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ABSTRACT 

Ensuring food security for an ever-growing global population while adapting to climate change is the 

main challenge for agriculture in the 21st century. Although new technologies are being applied to 

tackle this problem, we are approaching a plateau in crop improvement using conventional breeding. 

Recent advances in CRISPR/Cas9-mediated gene engineering have paved the way to accelerate plant 

breeding to meet this increasing demand. However, many traits are governed by multiple small-effect 

genes operating in complex interactive networks. Here, we present the gene discovery pipeline 

BREEDIT, which combines multiplex genome editing of whole gene families with crossing schemes 

to improve complex traits such as yield and drought tolerance. We induced gene knockouts in 48 

growth-related genes into maize (Zea mays) using CRISPR/Cas9 and generated a collection of over 

1000 gene-edited plants. The edited populations displayed (on average) 5 to 10% increases in leaf 

length and up to 20% increases in leaf width compared to the controls. For each gene family, edits in 

subsets of genes could be associated with enhanced traits, allowing us to reduce the gene space to be 

considered for trait improvement. BREEDIT could be rapidly applied to generate a diverse collection 

of mutants to identify promising gene modifications for later use in breeding programs.  

  

https://doi.org/10.1093/plcell/koac243


BREEDIT: A multiplex genome editing strategy 

2 
 

INTRODUCTION 

The production of enough food to feed the increasing global population is becoming quite challenging 

due to climate change. Extreme temperature ranges, reduced water availability, and the limited use 

of arable land are all expected to converge and cause a significant drop in crop yields (Zhang and Cai, 

2011; Long et al., 2015; Brás et al., 2021). During the past century, conventional breeding has 

substantially helped adapt crops to local environments and while increasing yields under stress 

conditions (Nuccio et al., 2018; Snowdon et al., 2021). Genomics-assisted breeding has greatly 

contributed to the generation of new crop varieties by incorporating haplotype information in 

breeding programs (Bhat et al., 2021). Nonetheless, we are slowly approaching a plateau in crop 

improvement using conventional breeding, since gene discovery and the introgression of favorable 

alleles cannot be implemented quickly enough to cope with the losses caused by environmental stress.  

Therefore, innovative strategies need to be implemented to bridge the gap between 

conventional breeding and the knowledge acquired through plant molecular biology to further 

improve complex traits such as yield. Crop yield is determined by the complex interactions of the 

(a)biotic environment with the genetically determined growth and developmental processes that drive 

the plant’s lifecycle (Elias et al., 2016). There are numerous yield-related traits, such as early seedling 

vigor, root and shoot architecture, biomass allocation, resource use efficiency, senescence, seed 

filling, and so on. In some cases, such as disease resistance, few causative genes control the expression 

of the trait (Poland and Rutkoski, 2016). However, for many yield- and growth-related quantitative 

traits (e.g. organ growth, tolerance to abiotic stress such as drought), numerous, small-effect genes 

contribute to the trait (Mickelbart et al., 2015). Traditionally, yield improvement has been tackled 

from two distinct angles. Breeding aims at producing genetic combinations with better performance, 

whereas molecular biology works to understand the mode of action of yield-related genes. These two 

fields operate at very different scales: breeding recombines chromosomal segments towards a 

favorable genome constitution, whereas molecular biology only deals with a limited number of genes. 

In crop breeding programs, phenotypes (e.g. seed yield) are collected from many individuals and 

multi-year/multi-location field trials. By correlating the phenotypes with the genotypic diversity of 

individuals, genetic variants associated with the improved trait values can be identified (Rasheed et 

al., 2017). Using this approach, many quantitative agronomic traits were found to be determined by 

numerous small-effect loci, with the underlying genomic regions known as quantitative trait loci or 

QTLs. Such QTLs are generally searched for in segregating mapping populations of recombinant 

inbred lines (RILs) obtained from two or more parents. A more recent variant of this approach is 

genome-wide association study (GWAS), in which numerous genome-wide markers are assayed in 

many diverse genotypes to associate loci with the phenotypic trait (Wang and Qin, 2017). 
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Furthermore, the combination of phenotypic trait data with the availability of a high number of 

genomic markers, or even the entire genome sequence, can be used for genomic prediction to increase 

the predictability of the breeding value of new material (Voss-Fels and Snowdon, 2016). Although 

these marker-assisted breeding technologies have had a major impact on the accuracy and speed of 

crop breeding, the genes underlying the QTLs are in many cases unknown. In recent years, 

technological advances have combined GWAS with molecular -omics phenotypes that go beyond 

genomic information, allowing molecular networks to start to emerge in molecular breeding (Baute 

et al., 2015; Baute et al., 2016; Xiao et al., 2016; Miculan et al., 2021). 

Over the past four decades, there has been tremendous progress in elucidating the molecular 

basis of many different plant processes. The use of model organisms such as Arabidopsis thaliana 

and rice (Oryza sativa) has been a driving force. A vast amount of research has delivered insights into 

the molecular pathways steering seed development, root growth, leaf development, plant architecture, 

tolerance to severe drought stress, cold tolerance, flooding, and many more agronomic traits. 

Combined, this information reinforced the idea that plant growth and possibly crop yield may be 

improved by altering the expression of specific (regulatory) genes. Indeed, many reports have shown 

that positive effects on yield-related traits could be obtained by modifying the expression of 

individual genes. In Arabidopsis, more than 60 genes were identified that, when ectopically expressed 

or downregulated, increase leaf size and in many cases also the sizes of other organs, including seeds 

(for reviews: Gonzalez et al., 2012; Czesnick and Lenhard, 2015; Vercruysse et al., 2020). Likewise, 

numerous genes that can be used to improve seed yield and size in rice have been described (Li and 

Li, 2016). Based on these observations, agro-biotech companies initiated large-scale programs in the 

beginning of the 21st century to investigate the effects of numerous selected genes on agronomic traits 

in crops of interest, mainly maize (Zea mays) and rice. The conclusion of these studies was that 

although positive effects were often noticed in the greenhouse and even in field trials, the observed 

changes were often too small and too much dependent on the genotype and the environment to justify 

further investments in pursuing this high-throughput screening approach (Paul et al., 2018; Simmons 

et al., 2021).  

Why is it so challenging to translate basic insights in molecular networks and genes into 

improved crops? In breeding, the phenomenon of expressivity is well-known. Expressivity measures 

the extent to which a given genotype is expressed at the phenotypic level. The concept of expressivity 

is best explained by the notion that genes often work in complex networks with many different levels 

of regulation. Such higher-order regulation is typically exerted on complex and essential processes, 

such as growth, which need to integrate a panoply of endogenous, genetically determined signals as 

well as environmental cues. Single-point perturbations of networks often have a limited effect 

because other components of the network take over to buffer the system. However, in many cases, 
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the combination of perturbations of a network makes phenotypes much more visible. For example, 

the pairwise combinations of 13 Arabidopsis growth-related genes (GRGs), each enhancing leaf size 

on their own when ectopically expressed or mutated, led to additive or synergistic effects on leaf size 

in more than 80% of the combinations examined (Vanhaeren et al., 2014; Vanhaeren et al., 2017). 

Moreover, a triple combination of three different mutants of GRGs increased the size of leaves, 

flowers, seeds and even roots of Arabidopsis in a spectacular manner (Vanhaeren et al., 2017). Also 

in maize, albeit with fewer genes, pairwise combinations of specific alleles of growth-enhancing 

genes result in additive effects (Sun et al., 2017; Liu et al., 2021). This concept is also clearly observed 

during breeding, when yield traits are most often determined by many small-effect loci that need to 

work in concert to obtain a maximal output. 

Despite the spectacular advances made by systems biology in integrating large data sets, the 

mechanisms behind the control of plant developmental processes are so complex that predicting 

which combination of genes would provide the optimal effect on yield remains virtually impossible. 

Understanding the mode of action might be the best way forward to estimate the combinability of 

genes (Vanhaeren et al., 2014; Sun et al., 2017). However, even when dealing with a relatively small 

number of genes, testing all possible pairwise gene combinations remains cumbersome and resource 

intensive. The investments become even more important when triple or higher-order gene 

combinations have to be tested, which is necessary to achieve stable yield increases of 10% or higher.  

CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-associated 

protein 9) technology has emerged as a powerful tool for simultaneously multiplex-targeting several 

GRGs, easily generating genetic variability in a broad set of targets and thus enabling a plethora of 

combinatorial mutations to be analyzed (Knott and Doudna, 2018; Zhang et al., 2019). Several studies 

have shown how CRISPR could be used to reshape plant architecture and target complex traits in 

multiple species like tomato (Solanum lycopersicum) (Rodríguez-Leal et al., 2017; Wang et al., 

2021), wheat (Li et al., 2020), rice (Meng et al., 2017) and in maize (Doll et al., 2019). As a broader 

application, large-scale CRISPR screens have been carried out in rice (Lu et al., 2017), cotton 

(Gossypium hirsutum) (Ramadan et al., 2021), maize (Liu et al., 2020; Gong et al., 2022), tomato 

(Jacobs et al., 2017), oilseed rape (Li et al., 2018) and soybean (Bai et al., 2020). 

Here, we designed an experimental approach to bridge the gap between conventional breeding 

and genetic engineering of multiple genes by combining multiplex CRISPR-mediated genome editing 

with crossing schemes to observe favorable phenotypes. We named this approach BREEDIT, a 

contraction of breeding and gene editing, and propose this strategy as a powerful technique to 

engineer complex traits by knocking out a large number of key players in gene families and pathways. 

In just two generations, we generated a list of putative gene knockouts (KOs) required to evoke clear 
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yield-related phenotypes in maize. BREEDIT could therefore be used to rapidly identify a subset of 

genes involved in the expression of a complex trait and identify targets for plant breeding programs. 

 

RESULTS 

Development of a CRISPR/Cas9 multiplex genome editing pipeline in maize: general outline 

The aim of this study was to develop a flexible pipeline that combines multiplex gene editing and 

different crossing schemes to generate plants with modified traits (Figure 1). First, candidate GRGs 

in the target species are selected based on the literature or in-house knowledge; we selected 48 

candidate GRGs (Table 1) based on this knowledge combined with information from other model 

organisms, i.e. Arabidopsis and rice (Figure 1A). In particular, negative growth regulators whose 

inactivation is likely to result in positive effects on growth are suitable GRG candidates. Guide RNAs 

(gRNAs) targeting these GRGs are then designed and cloned into multiplex gene editing vectors 

(referred to as SCRIPTs), which are then used to transform Cas9-expressing lines (named EDITOR 

lines), resulting in supertransformed lines that harbor both Cas9 and a SCRIPT containing 12 gRNAs 

(Figure 1B; Supplemental Figure S1). 

The BREEDIT pipeline then uses highly multiplex (HiPlex) amplicon sequencing combined 

with the SMAP haplotype-window bioinformatics workflow to routinely monitor gene edits at gRNA 

cutting sites (Schaumont et al., 2022). Amplicon sequencing at great depths allows haplotype 

sequences and their respective frequencies to be determined. Both types of information can be used 

to assess the effects of mutations on the encoded protein function or activity and to assign a genotype 

to the plant for a specific locus. Per sample and per locus, the length difference between a mutated 

haplotype and the reference haplotype is used to classify the mutated haplotypes into two categories: 

haplotypeKO, which corresponds to haplotypes containing out-of-frame insertions or deletions 

(indels), leading to a gene KO and a nonfunctional protein; and haplotypeREF, including haplotypes 

with only single-nucleotide polymorphisms (SNPs) outside the cutting site or in-frame indels thought 

to have less on an impact on the translated protein that may still behave as the reference protein. In 

CRISPR/Cas9 experiments, one plant may contain more haplotypes than its ploidy level because it 

contains mosaic tissues due to the initial (T0) or ongoing (T1, T2) Cas9 activity, thus complicating 

the genotyping. To interpret complex haplotype constitutions, the relative fraction of all haplotypeKO 

is summed per locus per sample. The resulting aggregation is interpreted as a gene loss-of-function 

(LOF) dosage, which is further divided into three categories: LOF0/2 (neither of the two chromosomes 

is affected by a set of haplotypeKO), LOF1/2 (one of the two chromosomes is affected by a set of 

haplotypeKO), and LOF2/2 (both chromosomes are affected by a set of haplotypeKO). The three dosage 

categories are used in genotype-to-phenotype associations. 
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After selecting transgenic lines, T0 lines are genotyped, and the T0 plants with the highest 

numbers of gene KOs (either partial (LOF1/2) or complete (LOF2/2)) are crossed to obtain material for 

phenotyping (Figure 1C-D). Different crosses can be performed to maximize the number of edited 

genes and to fix combinations of gene edits. Self-crosses serve to fix edits in parallel to maximize 

phenotypic readout, while backcrosses to the original line provide heterozygous lines that can later 

be self-crossed and phenotyped in the T2 generation. Additional specific crosses can be performed to 

further enrich edit diversity. Plants harboring the same SCRIPT but containing edits at different genes 

from that SCRIPT can be crossed to increase the number of gene edits (up to 12) in the corresponding 

gene family or pathway. Such crosses are referred to as intra-script crosses. Furthermore, plants 

transformed with different SCRIPTs can be crossed to maximally combine mutants in genes covered 

by different families or pathways. These crosses are referred to as inter-script crosses. Our pipeline 

was also designed so Cas9 remains active in all subsequent generations, a strategy that will produce 

further gene edits at wild type alleles with a very low risk of generating off-targeted mutagenesis (Lee 

et al., 2019; Bessoltane et al., 2022). These new transgenerational edits (Impens et al., 2022) are 

expected to accumulate and possibly saturate all targeted loci, resulting in a large collection of higher-

order mutants (up to 24 gene edits when two SCRIPTs are combined) in different segregating states 

(i.e. LOF0/2, LOF1/2 or LOF2/2).  

Because several plants are generated using the BREEDIT approach, easy-to-measure 

quantitative traits are used to maximize the throughput of the phenotyping steps. Despite the high 

number of plants generated, each individual likely has a unique genotypic profile given the many 

combinations of indels and dosage that can happen in a set of 12 genes or more. Therefore, repetitions 

of the same genotypic combinations cannot be used for statistical analysis in BREEDIT. The effects 

of combinations of gene edits on traits are better appraised at the population level, although the 

specific causative gene combination cannot be deduced. However, the effect of a single gene on a 

trait can still be evaluated considering that multiple observations of a single gene KO would conceal 

the putative noise brought by mutations in other genes. The framework for phenotyping experiments 

consists of several (minimum of two) independent trials to test the performance of independent 

mutated populations compared with the EDITOR line. Single-gene associations to a trait are then 

conducted per experiment per population. The number of times a gene KO is significantly associated 

with a trait across different independent populations and experiments is a measure of the importance 

of that gene in the expression of the trait. At the end of the BREEDIT pipeline, genes can be ranked 

to delineate a minimal set of candidate genes with maximal effects on trait expression, thus reducing 

the gene space to be considered for further research. 
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Applying the BREEDIT strategy 

To test the BREEDIT strategy, we selected 48 maize GRGs with potential positive effects on growth 

when mutated, individually or in combination, as described above (Table 1). The gRNAs targeting 

the 48 genes were distributed over SCRIPT 1 to SCRIPT 4 and were grouped per gene family when 

possible. This distribution primarily aims to simultaneously knockout multiple members of the same 

gene family/pathway to overcome the potential functional redundancy of paralogs. In addition, 

grouping by family can generate segregating mutants with a range of gene KOs, which may help to 

untangle complex relationships in gene regulatory networks that might be overlooked when only 

single or double mutants are considered. Additionally, the chromosomal positions of the GRGs were 

taken into consideration to spread the distribution of genes belonging to a same SCRIPT over 

chromosomes when possible (Supplemental Figure S2). The 12 genes targeted in SCRIPT 1 are major 

players in gibberellin catabolism and signaling. The 12 genes targeted in SCRIPT 2 are maize 

orthologs of genes encoding cytokinin oxidases (CKXs), which are key regulators of cytokinin 

catabolism. SCRIPT 3 contains gRNAs for eight genes encoding the family of inhibitors of cyclin-

dependent kinase/Kip-related proteins (ICK/KRP), as well as four genes expected to encode negative 

regulators of growth under drought conditions: two maize PP2C orthologs (ZmPP2Cs) and two 

HOMEOBOX-type genes (HB124B and HB124C), which are orthologs of the Arabidopsis genes 

PHABULOSA and PHAVOLUTA (McConnell et al., 2001). Finally, SCRIPT 4 contains gRNAs for 

seven orthologs of class II CINCINNATA-TEOSINTE BRANCHED 

1/CYCLOIDEA/PROLIFERATING CELL FACTOR (CIN-TCP) and three members of the GROWTH 

REGULATING FACTORS (GRF) genes, which are major regulators of cell division, leaf shape and 

leaf size determination. Additionally, gRNAs targeting an ortholog of the GAGA-binding protein-

encoding gene BASIC PENTACYSTEINE 6 (ZmBPC6) and a gene encoding a plant homeodomain 

(PHD)-finger protein (ZmPHD8) were included in SCRIPT 4. 

