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Abstract

The dual of a polyhedron is a polyhedron – or in graph theoretical terms: the dual of a
3-connected plane graph is a 3-connected plane graph. Astonishingly, except for sufficiently
large facewidth, not much is known about the connectivity of the dual on higher surfaces. Are
the duals of 3-connected embedded graphs of higher genus 3-connected, too? If not, which
connectivity guarantees 3-connectedness of the dual? In this article, we give answers to some
of these and related questions. We prove that there is no connectivity that guarantees the 3-
connectedness or 2-connectedness of the dual for every genus, and give upper bounds for the
minimum genus for which (with c > 2) a c-connected embedded graph with a dual that has a 1-
or 2-cut can occur. We prove that already on the torus, we need 6-connectedness to guarantee
3-connectedness of the dual and 4-connectedness to guarantee 2-connectedness of the dual.

In the last section, we answer a related question by Plummer and Zha on orientable embed-
dings of highly connected non-complete graphs.

1 Introduction

Relations between dual polyhedra have been observed at least since Kepler in 1619 [7], but it was
not until several centuries later that duality was formally defined. One of the first definitions
was given by Brückner [4, 15]. With graph embeddings, duality can be abstractly defined for any
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embedded graph: the dual G∗ of an embedded graph G is an embedded graph, whose vertices are
faces of G; two faces of G being adjacent as vertices of G∗ whenever they share an edge in G [8, 9].
It is folklore that the dual of a plane polyhedral embedding (i.e. of a 3-connected plane graph) is
again a plane polyhedral embedding and in the planar case a graph and its dual are often considered
to be almost the same – e.g. some algorithms for listing certain classes of cubic plane graphs work
in fact by generating the corresponding dual graphs – that is: triangulations – and dualizing them
for output. Mohar ([8], Proposition 3.8, Proposition 3.9, Proposition 3.2) generalized the relation
between the connectivity of an embedded graph and its dual to higher surfaces in the following
restricted setting – with fw(G) the facewidth of the embedded graph G:

Theorem 1.1 ([8]) Let G be an embedded graph of genus g > 0, G∗ the dual embedded graph, and
c ∈ {1, 2, 3}. Then, the following are equivalent:

• fw(G) ≥ c and G is c-connected,

• fw(G∗) ≥ c and G∗ is c-connected.

The theorem cannot be extended to c ≥ 4 due to triangular faces, which – except for trivial
cases – imply a 3-cut in the dual.

In this contribution, we are mainly interested in simple graphs, that is graphs that have neither
double edges nor loops, but multigraphs, that is graphs with multiedges and loops allowed, are used
as tools too. In places where it is not obvious from the context which kind of graph is dealt with, we
explicitly use the term simple graph or multigraph instead of just graph. We study simple embedded
graphs with simple duals and the general case of the relationship between the connectivity of the
graph and its dual without restrictions on the facewidth. All cuts discussed in this article are vertex
cuts.

Our main results are that already on the torus, even the dual of a 5-connected graph need not
be 3-connected and that, for each c > 0, there is a genus g and an embedded c-connected graph G
of this genus so that the dual has a 1-cut. We give upper bounds for the minimum genus g with
this property. Note that in simple graphs there is an essential difference between 3-cuts on one side
and 1- and 2-cuts on the other: unlike 3-cuts, 1- or 2-cuts in the dual cannot occur as trivial cuts
resulting from facial cycles.

Unless explicitly mentioned otherwise, all embedded graphs in this article are connected. They
come with a combinatorial embedding in an oriented manifold. We will deal with embeddings
only in their combinatorial representation. The equivalence of this representation with the topo-
logical description is well described in standard books on topological graph theory like [6, 9]. A
combinatorial embedding in an oriented manifold is given in the following way: all undirected
edges {v, w} are interpreted as a pair of directed edges (v, w) and (w, v), where (v, w)−1 = (w, v).
For each vertex v, all incident directed edges (v, .) are assigned a cyclic order around the vertex,
called the (local) rotation, so that for an edge (v, x), we can talk about the previous and next
edge around v. The set of all cyclic orders is called a rotation system. Faces are cyclic sequences
(v0, v1), (v1, v2), . . . , (vk−1, v0) of pairwise different directed edges, so that, for 0 ≤ i ≤ k − 1,
(v(i+1)mod k, v(i+2)mod k) follows the edge (v(i+1)mod k, vi) in the cyclic order around v(i+1)mod k.
In this case, we call (v(i+1)mod k, vi), (v(i+1)mod k, v(i+2)mod k) an angle of the face and say that
the face has size k. The genus g(G) of an embedded graph G is given by the Euler formula
v(G) − e(G) + f(G) = 2 − 2g(G) with v(G), e(G), and f(G) the number of vertices, edges and
faces, respectively. This must not be mixed up with the genus of an abstract, not embedded, graph,
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which is defined as the minimum of all genera of the different embeddings of the graph. In this
article we will only discuss genera of embedded graphs. The Euler formula and the fact that in a

simple graph each face contains at least three edges imply that
⌈
(c−2)(c−3)

12

⌉
is a lower bound on

the genus on which any simple graph with minimum degree c can be embedded. The fact that this
bound is best possible is the celebrated map colour theorem [13] determining the genus of complete
graphs.

We will not only investigate whether some connectivity guarantees 3-connectedness of the dual,
but also whether other connectivities can be guaranteed and in how far this depends on the genus
of the embedded graph. To this end we define the function δk(c):

For c ≥ k ≥ 1 we define δk(c) as the minimum genus s so that there is a simple c-connected
embedded graph G with genus s, so that the dual graph G∗ is a simple graph with a k-cut.

At this point it is not yet clear that such a minimum genus exists, but it will turn out that
δk(c) is well defined for all c ≥ k ≥ 1.

Some values for δk(c) are known or can be easily determined. To determine some of the others,
we need some definitions and basic results.

2 Notation and basic results

In this article, a face and the corresponding vertex in the dual graph are denoted by the same
symbol, so that it makes sense to write v ∈ f for a vertex v of a graph and a vertex f of the dual
graph if it is contained in a directed edge of the face f .

• Let G = (V,E) be a simple embedded graph and Vc ⊂ V a cutset in G. A boundary face is
a face (v0, v1), (v1, v2), . . . , (vk−1, v0), so that there exist 0 ≤ i < j ≤ k − 1 with vi ∈ Vc and
vj ∈ Vc. Note that vi = vj is possible. The set Fb is the set of all boundary faces. For a
component C of G−Vc, let Fb(C) be the subset of faces of Fb that contain at least one vertex
of C.

• The embedded boundary multigraph Gb is the bipartite graph with vertex set Vc ∪ Fb, where
a vertex v ∈ Vc is adjacent to f ∈ Fb if v ∈ f . For each time v occurs in the closed boundary
walk of f ∈ Fb, there is an edge {v, f} and the embedding is given by the rotation around v,
respectively by the boundary walk. We consider the embedding to be given by the rotation
system, so the genus of Gb is bounded from above by the genus of G. In general, Gb needs not
be connected, but in all cases where we apply the Euler formula to Gb, it will be connected.
Face sizes in this graph will later be used to determine bounds on the size of cut sets in the
dual.

• The multigraph Ḡb is the graph G∪Gb where the rotation around vertices in Vc is such that
the edges to vertices in Fb are inside the corresponding faces. The genus of Ḡb is equal to the
genus of G.

• For a component C of G− Vc, the set F int
C is the set of (interior) faces of C, that is faces of

G that are not in Fb and contain only vertices of C ∪ Vc in the boundary.

• If G is an embedded multigraph and G′ = (V ′, E′) a subgraph with an embedding induced
by G, a (G′-)bridge B of G is either a subgraph of G that is a single edge of G−E′ with both
ends in V ′, or a component CB of G− V ′ together with the edges of G with one endpoint in
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V ′ and one in CB and the endpoints of these edges in G′. We say that a bridge B is inside
a face f of G′, if there is an angle e1, e2 of f so that there is an edge of B in the rotation
between e1 and e2.

