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Abstract

The dual of a polyhedron is a polyhedron — or in graph theoretical terms: the dual of a
3-connected plane graph is a 3-connected plane graph. Astonishingly, except for sufficiently
large facewidth, not much is known about the connectivity of the dual on higher surfaces. Are
the duals of 3-connected embedded graphs of higher genus 3-connected, too? If not, which
connectivity guarantees 3-connectedness of the dual? In this article, we give answers to some
of these and related questions. We prove that there is no connectivity that guarantees the 3-
connectedness or 2-connectedness of the dual for every genus, and give upper bounds for the
minimum genus for which (with ¢ > 2) a c-connected embedded graph with a dual that has a 1-
or 2-cut can occur. We prove that already on the torus, we need 6-connectedness to guarantee
3-connectedness of the dual and 4-connectedness to guarantee 2-connectedness of the dual.

In the last section, we answer a related question by Plummer and Zha on orientable embed-
dings of highly connected non-complete graphs.

1 Introduction

Relations between dual polyhedra have been observed at least since Kepler in 1619 [7], but it was
not until several centuries later that duality was formally defined. Omne of the first definitions
was given by Briickner [4, 15]. With graph embeddings, duality can be abstractly defined for any
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embedded graph: the dual G* of an embedded graph G is an embedded graph, whose vertices are
faces of G two faces of G being adjacent as vertices of G* whenever they share an edge in G [8, 9].
It is folklore that the dual of a plane polyhedral embedding (i.e. of a 3-connected plane graph) is
again a plane polyhedral embedding and in the planar case a graph and its dual are often considered
to be almost the same — e.g. some algorithms for listing certain classes of cubic plane graphs work
in fact by generating the corresponding dual graphs — that is: triangulations — and dualizing them
for output. Mohar ([8], Proposition 3.8, Proposition 3.9, Proposition 3.2) generalized the relation
between the connectivity of an embedded graph and its dual to higher surfaces in the following
restricted setting — with fw(G) the facewidth of the embedded graph G:

Theorem 1.1 ([8]) Let G be an embedded graph of genus g > 0, G* the dual embedded graph, and
c € {1,2,3}. Then, the following are equivalent:

o fw(G) > c and G is c-connected,

o fw(G*) > ¢ and G* is c-connected.

The theorem cannot be extended to ¢ > 4 due to triangular faces, which — except for trivial
cases — imply a 3-cut in the dual.

In this contribution, we are mainly interested in simple graphs, that is graphs that have neither
double edges nor loops, but multigraphs, that is graphs with multiedges and loops allowed, are used
as tools too. In places where it is not obvious from the context which kind of graph is dealt with, we
explicitly use the term simple graph or multigraph instead of just graph. We study simple embedded
graphs with simple duals and the general case of the relationship between the connectivity of the
graph and its dual without restrictions on the facewidth. All cuts discussed in this article are vertex
cuts.

Our main results are that already on the torus, even the dual of a 5-connected graph need not
be 3-connected and that, for each ¢ > 0, there is a genus g and an embedded c-connected graph G
of this genus so that the dual has a 1-cut. We give upper bounds for the minimum genus g with
this property. Note that in simple graphs there is an essential difference between 3-cuts on one side
and 1- and 2-cuts on the other: unlike 3-cuts, 1- or 2-cuts in the dual cannot occur as trivial cuts
resulting from facial cycles.

Unless explicitly mentioned otherwise, all embedded graphs in this article are connected. They
come with a combinatorial embedding in an oriented manifold. We will deal with embeddings
only in their combinatorial representation. The equivalence of this representation with the topo-
logical description is well described in standard books on topological graph theory like [6, 9]. A
combinatorial embedding in an oriented manifold is given in the following way: all undirected
edges {v,w} are interpreted as a pair of directed edges (v, w) and (w,v), where (v,w)~! = (w,v).
For each vertex v, all incident directed edges (v, .) are assigned a cyclic order around the vertex,
called the (local) rotation, so that for an edge (v,x), we can talk about the previous and next
edge around v. The set of all cyclic orders is called a rotation system. Faces are cyclic sequences
(vo,v1), (v1,v2), ..., (vg—1,v9) of pairwise different directed edges, so that, for 0 < i < k — 1,
(V(i41) mod k> V(i+2) mod k) follows the edge (V(i+1)mod#,vi) in the cyclic order around v(;y1)mod -
In this case, we call (V(i41)modk» Vi), (V(i4+1) mod k» V(i+2)mod k) an angle of the face and say that
the face has size k. The genus ¢g(G) of an embedded graph G is given by the Euler formula
v(G) — e(G) + f(G) = 2 — 2¢(G) with v(G), e(G), and f(G) the number of vertices, edges and
faces, respectively. This must not be mixed up with the genus of an abstract, not embedded, graph,



which is defined as the minimum of all genera of the different embeddings of the graph. In this

article we will only discuss genera of embedded graphs. The Euler formula and the fact that in a
(c—2)(c—3)
12

the genus on which any simple graph with minimum degree ¢ can be embedded. The fact that this
bound is best possible is the celebrated map colour theorem [13] determining the genus of complete
graphs.

We will not only investigate whether some connectivity guarantees 3-connectedness of the dual,
but also whether other connectivities can be guaranteed and in how far this depends on the genus
of the embedded graph. To this end we define the function dx(c):

For ¢ > k > 1 we define d;(c) as the minimum genus s so that there is a simple c-connected
embedded graph G with genus s, so that the dual graph G* is a simple graph with a k-cut.

At this point it is not yet clear that such a minimum genus exists, but it will turn out that
0k (c) is well defined for all ¢ > k > 1.

Some values for d;(c) are known or can be easily determined. To determine some of the others,
we need some definitions and basic results.

simple graph each face contains at least three edges imply that { —‘ is a lower bound on

2 Notation and basic results

In this article, a face and the corresponding vertex in the dual graph are denoted by the same
symbol, so that it makes sense to write v € f for a vertex v of a graph and a vertex f of the dual
graph if it is contained in a directed edge of the face f.

e Let G = (V, E) be a simple embedded graph and V., C V a cutset in G. A boundary face is
a face (vg,v1), (v1,v2), ..., (Vg_1,v0), so that there exist 0 < i < j < k — 1 with v; € V. and
v; € V.. Note that v; = v; is possible. The set Fj is the set of all boundary faces. For a

component C of G —V,, let F,(C) be the subset of faces of Fj, that contain at least one vertex
of C.