 

Generation of highly edited maize populations for all SCRIPTs 

We developed a set of three independent homozygous EDITOR lines that constitutively express the 

Cas9 protein in the maize inbred line B104 background (Supplemental Figure S3) to execute editing 

at loci targeted by arrays of 12 gRNAs expressed from the SCRIPT vector. EDITOR 1 and EDITOR 3 

were supertransformed with SCRIPT 1 for a preliminary evaluation of gene editing. After 

transformation, the EDITOR 1 and EDITOR 3 supertransformed populations showed similar editing 

profiles (Supplemental Figure S4). At T0, six out of the 12 targeted genes showed LOF1/2 or LOF2/2 

in both EDITOR lines, and the number of mutant alleles at each locus was comparable between both 

EDITOR backgrounds. The same gRNAs were active in both EDITOR backgrounds, but four genes 
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out of the six that were commonly edited in both EDITOR backgrounds showed LOF2/2 in EDITOR 

1, whereas two genes showed LOF2/2 in EDITOR 3 (Supplemental Figure S4).  

We selected EDITOR 1 as the genetic background for further experiments and 

supertransformed this line with the three remaining scripts. Like for SCRIPT 1, we monitored gene 

edits in T0 plants and all subsequent generations using HiPlex amplicon sequencing. Indels in 

haplotype sequences ranged from -90 bp to +92 bp. Insertions of one nucleotide (+1 bp) were the 

most commonly represented type of mutation, but overall, more deletions were present than insertions 

(Figure 2A). The largest insertions showed sequence similarity to genomic fragments located up to 

1 kb upstream or downstream of the expected cutting site. At T0, we detected haplotypeKO in 11, 12, 

8, and 12 out of the 12 target sites for SCRIPT 1, 2, 3, and 4, respectively (Figure 2B). Across all T0 

SCRIPT populations, a large diversity of haplotypes (109 haplotypes with in-frame indels and 407 

haplotypes with out-of-frame indels) could be identified (Supplemental Figure S5). Some 

haplotypeKO were initially not detected at T0 but appeared in T1 populations (Figure 2B) of both 

intra-script and inter-script crosses, revealing either ongoing gene editing in subsequent generations 

or overlooked edits due to mosaic tissues in T0. Overall, from T0 to T2, mutations could be found in 

all 48 targeted genes except one (SPY in SCRIPT 1). We focused on haplotypeKO and observed a 

diversity of haplotypeKO combinations per locus per sample (mono-, bi-, multi-allelic) in the T0 to 

T2 samples, which were all expected to lead to a gene LOF, either partial (LOF1/2) or complete 

(LOF2/2) (Figure 2C). We observed a typical tri-modal distribution for the aggregated fraction of 

haplotypeKO that could be roughly divided into three areas with higher counts, each corresponding to 

a discrete genotypic class (LOF0/2, LOF1/2, and LOF2/2; Supplemental Figure S6).  

 

From haplotype frequencies to genotypic information 

We used the aggregated fraction of haplotypeKO in sequencing reads as a proxy to characterize partial 

(LOF1/2) and complete (LOF2/2) gene KOs (Figure 3). Our approach for the detection of gene edits 

using HiPlex amplicon sequencing combined with SMAP haplotype-window analyses successfully 

captured haplotype sequences in 96% of the cases, encouraging us to use this technique to monitor 

edits in the offspring (Figure 3A). At T0, 73% (35/48) of the target loci showed LOF1/2 or LOF2/2, 

with SCRIPT 1 and SCRIPT 3 showing worse performance than SCRIPT 2 and SCRIPT 4 (Figure 

3B). At T1, of the 13 remaining genes not edited at T0, 12 (92%) were de novo edited. No haplotypeKO 

was observed at the last remaining non-edited locus (SPY) at T2. Also, all the transgenerational de 

novo edits were only heterozygous mono-allelic mutations (Figure 3B). Considering both T0 and T1 

materials, we observed plants stacking up to nine LOF1/2 or LOF2/2 gene KOs in both SCRIPT 1 and 

SCRIPT 3 and 11 LOF1/2 or LOF2/2 gene KOs in SCRIPT 2 and SCRIPT 4 (Figure 3C). Because of 
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sterility issues, it was difficult to generate progeny of SCRIPT 1 by crossing, resulting in the low 

numbers of T2 plants for that SCRIPT (Figure 3C). We also studied progeny resulting from inter-

script crosses involving two SCRIPTs (2 × 12 target loci) and observed that, on average, 40% of the 

loci showing edits in the progeny presented transgenerational editing patterns (result of ongoing Cas9 

activity through a second generation) and 25% were completely de novo edited, meaning that edits at 

these loci were not observed in the parental lines (Supplemental Figure S7). Per locus across all 

populations, an average of 7% of the progeny were affected by transgenerational edits inducing 

LOF1/2 at the target sites. 

In conclusion, the approach of supertransforming EDITOR lines with SCRIPT constructs 

generated a high frequency of heritable edits in the T0 generation and additional transgenerational 

edits in T1 and T2. 

 

T1 single-SCRIPT multiple-edited populations display phenotypic variability in seedling 

growth-related traits 

After we generated the single-SCRIPT populations of edited plants, we studied the effects of multiple 

gene edits on plant growth by phenotyping T1 maize seedlings derived from T0 selfings of each 

SCRIPT at the V3 stage. To facilitate high-throughput phenotyping of several populations, we scored 

easy-to-measure parameters such as the final leaf length and width of leaf 3 (FLL3 and FLW3, 

respectively) and integrative parameters such as the fresh weight (FW), dry weight (DW), and 

moisture content of plants grown under well-watered (WW) and water-deficient (WD) conditions. 

We scored populations derived from independent transgenic events to analyze the effects of 

combinations of LOF dosages resulting from different haplotypeKO on trait expression (Figure 4, 

gradient of edits displayed in orange). Detailed information about the different populations that were 

phenotyped is provided in Supplemental Table S1. 

SCRIPT 1 plants were tested in two independent WW experiments (WW001 and WW008) 

(Figure 4A, B) and displayed conspicuous phenotypes such as a slender shoot architecture (Figure 

4C) with longer and narrower leaves (Figure 4A-B, E) compared to the EDITOR 1 controls. The most 

conspicuous phenotypes were observed in population P013, which included individuals with a partial 

or complete LOF of a set of 11/12 genes (Figure 4A-E). Additionally, some SCRIPT 1 plants 

displayed abnormal tassel development with a lack of florets or pollen and the formation of silks in 

the anthers (Supplemental Figure S8), leading to male sterility.  

For SCRIPT 2 and SCRIPT 3, when tested in experiment WW001, significant increases of 

approximately 5% relative to controls were detected only for FLL3 and only in one of the two 

populations of each group (P108 for SCRIPT 2, and P033 for SCRIPT 3), while FLW3 remained 
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unaffected in SCRIPT 2 populations or decreased for both populations of SCRIPT 3 (Supplemental 

Figure S9B-C). Because the genes targeted in SCRIPT 2 are involved in cytokinin metabolism, which 

was previously implicated in drought tolerance (Rida et al., 2021), and some of the genes targeted in 

SCRIPT 3 are drought responsive (Li et al., 2016; Hai et al., 2020), we phenotyped these populations 

under WD conditions (Supplemental Figure S9B-C). Under WD, the SCRIPT 2 populations showed 

enhanced growth (Supplemental Figure S10A), as reflected by a significant increase in FLL3, FLW3, 

FW and DW compared to the control EDITOR 1 (Supplemental Figure S9B, Supplemental 

Figure S10 A-C). For SCRIPT 3, all tested populations displayed enhanced growth traits 

(Supplemental Figure S11), but only significant increases in FLL3 compared with EDITOR 1 were 

observed (Supplemental Figure S9C). Moreover, population P034 presented a significant increase in 

FW compared with the EDITOR 1 controls (Supplemental Figures S9C and S11).  

