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Abstract 
Juvenile myelomonocytic leukemia (JMML) is a rare and aggressive clonal neoplasm 

of early childhood, classified as an overlap myeloproliferative/myelodysplastic 

neoplasm by the World Health Organization (WHO). In ninety percent of the patients 

with JMML typical initiating mutations in the canonical Ras pathway genes NF1, 

PTPN11, NRAS, KRAS and CBL can be identified. Hematopoietic stem cell 

transplantation (HSCT) currently is the established standard of care in most patients, 

although long-term survival is still only 50-60%. Given the limited therapeutic options 

and the important morbidity and mortality associated with HSCT, new therapeutic 

approaches are urgently needed. Hyperactivation of the Ras pathway as disease 

mechanism in JMML lends itself to the use of targeted therapy. Targeted therapy could 

play an important role in the future treatment of patients with JMML. This review 

presents a comprehensive overview of targeted therapies already developed and 

evaluated in vitro and in vivo in patients with JMML.  
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JMML Juvenile myelomonocytic leukemia 

WHO World Health Organization 

HSCT Hematopoietic stem cell transplantation 

HSC Hematopoietic stem cell 

BM Bone marrow 

OS Overall survival 

HMA Hypomethylating agents 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

iPSCs Induced pluripotent stem cells 

FTIs Farnesyltransferase inhibitors 

EFS Event-free survival 

T-ALL T-cell acute lymphoblastic leukemia 

GVHD Graft versus host disease 

CAR Chimeric antigen receptor 

CLL Chronic lymphocytic leukemia 

CMML Chronic myelomonocytic leukemia 

NF1 Neurofibromatosis type 1 

CML Chronic myelogenous leukemia 

  



Introduction 
JMML characteristics and subtypes 
JMML is a rare and aggressive clonal neoplasm of early childhood. The clonal growth 

of an abnormal multipotent hematopoietic stem cell (HSC) leads to the characteristic 

proliferative features, such as monocytosis, splenomegaly and also a moderately 

elevated percentage of myeloblasts. In contrast, erythropoiesis and thrombopoiesis 

are typically decreased due to dysplastic changes in the bone marrow (BM) (1-4). 

Although progress has been made in elucidating the pathogenesis of the disease, 

hematopoietic stem cell transplantation (HSCT) currently is the established standard 

of care, and results in long-term overall survival (OS) of only 50-60% of patients (5-7). 

These outcomes have not changed substantially over the last several decades. 

Despite the intensity of this treatment, relapse of JMML is the most common cause of 

death. To date, no other treatment options have been able to alter the natural course 

of this disease.  

Research in the past decade was mainly focused on the identification of primary and 

secondary mutations (8-10), alterations in the non-coding transcriptome (microRNAs, 

lncRNAs, circRNAs) (11-14), and aberrant genomic DNA methylation (15-18). The 

latter has identified a subgroup of JMML patients with high DNA methylation and very 

poor prognosis (17, 18). The identification of abberant methylation patterns in patients 

with JMML resulted in the use of hypomethylating agents (HMA), such as azacitidine, 

as bridge to HSCT (19). Although this treatment had no significant effect on DNA 

methylation between responders and non-responders, evidence shows that treatment 

with azacitidine may contribute to a better pre-transplant disease state and thus a 

better outcome of HSCT and a longer overall survival (19-22). This observation 

resulted recently in FDA approval for azacitidine in newly diagnosed JMML. 

In approximately 90-95% of patients with JMML, canonical mutations in the NRAS and 

KRAS (20%-25%), PTPN11 (35%), NF1 (10%-15%) or CBL (10%-15%) genes are 

observed (23, 24), strongly linking the disorder to hyperactivation of the RAS/MAPK 

pathway. This characteristic makes this disease attractive for targeted therapies 

against different components of this pathway. Although initial expectations of targeted 

therapy in JMML were high, major hurdles were encountered. For instance, Ras is an 

important component of normal cell physiology, and targeted therapy can cause 

considerable systemic toxicity or even development of other malignancies. 

Nevertheless, promising steps have been taken in the last decade (25).  

Given the limited therapeutic options and their associated morbidity, new therapeutic 

approaches are urgently needed. Based on recent insights into disease pathogenesis, 

there is a renewed interest in evaluating approaches directly targeting the RAS 

pathway. Here, we provide a comprehensive overview of targeted therapies already 

developed and tested in JMML, their targets and their efficacy in vitro and in vivo in 

patients with JMML. 