e The embedded boundary multigraph Gy is the bipartite graph with vertex set V. U Fy, where
a vertex v € V, is adjacent to f € Fj if v € f. For each time v occurs in the closed boundary
walk of f € Fy, there is an edge {v, f} and the embedding is given by the rotation around v,
respectively by the boundary walk. We consider the embedding to be given by the rotation
system, so the genus of (¢, is bounded from above by the genus of G. In general, G needs not
be connected, but in all cases where we apply the Euler formula to Gy, it will be connected.
Face sizes in this graph will later be used to determine bounds on the size of cut sets in the
dual.

e The multigraph G} is the graph G U G}, where the rotation around vertices in V. is such that
the edges to vertices in F} are inside the corresponding faces. The genus of Gy is equal to the
genus of G.

e For a component C of G — V,, the set FZ" is the set of (interior) faces of C, that is faces of
G that are not in Fj and contain only vertices of C'U V, in the boundary.

e If G is an embedded multigraph and G’ = (V', E’) a subgraph with an embedding induced
by G, a (G'-)bridge B of G is either a subgraph of G that is a single edge of G — E’ with both
ends in V’, or a component Cg of G — V' together with the edges of G with one endpoint in



V' and one in Cp and the endpoints of these edges in G'. We say that a bridge B is inside
a face f of G', if there is an angle eq, ey of f so that there is an edge of B in the rotation
between e; and es.

e Bridges can be inside different faces. If for a face of G’ we have that all bridges inside this
face are inside no other face of G’, we call this face simple, otherwise bridged. Note that if a
face f is bridged, there is at least one other bridged face f’ with which f shares bridges, but
there could be more.

e Let G be an embedded multigraph, G’ a subgraph with an embedding induced by G and f
a simple face of G’. We define the internal component of f as follows: we first replace each
vertex v that occurs k > 1 times in the facial walk around f by pairwise different vertices
v1,...,0k. If the angle at the i-th occurence of v is (v, z), (v,y), the neighbours of v; and
the rotation are given by all edges (v, z) in the cyclic order around v from (v,z) to (v,y) —
including (v, z) and (v,y). The internal component of f is then given by all vertices and edges
on the modified boundary walk (which is now a simple cycle) of f together with all bridges
inside f. This implies that the boundary corresponding to f in the internal component of f
is always a simple cycle.

If the internal component of a simple face f has genus 0, we call this face a simple internally
plane face, otherwise a simple internally non-plane face.

The following lemma has the combinatorial version of the Jordan curve theorem as the special
case g = ¢’ = 0 and G’ a cycle. If a subgraph G’ of a graph G has bridged faces, then the edges in a
bridge connecting two faces force a higher genus of G than that of G’. The same is true for simple
faces containing a bridge in the interior that has itself already a nonzero genus. This is formalized
in the following lemma.

Lemma 2.1 Let G be an embedded multigraph of genus g and G’ an embedded (also connected)
subgraph of genus ¢’ with the embedding induced by G. Let b denote the number of bridged faces of
G’ and sy denote the number of simple internally non-plane faces. Then sy, + % <g-g.

Proof: Note first that if f is a simple face of G’ such that the internal component C has genus
gc, the subgraph G’f of G that consists of all vertices and edges of G’ and C has genus
g} = ¢ +go: if V', €, [, respectively vo, ec, fo and v}, e’f, fj’c are the numbers of vertices,
edges and faces of G, resp. C' and G, then — with [ the length of the boundary cycle of f in
C — we have

V=€t fi=0 tve 1) = (' +ec -+ (f'+fc—2)=
(W =€+ )+ (vec—ec+ fo) — 2.

This gives by Euler’s formula

2=y =€+ f1)  2—((W =€+ f)+ (vc—ec+ fc) —2)

/
2-((2-29)+(2-290c)—-2) 29 +29c



We will prove the result by induction on the number d of edges that are in G, but not in G'.
If d =0, we have G = G’ and s,,, = b= g — ¢’ = 0, so the result holds.

If d > 0 and there is a simple internally plane face f of G’ with an internal component C,
that contains a bridge, we can apply induction to G’f, and as (with the notation from above)
gc = 0, neither sy, nor b or ¢’ change, the result follows immediately.

If d > 0 and s, > 0, let f be a simple internally non-plane face of G’ and G’ as above.
For G';, we have (with the notation from above) that ¢} = ¢’ + gc > ¢’ + 1, and with s,
respectively b’ the number of simple internally non-plane faces of G’;, respectively the number

of bridged faces of G';, we have b’ = b and s;,, = spp — 1. By induction s, + %/ <g—g} so
smpt 5= (st )+ G <g-gpt1<g—g.

Let now f # f’ be bridged faces of G’ so that there is a bridge B inside both faces f and f’.
Let e, e’ be edges of B with endpoints in f, f’, respectively. Note that e = ¢’ is possible if B
is a single edge. In B, there is a path starting in an angle of f with edge e and ending in an

angle of f’ with edge ¢/. Adding this path to G’ to obtain G’5, we get a graph with the same
faces as G’ — except for f, f’, which become one new face.

Because in addition the number of edges added is one larger than the number of vertices

added, we have, for the genus g of G5, that g = ¢’ + 1. Old simple internally non-plane

faces are not changed, but the new face can be a new simple internally non-plane face. So

if s’np denotes the new number of simple internally non-plane faces, we have s;lp > Spp- The

new face can be simple or bridged, but in any case, with ¥ the number of bridged faces of
'o, we have b’ > b — 2 because other bridged faces stay bridged. We get

p b +2

b
snp+§§8np+ 5 < s

/

2

ptoTl<g—gp+l=g—4g.

Let V. be a cutset of a simple embedded graph G and f be a face. If f contains vertices vy, vo

of different components of G — V,, then going from vy in the two possible directions along f we
reach at least two different positions in the facial walk with vertices from V. before reaching vs.
This implies that f € Fy.

Lemma 2.2 Let G = (V, E) be a simple embedded graph and V. C'V a cutset, so that, for at least
two components C1,Co of G — V., we have that Fg;t and Fggt are not empty. Then Fy(Cy) is a
cutset in the dual graph G*.

Proof: Let fi € F@', f, € F4' and vy € fi,01 € V. and vy € fo,v9 & V. If G* — Fy(C)) is

connected, then there is a path fi = f1, f3, f4, ..., f, = fa in G* — F,(C1). Let f! be the first
face that is not in ngt Since it is adjacent to f/_; in G* — F,(C1), it shares an edge with

fl_; in G, so it shares at least one vertex from C7 with f/ ;. This means that f] € Fgft or
f! € Fy(C1) — both of which are impossible.



Note that such a cutset F3(C1) in Gp can contain vertices from different faces of Gy if the
component is bridging two or more faces.

Corollary 2.3 Let G = (V,E) be a simple embedded graph and V. C V a cutset, so that Gy
as subgraph of Gy has a simple face fi whose interior and exterior contain faces of G. Then
{f € Fy|f € fi} (note that a face f € Fy is also a vertex in Gy) is a cutset in the dual graph G* of
size at most é if 1 is the number of directed edges in fi.