• Bridges can be inside different faces. If for a face of G′ we have that all bridges inside this
face are inside no other face of G′, we call this face simple, otherwise bridged. Note that if a
face f is bridged, there is at least one other bridged face f ′ with which f shares bridges, but
there could be more.

• Let G be an embedded multigraph, G′ a subgraph with an embedding induced by G and f
a simple face of G′. We define the internal component of f as follows: we first replace each
vertex v that occurs k > 1 times in the facial walk around f by pairwise different vertices
v1, . . . , vk. If the angle at the i-th occurence of v is (v, x), (v, y), the neighbours of vi and
the rotation are given by all edges (v, z) in the cyclic order around v from (v, x) to (v, y) –
including (v, x) and (v, y). The internal component of f is then given by all vertices and edges
on the modified boundary walk (which is now a simple cycle) of f together with all bridges
inside f . This implies that the boundary corresponding to f in the internal component of f
is always a simple cycle.

If the internal component of a simple face f has genus 0, we call this face a simple internally
plane face, otherwise a simple internally non-plane face.

The following lemma has the combinatorial version of the Jordan curve theorem as the special
case g = g′ = 0 and G′ a cycle. If a subgraph G′ of a graph G has bridged faces, then the edges in a
bridge connecting two faces force a higher genus of G than that of G′. The same is true for simple
faces containing a bridge in the interior that has itself already a nonzero genus. This is formalized
in the following lemma.

Lemma 2.1 Let G be an embedded multigraph of genus g and G′ an embedded (also connected)
subgraph of genus g′ with the embedding induced by G. Let b denote the number of bridged faces of
G′ and snp denote the number of simple internally non-plane faces. Then snp + b

2 ≤ g − g
′.

Proof: Note first that if f is a simple face of G′ such that the internal component C has genus
gC , the subgraph G′f of G that consists of all vertices and edges of G′ and C has genus
g′f = g′ + gC : if v′, e′, f ′, respectively vC , eC , fC and v′f , e

′
f , f
′
f are the numbers of vertices,

edges and faces of G′, resp. C and G′f , then – with l the length of the boundary cycle of f in
C – we have

v′f − e′f + f ′f = (v′ + vC − l)− (e′ + eC − l) + (f ′ + fC − 2) =

(v′ − e′ + f ′) + (vC − eC + fC)− 2.

This gives by Euler’s formula

g′f =
2− (v′f − e′f + f ′f )

2
=

2− ((v′ − e′ + f ′) + (vC − eC + fC)− 2)

2
=

2− ((2− 2g′) + (2− 2gC)− 2)

2
=

2g′ + 2gC
2

= g′ + gC .
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We will prove the result by induction on the number d of edges that are in G, but not in G′.
If d = 0, we have G = G′ and snp = b = g − g′ = 0, so the result holds.

If d > 0 and there is a simple internally plane face f of G′ with an internal component C,
that contains a bridge, we can apply induction to G′f , and as (with the notation from above)
gC = 0, neither snp nor b or g′ change, the result follows immediately.

If d > 0 and snp > 0, let f be a simple internally non-plane face of G′ and G′f as above.
For G′f , we have (with the notation from above) that g′f = g′ + gC ≥ g′ + 1, and with s′np
respectively b′ the number of simple internally non-plane faces of G′f , respectively the number

of bridged faces of G′f , we have b′ = b and s′np = snp − 1. By induction s′np + b′

2 ≤ g − g′f , so

snp + b
2 = (s′np + 1) + b′

2 ≤ g − g
′
f + 1 ≤ g − g′.

Let now f 6= f ′ be bridged faces of G′ so that there is a bridge B inside both faces f and f ′.
Let e, e′ be edges of B with endpoints in f , f ′, respectively. Note that e = e′ is possible if B
is a single edge. In B, there is a path starting in an angle of f with edge e and ending in an
angle of f ′ with edge e′. Adding this path to G′ to obtain G′P , we get a graph with the same
faces as G′ – except for f, f ′, which become one new face.

Because in addition the number of edges added is one larger than the number of vertices
added, we have, for the genus g′P of G′P , that g′P = g′ + 1. Old simple internally non-plane
faces are not changed, but the new face can be a new simple internally non-plane face. So
if s′np denotes the new number of simple internally non-plane faces, we have s′np ≥ snp. The
new face can be simple or bridged, but in any case, with b′ the number of bridged faces of
G′P , we have b′ ≥ b− 2 because other bridged faces stay bridged. We get

snp +
b

2
≤ s′np +

b′ + 2

2
≤ s′np +

b′

2
+ 1 ≤ g − g′P + 1 = g − g′.

Let Vc be a cutset of a simple embedded graph G and f be a face. If f contains vertices v1, v2
of different components of G − Vc, then going from v1 in the two possible directions along f we
reach at least two different positions in the facial walk with vertices from Vc before reaching v2.
This implies that f ∈ Fb.

Lemma 2.2 Let G = (V,E) be a simple embedded graph and Vc ⊂ V a cutset, so that, for at least
two components C1, C2 of G − Vc, we have that F int

C1
and F int

C2
are not empty. Then Fb(C1) is a

cutset in the dual graph G∗.

Proof: Let f1 ∈ F int
C1
, f2 ∈ F int

C2
and v1 ∈ f1, v1 6∈ Vc and v2 ∈ f2, v2 6∈ Vc. If G∗ − Fb(C1) is

connected, then there is a path f1 = f ′1, f
′
2, f
′
3, . . . , f

′
n = f2 in G∗−Fb(C1). Let f ′i be the first

face that is not in F int
C1

. Since it is adjacent to f ′i−1 in G∗ − Fb(C1), it shares an edge with

f ′i−1 in G, so it shares at least one vertex from C1 with f ′i−1. This means that f ′i ∈ F int
C1

or
f ′i ∈ Fb(C1) – both of which are impossible.
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Note that such a cutset Fb(C1) in Gb can contain vertices from different faces of Gb if the
component is bridging two or more faces.

Corollary 2.3 Let G = (V,E) be a simple embedded graph and Vc ⊂ V a cutset, so that Gb

as subgraph of Ḡb has a simple face f̄1 whose interior and exterior contain faces of G. Then
{f ∈ Fb|f ∈ f̄1} (note that a face f ∈ Fb is also a vertex in Gb) is a cutset in the dual graph G∗ of
size at most l

2 if l is the number of directed edges in f̄1.

Lemma 2.4 Let G be a simple embedded graph with a 1-cut {vc} and a simple dual. If Gb has a
vertex f0 ∈ Fb with (as face of G) an internal component C and F int

C = ∅, then |Fb| ≥ 5. Note that,
for a 1-cut {vc}, Gb is connected.

Proof: Let C be such a component and x1 a neighbour of vc = x0 in C. Let (x0, x1), (x1, x2), . . . ,
(xi−1, xi) be a maximal path in the face f0 ∈ Fb containing (x0, x1), so that vc 6∈ {x1, . . . , xi−1}.
We have xi = vc, but the path cannot be the whole face, because in that case, the face would
contain vc only once and would therefore be in F int

C . As G has no double edges, we have
i ≥ 3. For 0 < j ≤ i, we denote the face containing (xj , xj−1) by fj , so the faces f0, f1, . . . , fi
are pairwise different, since the dual has no double edges or loops. See the left hand side of
Figure 1 for an illustration.
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1

x
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f
3

x
3

2
x
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x
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v = x
0 3

v = xc c
c

c c

Figure 1: Paths in faces of Fb.