   



Novel targeted appoaches in JMML 
The rate of somatic events in JMML is much lower compared to other cancers (0.38 

versus 0.61 events/megabase [Mb]/case on average in childhood cancer) (26-28), 

strenghtening the hypothesis that hyperactivation of the Ras pathway alone is sufficient 

for disease propagation. This relative genetic simplicity, combined with RAS-pathway 

mutations as a "first hit" and mostly linear patterns of clonal evolution makes this 

disease suitable for pharmacological inhibition of the Ras pathway. In the following 

section, we provide an up-to-date overview of novel Ras targeted therapies with proven 

in vitro or in vivo activity in JMML. An overview of different targets, treatment options 

and evidence is given in FIGURE 1 and TABLE 1. 

Therapies targeting GM-CSF signaling pathways 
Characteristic for JMML cell proliferation is hypersensitivity of myeloid progenitors to 

granulocyte-macrophage colony-stimulating factor (GM-CSF), which elicits a cascade 

of downstream signaling and transcription factor activation. Although in JMML 

abnormalities of the GM-CSF-receptor haven’t been identified, targeting of this 

pathway is studied using different approaches, including immunotherapies and small 

molecule inhibitors of downstream components of the GM-SCF receptor signaling 

pathway (29-33).  

The GM-CSF-analogue E21R is an antagonist of the GM-CSF-receptor. In vitro, use 

of this antagonist resulted in inhibition of colony growth of JMML cells (32), whereas in 

a mouse model of JMML it resulted in improved physical condition at the end of the 

treatment period (33). Use of this compound in a patient, initially resulted in a fast 

improvement of the clinical condition a few days after the first cycle was given. In 

contrast, at the beginning of the third cycle monocytes and myeloblasts increased, 

suggesting refractory disease to the GM-CSF-analogue. One month after the third 

cycle, the patient died as a consequence of internal bleeding and multiple organ failure 

(34). As E21R has been taken off the market twenty years ago, this drug is no longer 

a therapeutic option. 

Lenzilumab is an engineered human IgG1κ monoclonal antibody, directly targeting 

GM-CSF, which has shown promising clinical efficacy in chronic myelomonocytic 

leukemia (CMML) patients. In a phase 1 clinical trial durable clinical improvement was 

achieved in 4 out of 15 patients, providing a proof-of-concept that GM-CSF inhibition 

is a viable therapeutic strategy in CMML (35). However no formal evaluation of 

lenzilumab in the treatment of JMML has been reported. 

GM3 is an oligonucleotide that binds the promotor of the GM-CSF gene resulting in 

formation of a DNA triple helix and reduction of GM-CSF transcription. In vitro, GM3 

reduced colony formation of JMML-cells (30) The specific inhibition of TNFα gene 

expression by a catalytic RNA molecule (ribozyme) also downregulated the expression 

of GM-CSF in JMML cells and GM-CSF dependent colony formation was reduced (36). 

Although, no further in vitro, animal model or clinical studies have been conducted with 

these compounds. 



JAK targeting 
Targeting JAK2, a tyrosine kinase in the GM-CSF pathway is another attractive 

therapeutic approach in JMML (37). 

JAK-inhibitors ruxolitinib and momelotinib were shown to effectively inhibit colony 

growth in induced pluripotent stem cells (iPSCs) of JMML patients with CBL mutations., 

while ruxolitinib also inhibited colony growth of iPSCs carrying the KRAS mutation (17). 

Interestingly, ruxolitinib attenuated disease in a mouse model of JMML with Nf1 

mutation. A significantly better survival was observed compared to the placebo group. 

Side effects of ruxolitinib were aggravation of anemia and trombocytopenia (38). 

Similarly, treatment with ruxolitinib also resulted in an improvement of clinical condition 

in a mouse model with Cbl mutation (39). 

Finally, in a phase 1 clinical study with ruxolitinib, 3 patients with JMML were included. 

At the end of the first month of treatment, 2 of these patients had stabilized disease. 

One patient even got 5 cycles of ruxolitinib before disease progression occurred (40).  

Although not-significant responses with this drug were observed in JMML patients, it 

showed good safety and tolerability profiles and promising responses in phase 1 

clinical trials in patients with CMML. Results of phase 2 clinical trials in CMML are 

pending (41). In a phase 3 clinical trial in myelofibrosis momelotinib has been 

compared to ruxolitinib and proved to be noninferior, but offered less symptom control 

(42). 

