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Abstract. Pedestrian detection is an important challenge in computer
vision due to its various applications. To achieve more accurate results,
thermal images have been widely exploited as complementary infor-
mation to assist conventional RGB-based detection. Although existing
methods have developed numerous fusion strategies to utilize the com-
plementary features, research that focuses on exploring features exclu-
sive to each modality is limited. On this account, the features specific
to one modality cannot be fully utilized and the fusion results could be
easily dominated by the other modality, which limits the upper bound
of discrimination ability. Hence, we propose the Cross-modality Atten-
tion Transformer (CAT) to explore the potential of modality-specific fea-
tures. Further, we introduce the Multimodal Fusion Transformer (MFT)
to identify the correlations between the modality data and perform fea-
ture fusion. In addition, a content-aware objective function is proposed
to learn better feature representations. The experiments show that our
method can achieve state-of-the-art detection performance on public
datasets. The ablation studies also show the effectiveness of the proposed
components.

Keywords: Cross-Modality fusion, Multimodal pedestrian detection,
Transformer

1 Introduction

Pedestrian detection is one of the most important challenges in computer vision
due to its various applications, including autonomous driving, robotics, drones,
and video surveillance. For achieving more accurate and robust results, thermal
images have been widely exploited as the complementary information to solve
the challenging problems that impede conventional RGB-based detection, such
as background clutter, occlusions, or adverse lighting conditions. Radiated heat
of pedestrians contains sufficient features to differentiate shape of humans from
the background but lose visual appearance details in thermal images. On the
other hand, RGB cameras can capture fine visual characteristics of pedestrians
(e.g., texture). Hence, designing a fusion scheme to effectively utilize the different
visual cues from thermal and RGB modalities has become a popular research
interest.
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In the existing methods, numerous fusion strategies have been exploited to
utilize complementary features from color and thermal images [9, 28, 32]. In addi-
tion to simple feature concatenation [9], semantic information [13] and attention
mechanism [29] are also introduced to improve the detection performance. Fur-
thermore, in order to better exploit the characteristics of different modalities,
the illumination condition is also considered during feature fusion [6, 14].

However, most previous studies only focus on performing feature fusion and
exploiting the fused features instead of exploring features specific to each modal-
ity (i.e. modality-specific features) before fusion [31, 9, 11, 13, 20]. Specifically,
most methods from the literature put emphasis on performing detection after
the features from the color and thermal images are fused, while the features
exclusive for each modality are not entirely utilized in the fusion process.

As a consequence, some of the features specific to one modality cannot be
fully utilized. For instance, the texture or color of RGB images in bad illumina-
tion conditions might not be properly explored due to the domination of strong
features from the other modality in the fusion process. However, in conventional
RGB-based detection, the texture of the objects provides important cues that
make the targets distinct from the background clutter. Without fully considering
specific features, the fused information becomes the main discriminative cues,
which limits the upper bound of discrimination ability.

In this paper, we propose a novel network architecture for multimodal pedes-
trian detection based on exploring the potential of modality-specific features to
boost the detection performance.

The first key idea of this paper is better exploitation of modality-specific
features by cross-referencing the complementary modality data in order to obtain
more discriminative details. Instead of extracting features from modalities by
independent feature extractors, we suggest that the aligned thermal-visible image
pairs could act as a ”consultant” for each other to discover potential specific
features. The argumentation for such reasoning can be found in the set theory.
Fused features are in fact represented as an intersection of features from thermal
and RGB images, while modality-specific features remain unused in disjunctive
parts of the feature sets of each modality.

This shows that a large amount of features remains unused. While pixel
level fusion resembles finding intersection of two sets, we would like to intro-
duce a union of features present in both modalities. This is accomplished by
a unique multimodal transformer with a novel cross-referencing self-attention
mechanism, called the Cross-modality Attention Transformer (CAT), to con-
sider cross-modality information as keys to compute the weights on the current
modality values.

Furthermore, after extracting modality-specific features, we propose a Multi-
modal Fusion Transformer (MFT) to perform the fusion process on every pair of
ROIs. Our MFT further improves the detection performance by merging the mul-
timodal features simultaneously with the help of the self-attention mechanism.
Moreover, in order to learn distinct feature representations between foreground
(pedestrian) and background, a novel content-aware objective function is pro-
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posed to guide the model, which shortens the intra-class variation and expands
the inter-class variation.

Our main contributions can be summarized as follows:

– We have identified the disadvantages of the recent techniques relying on fused
features for multimodal pedestrian detection, and introduced a new modality
fusion scheme, which can effectively utilize modality-specific information of
each modality.