Because all faces f0, f1, . . . , fi contain vertices of C, they are either in F int
C or in Fb, and

because F int
C = ∅, they are in Fb. If i ≥ 4, we have that |Fb| ≥ 5, so assume that i = 3. Then

(see the right part of Figure 1) (x2, x1) is contained in a facial path starting and ending with
vc showing that, in that case, even |Fb| ≥ 6.

Lemma 2.5 Let G be a simple embedded graph with a simple dual and a given cutset Vc. If Gb

has a face f of size 2, then (as subgraph of Ḡb) there is exactly one component C inside f and (no
matter whether f is bridged or not) F int

C 6= ∅.

Proof: Let fb, vc be the vertices forming the 2-face f in Gb and let the order around vc (in Ḡb)
inside f be (vc, fb), (vc, x1), . . . , (vc, xk), (vc, fb). Then k ≥ 2 because otherwise the face fb in
G would imply a loop in the dual. Furthermore, for 1 ≤ i < k, the edges (xi, vc) and (vc, xi+1)
belong to the same face fi. This face fi contains vc as the only element of Vc and only at
one position, because otherwise we would not have a 2-face in Gb. This means that fi ∈ F int

C
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and that the face boundary without vc connects xi and xi+1 so that they belong to the same
component. Since each component inside f must contain at least one of these vertices, there
is only one component.

Lemma 2.6 Let G be a simple embedded graph with a simple dual and a given cutset Vc of G.
Each cycle Z in a component C of G− Vc is either

(a) in a simple face f of Gb so that a face of the internal component is also a face of G, or

(b) in a bridged face of Gb, or

(c) in a simple internally non-plane face of Gb.

Proof: If C is connected to more than one face, we have (b), so assume that C is inside a simple
face f . Embedding f (with vertices occuring more than once replaced by copies), Z and a
path from f to Z, we have a plane graph with (a directed version of) Z forming a face f0
inside f . If f0 is a face of G, we are in case (a). Otherwise we can recursively argue, that if
we add the remaining edges to form the internal component containing C in the cyclic order
given by G, we either connect two faces in one of the steps (which means that we have case
(c)) or we will just subdivide f0 producing faces inside of it, which means that we end up in
case (a).

Corollary 2.7 Let G be a simple embedded graph with a simple dual and a 1-cut {vc}. Then each
Gb-bridge B of Ḡb is

(a) in a simple face of Gb containing an interior face of G, or

(b) in a bridged face, or

(c) in a simple face with nonplane interior.

Proof: Because {vc} is a 1-cut, there are no bridges of Gb that are just edges, since they would be
loops. Furthermore the minimum degree in G is 3, because otherwise the dual would have a
double edge, which implies that each vertex has at least two neighbours that are in the same
component of G−{vc}. Together this implies that each bridge of Gb contains a cycle, so that
the result follows with Lemma 2.6.

Lemma 2.8 Let G be a simple embedded graph with a given cutset Vc. If C1, C2 are different
Gb-bridges of Ḡb, then they are in different faces of Gb.
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Proof: Let f be a face of Gb. If vc, v
′
c ∈ Vc are two vertices following each other in the cyclic

order around f with one vertex fb representing a face of G in between, then there is a path
in fb and inside f connecting vc and v′c without vertices of Vc in between. This path is part
of a bridge, so each two vertices of Vc following each other in the cyclic order around f are
contained in a common bridge. If we can show that there are no two different bridges inside
f sharing a vertex at the same angle in f , this implies that there are no two such different
bridges at vertices following each other in the cyclic order and finally that there is only one
bridge.

Now let vc ∈ Vc be a vertex of a face f of Gb and C1, C2 be two different bridges sharing vc at
the same position of the face f . Without loss of generality assume that if (fb,1, vc), (vc, fb,2)
are the edges of f at that position, that the first edge in the rotation from (vc, fb,1) to (vc, fb,2)
around vc belongs to C1 and that the first edge (vc, c2) that does not belong to C1 belongs to
C2. Let (vc, c1) be the previous edge of (vc, c2), so c1 ∈ C1. As there is no edge to a face in
Fb between (vc, c1) and (vc, c2) in Ḡb, a vertex of Vc occurs only once in the face containing
(c1, vc), (vc, c2), so the path connecting c1 and c2 along the side not containing vc shows that
they belong to the same bridge – a contradiction.

The following lemma will be used to show the existence of small faces in the boundary multigraph
Gb of a graph G with a given 1-cut. Together with Lemma 2.2 these small faces will then imply a
small cut in the dual.

Lemma 2.9 Let G = (V1 ∪ V2, E) be an embedded bipartite multigraph of genus g with bipartition
classes V1, V2, so that |V1| = 1 and that each vertex in V2 has degree at least 2. If, for some k, we
have that i faces have size less than 2k, then

i ≥ k
k−1 −

2k
k−1g + k−2

k−1 |V2|.

If additionally there is at most one face of size 2, then

i ≥ k−1
k−2 −

2k
k−2g + |V2|.

Proof: Summing up the face sizes and using lower bounds for the faces of size at least 2k as well
as for the smaller faces, we get with f the number of faces and e the number of edges of G

2e ≥ 2k(f − i) + 2i, so f ≤ e+(k−1)i
k .

Inserting this, with 1 + |V2| as the number of vertices of G into the Euler formula we get

2− 2g = 1 + |V2| − e+ f ≤ 1 + |V2| − e+ e+(k−1)i
k = 1 + |V2| − k−1

k e+ k−1
k i.

Since e ≥ 2|V2| we get

2− 2g ≤ 1 + |V2| − 2k−2
k |V2|+

k−1
k i = 1− k−2

k |V2|+
k−1
k i, so

k−1
k i ≥ 1− 2g + k−2

k |V2|, thus i ≥ k
k−1 −

2k
k−1g + k−2

k−1 |V2|
which is the first result.

If there is at most one face of size 2, then
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2e ≥ 2k(f − i) + 4i− 2, so f ≤ e+(k−2)i+1
k .

Starting with this formula, a completely analogous computation gives the second result.

3 Results on small genus

Lemma 3.1

(a) Let G be a simple embedded graph with a 1-cut that has a simple dual G∗.

• If g(G) = 1, then G∗ has a cut of size at most 3.

• If g(G) = 2, then G∗ has a cut of size at most 5.

(b) Let G be a simple embedded graph with a 2-cut that has a simple dual G∗.

If g(G) = 1, then G∗ is at most 5-connected.

Proof: (a) Let v be a cutvertex of G. Due to Corollary 2.3, it is sufficient to show that Gb has a
simple face f̄1 with a face of G in the interior and exterior and, for g = 1, boundary length
at most 6 (and thus |Fb(C)| ≤ 3 for some component C) and, for g = 2, boundary length at
most 10 (and thus |Fb(C)| ≤ 5).

Due to Lemma 2.8, Gb has at least two faces. If |Fb| < 5, they both contain a face of G
(Lemma 2.4), so that Fb is a cutset in the dual (Lemma 2.2). If g = 1 and |Fb| < 4 or g = 2
and |Fb| < 5 we are done.

We will use that the graph Gb satisfies the conditions of Lemma 2.9 with V1 = {v} and
V2 = Fb.

Now assume g = 1 and |Fb(C)| ≥ 4. Then – with g′ the genus of Gb, i as in Lemma 2.9, and
k = 4 – Lemma 2.9 gives:

i ≥ 4

3
− 8

3
g′ +

8

3
= 4− 8

3
g′.

If g′ = 1, then i ≥ 4
3 , so i ≥ 2. Due to Corollary 2.7 and Lemma 2.1, at least two faces of Gb

with at most 3 elements of Fb in the boundary are simple and contain an interior face of G,
so that we can apply Lemma 2.2.

If g′ = 0, then i ≥ 4, so again at least two faces of Gb with at most 3 elements of Fb in the
boundary are simple and internally planar and contain an interior face of G. Again Lemma 2.2
gives the desired result.