SHP2-inhibitors 
SHP-2 is a non-receptor protein tyrosine phosphatase encoded by the PTPN11 gene, 

which is mutated in 35% of the patients with JMML (43). Although, type-1 SHP-2 

inhibitors were initially shown to inhibit colony growth of Ptpn11 mutated mouse cells, 

it rapidly became clear that they also target SHP-1, which excerts oposing effects to 

SHP-2, finally nullifying the effect. Development of more selective type 2 inhibitors try 

to overcome this issue and currently four type 2 SHP-2 inhibitors (JAB-3068, TNO155, 

RMC-4630, and RLY-1971) are investigated in clinical trials for solid tumors (44-47). 

In JMML however, no studies with specific SHP-2 inhibitors are conducted yet.  

Therapies targeting the RAS-MAPK pathway 

Direct inhibition of RAS 
RAS is one of the most frequent mutated oncogenes in cancer (25) and also in JMML 

it plays a central role in the pathogenesis. Development of direct inhibitors of the Ras 

pathway has not been successfull and consequentially, RAS got the label of being 

“undruggable”. The most important reasons for this are the high affinity of RAS for GTP 

making it unfavorable for GTP-competitive inhibitors and the lack of small molecule 

binding sites besides the GTP binding pocket (25, 48-50). The small molecule RAS 

inhibitors that have been developed were not potent and selective enough for clinical 

use. In recent years, new direct RAS-inhibitors have been identified and are being 

studied in clinical trials. In an alternative approach, Fell et al. designed mutant specific 

inhibitors (51). Currently, two mutant selective inhibitors (MRTX849 and AMG510) for 

KRAS Gly12Cys are being investigated in phase 2 and 3 clinical trials for non-small 

cell lung cancer and colorectal cancer. The KRAS Gly12Cys mutation also occurs in 



JMML, but only in approximately 1 in 300 cases. Thus, this allele specific inhibitor will 

not be relevant in JMML 

Alternatively, rigosertib is a small molecule RAS mimeticum that binds various effectors 

which inhibits further activation of the Ras pathway. Mice with a Kras mutation in the 

hematopoetic component were used as a model of JMML. Treatment of mice carrying 

the Kras G12D mutation with rigosertib resulted in reduction of spleen size and 

improvement of leukocytosis, although mainly neutrophils decreased and the 

characteristic monocytosis remained. Interestingly, rigosertib had a positive effect on 

mice survival (52, 53). However, in a phase 3 clinical trial in patients with 

myelodysplastic syndrome (MDS) no beneficial effect on survival was noted with 

rigosertib compared to standard of care. (54).  

SOS1 inhibitors 
SOS refers to a set of genes encoding guanine nucleotide exchange factors which 

promote the exchange of Ras-bound GDP by GTP. SOS1 inhibitors might be an 

interesting therapeutic option in JMML. The SOS1 inhibitor BI1701963 is currently 

investigated in phase 2 clinical trials in KRAS mutated solid tumors, as monotherapy 

or in combination with trametinib (55, 56). However, no studies on this compound are 

available in JMML at the moment. 

Inhibition of RAS posttranslational modifications 
Post-translational farnesylation of RAS proteins by farnesyltransferase is essential for 

localization of RAS enzymes to the inner cell membrane. Drugs intervening with this 

process can cause suppression of the Ras pathway. 

Although farnesyltransferase inhibitors (FTIs) L-739,749 and L-744,832 were proven 

to inhibit colony growth of JMML cells in vitro, predominantly driven through their effect 

on Hras processing, no responses were observed after administration of this drug to 

Nf1-deficient mice (57, 58). 

In a phase 1 trial evaluating the FTI tipfarnib in refractory leukemia patients at a dose 

of 300 mg/m2, no complete or partial response were seen in any patient, but one child 

with JMML remained stable for 6 cycles of tipifarnib (59). 

A phase 2 and 3 study investigated the effect of tipifarnib in JMML-patients. In 73% of 

47 patients a limited response was observed with a decrease in leukocytosis count and 

a reduction of spleen and liver size. Unfortunately, no effect on event-free survival 

(EFS) was demonstrated. The 5-year survival was higher in patients who did not 

receive tipifarnib in comparison with patients who did (71% vs. 48%, p= 0,06). Few 

patients experienced disease progression while on tipifarnib, but in conclusion it has 

no effect on relapse rate or overall survival in JMML (60). Consequently, the use of 

tipifarnib has been abandoned in hematologic malignancies.  