Lemma 2.4 Let G be a simple embedded graph with a 1-cut {v.} and a simple dual. If Gy has a
vertex fo € Fy with (as face of G) an internal component C and FZ' = 0, then |Fy| > 5. Note that,
for a 1-cut {v.}, Gy is connected.

Proof: Let C be such a component and x; a neighbour of v, = xy in C. Let (zg, z1), (21, 22),...,
(zi—1, ;) be amaximal path in the face fy € F}, containing (zg, z1), so that v. & {z1,...,zi—1}.
We have x; = v., but the path cannot be the whole face, because in that case, the face would
contain v, only once and would therefore be in Fé,”t. As G has no double edges, we have
i > 3. For 0 < j <, we denote the face containing (x;,x;_1) by f;, so the faces fo, f1,..., fi
are pairwise different, since the dual has no double edges or loops. See the left hand side of
Figure 1 for an illustration.

V.= XO X

Figure 1: Paths in faces of Fj.
Because all faces fy, f1,..., f; contain vertices of C, they are either in Fé”t or in Fp, and
because Fé”t = (), they are in Fy. If i > 4, we have that |Fy| > 5, so assume that ¢ = 3. Then
(see the right part of Figure 1) (x2, 1) is contained in a facial path starting and ending with
v. showing that, in that case, even |F,| > 6.

Lemma 2.5 Let G be a simple embedded graph with a simple dual and a given cutset V.. If Gy
has a face f of size 2, then (as subgraph of Gy) there is exactly one component C inside f and (no
matter whether f is bridged or not) FZt = (.

Proof: Let fj,v. be the vertices forming the 2-face f in G} and let the order around v, (in Gj)
inside f be (ve, f), (Ve, 1)y - -+, (Ve, k), (Ve, fp). Then k > 2 because otherwise the face f, in
G would imply a loop in the dual. Furthermore, for 1 < i < k, the edges (x;,v.) and (ve, Zit1)
belong to the same face f;. This face f; contains v, as the only element of V. and only at

one position, because otherwise we would not have a 2-face in GGy. This means that f; € Fé”t



and that the face boundary without v, connects z; and ;11 so that they belong to the same
component. Since each component inside f must contain at least one of these vertices, there

is only one component.

Lemma 2.6 Let G be a simple embedded graph with a simple dual and a given cutset V. of G.

Each cycle Z in a component C of G — V, is either
(a) in a simple face f of Gy so that a face of the internal component is also a face of G, or
(b) in a bridged face of Gy, or

(c) in a simple internally non-plane face of Gy.

Proof: If C is connected to more than one face, we have (b), so assume that C is inside a simple

face f. Embedding f (with vertices occuring more than once replaced by copies), Z and a
path from f to Z, we have a plane graph with (a directed version of) Z forming a face fy
inside f. If fy is a face of G, we are in case (a). Otherwise we can recursively argue, that if
we add the remaining edges to form the internal component containing C in the cyclic order
given by GG, we either connect two faces in one of the steps (which means that we have case
(c)) or we will just subdivide fy producing faces inside of it, which means that we end up in
case (a).

Corollary 2.7 Let G be a simple embedded graph with a simple dual and a 1-cut {v.}. Then each

Gy-bridge B of Gy is
(a) in a simple face of Gy containing an interior face of G, or
(b) in a bridged face, or

(c) in a simple face with nonplane interior.

Proof: Because {v.} is a 1-cut, there are no bridges of Gy, that are just edges, since they would be

loops. Furthermore the minimum degree in G is 3, because otherwise the dual would have a
double edge, which implies that each vertex has at least two neighbours that are in the same
component of G — {v.}. Together this implies that each bridge of G}, contains a cycle, so that
the result follows with Lemma 2.6.

Lemma 2.8 Let G be a simple embedded graph with a given cutset V.. If C1,Cy are different
Gy-bridges of Gy, then they are in different faces of Gy.



Proof: Let f be a face of Gy. If v.,v., € V. are two vertices following each other in the cyclic
order around f with one vertex f; representing a face of G in between, then there is a path
in f, and inside f connecting v. and v, without vertices of V. in between. This path is part
of a bridge, so each two vertices of V. following each other in the cyclic order around f are
contained in a common bridge. If we can show that there are no two different bridges inside
f sharing a vertex at the same angle in f, this implies that there are no two such different
bridges at vertices following each other in the cyclic order and finally that there is only one
bridge.

Now let v, € V. be a vertex of a face f of G and C7, Cs be two different bridges sharing v, at
the same position of the face f. Without loss of generality assume that if (fy1,vc), (ve, fo,2)
are the edges of f at that position, that the first edge in the rotation from (v, fy.1) to (ve, fo,2)
around v, belongs to C; and that the first edge (v, c2) that does not belong to C belongs to
Cy. Let (ve,c1) be the previous edge of (v, c2), so ¢; € C1. As there is no edge to a face in
Fy between (ve, ¢1) and (v, c2) in Gy, a vertex of V. occurs only once in the face containing
(c1,vc), (ve, ¢2), so the path connecting ¢; and ¢y along the side not containing v. shows that
they belong to the same bridge — a contradiction.

The following lemma will be used to show the existence of small faces in the boundary multigraph
Gy of a graph G with a given 1-cut. Together with Lemma 2.2 these small faces will then imply a
small cut in the dual.

Lemma 2.9 Let G = (V1 U Vs, E) be an embedded bipartite multigraph of genus g with bipartition
classes V1, Va, so that |Vi| = 1 and that each vertex in Vo has degree at least 2. If, for some k, we
have that i faces have size less than 2k, then

> b= g+

If additionally there is at most one face of size 2, then
: k— k
2155 g+ Vel

Proof: Summing up the face sizes and using lower bounds for the faces of size at least 2k as well
as for the smaller faces, we get with f the number of faces and e the number of edges of G

. . e+(k—1)i
2e > 2k(f —1i) + 21, so fg%.

Inserting this, with 1 4 |V5| as the number of vertices of G into the Euler formula we get

2-2g=1+ Vol —e+ f<1+|Va| —e+ O =1 1|y — Ele 4 At
Since e > 2|V;| we get

2—29§1+|V2| 2k— 2|V|+ 1_1_72“/2|+ SO
%Z21_2g+%|‘/2” thus 22%_ 1g+k 1|‘/2|

which is the first result.

If there is at most one face of size 2, then



- , +(k—2)i+1
2e > 2k(f —1i) + 4i — 2, =) f< e

Starting with this formula, a completely analogous computation gives the second result.