Assume now g = 2 and |Fb(C)| ≥ 5. Then – with g′ the genus of Gb and k = 6 – Lemma 2.9
gives:

i ≥ 6

5
− 12

5
g′ + 4.
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If g′ = 2, then i ≥ 2
5 , so there is a face f of Gb with at most 5 elements of Fb in the boundary

and, due to Corollary 2.7 and Lemma 2.1, this and also at least one other face are simple,
internally planar, and have an interior face of G. We can apply Lemma 2.2 to f .

If g′ = 1, then i ≥ 14
5 , so i ≥ 3. This implies that there is at least one simple, internally

planar face of Gb with an interior face of G and at most 5 elements of Fb in the boundary.
If there is another simple internally planar face of Gb or another face of Gb with an internal
face of G, we are done, but in principle it is possible that there are just 3 faces of Gb, and
that the other two are bridged and do not contain an internal face of G. In this case, we have
(Lemma 2.5) that there is at most one face of Gb of size 2 and the second part of Lemma 2.9
gives:

i ≥ 5

4
− 12

4
+ 5 =

13

4
.

To this end i ≥ 4 and there is at least one more simple internally planar face of Gb – which
in fact even has a short boundary.

If g′ = 0, then i ≥ 26
5 , so i ≥ 6 and it follows immediately that we have at least two simple

internally planar faces of Gb with sufficiently short boundary.

(b) Suppose that G∗ has no cut of size at most 5, but is the simple dual of a graph G with
a 2-cut. The simple 6-connected toroidal graphs have been described in [10]. They are the
duals of hexagonal tilings of the torus and can be parametrized by three values p, r > 0,
0 ≤ q < p. The construction is given in Figure 2: for a segment of p × r hexagons of the
hexagonal lattice, the upper and lower as well as the left and right boundaries are identified
and the left (p-) part is shifted by q positions before identification. For small values of p, r,
the graph or the dual can have multiple edges, but if the graph and the dual are simple, the
graph G – that is, the hexagonal tiling – is also 3-connected:

Let v1, v2 be two vertices, V ′ = V \{v1, v2} and h an arbitrary hexagon. If h does not contain
a vertex of {v1, v2}, all vertices of V ′∩h belong to the same component of V ′. Assume v1 ∈ h.
Because the dual is simple, all vertices in the three hexagons around v1 are pairwise distinct.
This implies that all vertices in the boundary cycle of the three hexagons that are also in
V ′ belong to the same component (even if the cycle contains v2). So for each hexagon, all
vertices in the boundary that are not in V ′ belong to the same component. Since the dual
is 6-connected, for each pair of hexagons, a path of hexagons can be found showing that the
boundary vertices are in the same component – so G has no 2-cut.

Without the assumption of G∗ being simple, the statement (a) of Lemma 3.1 is not true. An
easy counterexample would be the dual of K7 embedded on the torus with an extra vertex of degree
1 added inside one of the faces. The dual of this graph with a 1-cut would be 6-connected: K7 with
an extra loop at one of the vertices.

10



r=7

p=4

a

b

a

b (if q=0)

b (if q=1)

b (if q=2)

b (if q=3)

Figure 2: The parametrization of hexagonal tilings on the torus.

4 The H-operation

In order to prove an upper bound for δ2(c) we will now describe an operation that introduces a
2-cut in an embedded graph without changing the (abstract) dual graph.

Definition 1 Let G be a simple embedded graph and x, x′ be different vertices of G with e1, e2, . . . , en
the rotation of incident edges around x and e′1, e

′
2, . . . , e

′
m the rotation around x′. Then we say that

the graph where the vertices x, x′ are replaced by one vertex y with rotation e1, e2, . . . , en, e
′
1, e
′
2, . . . ,

e′m of incident edges is obtained from G by identifying the angles en, e1 and e′m, e
′
1.

By counting vertices, edges, and faces it is easy to see that if two angles in different faces are
identified, the genus is increased by one, and if two angles in the same face are identified, the genus
remains the same.

Definition 2 Let G be a simple embedded graph with a simple dual and minimum degree at least 2.
Let x, y be adjacent vertices of G with degree 3 and pairwise different neighbours. Let the rotations
around x respectively y be (in vertex notation) y, w′, v respectively x,w, v′ (compare Figure 3), a1 be
the vertex before x in the rotation around v, bm be the vertex after x in the rotation around w′, an
be the vertex after y in the rotation around w, and b1 be the vertex before y in the rotation around
v′.

Then the result of identifying the two angles (v, a1), (v, x) and (v′, b1), (v
′, y) and also the angles

(w, y), (w, an) and (w′, x), (w′, bm) is called the result of the H-operation applied to the edge {x, y}.
We write H{x,y}(G). See Figure 3 for an illustration. It is possible that the H-operation produces
double edges and loops.

After one of the angle identifications, the genus is increased by one, but the second identification
is then applied to angles in the same face, so the H-operation increases the genus only by one. After
the operation, the former vertices v, w, v′, w′ are identified to 2 vertices that separate x and y from
the rest. The H-operation has an impact on two faces that are replaced by two other faces. Following
the face boundaries of the new faces, one sees that there is a 1-1 correspondence between the old
and new faces that induces an isomorphism of the dual graph. In fact it would not have been
necessary to require a simple dual, so that the faces A,C in Figure 3 are different, but as we only
need the operation in this restricted setting, we only discussed the case of a simple dual. We will
condense these observations in a note:

11
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b
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1
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na ,.........,a  ,w,x,y,v

b ,.........,b  ,w’,y,x,v’

a ,.........,a  ,w,y,x,v

b ,.........,b  ,w’,x,y,v’

n

1

x

y

w’ v’

w=w’

v=v’

w=w’

v=v’

wv

Figure 3: The H-operation applied to an embedded graph and the vertices in the facial walk around
the boundaries of the old and new faces.

Note 4.1 If G is a simple embedded graph of genus g with a simple dual and an edge e to which the
H-operation can be applied without producing double edges or loops, then He(G) is a simple graph
of genus g + 1 with a 2-cut and a dual graph that is isomorphic to the dual of G.

Lemma 4.2 Let G be a simple embedded graph with all faces of size at least 5 that has a simple
dual. If v1 is a vertex where all vertices at distance at most 2 of v1 have degree 3, then, for each
edge e incident with v1, the graph He(G) is simple.

Proof: We use the notation of Figure 4 and without loss of generality let e = {v1, v2}. We have
to show that v4 and v6 are different, non-adjacent and do not have a common neighbour, i.e.
that the distance d(v4, v6) is at least 3. Furthermore we have to show that the same is true
for v3 and v5 – even after v4 and v6 have been identified.

v
5

v6

v3

v2
v

1

v4 f

f

f

f

f

f

f

f

1

2

3

4

5

6

7 8

x

y

Figure 4: A part of an embedded graph with a vertex v1, so that all vertices at distance at most 2
have degree 3. Vertices with degree 3 are marked by a filled circle, while vertices with degree 3 or
larger are marked by an empty circle.

As the dual is simple, the faces f1, f2, . . . , f6 are pairwise distinct. If we had, e.g., v4 = v6,
then f5 ∈ {f1, f2, f3}, which would imply a loop or double edge at f1 in the dual. Analogously,
we can conclude that v1, . . . , v6 are pairwise distinct.
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Furthermore, v3, v4, v5, v6 are pairwise non-adjacent:
v4 cannot be adjacent to v5 since this would imply f2 = f3 or that f3 is a triangle. The same
argument shows that there is no edge {v3, v6}, because both have degree 3. In addition, v4
cannot be adjacent to any other vertex vi 6= v1 in the boundary of f4 (and analogously for v5
and f1). At this neighbour (which would have degree 3) at least one of the faces f1, f3 would
have a double edge with f4 in the dual.

If {v3, v4} was an edge of G, we had f6 ∈ {f1, f2, f3}, which is again impossible. The case for
{v5, v6} is symmetric.