Zoledronate is a third generation bisphosphonate which has the ability to inhibit both 

farnesyltransferase and geranylgeranyltransferase. In an in vitro experiment 

zoledronate could inhibit colony formation of JMML-cells, but at higher concentrations 

than in vivo tolerated (61). In a case report, a patient with relapsed JMML was treated 

with zoledronate after second HSCT. No remarkable effect of this compound was 



observed and the patient died 18 days after the first zoledronate infusion due to rapidly 

progressive disease (62). 

The palmitoylation/depalmitoylation cycle is another posttranslational modification that 

is important for NRAS, HRAS and subtype KRAS4A for a correct localization in the 

plasmamembrane. Interrupting this cycle prevents RAS from locating properly. 

Palmostatin B is a small molecule inhibitor of acyl protein thioesterase (ATP1) that 

catalyzes depalmitoylation (63). Palmostatin B was able to inhibit in vitro growth of 

murine BM cells with a Nras mutation, but had no effect on those with a Kras mutation 

(64). Because the KRAS 4B isoform is not palmitoylated, acyl-protein thioesterase 1 

inhibitors would only be applicable to NRAS mutants (3). To our knowledge, there is 

not any clinical experience with palmostatin B, nor are there studies in animal models. 

Targeting downstream signaling pathways 

RAF/MEK/ERK pathway 
The MEK-inhibitor trametinib has been shown to inhibit aberrant signaling and 

myeloproliferation in vitro using JMML iPSCs, notably with a greater effect on PTPN11 

mutated iPSCs compared to CBL mutated iPSCs (65). Trametinib is currently being 

investigated in a phase 2 clinical trial in patients with relapsed or refractory JMML. 

Stieglitz and colleagues reported objective responses (1 clinical complete response 

and 3 clinical partial responses) in 4 out of 9 patients enrolled in this study. Another 2 

patients had stable disease troughout the 12 treatment cycles. No molecular 

responses were achieved. Trametinib also showed a favorable side effect profile (66). 

Similarly, the MEK-inhibitor mirdametinib has shown activity in JMML iPSCs with a 

PTPN11 mutation, while no effect could be appreciated upon exposure of CBL mutated 

iPSCs (65, 67). In Kras mutant mice mirdametinib treatment induced a rapid 

normalization of peripheral blood counts, a rapid improvement in clinical condition and 

a prolonged survival (68). Unfortunately, two-third of the treated mice succumbed to T-

cell acute lymphoblastic leukemia (T-ALL) or T-cell lymphoma after 12 weeks of 

treatment (68). In contrast, Nf1 mutant mice were in better clinical condition at the end 

of the trial compared to the placebo group and no T-ALL development was seen during 

treatment (69). In phase 1 clinical trials, mirdametinib appeared to be safe and well 

tolerated (70, 71). Phase 2 clinical trials in neurofibromatosis type 1 (NF1), gliomas 

and solid tumors are ongoing. 

Another strategy targeting the RAF/MEK/ERK-pathway is the use of a DNA enzyme 

against RAF. A DNA enzyme has the ability to specifically cleave target mRNA and 

thus inhibit the expression of the corresponding protein. This DNA enzyme against 

RAF induced substantial inhibition of JMML cell colony formation and an increased 

survival in a mouse model of JMML (72). However, DNA enzymes are not yet 

implemented in clinical practice (73). 

PI3K/AKT/MTOR pathway 
The PI3K/AKT/mTOR pathway is known as a signal transduction cascade and a 

regulator of a variety of important physiological functions, including cell cycle, cell 

survival, growth (74).  



PI3K is an enzyme with 3 different isoforms: p110α, p110β and p110δ, of which the 

latter is most abundant expressed in leukocytes and amongst monocytic leukemia 

samples, thus representing an interesting therapeutic target. Deng et al. illustrated that 

the PI3K inhibitor pictilisib, demonstrating highest specificity for p110α and p110δ, 

inhibits growth in Ptpn11 mutated cells (75). Similarly, Kras mutated mice treated with 

pictilisib clinically improved and had a significantly prolonged survival. Nonetheless, 

various mice developed T-ALL after treatment (76). In a phase 1 dosing study in 

patients with solid tumors poor tolerability and limited anti-tumor activity were observed 

with only occasional objective responses (77). However in other phase 1 studies, 

pictilisib did show a good safety and tolerability profile and a potential anti-tumor effect 

(78, 79). To date, there are no clinical trials with pictilisib ongoing. 