Changes in leaf morphology were also observed for SCRIPT 4 plants (TCP, GRF family 

genes). Individuals that segregated LOF dosages in 12/12 and 9/12 genes were observed in 

populations P059 and P060, respectively (Figure 4F-G, gradient of edits in orange; Supplemental 

Table S1). Both populations presented significantly longer FLL3 (Figure 4F) alongside a >15% 

increase in FLW3 compared with EDITOR 1 (Figure 4G-I). An increase in FLL3 was not detected in 

population P054, P079, or P130 (Figure 4F, Supplemental Table S1), but a significant rise in FLW3 

was detected in all populations (Figure 4G). 

 

Crossing plants with different SCRIPTs allows phenotypes to be combined in T2 plants 

After focusing on single-SCRIPT populations, we phenotyped inter-script populations that stacked 

edits in genes from different SCRIPTs after crossing. For this analysis, T0 plants with different scripts 

were crossed and the resulting T1 plants (inter-script crosses) were self-crossed. Of all the different 

combinations, we phenotyped two T2 inter-script populations that presented different profiles of edits 

in crosses between SCRIPT 2 × SCRIPT 4 (P148 and P152) and SCRIPT 3 × SCRIPT 4 (P157 and 

P158) under WD conditions. For both populations of SCRIPT 2 × SCRIPT 4 and SCRIPT 3 × 

SCRIPT 4, we detected a significant increase in FLW3 (Supplemental Figure S12, and Supplemental 

Table S1), a phenotype observed in single-SCRIPT 4 T1 lines. For the other traits, distinct differences 

were observed in each population. P148 displayed an increase in FLL3, whereas P152 showed a 

decrease in FLL3 and significant increases in FW and moisture content compared with the EDITOR 

1 control (Supplemental Figure 12A). Both P157 and P158 displayed significant increases in moisture 

content, and P158 displayed reduced DW, compared with the EDITOR 1 control (Supplemental 

Figure 12B).  
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Genotype-to-phenotype associations and reducing the gene space 

After performing phenotypic evaluation of all SCRIPT populations, we aimed to identify the possible 

major-effect causative genes for the observed phenotypes. Because each individual phenotyping 

experiment did not allow for sufficient replication of LOF dosage combinations, we performed 

genotype-to-phenotype associations at the single-gene level. For each gene and trait, we compared 

the three classes of LOF dosages (LOF0/2, LOF1/2, and LOF2/2) with the EDITOR 1 control. Such 

single-gene analyses were carried out separately for all experiments conducted under WW and WD, 

representing in total a collection of more than 1000 plants that included data on selfed, inter- and 

intra-script crossed lines.  

Following this approach, we detected a subset of genes for each gene family that could be at 

least partially responsible for the observed phenotypes (Figure 5). In SCRIPT 1, increases in FLL3 

and decreases in FLW3 were associated with edits in DELLA orthologs D8 and ZmSLR2 as well as 

ZmGa2ox5 (Figure 5A). For SCRIPT 2, edits in ZmCKX4B, ZmCKX6 and ZmCKX8 were related to 

changes in FW, FLW3 and DW (Figure 5B). In SCRIPT 3, LOFs in ZmKRP5-2 and ZmPP2C-A11 

were associated with increases in FW and DW, while LOFs in ZmKRP1-1, ZmHB124B and 

ZmHB124 were associated with increases in biomass moisture (Figure 5C). Finally, for SCRIPT 4, 

the main genes involved in increases in FLW3 were ZmTCP8, ZmTCP9, ZmTCP10, ZmTCP22 and 

ZmTCP42 (Figure 5D). In particular, LOFs in ZmTCP22, ZmTCP42 and ZmTCP9 were associated 

with concomitant increases in FW and moisture content, and therefore decreases in DW. ZmGRF10 

and ZmGRF4 were associated with increases in FLL3. 

To further validate the rationale used for the associations, we analyzed population P012 of 

SCRIPT 1 in detail (Figure 6). In this population, D8, one of the selected genes associated with 

increases in FLL3 (Figure 5A), showed two haplotypeKO, each with an out-of-frame indel (-1 bp and 

+1 bp), and an haplotypeREF with an in-frame indel (-3 bp) (Figure 6A). In the progeny, the haplotypes 

segregated, resulting in different LOF dosage combinations. Within that population, plants containing 

only a LOF1/2 in D8 presented similar phenotypes of FLL3 and FLW3 compared with EDITOR 1, 

whereas plants with a LOF2/2 in D8 displayed longer and narrower leaves (Figure 6B-C).  

Using the data obtained from this genotype-to-phenotype association study, we built a putative 

regulatory network that integrates all the single-gene effects and their impact over the different 

measured traits (Figure 7). In this network, central genes (such as ZmCKX4B, ZmCKX48 and 

ZmCKX46 and ZmTCP9, ZmTCP10, ZmTCP22 and ZmTCP42) act as nodes connected to several 

traits, implying a possible broader role in regulation. The genes located at the edge of the network 

may play a more defined role, connecting to just one or two traits (such as ZmGRF10, ZmGRF4, 
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ZmCKX3 and ZmTCP8). Finally, other genes exhibited specific patterns, such as D8, SLRL2, and 

Ga2ox5, whose LOF strongly increased the FLL3 while also strongly decreasing the FLW. 

 

DISCUSSION 

Complex agronomic traits such as yield or tolerance to a particular (a)biotic stress are governed by a 

large network of genes that together determine a specific phenotype. Understanding the complexity 

of such networks is the central goal of systems biology. Here, we developed an experimental 

approach, named BREEDIT, to study gene networks affecting complex quantitative traits by 

combining multiplex CRISPR-mediated gene editing of whole gene families with specific crossing 

schemes. In BREEDIT, a Cas9-expressing line (EDITOR) is supertransformed with vectors 

containing 12 gRNAs (SCRIPTs) targeting a set of GRGs. Gene edits are further stacked in plants 

using crossing schemes. 

We evaluated the BREEDIT strategy by targeting putative players in major plant gene families 

or pathways involved in growth regulation. The success rate of the multiplex gene editing approach 

in maize was very high, with more than 97% of the genes showing at least partial or complete LOF 

at T1. In just two generations, BREEDIT created multiple gene KOs leading to a diverse collection 

of genetic profiles, from low-order mutants with one, two, or three gene KOs to higher-order mutants 

stacking mutations in up to 11 genes out of the 12 within a single SCRIPT. Additional levers could 

be used to further increase the number of gene KOs stacked in one plant, namely inter-script crosses 

and the ongoing Cas9 activity. Regarding this latter point, our strategy is based on the notion that the 

ongoing Cas9 activity through generations would help to quickly reach a high saturation of LOF2/2 

edits. However, contrary to this idea, we observed that transgenerational gene editing did not result 

in such an outcome, as an average of only 7% of the progeny displayed new LOF1/2 type edits per 

locus. This extra gene editing was mostly useful for generating de-novo edits at loci not edited in the 

T0 generation. Therefore, the ongoing Cas9 activity can contribute to the effort to reach saturation of 

LOF in loci, but additional selfing steps might be needed to increase the number gene KOs stacked 

in one plant. We also showed that higher-order mutants could be obtained by crossing plants already 

containing high numbers of gene KOs at the single-SCRIPT level. 

Interestingly, while in T0 plants, both copies of the target genes often carried the same or a 

different mutation (bi-allelic), genes newly edited in the T1 generation all showed heterozygous 

mutations, suggesting that only one chromosome of the two was edited. We suggest that chromatin 

condensation might influence DNA accessibility for the CRISPR/Cas9 machinery, possibly by 

imprinting (Borg and Berger, 2015). Further research is needed to elaborate on the mechanisms. 
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We obtained more than 1000 plants, often with different unique LOF profiles, to score for 

phenotyping. The high sensitivity of HiPlex amplicon sequencing enabled us to capture complete sets 

of haplotypes with CRISPR/Cas9 mutations in large arrays of samples and loci. We used the 

haplotype sequence to focus on haplotypes thought to have major effects (haplotypeKO) on the 

function or activity of the translated protein. The experimental set-up based on multiple observations 

of significant single-gene KO associations with phenotypes across different populations and 

experiments enabled us to identify significant phenotypic responses in growth traits for all SCRIPTs. 