3 Results on small genus

Lemma 3.1

(a) Let G be a simple embedded graph with a 1-cut that has a simple dual G*.

e If g(G) =1, then G* has a cut of size at most 3.
e If g(G) =2, then G* has a cut of size at most 5.

(b) Let G be a simple embedded graph with a 2-cut that has a simple dual G*.
If g(G) =1, then G* is at most 5-connected.

Proof: (a) Let v be a cutvertex of G. Due to Corollary 2.3, it is sufficient to show that G has a
simple face f; with a face of G in the interior and exterior and, for g = 1, boundary length
at most 6 (and thus |F,(C)| < 3 for some component C') and, for g = 2, boundary length at
most 10 (and thus |F,(C)| < 5).

Due to Lemma 2.8, G} has at least two faces. If |F}| < 5, they both contain a face of G
(Lemma 2.4), so that Fj is a cutset in the dual (Lemma 2.2). If g =1 and |Fy| <4 or g =2
and |Fp| < 5 we are done.

We will use that the graph Gy satisfies the conditions of Lemma 2.9 with V3 = {v} and
Vo = Fy.

Now assume g = 1 and |F(C)| > 4. Then — with ¢’ the genus of Gy, i as in Lemma 2.9, and
k =4 — Lemma 2.9 gives:

If ¢ =1, then i > %, so i > 2. Due to Corollary 2.7 and Lemma 2.1, at least two faces of G
with at most 3 elements of Fj in the boundary are simple and contain an interior face of G,
so that we can apply Lemma 2.2.

If ¢ =0, then i > 4, so again at least two faces of G}, with at most 3 elements of F}, in the
boundary are simple and internally planar and contain an interior face of G. Again Lemma 2.2
gives the desired result.

Assume now g = 2 and |F,(C)| > 5. Then — with ¢’ the genus of Gy, and k = 6 — Lemma 2.9
gives:



If ¢ =2, then i > 2, so there is a face f of G}, with at most 5 elements of F}, in the boundary
and, due to Corollary 2.7 and Lemma 2.1, this and also at least one other face are simple,
internally planar, and have an interior face of G. We can apply Lemma 2.2 to f.

If ¢ =1, then ¢ > %4, so ¢ > 3. This implies that there is at least one simple, internally
planar face of G with an interior face of G and at most 5 elements of Fj, in the boundary.
If there is another simple internally planar face of GGy or another face of GG with an internal
face of G, we are done, but in principle it is possible that there are just 3 faces of G, and
that the other two are bridged and do not contain an internal face of GG. In this case, we have
(Lemma 2.5) that there is at most one face of Gy, of size 2 and the second part of Lemma 2.9

gives:

. 5 12 45— 13
=y T
To this end 7 > 4 and there is at least one more simple internally planar face of G, — which

in fact even has a short boundary.

If ¢ =0, then 7 > %, so ¢ > 6 and it follows immediately that we have at least two simple

internally planar faces of G with sufficiently short boundary.

(b) Suppose that G* has no cut of size at most 5, but is the simple dual of a graph G with
a 2-cut. The simple 6-connected toroidal graphs have been described in [10]. They are the
duals of hexagonal tilings of the torus and can be parametrized by three values p,r > 0,
0 < ¢ < p. The construction is given in Figure 2: for a segment of p x r hexagons of the
hexagonal lattice, the upper and lower as well as the left and right boundaries are identified
and the left (p-) part is shifted by ¢ positions before identification. For small values of p,r,
the graph or the dual can have multiple edges, but if the graph and the dual are simple, the
graph G — that is, the hexagonal tiling — is also 3-connected:

Let vy, v2 be two vertices, V' = V'\ {v1,v2} and h an arbitrary hexagon. If h does not contain
a vertex of {vy, va}, all vertices of V/Nh belong to the same component of V/. Assume v; € h.
Because the dual is simple, all vertices in the three hexagons around v; are pairwise distinct.
This implies that all vertices in the boundary cycle of the three hexagons that are also in
V' belong to the same component (even if the cycle contains vs). So for each hexagon, all
vertices in the boundary that are not in V' belong to the same component. Since the dual
is 6-connected, for each pair of hexagons, a path of hexagons can be found showing that the
boundary vertices are in the same component — so G has no 2-cut.

Without the assumption of G* being simple, the statement (a) of Lemma 3.1 is not true. An
easy counterexample would be the dual of K7 embedded on the torus with an extra vertex of degree
1 added inside one of the faces. The dual of this graph with a 1-cut would be 6-connected: K7 with
an extra loop at one of the vertices.

10



b (if g=1)

b (if g=2)

b (if q=3)

r=7

Figure 2: The parametrization of hexagonal tilings on the torus.

4 The H-operation

In order to prove an upper bound for d2(c) we will now describe an operation that introduces a
2-cut in an embedded graph without changing the (abstract) dual graph.

Definition 1 Let G be a simple embedded graph and z, x' be different vertices of G with ey, es, ..., ep

the rotation of incident edges around x and €}, ¢€h, ... el the rotation around x'. Then we say that
the graph where the vertices z, ' are replaced by one vertex y with rotation eq,ea, ..., en, €, €5, ...,
er, of incident edges is obtained from G by identifying the angles ey, e; and €], €].

By counting vertices, edges, and faces it is easy to see that if two angles in different faces are
identified, the genus is increased by one, and if two angles in the same face are identified, the genus
remains the same.

Definition 2 Let G be a simple embedded graph with a simple dual and minimum degree at least 2.
Let x,y be adjacent vertices of G with degree 3 and pairwise different neighbours. Let the rotations
around x respectively y be (in vertex notation) y,w', v respectively x,w,v’ (compare Figure 3), a1 be
the vertex before x in the rotation around v, by, be the vertex after x in the rotation around w', ay
be the vertex after y in the rotation around w, and by be the vertex before y in the rotation around
v

Then the result of identifying the two angles (v,ay), (v,x) and (v',b1), (v, y) and also the angles
(w,y), (w,a,) and (W', x), (W', by,) is called the result of the H-operation applied to the edge {z,y}.
We write Hy, 1 (G). See Figure 3 for an illustration. It is possible that the H-operation produces
double edges and loops.

After one of the angle identifications, the genus is increased by one, but the second identification
is then applied to angles in the same face, so the H-operation increases the genus only by one. After
the operation, the former vertices v, w,v’,w’ are identified to 2 vertices that separate x and y from
the rest. The H-operation has an impact on two faces that are replaced by two other faces. Following
the face boundaries of the new faces, one sees that there is a 1-1 correspondence between the old
and new faces that induces an isomorphism of the dual graph. In fact it would not have been
necessary to require a simple dual, so that the faces A, C in Figure 3 are different, but as we only
need the operation in this restricted setting, we only discussed the case of a simple dual. We will
condense these observations in a note:
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Figure 3: The H-operation applied to an embedded graph and the vertices in the facial walk around
the boundaries of the old and new faces.