Another p110δ specific PI3K inhibitor, idelalisib, delayed proliferation of in vitro Ptpn11 

mutated cells and inhibited colony growth in iPSCs with a PTPN11 or CBL mutation. 

In a Ptpn11 mutated JMML mouse model, idelalisib significantly prolonged survival 

(80). Idelalisib is the first FDA-approved PI3K inhibitor for the treatment of relapsed 

chronic lymphocytic leukemia (CLL) and lymphoma. It has shown good clinical activity 

as a single agent or in combination therapy. In CLL a series of clinical trials were 

terminated due to increased risk of death related to infection, however this could not 

be confirmed in other trials (81-83).  

In further attempts to inhibit the PI3K/AKT/mTOR pathway, the AKT-inhibitor MK-2206 

was administered to mice with Kras mutation and mice with Nf1 mutation and shown 

to improve survival, accompanied by a normalization of peripheral blood counts. 

However, insufficient effect of the compound was observed in clinical studies with 

various solid tumors and AML and consequentially, further clinical development of the 

compound has been halted (84). 

Finally, mTOR inhibition using rapamycin, a well-known drug for its ability to suppress 

immunity and in preventing graft versus host disease (GVHD) after organ 

transplantation and HSCT, was proven to inhibit JMML progression. Two studies have 

tested this compound in vitro in cells derived from patients with JMML. Liu et al. 

observed inhibition of colony growth in 71% (10/14) of JMML cells in vitro treated with 

rapamycin. In the 4 non-responding samples, a high concentration of PTEN was found 

(85). Another study, showed similar effects in iPSCs with PTPN11 and CBL mutations 

(17). In a mouse model with Ptpn11 mutation, rapamycin ameliorated clinical condition 

of the mice (86).  

A case report documented on a 9-year old patient with JMML experiencing a relapse 

9 months after HSCT with development of GVHD which was controlled with rapamycin. 

Interestingly, 77 months later, the patient was still alive and in remission, raising the 

possibility that besides the immunomodulating effect, rapamycin also excerted an anti-

leukemic effect (87).   

Other treatment approaches 
Recent studies have discovered novel fusion genes in patients with quintuple negative 

JMML. In a Japanese cohort, 3 of 16 patients without Ras pathway mutations 

harboured ALK/ROS1 tyrosine kinase fusions, that were sensitive to ALK inhibition 

(17). Crizotinib, a small molecule ALK/ROS1 inhibitor, could significantly inhibit colony 



growth of in vitro cells of two patients with JMML: one with a RANBP2-ALK fusion and 

one with a DCTN1-ALK fusion. Subsequently, the patient with the RANBP2-ALK fusion 

was treated with crizotinib and reached complete molecular remission and was 

succesfully bridged to HSCT. The patient survived without disease recurrence 15 

months after transplant (17). Crizotinib also inhibited colony growth of in vitro JMML 

cells with one of the canonical mutations (CBL, PTPN11, KRAS). Furthermore, ALK-

inhibitors alectinib, ceritinib and TAE684 inhibited colony growth to the same extent 

than crizotinib in in vitro JMML cells with PTPN11 mutation. 

In addition, Chao and colleagues identified a CCDC88C-FLT3 fusion in a patient with 

JMML refractory to conventional cytotoxic chemotherapy but sensitive to FLT3 

inhibition with sorafenib in monotherapy. After two weeks of treatment with sorafenib, 

cytogenetic remission was achieved and after 10 weeks, the patient was able to 

undergo HSCT and was still disease-free after 300 days (88). 

Dasatinib, a small molecule tyrosin kinase inhibitor, inhibited colony growth in in vitro 

JMML cells with  PTPN11, NF1, NRAS or CBL mutations (89). After confirming an in 

vitro sensitivity for dasatinib treatment, a patient with refractory JMML with PTPN11 

mutation was treated with dasatinib and reached hematological remission. The patient 

could undergo HSCT, but eventually died one year later because of relapsed JMML 

(90). Dasatinib is FDA approved for the treatment of Philadelphia chromosome positive 

CML and ALL. 