Suppose now that d(v4, v6) = 2. Then v4 is adjacent to x since y is in the boundary of f4.
Then x had degree 3, so that {f5, f8} ∩ {f1, f2, f3} 6= ∅. The only possibility that does not
immediately imply double edges or loops in the dual is f8 = f2. Looking at the rotation
around v4, we would get that f5 would share a second edge with f1.

After v4 and v6 have been identified, a shortest path between v3 and v5 was already present
before the identification (and thus have length at least 3) or contain v4 = v6 after the identi-
fication as an intermediate vertex. If this path had length 2, v3 and v5 would be adjacent to
v4 or v6 already before the identification, which is not the case, so d(v3, v5) ≥ 3 (and in fact
equal to 3) after the identification of v4 and v6.

Lemma 4.3 For c ≥ 3, let Kc+1 be embedded with minimal genus and d ≥ 0 be minimal so that
(c− 2)(c− 3) + d ≡ 0 (mod 12). Let FL denote the set of faces that are not triangles and s(f) the

size of a face f . Then, Kc+1 has f = c2

3 + c
3 −

d
6 faces and we have

∑
f ′∈FL

(s(f ′)− 3) = d
2 .

Proof: The minimum genus g is
⌈
(c−2)(c−3)

12

⌉
[13]. The number e of edges in Kc+1 is (c+1)c

2 and

the number v of vertices is c+ 1. So, with f the number of faces, we get by Euler’s formula

2− 2 (c−2)(c−3)+d
12 = c+ 1− (c+1)c

2 + f and thus

f = c2

3 + c
3 −

d
6 .

For all f ′ ∈ FL, we have that s(f ′) > 3, so

2e = 3f +
∑

f ′∈FL
(s(f ′)− 3) so

f =
2e−

∑
f ′∈FL

(s(f ′)−3)
3 =

c2+c−
∑

f ′∈FL
(s(f ′)−3)

3 .

Inserting this into the previous equation, we get

c2+c−
∑

f ′∈FL
(s(f ′)−3)

3 = c2

3 + c
3 −

d
6 and finally∑

f ′∈FL
(s(f ′)− 3) = d

2 .

Lemma 4.4 For c ≥ 3, the complete graph Kc+1 can be embedded in a surface of minimal genus
in a way that the dual is simple.
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Proof: In a simple embedded graph with minimum degree at least 2, all faces f with s(f) ≤ 5 are
simple – that is: each vertex v of the face occurs exactly in two directed edges of the face.
Otherwise, the distance between two occurrences as start- and end-vertex of a directed edge
would be at most 2, so the graph would have a loop (distance 1) or the face would contain a
path (v, v1), (v1, v) which would imply that there is a double edge or that v1 has degree 1.

No two different faces in an embedded graph G with minimum degree 3 and only simple faces
can share two consecutive edges (v1, v2), (v2, v3) that are part of a face, as in that case v2
would have degree 2. This implies that in such a graph a triangle cannot share more than
one edge with another face.

Let now (v1, v2), (v2, v3), (v3, v4) be a subpath in a facial walk of a face f in a (simple)
embedded graph G with minimum degree 3 and simple faces. We will show that there is no
face different from f that is a triangle or quadrangle and contains two of the directed edges
(v2, v1), (v3, v2), (v4, v3). As shown, no face different from f can contain two of these edges
sharing a vertex vi. The only remaining case is that a quadrangle fq contains (v2, v1) and
(v4, v3) and, in addition for each of {v1, v3} and {v2, v4}, exactly one of the two corresponding
directed edges. Because there must be a directed edge with initial vertex v1, fq must contain
(v1, v3) – which implies that there is no edge in fq with initial vertex v3. Since each two edges
in a quadrangle are contained in a facial path of length 3, this implies that two quadrangles
cannot share more than one edge with each other.

As a consequence, we have that duals of embeddings of the complete graph with maximum
face size 5 and at most one pentagon are simple, because in a face f that is a quadrangle or
a pentagon, each pair of different edges is contained in a path in f of length 3.

From the main result of [14] (Theorem 3.3 in the arXiv paper and Theorem 2.2 in the paper in
Journal of Graph Theory) it follows that for each n ≥ 3 there is a minimum genus embedding
of Kn with at most one pentagon and all other faces of size at most 4. This proves the result.

Lemma 4.5 For each c ≥ 6, the complete graph Kc+1 can be embedded in a surface of minimal
genus g in a way that the dual is simple and that there is an edge to which the H-operation can be
applied without producing double edges or loops.

Proof: Let Kc+1 be embedded with minimal genus in a way that the dual is simple. We want to
prove that in the dual, there is a vertex v with only vertices of degree 3 at distance at most
2 to v. Because vertices with degree 3 in the dual are triangles in the primal graph, we will
discuss triangles in the primal graph.

With the notation of Lemma 4.3, each f ′ ∈ FL is a vertex in the dual with degree s(f ′). We
say that a vertex f is blocked by a vertex f ′ ∈ FL if (in the dual) d(f, f ′) ≤ 2 and d(f, f ′) is
minimal among all vertices f ′ ∈ FL. A vertex f ′ of degree s(f ′) can block at most 3s(f ′) + 1
vertices (including itself). All vertices in FL together can block at most∑

f ′∈FL
(3s(f ′) + 1) = 3

∑
f ′∈FL

(s(f ′)− 3) + 10|FL| = 3d
2 + 10|FL|

vertices. As, for f ′ ∈ FL, we have s(f ′) − 3 ≥ 1, this implies |FL| ≤ d
2 and the number bl of

blocked vertices in the dual is at most 13d
2 .

14



If a vertex is not blocked, we can apply the H-operation to any edge incident with it without
creating double edges or loops (Lemma 4.2).

Since d is always even, we have d ≤ 10, so, for c ≥ 14, we get with Lemma 4.3

f = c2

3 + c
3 −

d
6 ≥

410
6 > 130

2 ≥
13d
2 ≥ bl,

hence, for c ≥ 14, there is always a vertex so that we can apply the H-operation to each
incident edge.

For c < 14, consider the following table:

c d f upper bound bl for just one
for bl face not a triangle

13 10 59 65 25
12 6 51 39 19
11 0 44 0 0
10 4 36 26 16
9 6 29 39 19
8 6 23 39 19
7 4 18 26 16
6 0 14 0 0

For c ∈ {6, 10, 11, 12}, the dual of each embedding has a vertex that is not blocked. For
c ∈ {7, 8, 9, 13}, we can only draw this conclusion for an embedding with only one face that is
not a triangle. In the appendix (see Section 9), we give such embeddings with a simple dual
for Kc+1 with c ∈ {8, 9, 13} to show that they exist. For c = 7, such an embedding does not
exist, but we give an embedding and an edge to which the H-operation can be applied.

5 Bounds and exact values for δk(c)

For k ≥ 3, it is easy to determine the values of δk(), because simple graphs can contain triangles
which imply 3-cuts in the dual, but also some other exact values and bounds can now be determined:

Theorem 5.1 (a) δk(c) ≥
⌈
(c−2)(c−3)

12

⌉
for c ≥ k ≥ 1, c > 5.

(b) δ1(1) = 0, δ1(2) = δ1(3) = 1, δ1(4) = δ1(5) = 2, δ1(6) = 3.

(c) δ2(2) = 0, δ2(3) = δ2(4) = δ2(5) = 1, δ2(6) = 2.

For c ≥ 7: δ2(c) ∈ {
⌈
(c−2)(c−3)

12

⌉
,
⌈
(c−2)(c−3)

12

⌉
+ 1},

(d) For k ≥ 3 we have:
If c ∈ {3, 4, 5} and c ≥ k, then δk(c) = 0.

If c > 5 and c ≥ k then δk(c) =
⌈
(c−2)(c−3)

12

⌉
.