In the case of SCRIPT 1, we observed previously known effects of elevated gibberellic acid (GA) 

levels, such as plants with long and narrow leaves (Nelissen et al., 2012; Voorend et al., 2016) as well 

as male sterility, a trait that was previously associated with the effect of GA on tassel development 

(Colombo and Favret, 1996). SCRIPT 4 plants displayed an increased FLW3 (along with milder 

increases in FLL3), which affected the FW in some populations. Lastly, for SCRIPT 2 and SCRIPT 

3, the most pronounced phenotypes observed were increased FLL3 and FW, particularly under WD 

conditions. If we consider these single-SCRIPT lines as building blocks, the possibility of stacking 

several different combinations of SCRIPTs by crossing paves the way toward creating higher-order 

mutant lines that display even stronger or additive phenotypes. The inter-script lines we generated 

displayed more than 12 higher-order mutations and inherited traits observed in parental single-

SCRIPT lines. Although some of the expressed traits (e.g. increases in FW) were not observed in all 

different inter-script populations of the same type (probably because different haplotypes segregated 

in different populations), some other traits (such as increases in FLW) were consistently observed in 

all generations of lines containing SCRIPT 4, which further validates the consistency of the results 

analyzed at the single-SCRIPT level 

Another important outcome of the BREEDIT strategy is the possibility to screen large sets of 

genes that are then ranked and prioritized to delineate a minimal set of LOF required to induce a 

maximal phenotypic effect. Further inspection of the selected 48 GRGs showed that certain subsets 

of genes are strongly associated with specific traits (or a combination of traits). Therefore, using 

single-gene KO associations, we identified subsets of genes per family whose LOF, alone or in 

combination, may be responsible for the observed phenotypes. Furthermore, some of these genes 

were already shown to play roles in modifying agronomic traits in other studies. A gain-of-function 

mutation in D8 (SCRIPT 1), encoding a DELLA maize protein ortholog, is causative of dwarf 

phenotypes (Winkler and Freeling, 1994; Lawit et al., 2010). ZmCKX-4B (SCRIPT 2) plays a role in 

both drought (Rida et al., 2021) and heat shock stress (Wang et al., 2020). Downregulation of 

ZmHB124B and ZmHB124C induced the formation of additional protoxylem files in the vasculature 

(Bloch et al., 2019), which could prevent vascular embolism and water retention under water-limiting 

conditions (Hwang et al., 2016). ZmGRF10 (SCRIPT 4) overexpression in maize led to a decrease in 
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leaf length and height (Wu et al., 2014; Nelissen et al., 2015). Although these genes were highlighted 

in our single-gene KO associations, we cannot exclude the possibility that other genes from the 

original pool may play minor roles, either individually or in combination, but end up being masked 

by the effects of major gene KOs.  

 Nonetheless, this subset selection provides a pool of valuable material for further research to 

tackle specific traits (e.g. leaf width, enhanced growth under WD). The scored phenotypes were 

observed in plants grown in growth rooms under controlled conditions. Although seedling and leaf 

growth trait translate well from growth chambers to the field (Nelissen et al., 2020), less favorable 

phenotypes resulting from higher-order mutations might be observed at later stages of development. 

One example is the male sterility phenotype observed in SCRIPT1 plants. Ideally, large populations 

of multiplex edited plants should be evaluated under field conditions but, at least in Europe, highly 

restrictive legislation prevents this type of analysis (Dima and Inzé, 2021).  

While applying the BREEDIT strategy to our case study in maize, we identified an important 

limitation to this approach: the inability to fully uncouple complex gene interactions. In plant models 

where transformation and regeneration are efficient, the possibility for massive gene editing grows 

more rapidly than the capacity to phenotypically analyze the resulting collections of mutants. For 

complex quantitative traits, large populations of lower-order mutants need to be screened accurately 

to decipher the complex mechanisms underlying plant development (Liu et al., 2020). To illustrate 

this, we developed the following multiplex edited scenario (Supplemental Figure S13). If one is 

interested in exhaustively capturing both additive and synergistic gene effects, all the gene KO 

combinations have to be generated and analyzed. Considering n genes to be targeted, the number of 

different genetic combinations that have to be produced amounts to 2n in the case of two-state genes 

(homozygous wild type or homozygous mutant) (Supplemental Figure S13A) and 3n if the 

heterozygous stage has to be considered as well. Given that at least ten replicates per genetic profile 

(combination) are required to statistically demonstrate a 10% significant difference in FLL3 with 

enough statistical power (Supplemental Figure S13B), the final number of plants to be processed 

increases dramatically as the number of genes in the study grows. The statistical power could be 

increased by performing large-scale phenotyping/genotyping in field conditions in order to detect 

combinatorial gene effects that govern agronomic traits, including seed yield.  

Several approaches could be used to further study the causative genes. First, plants with a 

phenotype of interest but still containing Cas9 could be crossed with wild-type plants, and Cas9-

negative plants with the desired trait could be identified in the T2 generation. Another approach is to 

use haploid induction (Chaikam et al., 2019; Jacquier et al., 2020), a promising technique used to 

create homozygous mutations, thus removing the need to consider heterozygous material. This could 

be particularly interesting as a follow up to BREEDIT as a strategy to fix the new heterozygous gene 
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edits that were observed in the T1 generation. Another approach is to preselect plants to be 

phenotyped based on their genetic constitution by predicting gene effects with statistical models in 

the same fashion as for genomic selection. Such predictions can be combined with the use of non-

destructive seed chipping (Mills et al., 2020) to select specific gene combinations before sowing and 

therefore reduce the number of plants to be tested. Once the gene space is lowered, the BREEDIT 

pipeline can be followed again to design validation constructs by engineering a vector containing 

gRNAs targeting only the genes retained in the selected subset. 

In this study, we developed the BREEDIT strategy to rapidly generate a large collection of 

mutants in specific gene families, pathways, or networks. We foresee great potential for BREEDIT 

combined with existing and more recent breeding approaches, such as marker-assisted breeding, 

haploid induction, and genomic selection. Effectively implementing the concept of breeding by 

editing using the BREEDIT pipeline still requires some practical obstacles to be overcome, such as 

the ability to transform and regenerate the plant material, obtain the desired gene Kos, and segregate 

out the original transgene construct. When these conditions are met, applying the BREEDIT pipeline 

allows many lines to be generated with specific combinations of gene KOs able to modify particular 

traits of interest. These engineered lines could be directly introduced in a hybrid breeding pipeline by 

crossing to elite material. Furthermore, the impact of favorable allele combinations on complex traits 

could be evaluated in different genetic backgrounds and across several generations to assess their 

heritability. Thus, BREEDIT could significantly speed up pre-breeding activities, which usually 

involve screening pools of diverse materials (wild species, landraces, commercial varieties) for 

promising mutations and phenotypes (Teixeira and Guimarães, 2021) that must then be transferred 

into an intermediate set of materials that breeders can use to create new varieties. Introgression of 

alleles from a divergent pool of materials is often cumbersome due to cross incompatibility, low seed 

yield quantity and quality, or persistence of a deleterious linkage drag. Provided that elite materials 

can be transformed and regenerated, the reverse-genetics approach developed in the BREEDIT 

pipeline can circumvent the long and tedious step of introgression and save time in the development 

of new commercial varieties. An additional benefit of BREEDIT is that it could be used to generate 

large collections of plants mutated in coding or non-coding genome areas using other novel CRISPR 

technologies such as base editing and promoter bashing to further extend the repertoire of allele 

variability and phenotypic responses (Vats et al., 2019; Anzalone et al., 2020; Gaillochet et al., 2021). 

 

MATERIALS AND METHODS 

Plant material and DNA extraction 
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The original line used for all transformation procedures was the maize (Zea mays) inbred line B104. 

DNA was extracted from the samples following an adapted protocol from Berendzen et al. (2005) 

coupled with a magnetic bead purification. A 1-2 cm piece of leaf 1 was ground in 8-strip 2-ml 

capacity tubes (National Scientific Supply Co). After grinding and centrifugation, the supernatant 

was mixed with magnetic beads (CleanNA), washed in 80% ethanol and dried for further processing.  

 

Selection of GRGs and curation of gene models 

We selected 48 GRGs based on the literature, in house knowledge, and orthology searches (see 

Results) in version 4 of the reference maize B73 genome sequence (Jiao et al., 2017). The integrative 

orthology viewer in PLAZA v4.5 (Van Bel et al., 2022) was used to identify most orthologous genes, 

including finding gene families from other species and identifying the corresponding maize B104 

gene IDs. When required, B104 gene models were manually curated using ORCAE, an online genome 

annotation resource (https://bioinformatics.psb.ugent.be/orcae/). Sequences in maize lines B104 and 

B73 were compared by pairwise alignment using Geneious Prime 2020.1.2 

(https://www.geneious.com/prime/). Design of the amplicons and gRNAs was performed in Geneious 

Prime. The maize B73 genome version 4 was used to identify gRNA on-target and off-target sites. 

gRNAs were selected with specificity score ≥80-85% and with no stretches of Ts (>4) or internal 

BsaI or BbsI restriction sites, which would interfere with gRNA expression and vector construction, 

respectively.   