Combination therapy 
Combinations of targeted therapy could possibly improve treatment effectiveness, 

inhibition of the disease mechanism on several fronts and dose reduction of the 

individual drugs. Several cominations of a MEK-inhibitor with other compounds (PI3K-

inhibitor, AKT-inhibitor, mTOR-inhibitor, JAK-inhibitor) have been tested in in vitro and 

in mouse models. Generally, the combination therapy had a stronger effect than 

treatment with a single compound (38, 84, 91-94), although these also might increase 

the risks of toxicity and side effects. 

Current treatment landscape 
In this comprehensive overview, it becomes clear that, although a lot of effort has been 

made to investigate compounds in experimental settings, there is still a huge leap to 

take for targeted therapy to become a considerable part of the standard of care in 

JMML. Only azacitidine has recently been approved for newly diagnosed JMML, 

making this hypomethylating drug a valuable treatment option as bridge HSCT.  

Of the targeted therapies in JMML, the MEK inhibitor trametinib shows the most 

promising results and is under investigation in a phase 2 clinical trial in relapsed and 

refractory JMML patients. Another MEK inhibitor mirdametinib has recently been 

approved in a phase 1 clinical trial and potentially has similar effects in JMML. 

Besides MEK inhibitors also the JAK inhibitors show potential in vitro in JMML, with 

ruxolitinib being able to stabilize disease in two out of three JMML patients in a phase 

1 clinical trial. 

Furthermore, the PI3K inhibitor idelalisib is FDA approved for treatment of relapsed 

CLL and showed activity in iPSCs and a mouse model of JMML. 



Rapamycin is well-known for its immunosuppressive effects and is frequently used to 

limit GVHD after HSCT. In other hematologic malignancies, rapamycin is often used in 

combination with another compound to sensitize the antileukemic effects. Therefore, 

combinations with rapamycin could be considered for further research. 

In in vitro settings, dasatinib and crizotinib were able to inhibit colony growth of JMML 

cells with a canonical mutation. Both compounds are investigated in various clinical 

trials and dasatinib is approved for the treatment of Philadelphia chromosome positive 

CML and ALL. These experiences in other hematologic malignancies could possibly 

lead to further investigation of these compounds in JMML. 

Unfortunately, of these drugs only trametinib is currently under investigation in JMML. 

As this disease is aggressive with dismal outcomes, other therapies are needed. 

Importantly, targeted therapies of high interest should always be carefully evaluated 

within clinical trials. As JMML is rare, international collaboration for this is warranted.    

Discussion and conclusion 
As JMML is caused by hyperactivation of the Ras pathway, different strategies have 

been employed to target this pathway, although with varying degrees of success.  As 

the Ras pathway is involved in many biological processes, targeted therapies 

frequently result in unwanted side-effects, such as the development of T-ALL. Better 

understanding of the pathophysiology of JMML will help to identify novel therapeutic 

targets or combinations of existing therapeutic strategies, as demonstrated for long 

non-coding RNAs and circRNAs (12, 13). Besides HSCT, also other 

immunotherapeutic approaches may have the potential to cure this disease, as 

demonstrated by the successful use of donor lymphocyte infusions for post-transplant 

relapse(95). In 2016, a chimeric antigen receptor (CAR) T-cell targeting the GM-CSF 

receptor (or CD116) has demonstrated anti-proliferative effects on stem and progenitor 

cells in JMML (96). Furthermore, although methylation has been studied as a 

therapeutic target, the role of histone modifications, yet another epigenetic change, 

remains unexplored in JMML.  

In addition, a better understanding of the pathophysiology will not only help to identify 

and develop novel therapeutic modalities, but also to better pinpoint which specific cell 

to target in JMML. Recently, integrated analysis combining exome and RNA-

sequencing data has discovered JMML-propagating cells and revealed that canonical 

mutations are acquired in this HSC compartment (27). Surprisingly, besides HSCs also 

more committed cells such as multipotent progenitors, lymphoid-primed multipotent 

progenitors, and even common myeloid progenitors and granulocyte-macrophage 

progenitors are able to propagate the disease in xenograft models (27). Single cell 

RNA sequencing has shown that all somatic mutations in JMML can be backtracked 

to the phenotypic haematopoietic stem/progenitor cells compartment with RAS-

activating mutations as a “first hit” (97). Moreover, these leukemic stem cells are 

present after HSCT and before molecular/clinical evidence of relapse (97). This finding 

paves the way for selective targeting of JMML-propagating cells. In addition to the 

generation of all afore mentioned data, the collaborative sharing of large-scale 

datatypes will be essential in further advancing our understanding of JMML disease 

and moving forward the discovery of novel treatment options. In that respect, the 



initiative of Prof. Elliot Stieglitz, providing a central datadeposit and analysis 

infrastructure for JMML sequencing data 

(https://www.ncbi.nlm.nih.gov/projects/gapprev/gap/cgi-

bin/study.cgi?study_id=phs002504.v1.p1),  is of utmost importance. 