Note 4.1 If G is a simple embedded graph of genus g with a simple dual and an edge e to which the
H-operation can be applied without producing double edges or loops, then H.(G) is a simple graph
of genus g + 1 with a 2-cut and a dual graph that is isomorphic to the dual of G.

Lemma 4.2 Let G be a simple embedded graph with all faces of size at least 5 that has a simple
dual. If v1 is a vertex where all vertices at distance at most 2 of v1 have degree 3, then, for each
edge e incident with vy, the graph H.(G) is simple.

Proof: We use the notation of Figure 4 and without loss of generality let e = {v1,v2}. We have
to show that vy and vg are different, non-adjacent and do not have a common neighbour, i.e.
that the distance d(vy4,vg) is at least 3. Furthermore we have to show that the same is true
for v3 and vs — even after v4 and vg have been identified.

Figure 4: A part of an embedded graph with a vertex v, so that all vertices at distance at most 2
have degree 3. Vertices with degree 3 are marked by a filled circle, while vertices with degree 3 or
larger are marked by an empty circle.

As the dual is simple, the faces f1, fo,..., f¢ are pairwise distinct. If we had, e.g., v4 = vg,
then f5 € {f1, f2, f3}, which would imply a loop or double edge at f; in the dual. Analogously,
we can conclude that vq,...,vg are pairwise distinct.

12



Furthermore, vs, vy, v5, vg are pairwise non-adjacent:

v4 cannot be adjacent to vs since this would imply fo = f3 or that f3 is a triangle. The same
argument shows that there is no edge {vs, vs}, because both have degree 3. In addition, vy
cannot be adjacent to any other vertex v; # vy in the boundary of f; (and analogously for vs
and fi). At this neighbour (which would have degree 3) at least one of the faces f1, f3 would
have a double edge with f; in the dual.

If {vs,vs} was an edge of G, we had fs € {f1, f2, f3}, which is again impossible. The case for
{vs, v} is symmetric.

Suppose now that d(v4,vs) = 2. Then vy is adjacent to x since y is in the boundary of fj.
Then x had degree 3, so that {fs, fs} N {f1, f2, f3} # 0. The only possibility that does not
immediately imply double edges or loops in the dual is fgs = f». Looking at the rotation
around v4, we would get that f5 would share a second edge with f;.

After vy and vg have been identified, a shortest path between vs and vs was already present
before the identification (and thus have length at least 3) or contain v4 = vg after the identi-
fication as an intermediate vertex. If this path had length 2, v3 and vs would be adjacent to
v4 or vg already before the identification, which is not the case, so d(vs,vs) > 3 (and in fact
equal to 3) after the identification of v4 and vg.

Lemma 4.3 For ¢ > 3, let K.y1 be embedded with minimal genus and d > 0 be minimal so that
(c—=2)(¢c=3)+d=0 (mod12). Let Fy, denote the set of faces that are not triangles and s(f) the
size of a face f. Then, K.11 has f = % +5 - % faces and we have Zf,eFL(s(f’) —-3) = g.

(e=2)(c=3) (c+1)e

Proof: The minimum genus g is [ 5 -‘ [13]. The number e of edges in K ;1 is *—5*= and

the number v of vertices is ¢ + 1. So, with f the number of faces, we get by Euler’s formula

2_2%:C+1—%+fandthus

f=5+5-¢
For all f’ € Fp, we have that s(f’) > 3, so
2e=3f+> pep, (s(f') = 3) so

o Qe*Zf/eFL(S(f/)*:S) . CQJFC*Zf/eFL(S(f/)*‘?’)
f - 3 - 3 .

Inserting this into the previous equation, we get

2 _ , N_3
TreRpen,CUDTY _ @ 4 e d ang finally

S prer, ((f1) =3) = 4.

Lemma 4.4 For ¢ > 3, the complete graph K.y1 can be embedded in a surface of minimal genus
m a way that the dual is simple.
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Proof: In a simple embedded graph with minimum degree at least 2, all faces f with s(f) <5 are
simple — that is: each vertex v of the face occurs exactly in two directed edges of the face.
Otherwise, the distance between two occurrences as start- and end-vertex of a directed edge
would be at most 2, so the graph would have a loop (distance 1) or the face would contain a
path (v,v1), (v1,v) which would imply that there is a double edge or that v; has degree 1.

No two different faces in an embedded graph G with minimum degree 3 and only simple faces
can share two consecutive edges (v1,v2), (v2,v3) that are part of a face, as in that case v
would have degree 2. This implies that in such a graph a triangle cannot share more than
one edge with another face.

Let now (v1,v2),(v2,v3),(vs,v4) be a subpath in a facial walk of a face f in a (simple)
embedded graph G with minimum degree 3 and simple faces. We will show that there is no
face different from f that is a triangle or quadrangle and contains two of the directed edges
(va,v1), (v3,v2), (v4,v3). As shown, no face different from f can contain two of these edges
sharing a vertex v;. The only remaining case is that a quadrangle f, contains (vz,v1) and
(v4,v3) and, in addition for each of {v1,v3} and {ve, v4}, exactly one of the two corresponding
directed edges. Because there must be a directed edge with initial vertex vq, f; must contain
(v1,v3) — which implies that there is no edge in f; with initial vertex vs. Since each two edges
in a quadrangle are contained in a facial path of length 3, this implies that two quadrangles
cannot share more than one edge with each other.

As a consequence, we have that duals of embeddings of the complete graph with maximum
face size 5 and at most one pentagon are simple, because in a face f that is a quadrangle or
a pentagon, each pair of different edges is contained in a path in f of length 3.

From the main result of [14] (Theorem 3.3 in the arXiv paper and Theorem 2.2 in the paper in
Journal of Graph Theory) it follows that for each n > 3 there is a minimum genus embedding
of K,, with at most one pentagon and all other faces of size at most 4. This proves the result.

Lemma 4.5 For each ¢ > 6, the complete graph K.y1 can be embedded in a surface of minimal
genus g in a way that the dual is simple and that there is an edge to which the H-operation can be
applied without producing double edges or loops.

Proof: Let K. be embedded with minimal genus in a way that the dual is simple. We want to
prove that in the dual, there is a vertex v with only vertices of degree 3 at distance at most
2 to v. Because vertices with degree 3 in the dual are triangles in the primal graph, we will
discuss triangles in the primal graph.