 

Monitoring CRISPR/Cas9 edits by HiPlex amplicon sequencing 

Geneious Prime was used to design primers to amplify the genomic regions surrounding the gRNA 

cutting sites. Two amplicons per gene with a size range of 120-150 bp were manually selected. Each 

amplicon contained at least two gRNAs separated from either primer by at least 15 bp. The amplicons 

were selected to target the middle of the coding sequence with no overlap. The specificity of primers 

was checked in the maize B73 genome version 4, and only specific primers were retained 

(Supplemental Table S2). All primers were pooled in a HiPlex amplicon sequencing assay to 

sequence each locus in each plant simultaneously. HiPlex library preparation was performed by 

Floodlight Genomics facility (Knoxville, TN, USA) using MonsterPlex technology. Pilot runs of 

HiPlex amplicon sequencing were conducted to select the best amplicon per gene (out of the two). 

The selection was based on amplification efficiency in the HiPlex assay measured as read counts and 

unambiguous read-reference mapping. For each gene, the overlapping gRNA was selected for cloning 

into the expression vector.  

We used SMAP haplotype-window (Schaumont et al., 2022) to trim sequencing reads, 

identify haplotypes at each locus, and calculate the respective haplotype frequency per locus per 

https://bioinformatics.psb.ugent.be/orcae/
https://www.geneious.com/prime/
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sample. SMAP haplotype-window extracts haplotypes from HiPlex sequencing reads as the entire 

DNA sequence between the HiPlex primers per locus. Any unique DNA sequence is considered to 

be a haplotype. The total haplotype count is recorded per locus per sample, and the relative haplotype 

frequency per locus per sample is calculated. A haplotype detection threshold of at least 1% relative 

read depth per locus per sample was set to remove possible spurious haplotypes derived from 

amplification and/or sequencing artifacts. The nucleotide length difference between the haplotype 

sequence and the B104 reference sequence (LDR) was used to classify the mutations into three 

classes: SNPs (LDR = 0 but sequences are different), insertions (LDR > 0, the mutated haplotype is 

longer than the reference haplotype), and deletions (LDR < 0, the mutated haplotype is shorter than 

the reference haplotype). We defined haplotypes whose indel length is not a multiple of three 

nucleotides as haplotypeKO because they generate a frame shift in the open reading frame that likely 

leads to the translation of the wrong amino acid sequence downstream of the mutation and/or creates 

a premature stop codon, both of which could disrupt the protein’s function or activity. Haplotypes 

with SNPs outside the cutting site and in-frame indels are referred as to HaplotypeREF to denote 

possible minor impacts of their mutations on the resulting protein, which may still behave as the 

reference protein. 

Maize is a diploid organism in which each gene has two alleles per nucleus, each derived from 

one of the two parents. In plant material that stably expresses CRISPR/Cas9 and gRNAs, 

continuously driving gene editing, one may expect to observe mosaic tissues, i.e. patches of tissues 

within an organ that contain different genome sequences due to non-uniform gene editing. Mosaic 

tissues may occur both in primary transformants and subsequent generations due to the initial and 

ongoing Cas9 activity, respectively. A single leaf sample used for DNA preparation may therefore 

contain cells with different gene edits, resulting in the scoring of one individual with more than two 

alleles. The allele dosage is also affected by mosaicism. Multi-allelism resulting from mosaic tissues 

blurs the expected 50:50 read depth ratio commonly observed between the two alleles of a diploid 

organism. In addition, bi-allelism can be observed in non-mosaic tissues, with a plant harboring two 

indels of the same or different nature (in-frame or out-of-frame) following a 50:50 read depth ratio. 

Genotype-to-phenotype statistical associations require discrete genotypic classes (absence/presence, 

or homozygous wild-type, heterozygous, homozygous mutant). We therefore summed the relative 

fraction of haplotypeKO per locus per sample to quantify how much the locus is affected by mutations 

leading to a LOF. The resulting aggregation (ΣhaplotypeKO) is discretized in three genotypic classes 

representing three dosages of haplotypeKO: LOF0/2 (<15% of the read depth per locus per sample 

contain haplotypeKO), LOF1/2 (40% to 60% of the read depth per locus per sample contain 

haplotypeKO), and LOF2/2 (>85% of the read depth per locus per sample contain haplotypeKO). 

Because distinguishing among these three groups is critical for analyzing dosage effects associated 
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with a particular trait, any value outside of these three ranges was scored as a missing genotype call 

during the genotype-to-phenotype association analyses.  

 

Construction and cloning of SCRIPT vectors 

The gRNA entry vectors were constructed by PCR amplification of the entire pGG-[B-F]-OsU3-

BbsI-ccdB-BbsI-[C-G] plasmids with Q5 High-Fidelity DNA polymerase (New England Biolabs) 

according to the manufacturer’s guidelines. The primers contained an extension to insert unique 

linkers (Torella et al., 2014) between the scaffold and OsU3 promoter (Supplemental Table S3 and 

Supplemental Table S4). Two of the five linkers were modified to contain NotI restriction sites to 

facilitate validation of the final expression vectors by restriction enzyme digestion (Supplemental 

Figure S1). Gibson assembly was performed with NEBuilder Hifi DNA Assembly Mix (New 

England Biolabs) to circularize the PCR products into entry vectors following the manufacturer’s 

guidelines. The new entry vectors were confirmed by Sanger sequencing (Mix2Seq service, Eurofins 

Scientific). 

gRNA construction and Golden Gate assembly into binary vectors were performed as 

previously described (Decaestecker et al., 2019). Briefly, paired gRNA entry vectors were created by 

PCR amplification (Red Taq DNA Polymerase Master Mix, VWR Life Science or iProof High-

Fidelity DNA Polymerase, Bio-Rad Laboratories) using the template plasmid pEN-2xTaU3 with 

primers containing the 20-nt spacer sequences and BbsI restriction sites. Column-purified PCR 

products were cloned into the Golden Gate entry vectors via a Golden Gate reaction using BbsI (New 

England Biolabs). All paired gRNA entry vectors were verified by Sanger sequencing. 

Expression vectors (SCRIPT 1-4; Supplemental Figure S1) were constructed by a Golden 

Gate reaction with BsaI (New England Biolabs) using the paired gRNA entry vectors and a 

destination vector as previously described (Decaestecker et al., 2019). The destination vector, 

pGGBb-AG, contains a GreenGate destination module (AG) and a bialaphos-resistance (bar) gene 

driven by the 35S promoter. The expression of each individual gRNA was alternatively driven by 

either the rice OsU3 promoter or the wheat TaU3 promoter (Xing et al., 2014). The SCRIPT vectors 

were transformed via heat-shock into ccdB-sensitive DH5α Escherichia coli cells, grown on LB 

medium containing 100 µg/mL spectinomycin, and extracted using a GeneJET Plasmid Miniprep Kit 

(Thermo Fisher Scientific). Quality control was performed by digestion with NotI (Promega). 

SCRIPTs were transformed into Agrobacterium tumefaciens EHA 105 cells by the freeze/thaw 

method and plated on YEB medium with 100 µg/mL rifampicin and 100 µg/mL spectinomycin. The 

gRNA entry and pGGBb-AG destination vectors can be obtained at https://gatewayvectors.vib.be/.  
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Generation of EDITOR maize lines 

The zCas9 coding sequence containing a Zea mays-codon optimized Cas9 (Xing et al., 2014) was 

cloned under the control of the ZmUbiquitin1 (ZmUbi1) promoter (pZmUBIL) and NOS terminator 

in pEN-L4-AG-R1 (Houbaert et al., 2018) using GreenGate cloning (Lampropoulos et al., 2013). The 

transcriptional unit was recombined with pEN-L1-linker-L2 and the pHbm42GW7 destination vector 

(Karimi et al., 2013). The resulting construct (pXHb-pZmUBIL-zCas9-NOSt) allows maize 

transformants to be selected with hygromycin and is referred to as the EDITOR construct.  