Besides targeting cell-autonomous features, such as cell surface receptors or 

intracellular proteins within JMML cells, also non-autonomous mechanisms can be of 

interest. For instance, it was recently demonstrated that germline PTPN11 mutations 

in the BM micro-environment have pathogenic effects on HSCs (98). Patients with 

somatic PTPN11 mutations probably have a similarly abnormal BM microenvironment 

since parts of this niche are haematopoietic driven (99). The pathogenic effect of the 

mutated BM niche can potentially explain the poor engraftment and high relapse rates 

after HSCT in JMML.  The latter may be due to the inability of the donor HSCs to 

engraft and remain in a quiescent state in the aberrant BM, with outgrow of the residual 

leukemic cells as a consequence (100). 

For decades, studies in JMML were hampered by the lack of appropriate JMML 

models. In vitro modelling of JMML is very difficult as JMML progenitor cells cannot be 

maintained in culture and the leukemic clone is lost within a few weeks (101). 

Therefore, an immortalized JMML cell line, which accurately reflects the lineage 

diversity of JMML, has not been generated so far and primary patient cells in 

suspension culture tend to differentiate rapidly. Recently, both patient derived iPSC 

(65, 67, 102) as well as xenotransplantation (103) have been employed as an 

alternative approach to model the disease. Hopefully, These novel JMML disease 

models, will forward development and in vitro and in vivo testing of different new 

therapeutic options. In conclusion, targeted therapy in JMML is still in its early stage, 

although different compounds have been tested, of which several show promises. As 

the patient population amenable for each targeted strategy is rare, it will be crucial to 

envision international collaborations in clinical trial design. Recent development of 

JMML models will guide identification of novel therapeutic targets and novel treatment 

strategies such as targeting JMML-propagating cells, targeting non-autonomous 

mechanisms and targeting the immunesystem.  
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Legends 
FIGURE 1A: a structured overview of targeted therapy in JMML situated on the Ras 

pathway. 

FIGURE 1B: a timeline of compounds studied in JMML. The upper side shows the 

compounds that have been studied in clinical trials, the underside shows the 

compounds that have been studied in vitro, in animal models or in case reports. 

Compounds in gray are considered as abandoned for various reasons: poor safety 

and tolerability, lack of effect in JMML or other hematologic malignancies, agents that 

have been taken off market… 

 

 

 

 

TABLE 1: Overview of all relevant targeted therapies studied in JMML (in vitro, in vivo 

animal model or in patients with JMML). 

 



Table 
TABLE 1: Overview of all relevant targeted therapies studied in JMML (in vitro, in vivo animal model or in patients with JMML).  

Drug target Drug name Studies Results 
Referenc
es 

GM-CSF signaling pathways 

GM-CSF analog E21R 

In vitro  In vitro: inhibition of colony growth.  

(32-34) Mouse model Mouse model: improved clinical condition. 

Case report - 1 patient Case report: temporary response, then relapse. 

DNA triple helix 
formation 

GM3 In vitro In vitro: inhibition of colony growth. (30) 

Ribozyme Ribozyme In vitro In vitro: inhibition of colony growth. (36) 

JAK inhibitor 
Ruxolitinib 

In vitro (iPSCs)  In vitro: inhibition of colony growth. More effective with CBL mutation than with PTPN11 mutation 
(17, 38-
40) 

Mouse model Mouse model: clinical improvement. 

Phase 1 clinical study (3 patients) Phase 1: 2 out of 3 patients temporary stabilization. 

Momelotinib In vitro (iPSCs) In vitro: inhibition of colony growth. More effective with CBL mutation than with PTPN11 mutation.  (17) 

Therapies targeting RAS-MAPK pathway 

RAS mimeticum Rigosertib Mouse model Mouse model: clinical improvement. Prolonged survival. (52) 

Farnesyltransferas
e inhibitor 

L-744,832 In vitro  In vitro: inhibition of colony growth.  
(57, 58) 

L-739,749 Mouse model Mouse model: no effect. 