With the notation of Lemma 4.3, each f’ € F is a vertex in the dual with degree s(f’). We
say that a vertex f is blocked by a vertex f’ € Fy if (in the dual) d(f, f) <2 and d(f, f') is
minimal among all vertices f' € Fr. A vertex f’ of degree s(f’) can block at most 3s(f’) + 1
vertices (including itself). All vertices in F7, together can block at most

> prer, (Bs(f) +1) =33 g, (s(f/) = 3) + 10| FL| = 3 + 10| FL |
vertices. As, for f' € Fp, we have s(f’) —3 > 1, this implies |Fp| < g and the number b; of

blocked vertices in the dual is at most %l.
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If a vertex is not blocked, we can apply the H-operation to any edge incident with it without
creating double edges or loops (Lemma 4.2).

Since d is always even, we have d < 10, so, for ¢ > 14, we get with Lemma 4.3
2
f=g5+5-52% >3 25 =zbh

hence, for ¢ > 14, there is always a vertex so that we can apply the H-operation to each
incident edge.

For ¢ < 14, consider the following table:

c | d | f | upper bound b; for just one
for o face not a triangle
13 | 10 | 59 65 25
121 6 | 51 39 19
1110 |44 0 0
10| 4 | 36 26 16
916 |29 39 19
8 | 6 |23 39 19
7|1 4|18 26 16
6 | 0|14 0 0

For ¢ € {6,10,11,12}, the dual of each embedding has a vertex that is not blocked. For
c €{7,8,9,13}, we can only draw this conclusion for an embedding with only one face that is
not a triangle. In the appendix (see Section 9), we give such embeddings with a simple dual
for K .41 with ¢ € {8,9,13} to show that they exist. For ¢ = 7, such an embedding does not
exist, but we give an embedding and an edge to which the H-operation can be applied.

5 Bounds and exact values for §;(c)

For k > 3, it is easy to determine the values of dx(), because simple graphs can contain triangles
which imply 3-cuts in the dual, but also some other exact values and bounds can now be determined:

Theorem 5.1 (a) dx(c) > [%-‘ forc>k>1,c>5.

(b) 61(1) =0, 61(2) =01(3) =1, 61(4) = 61(5) = 2,61(6) = 3.

(C) (52(2) = 0, (52(3) = 52(4) = (52(5) = 1, 52(6 = 2.
Forc¢>17: d2(c) € {{(07235073)—‘ , {(672%(673)—‘ +1},

(d) For k > 3 we have:
If c€ {3,4,5} and c > k, then d;(c) = 0.
If ¢ >5 and ¢ > k then di(c) = {%-‘

Proof: (a) The value [%1 is on one hand the genus of the complete graph K ;1 [13], and
on the other the smallest genus on which any graph with minimum degree ¢ can be embedded,

15



(c—2)(c—3)
12

— no matter what the structure of the dual is.

(b) The case d§;1(1) = 0 is trivial, and for ¢ € {2,3} the well known fact that simple c-
connected plane graphs have a simple c-connected dual implies d1(c) > 1. The 3-connected
graph embedded in the torus and displayed in Figure 5 shows d1(2) = 61(3) = 1. The graph
in Figure 6 shows d1(4) < 2, 61(5) < 2, while equality follows with Lemma 3.1, part (a). The
graph in Figure 7 shows d1(6) < 3 and again equality follows with Lemma 3.1, part (a).

(c) The case 02(2) = 0 is trivial, and for ¢ € {3,4,5} the fact that simple 3-connected
plane graphs have a simple 3-connected dual implies d2(c) > 1. Applying Note 4.1 to the

dodecahedron embedded in the plane and with dual the 5-connected icosahedron implies —
together with Lemma 4.2 — 02(3) = d2(4) = d2(5) = 1.

Lemma 3.1, part (b) implies that d2(6) > 1, and applying Note 4.1 and Lemma 4.2 to an edge
of the Heawood graph embedded in the torus (with dual the 6-connected graph K7), we get
d2(6) = 2.

so that for s < { W no c-connected graph embedded in a surface of genus s can exist

Already in part (a) we showed that da(c) > [%1 . Applying Note 4.1 to a suitable edge

of the dual of K.y; embedded in a surface of genus {%W, and applying Lemma 4.5,

shows that da(c) < [%w 41
(d) For ¢ € {3,4,5} the icosahedron shows that dx(c) = 0. For ¢ > 5 the result follows directly

from Lemma 4.4, since for ¢ > 5 embeddings of K.y1 on a surface of genus [W1 exist
that have a simple dual and triangles.

The remaining — and most interesting — values are d1(c) for ¢ > 6 and the exact values of d2(c)
for ¢ > 6. We will not be able to decide which of the two possible values for d2(c) is the correct one,
but we will be able to achieve some progress on the problem for §;(c) by giving an upper bound
on d1(c). As the definition of dx(c) requires G to be c-connected, it follows directly from the Euler
formula that 61(c) € Q(c?), so at least in the Omega-notation, the bound we will prove will be
optimal.

Figure 5: A 3-connected graph on the torus (left) with a dual that has a 1-cut (right).

Theorem 5.2 For ¢ > 7, we have 61(c) < 0245#‘

Proof: Let ¢ > 7, p > ¢ minimal with the property that p is odd, and let ¢ > § + 1 minimal with
the property ¢ =2 (mod4) —so ¢ > 6. We will define an embedding of a graph G containing
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Figure 6: The 5-connected graph K7 minus an edge embedded in the double torus (left) so that
the dual has a 1-cut (right).

Figure 7: The 6-connected graph Kg minus a matching with three edges embedded in the triple
torus (left) so that the dual (right) has a 1-cut.

K 2(q—1) @s a spanning subgraph, so that the dual is simple and has a 1-cut. As K, 5(4_1) is

a spanning subgraph with ¢ = min{p, 2(¢— 1)}, we have that G is ¢-connected and therefore
also c-connected.

In Figure 8, a part of a minimum genus embedding of K, as described by Ringel [12] is
displayed. If the vertex bipartition is V, = {1,2,...,p},V, = {1',2',...,¢'}, then the cyclic
order around the vertices given by Ringel is

For 1 € V), (¢g—1),¢,(¢—3),(¢—2),...,3,4,1 2
(alternating index differences +1 and —3).
For 2 € V), 2/.3.6.7,....,¢,1,...,(¢—5),(¢—2),(¢— 1)

(alternating index differences +1 and +3
and replacing (¢ + 1)" by 1).
Foroddie Vp,,i>3: ¢, (¢—1),...,1.
Foreveniec Vp,i>3: 1,2,...,q.
For odd ' € V: 1,2,...,p.
For even i’ € Vg p,p—1,...,1.

For p odd and ¢ = 2 (mod4), the genus is equal to w and all faces are quadrangles
[12], so (see the proof of Lemma 4.4) no two faces can share more than one edge and the dual

is simple.
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Figure 8: An embedding of K, with p odd and ¢ =2 (mod4).

