may try to merge granules that correspond to different
instances in order to obtain a "supergranule" which can cover a
larger number of instances but still be interpreted as a single rule.

• In (fuzzy) rough set theory, the concept of reducts is used in at-
tribute selection procedures and during rule induction to reduce
the length of individual rules. It would be worth to explore if the
novel granular approximations can be used for similar purposes.

• It is well-known that rule-based methods, like CART, perform very
well when combined with ensemble procedures like bagging or
boosting [71, 134]. Exploring a similar integration with rule in-
duction methods based on granular approximations would be an
interesting proposition.

9.2.4 Interpretability

In Chapter 8, we discussed the interpretablity of the FGAC model.
The question arises if FGAC, as an interpretable model, can be
used as a model-agnostic approach (global or local) to explain
black-box models in the similar manner as linear or rule-based
models are used. The first step should be to check on the global
interpretability, i.e., to apply FGAC on data which decision la-
bels were changed according to the black-box model. It would be
interesting to observe how FGAC would behave in such a situa-
tion. The more challenging part is to try to apply FGAC as a local
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model-agnostic method, since it depends on the conditions we cre-
ate around the instance for which we want to explain the black-box
prediction.

9.2.5 A theoretical challenge

During the thesis, we identified an interesting theoretical ques-
tion that is related to the usage of the product t-norm. Namely,
in Chapter 6 we showed how to efficiently calculate granular ap-
proximations and how to prove their desirable properties when
the product t-norm is used. However, due to the fact that the cor-
responding induced negator is not involutive, product t-norm was
not used in the classification tasks. One can try to explore which
types of problems are suitable for the product t-norm, i.e., which
problems do not require an involutive negator. One possibility is
that if the concept of disjoint granules is relaxed (i.e., the t-norm
value is not exactly 0 but smaller than a positive threshold value),
maybe the product t-norm and other similar t-norms can be used.
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