Tipifarnib 

Phase 1 clinical study Phase 1: safe at a dose of 300 mg/m2. 

(59, 60) Phase 2/3 clinical study (47 
patients) 

Phase 2/3: temporary clinical improvement. Survival worse than in the untreated group.  

Bisphosphonates Zoledronate 
In vitro  In vitro: inhibition of colony growth. 

(61, 62) 
Case report (1 patient) Case report: no effect. 

Palmitoylation - 
depalmitoylation 

Palmostatin B In vitro (mouse) In vitro (mouse): only effective with Nras mutation, not with Kras.  (64) 

Targeting downstream signaling pathways 

MEK inhibitor 

Mirdametinib 
(PD0325901) 

In vitro (iPSCs) In vitro: inhibition of colony growth. More effective with  PTPN11 mutation than with CBL mutation. (65, 67-
69) Mouse model Mouse model: clinical improvement. 

CI-1040 Mouse model Mouse model: no effect. (104) 

Trametinib 

In vitro (iPSCs)  In vitro: inhibition of colony growth. More with PTPN11 mutation than with CBL mutation. 

(65, 66) 
Phase 2 clinical study – recruiting 

Phase 2: abstract published in november 2021. 4 out of 9 patients had an objective clinical 
response, from which 1 with a complete response and 3 with a partial response. No molecular 
responses were achieved(NCT 03190915 (clinicaltrials.gov)). 

DNA enzyme 
against RAF 

DNA enzyme 
against RAF 

In vitro  In vitro: inhibition of colony growth. 
(72) 

Mouse model Mouse model: clinical improvement, prolonged survival.  



PI3K inhibitor 

IC87114 (p110δ) In vitro (mouse) In vitro: inhibition of colony growth. (75) 

Pictilisib (p110α 
and p110δ) 

In vitro (mouse)  In vitro: inhibition of colony growth. 

(75, 84) 
Mouse model Mouse model: clinical improvement. Prolonged survival. 

BYL719 (p110α) 
+ TGX221 
(p110β) or 
GS1101 (p110δ) 

In vitro 
In vitro: inhibition of colony growth. Combination with TGX221 or GS1101 twice as effective as 
BYL719 alone. 

(91) 

GS-9820 (p110δ) In vitro (mouse) In vitro: inhibition of colony growth. (92) 

Idelalisib (p110δ) 
In vitro (iPSCs)  In vitro: inhibition of colony growth. 

(80, 92) 
Mouse model Mouse model: clinical improvement. Prolonged survival. 

AKT inhibitor MK-2206 Mouse model Mouse model: clinical improvement. Prolonged survival. (84) 

mTOR inhibitor Rapamycin 

In vitro (iPSCs)  In vitro: inhibition of colony growth. Linked with concentration of PTEN. 
(17, 85-
87) 

Mouse model Mouse model: clinical improvement. 

Case report (1 patient) Case report: lasting remission after 77 months. 

Small molecules 

Multikinase 
inhibitor 

Sorafenib 

In vitro (mouse)  In vitro: inhibition of colony growth in cells with a CCDC88C-FLT3 fusion. 

(88) 
Case report (1 patient) 

Case report: patient with a CCDC88C-FLT3 fusion in cytogenetic remission. 300 days post HSCT 
fusion transcripts undetectable. 

Dasatinib 

In vitro  In vitro: inhibition of colony growth (mutation PTPN11-NF1-NRAS-CBL). 
(89, 90, 
105) Case report (1 patient) 

Case report: patient with PTPN11 mutation. Hematological remission, bridging to 3th HSCT, died 
1 year later from relapse. 

ALK/ROS1 inhibitor Crizotinib 

In vitro  
In vitro: inhibition of colony growth with a DCTN1-ALK fusion, RANBP2-ALK-fusion and PTPN11-
CBL-KRAS mutations. (17, 106, 

107) 
Case report (1 patient) 

Case report: patient with RANBP2-ALK fusion in complete molecular remission. 15 months after 
HSCT relapse-free. 

ALK inhibitor 

Alectinib 

In vitro In vitro: inhibition of colony growth (cells with PTPN11 mutation). (17) Ceritinib 

TAE684 

 

 

 

 