Removing vertex 1’ € V,, we get one big face with all vertices of V,, in the boundary. In this
new embedded graph G, some of the old quadrangles share 2 edges with the new, large face.
The pattern in which faces occur two times in the boundary can be described based on the
rotation system, but can best be seen in Figure 9. In order to make sure that each face shares
only one edge with another face, we construct the graph Go by adding edges {4k — 1,4k} and
{4k, 4k + 1}, for 1 <k < £, and an additional edge {p, 1}, if p=3 (mod4).

Gy is isomorphic to K, ,—1). Taking two copies G%,GY of G and identifying the vertex
sets V', V;Db with p vertices in any way using a bijection, we get K}, (,_1). Doing the same
with copies G§ = (V' UV, E?) and Gb = (V},b U qu, EP®) of G we get a graph that contains
K

P
vertices in V' respectively V;f’ are adjacent, and because we neither want to delete edges, nor

2(¢—1) @s a spanning subgraph, so it is at least c-connected. Since in G5 and GY, some

create double edges, we will have to identify V' and Vpb in a way that no two vertices in V/
that are adjacent in G¢ are identified with vertices adjacent in G%.
Denoting the vertices in Vpb as 1°,2° ... in order to distinguish them from vertices in Vi

which we denote as 1%,2%, ..., we identify, for 1 <i < p — 2, vertex i® with vertex (i + 2)?,
vertex (p — 1)® with 1° and vertex p® with 2°. The rotation around the vertices is given
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p=3 (mod 4)

Figure 9: Quadrangles sharing just one edge with the large face are shaded. The other quadrangles
are assigned letters to indicate the two places where they occur in the boundary of the large face.
The graph G is formed by adding new edges to avoid that a quadrangle shares more than one edge
with the large face.

by adding the edges coming from the other graph in the formerly large face obtained by
removing vertex 1’ € V. This identification is displayed in Figure 10, where, for the case
p =3 (mod4), also the edges between vertices of V,' and the edges between vertices of V;f’
are drawn to show that no double edges exist. It is easy to check that this also holds for
p=1 (mod4).

With s(e) denoting the starting point of an arrow and t(e) denoting the endpoint, for 1 <
i < p— 2, the right hand side of the fundamental polygon gives s(e;) = t(e;+1) and the left
hand side gives t(ej+1) = s(eit+2), for 0 < ¢ < p — 3. Together this gives s(e;) = s(ei+2), for
1 <4 < p—3. This means that all starting points of arrows with odd index are the same and
all starting points of arrows with even index are the same. Together with s(e;) = s(ep—1)
(note that p — 1 is even) and t(ep—1) = t(e1) = s(e2), this gives that all start- and endpoints
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Figure 10: A fundamental polygon split into two parts and with instructions on how G§ and Gg
are embedded into the two parts. The identification along the boundary is described by labelling
arrows to be identified by the same symbol e;. The gluing into the polygon is described by giving
the positions of the vertices i%, respectively i®. The extra edges not belonging to K, 41 are given.

of arrows in the fundamental polygon correspond to the same point. We get exactly one face
that is not one of the triangles or quadrangles contained in G% and GS.

The same conclusion can also be obtained without use of the fundamental polygon in Figure 10
and arguing only with the rotation around the vertices.

In order to compute the genus of the graph, we can neglect the edges added after removing
the vertex 1’ € V, and compute the genus of the graph without these edges: each of the edges
subdivides a face, so we have one more edge and one more face, and the Euler characteristic
does not change.

The embedding of K, is a minimum genus embedding with all faces quadrangles, so it has
p + q vertices, pq edges and (pq)/2 faces. After removing vertex 1’, the graph has p+¢ — 1
vertices, pq — p edges and (pq)/2 — p + 1 faces. If G3 is the result of identifying the vertices,
Gs has v(G3) = 2(p + q — 1) — p vertices, e(G3) = 2(pq — p) edges and, because during the
identification the two large faces are replaced by one new face, f(Gs) =2((pq)/2 —p+1) —
2+ 1=pq— 2p+ 1 faces. The genus of the resulting graph G3 equals

(p-2a-1+1

9(G3) = 5

Because all edges in G3 have one of the small faces in G and G% on one side, no two faces
share more than one edge and the dual is a simple graph. All paths between vertices in the
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dual corresponding to small faces in different copies must pass through the new large face —
so the vertex corresponding to the new face is a cut-vertex of the dual graph.

Since we have chosen p and ¢ minimal, we have c<p<c+1land¢/2+1<qg<c/2+ g. As
q > 1, we have

2+6c—5

d1(c) < g(Gs) < 1

6 The uniqueness of graphs with high connectivity and small
genus

A key to investigate, for which ¢ we have do(c) = {%W + 1, and, for which ¢, we have

da(c) = {%—‘, is provided by Plummer and Zha [11]. Their Theorem 2.4 (A) states
Theorem 6.1 Suppose ¢ > 7 and let g be the genus of the complete graph K.11. Then K.y is the
only c-connected graph that has an embedding of genus g if and only if ¢ ¢ {7,8,9,10,12,13,16}.

In fact in [11], the uniqueness of the complete graph for ¢ = 9 and ¢ = 13 is not decided, and is
explicitly posed as an open question. In the appendix (see Section 9), we give an embedding of the
9-connected graph K17 minus a maximum matching with genus g = g(K19) = 4, and an embedding
of the 13-connected graph Kj5 minus a maximum matching with genus g = g(K14) = 10, showing
that, for these last two cases, the complete graphs are also not unique. The embeddings were
computed by the program described in [1].

Theorem 6.1 implies that, in order to decide whether d2(c) = {%W + 1 or da(c) =

PC_?QC_ZS)

dings of complete graphs and decide whether their dual can be a simple graph with a 2-cut.

—‘ , it is — except for a finite number of exceptions — sufficient to study only genus embed-

7 Conclusions, future work, and further results

Though the general bounds for higher genus are relevant, it was most important to solve the problem
for the first nontrivial case — the torus — completely, that is, be able to give exact values for the
minimum connectivities that guarantee 3-connectivity, respectively 2-connectivity of the dual.

It was also astonishing to see that, if g(c) is the minimum genus on which a ¢-connected graph
can be embedded, already on genus g(c) + 1 and maybe even on genus g(c), c-connectedness does
not guarantee 3-connectivity of the dual.

The fact that arbitrarily highly connected graphs can even have a cutvertex in the (simple)
dual is also intriguing — though this may happen only for much higher genus than the occurrence
of 2-cuts.