The EDITOR construct was introduced into maize line B104 using Agrobacterium-mediated 

transformation of immature embryos aesae (Coussens et al., 2012) and hygromycin as a selection 

agent. Three independent lines (EDITOR 1 to 3) with a single-locus insertion event were selected and 

made homozygous for the T-DNA locus by self-crossing. To measure Cas9 protein levels, total 

proteins were extracted from leaf tissue of the EDITOR lines, separated by polyacrylamide gel 

electrophoresis, and blotted onto PVDF membranes. For quantification, the blots were incubated with 

anti-Cas9-HRP primary antibody (Abcam, 1:5000) for 4 h and detected by chemiluminescence. Blots 

were also Ponceau-stained for the protein loading control. EDITOR 1 was crossed with wild-type 

B104 plants to yield heterozygous immature embryos for a second round of transformation 

(supertransformation) with each SCRIPT construct separately. Backcrosses render more 

seeds/embryos compared to self-crosses and facilitate the removal of Cas9 in the progeny by 

segregation. For each SCRIPT, at least ten independent T0 supertransformants were obtained 

following BASTA selection and genotyped by HiPlex amplicon sequencing. 

 

Experimental design and phenotyping 

Maize seeds were soaked in water for 24 h and sown in 0.3-l square pots (7×7×7 cm) using ‘potgrond 

met meststof’ (N.V. Van Israel) as substrate. The pots were then arrayed in groups of 24 in 48.0- x 

30.5-cm trays, randomized, and placed in growth chambers with a controlled temperature (24ºC), 

relative humidity (55%), and a 16:8 photoperiod with controlled light intensity (170-200 µmol/m²/s 

photosynthetic active radiation provided by a mixture of 50/50 Radium halogen HRI-BT 400W/D 

Pro Daylight and Philips MASTER SON-T PIA Plus 400-W bulbs). 

For WW conditions, plants were grown under a water regime of 2.4 g of water per g of dry 

potting mix, while for WD assays, this was reduced to 1.1 - 1.4 g of water per g of dry potting mix, 

with a water potential of approximately -100 kPa (Verbraeken et al., 2021). The final leaf length was 

measured at V3 (FLL3, when the collar of leaf 3 is fully developed) from the crown of the plant to 

the leaf tip, and the final leaf width (FLW3) was measured at the middle point of the leaf blade. For 

biomass, aerial parts of V3 seedlings were harvested and weighed for fresh weight (FW) and then 
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dried in a 60ºC oven to estimate dry weight (DW). Biomass moisture content was calculated on a DW 

basis as FW-DW/DW. 

 

Statistical analysis to detect genotype-to-phenotype associations 

Phenotypic datasets were trimmed to remove individuals that scored as under-developed (misshapen 

or developed to a stage of less than V3 at the moment of harvest) or over-grown (surpassed V3 at the 

moment of sampling) during the phenotyping trials. Within each population and experiment, one-way 

ANOVAs were then conducted at the single-gene level to check for differences between the control 

(EDITOR 1) and mutant groups (LOF1/2 or LOF2/2). The minimal size of a mutant group to be 

considered in statistical analysis was six individuals having both phenotypic and genotypic data. Post-

hoc HSD Tukey's tests were then performed to assign each mutant group to a statistical group. Finally, 

we recorded the number of times a KO (either LOF1/2 or LOF2/2) of a specific gene was found to be 

significantly associated with a given trait while leading (on average) to a >10% increase or decrease 

compared to the control line (EDITOR 1). We compared that count with the number of times 

sufficient data were available to make a statistical conclusion about a gene KO effect and defined the 

resulting ratio as the strength of the association. 

 

Accession numbers 

The entire set of Illumina paired-end read sequences have been deposited in the Sequence Read 

Archive (DDBJ/ENA/GenBank) under BioProject accession number PRJNA815957. The gene IDs 

of the 48 GRGs targeted in this study are listed in Table 1. 
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Table 1. List of the 48 GRGs targeted by different SCRIPTs. 

SCRIPT Position Gene Gene family/pathway B73 V3 gene id  References 

1 1 ZmGa2ox2 GA2-oxidases GRMZM2G006964 

(Huang et al., 2015; Li et al., 2021) 

1 2 ZmGa2ox4 GA2-oxidases GRMZM2G153359 

1 3 ZmGa2ox5 GA2-oxidases GRMZM2G176963 

1 4 ZmGa2ox7 GA2-oxidases GRMZM2G427618 

1 5 ZmGa2ox8 GA2-oxidases GRMZM2G155686 

1 6 ZmGa2ox9 GA2-oxidases GRMZM2G152354 

1 7 ZmGa2ox13 GA2-oxidases GRMZM2G031432 

1 8 D8 DELLA/GRAS family GRMZM2G144744 (Winkler and Freeling, 1994; Lawit et al., 

2010) 1 9 D9 DELLA/GRAS family GRMZM2G024973 

1 10 ZmSLRL1-1 DELLA/GRAS family GRMZM5G826526 (Ikeda et al., 2001; Itoh et al., 2005; Liu 

et al., 2021) 1 11 ZmSLRL2 DELLA/GRAS family GRMZM5G874545 

1 12 ZmSPY GA signalling GRMZM2G357804 (Qin et al., 2011) 

2 1 ZmCKX-2 cytokinin oxidases GRMZM2G050997 

(Ashikari et al., 2005; Bartrina et al., 
2011) 

2 2 ZmCKX-3 cytokinin oxidases GRMZM2G167220 

2 3 ZmCKX-4 cytokinin oxidases GRMZM5G817173 

2 4 ZmCKX-4B cytokinin oxidases GRMZM2G024476 

2 5 ZmCKX-5 cytokinin oxidases GRMZM2G325612 

2 6 ZmCKX-6 cytokinin oxidases GRMZM2G404443 

2 7 ZmCKX-7 cytokinin oxidases GRMZM2G134634 

2 8 ZmCKX-8 cytokinin oxidases GRMZM2G162048 

2 9 ZmCKX-9 cytokinin oxidases GRMZM2G303707 

2 10 ZmCKX-10 cytokinin oxidases GRMZM2G348452 

2 11 ZmCKX-11 cytokinin oxidases GRMZM2G122340 

2 12 ZmCKX-12 cytokinin oxidases GRMZM2G008792 

3 1 ZmKRP1;1 ICK/KRP cyclin-dependent kinase GRMZM2G101613 

(Cheng et al., 2013; Cao et al., 2018) 

3 2 ZmKRP1;2 ICK/KRP cyclin-dependent kinase GRMZM2G084570 

3 3 ZmKRP1;3 ICK/KRP cyclin-dependent kinase GRMZM2G343769 

3 4 ZmKRP3 ICK/KRP cyclin-dependent kinase GRMZM2G154414 

3 5 ZmKRP4;2A ICK/KRP cyclin-dependent kinase GRMZM2G037926 

3 6 ZmKRP4;2B ICK/KRP cyclin-dependent kinase GRMZM2G116885 

3 7 ZmKRP5;1 ICK/KRP cyclin-dependent kinase GRMZM2G358931 

3 8 ZmKRP5;2 ICK/KRP cyclin-dependent kinase GRMZM2G157510 

3 9 ZmPP2C-A9 ABA signal transduction  GRMZM2G134628 
(He et al., 2019) 

3 10 ZmPP2C-A11 ABA signal transduction GRMZM2G159811 

3 11 ZmHB124B 
Homeobox transcription factor 

family 
GRMZM2G023291 

(McConnell et al., 2001) 

3 12 ZmHB124C 
Homeobox transcription factor 
family 

GRMZM2G178102 

4 1 ZmTCP3 TCP - CIN clade GRMZM2G115516 

(Koyama et al., 2017; Sarvepalli and 

Nath, 2018; Lan and Qin, 2020) 

4 2 ZmTCP8 TCP - CIN clade GRMZM2G020805 

4 3 ZmTCP9 TCP - CIN clade GRMZM2G589470 

4 4 ZmTCP10 TCP - CIN clade GRMZM2G166946 

4 5 ZmTCP22 TCP - CIN clade GRMZM2G120151 

4 6 ZmTCP25 TCP - CIN clade GRMZM2G035944 

4 7 ZmTCP42 TCP - CIN clade GRMZM2G180568 

4 8 ZmGRF4 Growth-regulating factor clade GRMZM2G004619 
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4 9 ZmGRF10 Growth-regulating factor clade GRMZM2G096709 (Nelissen et al., 2012; Voorend et al., 

2016; Liebsch and Palatnik, 2020) 