Proof: (a) The value
⌈
(c−2)(c−3)

12

⌉
is on one hand the genus of the complete graph Kc+1 [13], and

on the other the smallest genus on which any graph with minimum degree c can be embedded,
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so that for s <
⌈
(c−2)(c−3)

12

⌉
no c-connected graph embedded in a surface of genus s can exist

– no matter what the structure of the dual is.

(b) The case δ1(1) = 0 is trivial, and for c ∈ {2, 3} the well known fact that simple c-
connected plane graphs have a simple c-connected dual implies δ1(c) ≥ 1. The 3-connected
graph embedded in the torus and displayed in Figure 5 shows δ1(2) = δ1(3) = 1. The graph
in Figure 6 shows δ1(4) ≤ 2, δ1(5) ≤ 2, while equality follows with Lemma 3.1, part (a). The
graph in Figure 7 shows δ1(6) ≤ 3 and again equality follows with Lemma 3.1, part (a).

(c) The case δ2(2) = 0 is trivial, and for c ∈ {3, 4, 5} the fact that simple 3-connected
plane graphs have a simple 3-connected dual implies δ2(c) ≥ 1. Applying Note 4.1 to the
dodecahedron embedded in the plane and with dual the 5-connected icosahedron implies –
together with Lemma 4.2 – δ2(3) = δ2(4) = δ2(5) = 1.

Lemma 3.1, part (b) implies that δ2(6) > 1, and applying Note 4.1 and Lemma 4.2 to an edge
of the Heawood graph embedded in the torus (with dual the 6-connected graph K7), we get
δ2(6) = 2.

Already in part (a) we showed that δ2(c) ≥
⌈
(c−2)(c−3)

12

⌉
. Applying Note 4.1 to a suitable edge

of the dual of Kc+1 embedded in a surface of genus
⌈
(c−2)(c−3)

12

⌉
, and applying Lemma 4.5,

shows that δ2(c) ≤
⌈
(c−2)(c−3)

12

⌉
+ 1.

(d) For c ∈ {3, 4, 5} the icosahedron shows that δk(c) = 0. For c > 5 the result follows directly

from Lemma 4.4, since for c > 5 embeddings of Kc+1 on a surface of genus
⌈
(c−2)(c−3)

12

⌉
exist

that have a simple dual and triangles.

The remaining – and most interesting – values are δ1(c) for c > 6 and the exact values of δ2(c)
for c > 6. We will not be able to decide which of the two possible values for δ2(c) is the correct one,
but we will be able to achieve some progress on the problem for δ1(c) by giving an upper bound
on δ1(c). As the definition of δk(c) requires G to be c-connected, it follows directly from the Euler
formula that δ1(c) ∈ Ω(c2), so at least in the Omega-notation, the bound we will prove will be
optimal.

Figure 5: A 3-connected graph on the torus (left) with a dual that has a 1-cut (right).

Theorem 5.2 For c ≥ 7, we have δ1(c) ≤ c2+6c−5
4 .

Proof: Let c ≥ 7, p ≥ c minimal with the property that p is odd, and let q ≥ c
2 + 1 minimal with

the property q ≡ 2 (mod 4) – so q ≥ 6. We will define an embedding of a graph G containing
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Figure 6: The 5-connected graph K7 minus an edge embedded in the double torus (left) so that
the dual has a 1-cut (right).
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Figure 7: The 6-connected graph K8 minus a matching with three edges embedded in the triple
torus (left) so that the dual (right) has a 1-cut.

Kp,2(q−1) as a spanning subgraph, so that the dual is simple and has a 1-cut. As Kp,2(q−1) is
a spanning subgraph with c′ = min{p, 2(q−1)}, we have that G is c′-connected and therefore
also c-connected.

In Figure 8, a part of a minimum genus embedding of Kp,q as described by Ringel [12] is
displayed. If the vertex bipartition is Vp = {1, 2, . . . , p}, Vq = {1′, 2′, . . . , q′}, then the cyclic
order around the vertices given by Ringel is

For 1 ∈ Vp: (q − 1)′, q′, (q − 3)′, (q − 2)′, . . . , 3′, 4′, 1′, 2′

(alternating index differences +1 and −3).
For 2 ∈ Vp: 2′, 3′, 6′, 7′, . . . , q′, 1′, . . . , (q − 5)′, (q − 2)′, (q − 1)′

(alternating index differences +1 and +3
and replacing (q + 1)′ by 1′).

For odd i ∈ Vp, i ≥ 3: q′, (q − 1)′, . . . , 1′.
For even i ∈ Vp, i ≥ 3: 1′, 2′, . . . , q′.
For odd i′ ∈ Vq: 1, 2, . . . , p.
For even i′ ∈ Vq: p, p− 1, . . . , 1.

For p odd and q ≡ 2 (mod 4), the genus is equal to (p−2)(q−2)
4 and all faces are quadrangles

[12], so (see the proof of Lemma 4.4) no two faces can share more than one edge and the dual
is simple.
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Figure 8: An embedding of Kp,q with p odd and q ≡ 2 (mod 4).

Removing vertex 1′ ∈ Vq, we get one big face with all vertices of Vp in the boundary. In this
new embedded graph G1, some of the old quadrangles share 2 edges with the new, large face.
The pattern in which faces occur two times in the boundary can be described based on the
rotation system, but can best be seen in Figure 9. In order to make sure that each face shares
only one edge with another face, we construct the graph G2 by adding edges {4k−1, 4k} and
{4k, 4k + 1}, for 1 ≤ k ≤ p

4 , and an additional edge {p, 1}, if p ≡ 3 (mod 4).

G1 is isomorphic to Kp,(q−1). Taking two copies Ga
1, G

b
1 of G1 and identifying the vertex

sets V a
p , V

b
p with p vertices in any way using a bijection, we get Kp,2(q−1). Doing the same

with copies Ga
2 = (V a

p ∪ V a
q , E

a) and Gb
2 = (V b

p ∪ V b
q , E

b) of G2 we get a graph that contains

Kp,2(q−1) as a spanning subgraph, so it is at least c-connected. Since in Ga
2 and Gb

2, some

vertices in V a
p respectively V b

p are adjacent, and because we neither want to delete edges, nor

create double edges, we will have to identify V a
p and V b

p in a way that no two vertices in V a
p

that are adjacent in Ga
2 are identified with vertices adjacent in Gb

2.

Denoting the vertices in V b
p as 1b, 2b, . . . in order to distinguish them from vertices in V a

p ,

which we denote as 1a, 2a, . . . , we identify, for 1 ≤ i ≤ p − 2, vertex ia with vertex (i + 2)b,
vertex (p − 1)a with 1b and vertex pa with 2b. The rotation around the vertices is given

18



2

2’

2’

p−3

q’

q’

q’
3’

(q−1)’

2’

q’

2’

q’

p

p−1

p−2

y

y

x

x

w

v

w

a

a

b

c

z

z

5

2

2’

2’

p−3

q’

q’

q’
3’

3’

(q−1)’

4’

q’

2’

q’

p−3
p

2

3

4

z

z

y

y

x

x

w

v

w

a

a

b

c

p  1 (mod 4)

p   3 (mod 4)

(q−1)’

p−5

p−4

(q−1)’

p−1(q−1)’

3’

(q−1)’

p−2
1

(q−1)’

3’

2

p−1

4’p
1

3

4

5

(q−1)’
3’

3

p

5’ (q−3)’

1

4

(q−1)’

3’
2

5

(q−1)’

3

6

(q−1)’

1
p

p−1

p−2

p−4

p−5(q−1)’

3’

p−1 (q−1)’

3’

(q−1)’

p−2
1
(q−1)’

3’

p−1

2’

(q−1)’ 3’ p

3

5’ (q−3)’

1

4

(q−1)’

3’

2

5

3’
(q−1)’

3

(q−1)’

6

3’

3’

3’

p−3

(q−1)’

Figure 9: Quadrangles sharing just one edge with the large face are shaded. The other quadrangles
are assigned letters to indicate the two places where they occur in the boundary of the large face.
The graph G2 is formed by adding new edges to avoid that a quadrangle shares more than one edge
with the large face.

by adding the edges coming from the other graph in the formerly large face obtained by
removing vertex 1′ ∈ Vq. This identification is displayed in Figure 10, where, for the case
p ≡ 3 (mod 4), also the edges between vertices of V a

p and the edges between vertices of V b
p

are drawn to show that no double edges exist. It is easy to check that this also holds for
p ≡ 1 (mod 4).