Nevertheless there are still many relevant open questions:
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e It would be very interesting to characterize when d2(c) = {%W and when d2(c) =
(c=2)(c=3)
A

e The upper bounds for d;() are very far from the lower bounds. Using the same techniques
as in the proof of the upper bound, a small improvement might be possible by choosing p, ¢
less generous and also considering the cases for bipartite graphs when ¢ # 2 (mod4). For a
substantial improvement of the upper bound or the lower bound, new ideas are necessary.

e In all examples constructed in this article, the embedded graph with high connectivity can
also be embedded with smaller genus — so it is not minimum genus embedded. In Figure 11,
we give an example of a minimum genus embedding of a 3-connected graph on the torus
where the dual has a 2-cut and is also minimum genus embedded. So also minimum genus
embeddings of graphs with connectivity at least 3 exist that have a simple dual that is not
3-connected, but also minimum genus embedded. It would be interesting to know which of
the results given are also valid for minimum genus embeddings.

4

Figure 11: A 3-connected minimum genus embedded graph on the torus (left) with a minimum
genus embedded dual with a 2-cut (right).

e Due to Whitney’s theorem, the statement that a planar 3-connected graph has a planar em-
bedding with a 3-connected dual is equivalent to the statement that all its planar embeddings
have this property. For higher genus, the statement that all embeddings have this property
is false, but does there exist ¢ > 3 such that, for c-connected graphs, we have that, when-
ever an embedding with a simple dual exists, there also exists an embedding with a simple
3-connected dual of the same genus?

e In [3], a general approach to local symmetry preserving operations (encompassing the dual,
truncation, ambo, chamfer, etc.) is described and it is proven (Theorem 5.2 in [3]) that
all operations captured by this approach preserve the 3-connectedness of polyhedra. In the
original manuscript we mentioned the task of extending this result to polyhedral embeddings
and of classifying operations that always preserve 3-connectedness. These aims have in the
meantime been achieved. In [2], the theorem from [3] is generalized to polyhedral embeddings
and to operations that are only guaranteed to preserve orientation preserving symmetries. In
[5], a classification of operations that always preserve 3-connectedness is given. A publication
of this result is in preparation.
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9 Appendix

9.1 Embeddings of complete graphs and duals to which the H-operation can

be applied

An embedding of Kg
with genus 2:

vertex

order of
neighbours

OO UL W N+

2483675
1587364
1827546
1263578
2174368
5713428
6328451
7256314

The dual of the embedding of Ks:

vertex | order of vertex | order of
neighbours neighbours

1 234 10 4716

2 156 11 516 18

3 178 12 5917

4 1910 13 6187

5 21112 14 6915

6 213 14 15 71418

7 3151013 || 16 8 11 10

8 316 17 17 818 12

9 412 14 18 11 13 17 15

The result (genus 3) of the H-operation applied to edge
{1,2} of the dual of the embedding of Kg:

vertex | order of vertex | order of
neighbours neighbours

1 234 9 4612

2 134 10 4713

3 156278 11 4147

4 191021112 | 12 4916

5 31314 13 85 10

6 3915 14 5111516

7 31610 11 15 8146

8 31315 16 712 14

An embedding of Kg with genus
3 and only one face not a trian-

gle:

vertex

order of
neighbours

© 00 O Ui W N+

23456789
19648537
16872594
13982675
14793286
15834297
16954238
17365249
18435762
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The dual of the embedding of Kgy:

vertex | order of vertex | order of
neighbours neighbours
1 234567 || 13 4227
2 189 14 518 20
3 11011 15 6 22 20
4 11213 16 72118
5 1149 17 82311
6 11511 18 814 16
7 116 13 19 91223
8 21718 20 10 14 15
9 2195 21 10 12 16
10 32021 22 13 15 23
11 3617 23 17 22 19
12 419 21




An embedding of K¢ with genus
4 and only one face not a trian-

gle:

vertex

order of
neighbours

= O 00 ~J O Ui W N

2345678910
1109764853
1259681074
1379826105
1410793286
1583910427
1629435108
1710365249
1847210635
138754692
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The dual of the embedding of Kig:

vertex | order of vertex | order of
neighbours neighbours

1 234 16 728 23
2 156 17 72521
3 178 18 814 25
4 1910 19 91523
5 211812913 || 20 10 26 12
6 21415 21 10 17 29
7 316 17 22 11 29 24
8 3518 23 11 16 19
9 4519 24 12 13 22
10 420 21 25 13 18 17
11 52223 26 14 20 28
12 520 24 27 15 29 28
13 525 24 28 16 27 26
14 6 26 18 29 21 27 22
15 6 19 27




An embedding of K14 with genus 10 and
only one face not a triangle:

vertex

order of neighbours

OO U W N+

234567891011121314
114811913612574103
121095871411613124
131296111381410275
1439141311 72128106
15101221331149814 7
164251110139121438
173413105121121469
186412713211145310
19324141265813711
11075134631492812
11185261014794313
11236297108411514
11359113712104682
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The dual of the embedding of Ki4:

vertex | order of vertex | order of

neighbours neighbours
1 234 30 16 46 47
2 156 31 17 48 23
3 178 32 17 49 26
4 1910 33 19 50 51
5 21112 34 20 46 52
6 213 14 35 20 26 53
7 31516 36 21 49 22
8 31718 37 21 40 54
9 41920 38 21 49 55
10 421 22 39 22 56 47
11 52319 40 24 37 53
12 524 25 41 24 48 29
13 6 21 26 42 25 28 57
14 6 27 28 43 27 56 45
15 729 21 44 28 52 51
16 721 30 45 29 58 43
17 8 31 32 46 30 55 34
18 8 25 21 47 30 58 39
19 93311 48 31 59 41
20 9 34 35 49 32 36 38
21 10 15 36 13 || 50 33 57 53

16 37 38 18 || 51 33 58 44
22 10 39 36 52 34 59 44
23 11 31 27 53 35 50 40
24 12 40 41 54 37 59 56
25 12 18 42 55 38 46 57
26 13 35 32 56 39 43 54
27 14 43 23 57 42 50 55
28 14 42 44 58 45 51 47
29 15 45 41 59 48 54 52




9.2 Graphs for the last open cases in the theorem of Plummer and Zha

An embedding with genus 4 of the 9- An embedding with genus 10 of the 13-connected
connected graph K7; minus a maximum graph K35 minus a maximum matching:
matching: vertex | order of neighbours
vertex | order of neighbours 1 3651013415148 119127
1 37511841069 2 3108961471215411135
2 36891147105 3 171510259814 1213116
3 19811625107 4 11381012956 71411215
4 18596721110 5 14932131571181214 10
5 17948103211 6 2974131115813121014
6 23117491108 7 6913101151531122144
7 61195131024 8 9210413615125111143
8 92610541113 9 762835412111141513
9 7112831645 10 823151171315146124
10 8614112735 11 10156313241491857
11 10429763815 12 13314581527194106
13 11312684110791552
14 12381159114726105
15 1414212861110375139
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