4 10 ZmGRF17 Growth-regulating factor clade GRMZM2G124566 

4 11 ZmPHD8 SET domain transcription factor GRMZM2G409224 - 

4 12 ZmBPC6 GAGA-binding protein GRMZM2G118690 (Gong et al., 2018) 
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FIGURES 

 

Figure 1. The multiplex gene editing strategy of BREEDIT. A. Selection of growth-related 

genes (GRGs) based on published and in-house research performed in Arabidopsis, rice, or maize 

B. After gene selection, gRNAs with NGG PAM sites are selected for each gene, and PCR primer 

pairs are designed to re-sequence gRNA target sites and flanking regions via HiPlex amplicon 
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sequencing. For each gene, the best set of gRNAs and flanking primer pairs is selected. Twelve 

gRNAs are cloned in multiplex gene editing vectors named SCRIPTs. Next, the SCRIPT constructs 

are transformed in a Cas9-expressing maize line named EDITOR. C. Vigorous T0 plants containing 

the SCRIPT (BASTA resistant) and the Cas9 EDITOR construct (hygromycin resistant) are further 

genotyped using HiPlex amplicon sequencing. Based on the genotypes, plants are selected for 

crossing with B104 (BC: backcross), with plants with complementary mutations caused by the same 

SCRIPT (intra-script crosses), or with plants containing a different SCRIPT and therefore mutations 

in genes from a different family or pathway (inter-script crosses). These crosses aim at maximizing 

the mutation landscape and diversity. Finally, self-crosses (S) of lines generate a segregating 

progeny for high-throughput phenotyping of selected traits, which later can be associated with 

(combinations of) genes. D. From continuous read depth to discrete loss-of-function (LOF) 

genotypic classes. Sequencing reads are mapped to the B104 reference loci. Two read categories are 

derived, namely haplotypeREF and haplotypeKO. HaplotypeREF corresponds to the aggregated 

fraction of reads containing only SNPs, in-frame indels, or the reference haplotype. HaplotypeKO 

refers to the aggregated fraction of reads with out-of-frame indels. A tri-modal distribution is 

expected for haplotypeKO, with local maxima around 0%, 50%, and 100%, each corresponding to a 

fraction of the genome being edited at the locus. HaplotypeKO is therefore discretized into three 

gradual classes of LOF: LOF0/2 (the genome is not edited with out-of-frame indels, i.e. 0 

chromosome out of 2 in a diploid organism), LOF1/2 (half of the genome is edited with out-of-

frame indels, i.e. 1 chromosome out of 2 in a diploid organism), LOF2/2 (all the genome is edited 

with out-of-frame indels, i.e. 2 chromosomes out of 2 in a diploid organism).  
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Figure 2. Diversity of mutated haplotypes obtained after CRISPR/Cas9 genome editing. A. 

Distribution of indel length. B. Number of different haplotypes with indels observed per gene. Any 

haplotype with indels with >1% relative frequency in the sequencing reads per locus per sample is 

included. IN: in-frame indel, OUT: out-of-frame indel. Blue, pink, and green correspond to the 

fractions of indels first observed at T0, T1, and T2, respectively. C. Different haplotype 



BREEDIT: A multiplex genome editing strategy 

26 
 

combinations in plants can all lead to a gene loss-of-function, either partial (LOF1/2) or complete 

(LOF2/2). Each colored horizontal stacked bar corresponds to a different haplotypeKO. Bar length 

is proportional to the fraction of sequencing reads per locus containing the haplotypeKO. The black 

fraction corresponds to the aggregation of alleles assigned to the wild-type haplotype 

(haplotypeREF). For an overview of the different haplotypeKO found in T0 plants harboring the 

different SCRIPTs, see Supplemental Figure S5.  
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Figure 3. Distribution of LOF in genes across the entire set of samples. Only haplotypeKO were 

considered for genotype calling. The fractions of reads containing haplotypeKO were summed per 

sample per locus. A. Overview of the classes LOF0/2, LOF1/2, or LOF2/2 obtained in the entire 

sample set for the four SCRIPTS (S1-S4). Samples are on the x-axis and are distributed over three 
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rows. B. Distributions of LOF1/2 (green) and LOF2/2 (blue) across the four SCRIPTs throughout 

the generations. The top, middle, and bottom panels show T0, T1, and T2 plants, respectively. Red 

triangles indicate new LOF that appeared at T1. C. Stacking LOF at multiple genes within plants.  
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Figure 4. Phenotypes observed in multiple gene-edited populations of SCRIPT 1 and SCRIPT 

4. A-B, F-G. Measurements of final length of leaf 3 (FLL3) (A, F) and final leaf width (FLW3) (B, 

G) of gene-edited SCRIPT 1 (A, B) and SCRIPT 4 (F, G) individuals compared with the EDITOR 1 

background control. For each SCRIPT, data correspond to independent multiple gene-edited 

populations assayed on two different independent experiments under WW conditions. On the 
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distributions, each dot represents one individual and is colored according to the amount of partial 

(LOF1/2) and complete (LOF2/2) LOF observed in that individual. The more orange, the higher the 

LOF in the individual. Pairwise Student’s t-test were conducted between EDITOR 1 and mutated 

populations. Significant differences are displayed with p-values summarized as follow: **= p<0.01, 

*** = p<1e-3, **** = p <1e-4. Blue diamonds indicate the means of each distribution. C-D, H-I. 

Photographs of general plant architecture (C for SCRIPT 1 and H for SCRIPT 4) and final leaf 3 (D 

for SCRIPT 1 and I for SCRIPT 4) compared with the EDITOR 1 (ED1) background.  
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Figure 5. Aggregated association analysis of single-gene LOF and traits. Summaries of single-

gene associations to traits are represented for SCRIPT 1 (A), SCRIPT 2 (B), SCRIPT 3 (C), and 

SCRIPT 4 (D). Single-gene associations were performed per population, in each phenotypic 
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experiment and for all measured traits. Results are summarized per gene, per trait with two indices. 

1) Observation: the number of times a given gene has been observed in a situation with sufficient 

genotypic and phenotypic data across populations and experiments. An observation with sufficient 

data corresponds to a situation where a gene displays at least one LOF group between LOF1/2 and 

LOF2/2 represented by at least six individuals with phenotypic information for a specific trait. In 

such cases, the mean phenotypic value of each genotypic group could be statistically compared to 

the mean phenotypic value of the EDITOR 1 control. 2) Strength: for each gene, we calculated the 

weighted sum of observations in which the genotypic group with the highest mean phenotypic value 

is 10% above (weight: +1) or below (weight: -1) the mean phenotypic value of EDITOR 1. The 

resulting sum was divided by the total number of observations (n). Associations displaying highest 

strength, either positive or negative, along with a large total number of observations indicate strong 

evidence for the effect of a gene on the trait.  
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Figure 6. LOF dosages in D8 and leaf shape parameters. A. Haplotype profiles at gene D8 of T1 

segregants from population P012. Three haplotypes were detected, with two containing out-of-

frame indels (-1 bp, brown and +1 bp, orange) and one containing an in-frame (-3 bp, gray) 

deletion. This results in a collection of plants with D8 either partially (LOF1/2) or completely 

(LOF2/2) knocked out. The resulting two classes of LOF dosages are compared to EDITOR 1 for 

final leaf length 3 (B) and final leaf width 3 (C). Significant differences (pairwise Student’s t-test) 

are displayed with p-values summarized as follow: *** = p<1e-3, ns: not-significant. Red triangles 

indicate the mean of each distribution.  



BREEDIT: A multiplex genome editing strategy 

34 
 

 

Figure 7. Network representation of single-gene effects on growth-related traits. Traits are 

displayed in bold (FLL: final leaf length; FLW: final leaf width; FW: fresh weight; DW: dry 

weight; M: moisture content). Genes associated at least once with a trait are displayed. Lines 

indicate connections between genes and traits. Line width is proportional to the number of times the 

underlying dataset to detect a gene knockout-trait association in different experiments and/or 

populations contained sufficient data for statistics (i.e., a minimum of one LOF class between 

LOF1/2 and LOF2/2 with at least six individuals with phenotypic information). Line color 

represents the weighted fraction of gene KO-trait associations that significantly outperformed the 

EDITOR 1 control by 10% (ANOVA test; p<5%), either positively (weight: +1, more red) or 
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negatively (weight: -1, more blue), over the number of times a gene KO-trait association could have 

been observed due to sufficient data points.  
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