With s(e) denoting the starting point of an arrow and t(e) denoting the endpoint, for 1 ≤
i ≤ p − 2, the right hand side of the fundamental polygon gives s(ei) = t(ei+1) and the left
hand side gives t(ei+1) = s(ei+2), for 0 ≤ i ≤ p − 3. Together this gives s(ei) = s(ei+2), for
1 ≤ i ≤ p− 3. This means that all starting points of arrows with odd index are the same and
all starting points of arrows with even index are the same. Together with s(e1) = s(ep−1)
(note that p− 1 is even) and t(ep−1) = t(e1) = s(e2), this gives that all start- and endpoints
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Figure 10: A fundamental polygon split into two parts and with instructions on how Ga
2 and Gb

2

are embedded into the two parts. The identification along the boundary is described by labelling
arrows to be identified by the same symbol ei. The gluing into the polygon is described by giving
the positions of the vertices ia, respectively ib. The extra edges not belonging to Kp,q−1 are given.

of arrows in the fundamental polygon correspond to the same point. We get exactly one face
that is not one of the triangles or quadrangles contained in Ga

2 and Gb
2.

The same conclusion can also be obtained without use of the fundamental polygon in Figure 10
and arguing only with the rotation around the vertices.

In order to compute the genus of the graph, we can neglect the edges added after removing
the vertex 1′ ∈ Vq and compute the genus of the graph without these edges: each of the edges
subdivides a face, so we have one more edge and one more face, and the Euler characteristic
does not change.

The embedding of Kp,q is a minimum genus embedding with all faces quadrangles, so it has
p + q vertices, pq edges and (pq)/2 faces. After removing vertex 1′, the graph has p + q − 1
vertices, pq − p edges and (pq)/2− p+ 1 faces. If G3 is the result of identifying the vertices,
G3 has v(G3) = 2(p + q − 1) − p vertices, e(G3) = 2(pq − p) edges and, because during the
identification the two large faces are replaced by one new face, f(G3) = 2((pq)/2− p + 1)−
2 + 1 = pq − 2p+ 1 faces. The genus of the resulting graph G3 equals

g(G3) =
(p− 2)(q − 1) + 1

2
.

Because all edges in G3 have one of the small faces in Ga
2 and Gb

2 on one side, no two faces
share more than one edge and the dual is a simple graph. All paths between vertices in the
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dual corresponding to small faces in different copies must pass through the new large face –
so the vertex corresponding to the new face is a cut-vertex of the dual graph.

Since we have chosen p and q minimal, we have c ≤ p ≤ c+ 1 and c/2 + 1 ≤ q ≤ c/2 + 9
2 . As

q > 1, we have

δ1(c) ≤ g(G3) ≤
c2 + 6c− 5

4
.

6 The uniqueness of graphs with high connectivity and small
genus

A key to investigate, for which c we have δ2(c) =
⌈
(c−2)(c−3)

12

⌉
+ 1, and, for which c, we have

δ2(c) =
⌈
(c−2)(c−3)

12

⌉
, is provided by Plummer and Zha [11]. Their Theorem 2.4 (A) states

Theorem 6.1 Suppose c ≥ 7 and let g be the genus of the complete graph Kc+1. Then Kc+1 is the
only c-connected graph that has an embedding of genus g if and only if c 6∈ {7, 8, 9, 10, 12, 13, 16}.

In fact in [11], the uniqueness of the complete graph for c = 9 and c = 13 is not decided, and is
explicitly posed as an open question. In the appendix (see Section 9), we give an embedding of the
9-connected graph K11 minus a maximum matching with genus g = g(K10) = 4, and an embedding
of the 13-connected graph K15 minus a maximum matching with genus g = g(K14) = 10, showing
that, for these last two cases, the complete graphs are also not unique. The embeddings were
computed by the program described in [1].

Theorem 6.1 implies that, in order to decide whether δ2(c) =
⌈
(c−2)(c−3)

12

⌉
+ 1 or δ2(c) =⌈

(c−2)(c−3)
12

⌉
, it is – except for a finite number of exceptions – sufficient to study only genus embed-

dings of complete graphs and decide whether their dual can be a simple graph with a 2-cut.

7 Conclusions, future work, and further results

Though the general bounds for higher genus are relevant, it was most important to solve the problem
for the first nontrivial case – the torus – completely, that is, be able to give exact values for the
minimum connectivities that guarantee 3-connectivity, respectively 2-connectivity of the dual.

It was also astonishing to see that, if g(c) is the minimum genus on which a c-connected graph
can be embedded, already on genus g(c) + 1 and maybe even on genus g(c), c-connectedness does
not guarantee 3-connectivity of the dual.

The fact that arbitrarily highly connected graphs can even have a cutvertex in the (simple)
dual is also intriguing – though this may happen only for much higher genus than the occurrence
of 2-cuts.

Nevertheless there are still many relevant open questions:
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• It would be very interesting to characterize when δ2(c) =
⌈
(c−2)(c−3)

12

⌉
and when δ2(c) =⌈

(c−2)(c−3)
12

⌉
+ 1.

• The upper bounds for δ1() are very far from the lower bounds. Using the same techniques
as in the proof of the upper bound, a small improvement might be possible by choosing p, q
less generous and also considering the cases for bipartite graphs when q 6≡ 2 (mod 4). For a
substantial improvement of the upper bound or the lower bound, new ideas are necessary.

• In all examples constructed in this article, the embedded graph with high connectivity can
also be embedded with smaller genus – so it is not minimum genus embedded. In Figure 11,
we give an example of a minimum genus embedding of a 3-connected graph on the torus
where the dual has a 2-cut and is also minimum genus embedded. So also minimum genus
embeddings of graphs with connectivity at least 3 exist that have a simple dual that is not
3-connected, but also minimum genus embedded. It would be interesting to know which of
the results given are also valid for minimum genus embeddings.

Figure 11: A 3-connected minimum genus embedded graph on the torus (left) with a minimum
genus embedded dual with a 2-cut (right).

• Due to Whitney’s theorem, the statement that a planar 3-connected graph has a planar em-
bedding with a 3-connected dual is equivalent to the statement that all its planar embeddings
have this property. For higher genus, the statement that all embeddings have this property
is false, but does there exist c ≥ 3 such that, for c-connected graphs, we have that, when-
ever an embedding with a simple dual exists, there also exists an embedding with a simple
3-connected dual of the same genus?

• In [3], a general approach to local symmetry preserving operations (encompassing the dual,
truncation, ambo, chamfer, etc.) is described and it is proven (Theorem 5.2 in [3]) that
all operations captured by this approach preserve the 3-connectedness of polyhedra. In the
original manuscript we mentioned the task of extending this result to polyhedral embeddings
and of classifying operations that always preserve 3-connectedness. These aims have in the
meantime been achieved. In [2], the theorem from [3] is generalized to polyhedral embeddings
and to operations that are only guaranteed to preserve orientation preserving symmetries. In
[5], a classification of operations that always preserve 3-connectedness is given. A publication
of this result is in preparation.
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9 Appendix

9.1 Embeddings of complete graphs and duals to which the H-operation can
be applied

An embedding of K8

with genus 2:

vertex order of
neighbours

1 2 4 8 3 6 7 5
2 1 5 8 7 3 6 4
3 1 8 2 7 5 4 6
4 1 2 6 3 5 7 8
5 2 1 7 4 3 6 8
6 5 7 1 3 4 2 8
7 6 3 2 8 4 5 1
8 7 2 5 6 3 1 4

The dual of the embedding of K8:

vertex order of vertex order of
neighbours neighbours

1 2 3 4 10 4 7 16
2 1 5 6 11 5 16 18
3 1 7 8 12 5 9 17
4 1 9 10 13 6 18 7
5 2 11 12 14 6 9 15
6 2 13 14 15 7 14 18
7 3 15 10 13 16 8 11 10
8 3 16 17 17 8 18 12
9 4 12 14 18 11 13 17 15

The result (genus 3) of the H-operation applied to edge
{1, 2} of the dual of the embedding of K8:

vertex order of vertex order of
neighbours neighbours

1 2 3 4 9 4 6 12
2 1 3 4 10 4 7 13
3 1 5 6 2 7 8 11 4 14 7
4 1 9 10 2 11 12 12 4 9 16
5 3 13 14 13 8 5 10
6 3 9 15 14 5 11 15 16
7 3 16 10 11 15 8 14 6
8 3 13 15 16 7 12 14

An embedding of K9 with genus
3 and only one face not a trian-
gle:

vertex order of
neighbours

1 2 3 4 5 6 7 8 9
2 1 9 6 4 8 5 3 7
3 1 6 8 7 2 5 9 4
4 1 3 9 8 2 6 7 5
5 1 4 7 9 3 2 8 6
6 1 5 8 3 4 2 9 7
7 1 6 9 5 4 2 3 8
8 1 7 3 6 5 2 4 9
9 1 8 4 3 5 7 6 2

The dual of the embedding of K9:

vertex order of vertex order of
neighbours neighbours

1 2 3 4 5 6 7 13 4 22 7
2 1 8 9 14 5 18 20
3 1 10 11 15 6 22 20
4 1 12 13 16 7 21 18
5 1 14 9 17 8 23 11
6 1 15 11 18 8 14 16
7 1 16 13 19 9 12 23
8 2 17 18 20 10 14 15
9 2 19 5 21 10 12 16
10 3 20 21 22 13 15 23
11 3 6 17 23 17 22 19
12 4 19 21
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An embedding of K10 with genus
4 and only one face not a trian-
gle:

vertex order of
neighbours

1 2 3 4 5 6 7 8 9 10
2 1 10 9 7 6 4 8 5 3
3 1 2 5 9 6 8 10 7 4
4 1 3 7 9 8 2 6 10 5
5 1 4 10 7 9 3 2 8 6
6 1 5 8 3 9 10 4 2 7
7 1 6 2 9 4 3 5 10 8
8 1 7 10 3 6 5 2 4 9
9 1 8 4 7 2 10 6 3 5
10 1 3 8 7 5 4 6 9 2

The dual of the embedding of K10:

vertex order of vertex order of
neighbours neighbours

1 2 3 4 16 7 28 23
2 1 5 6 17 7 25 21
3 1 7 8 18 8 14 25
4 1 9 10 19 9 15 23
5 2 11 8 12 9 13 20 10 26 12
6 2 14 15 21 10 17 29
7 3 16 17 22 11 29 24
8 3 5 18 23 11 16 19
9 4 5 19 24 12 13 22
10 4 20 21 25 13 18 17
11 5 22 23 26 14 20 28
12 5 20 24 27 15 29 28
13 5 25 24 28 16 27 26
14 6 26 18 29 21 27 22
15 6 19 27
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An embedding ofK14 with genus 10 and
only one face not a triangle:

vertex order of neighbours
1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 1 14 8 11 9 13 6 12 5 7 4 10 3
3 1 2 10 9 5 8 7 14 11 6 13 12 4
4 1 3 12 9 6 11 13 8 14 10 2 7 5
5 1 4 3 9 14 13 11 7 2 12 8 10 6
6 1 5 10 12 2 13 3 11 4 9 8 14 7
7 1 6 4 2 5 11 10 13 9 12 14 3 8
8 1 7 3 4 13 10 5 12 11 2 14 6 9
9 1 8 6 4 12 7 13 2 11 14 5 3 10
10 1 9 3 2 4 14 12 6 5 8 13 7 11
11 1 10 7 5 13 4 6 3 14 9 2 8 12
12 1 11 8 5 2 6 10 14 7 9 4 3 13
13 1 12 3 6 2 9 7 10 8 4 11 5 14
14 1 13 5 9 11 3 7 12 10 4 6 8 2

The dual of the embedding of K14:

vertex order of vertex order of
neighbours neighbours

1 2 3 4 30 16 46 47
2 1 5 6 31 17 48 23
3 1 7 8 32 17 49 26
4 1 9 10 33 19 50 51
5 2 11 12 34 20 46 52
6 2 13 14 35 20 26 53
7 3 15 16 36 21 49 22
8 3 17 18 37 21 40 54
9 4 19 20 38 21 49 55
10 4 21 22 39 22 56 47
11 5 23 19 40 24 37 53
12 5 24 25 41 24 48 29
13 6 21 26 42 25 28 57
14 6 27 28 43 27 56 45
15 7 29 21 44 28 52 51
16 7 21 30 45 29 58 43
17 8 31 32 46 30 55 34
18 8 25 21 47 30 58 39
19 9 33 11 48 31 59 41
20 9 34 35 49 32 36 38
21 10 15 36 13 50 33 57 53

16 37 38 18 51 33 58 44
22 10 39 36 52 34 59 44
23 11 31 27 53 35 50 40
24 12 40 41 54 37 59 56
25 12 18 42 55 38 46 57
26 13 35 32 56 39 43 54
27 14 43 23 57 42 50 55
28 14 42 44 58 45 51 47
29 15 45 41 59 48 54 52
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9.2 Graphs for the last open cases in the theorem of Plummer and Zha

An embedding with genus 4 of the 9-
connected graph K11 minus a maximum
matching:

vertex order of neighbours
1 3 7 5 11 8 4 10 6 9
2 3 6 8 9 11 4 7 10 5
3 1 9 8 11 6 2 5 10 7
4 1 8 5 9 6 7 2 11 10
5 1 7 9 4 8 10 3 2 11
6 2 3 11 7 4 9 1 10 8
7 6 11 9 5 1 3 10 2 4
8 9 2 6 10 5 4 1 11 3
9 7 11 2 8 3 1 6 4 5
10 8 6 1 4 11 2 7 3 5
11 10 4 2 9 7 6 3 8 1 5

An embedding with genus 10 of the 13-connected
graph K15 minus a maximum matching:

vertex order of neighbours
1 3 6 5 10 13 4 15 14 8 11 9 12 7
2 3 10 8 9 6 14 7 12 15 4 11 13 5
3 1 7 15 10 2 5 9 8 14 12 13 11 6
4 1 13 8 10 12 9 5 6 7 14 11 2 15
5 1 4 9 3 2 13 15 7 11 8 12 14 10
6 2 9 7 4 1 3 11 15 8 13 12 10 14
7 6 9 13 10 11 5 15 3 1 12 2 14 4
8 9 2 10 4 13 6 15 12 5 11 1 14 3
9 7 6 2 8 3 5 4 12 1 11 14 15 13
10 8 2 3 15 11 7 13 1 5 14 6 12 4
11 10 15 6 3 13 2 4 14 9 1 8 5 7
12 13 3 14 5 8 15 2 7 1 9 4 10 6
13 11 3 12 6 8 4 1 10 7 9 15 5 2
14 12 3 8 1 15 9 11 4 7 2 6 10 5
15 14 1 4 2 12 8 6 11 10 3 7 5 13 9
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