– To our best knowledge, we are among the first to propose a Transformer-
based network to enhance modality-specific features by cross-referencing the
other modality. In feature extraction, we rely on the Cross-Modality Atten-
tion Transformer (CAT), which identifies related features in both modalities
and consults the second modality in order to perform information aggrega-
tion based on the union of sets instead of the intersection type of fusion.

– Thanks to the ability of transformer networks to identify correlations be-
tween heterogeneous data, in this case RGB and thermal ROIs, our pro-
posed Multimodal Fusion Transformer (MFT) performs association between
detected regions in a more efficient way, compared to classical CNN methods.

– In our experiments, we qualitatively and quantitatively verify the perfor-
mance of our model against recent relevant methods and achieve comparable
or better detection results on the KAIST and CVC-14 datasets.

2 Related Work

2.1 Multimodal Pedestrian Detection

Although deep learning methods have significantly advanced and dominated con-
ventional RGB-based detection, detecting pedestrians in adverse weather and
lighting conditions, background clutter or occlusions, is still a non-trivial prob-
lem. Motivated by this, numerous researchers have developed different fusion
schemes relying on an additional modality to improve detection performance.
Hwang et al. [7] have proposed a widely used pedestrian dataset with synchro-
nized color and thermal image pairs. Next, Liu et al. compared various fusion
architectures and proposed an important baseline model based on the halfway
fusion [9] and Faster R-CNN [22]. Then, in the papers of Konig et al. [11] and
Park et al. [20], the fusion models based on Faster R-CNN were also proposed.
Moreover, in order to distinguish pedestrian instances from hard negatives, ad-
ditional attributes have been introduced. For instance, Li et al. [13] leveraged
the auxiliary semantic segmentation task to boost pedestrian detection results.
Zhang et al. [29] also utilized the weak semantic labels to learn an attentive mask
helping the model to focus on the pedestrians. In addition, the illumination con-
dition of the scenes is also studied to improve the fusion results. For example,
Guan et al. [6] and Li et al. [14] estimate the lighting condition of the images to
determine the weights between thermal and color features. Furthermore, the mis-
aligned and unpaired problems between the modalities have been investigated
by Zhang et al. [31] and Kim et al. [10]. However, in most of the aforementioned



4 W.Y. Lee et al.

methods, pedestrian detection is usually performed after the features have been
fused. The discussion about exploring or enhancing the specific features of each
modality is quite limited.

2.2 Multimodal Transformers

The self-attention mechanism of transformers has shown its advantages in many
natural language processing and computer vision tasks [25, 3], and recently, it
has been also applied to various multimodal fusion problems, such as image and
video retrieval [4, 1], image/video captioning [18, 24, 8, 15], visual tracking [27]
and autonomous driving [21].

Typically, multimodal inputs to transformers are allowed free attention flow
between different modalities [19]. For instance, spatial regions in the image and
audio spectrum would be considered and aggregated simultaneously without
limitation. However, unlike audiovisual learning tasks, aligned thermal and color
image pairs have more features in common, such as the shape of objects. Directly
applying traditional self-attention to the image pairs might have difficulties to
extract useful features due to the redundant information. In addition, the liter-
ature on fusing thermal and color images relying on transformers for pedestrian
detection is quite limited. Hence, the strategies for utilization of shared infor-
mation and exploring specific cues of each modality remains an important issue.

3 Proposed Method

The objective of our proposed fusion scheme is to explore potential modality-
specific features and perform multimodal pedestrian detection using thermal
and color image pairs as input. Our model consist of three main parts: (1)
two-stream feature extractor with cross-modality attention, (2) modality-specific
region proposals, and (3) multimodal fusion. As illustrated in Fig. 1, we rely on
two independent feature extractors to obtain the features from color and thermal
image pair Ic and It.

Simultaneously with the extraction, we feed feature maps from feature ex-
tractors to our proposed Cross-modality Attention Transformer (CAT), for con-
sidering cross-modality information used to enhance modality-specific features.
The attended results are concatenated with each original input feature maps
and forwarded to the corresponding region proposal network RPNc, and RPNt

to find modality-specific ROIs. Finally, the proposed Multimodal Fusion Trans-
former (MFT) merges the ROI pair Rc and Rt from ROI pooling module and
output classification and bounding box predictions. In the following subsections,
we explain the details of each contribution.

3.1 Cross-Modality Attention Transformer

In previous studies, numerous fusion methods have been proposed to merge
and utilize the attributes of each modality in a proper manner. However, the
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Fig. 1. Our proposed multimodal pedestrian detection network. We propose a two-
stream feature extractor with Cross-modality Attention Transformer (CAT) to extract
modality-specific features. After fetching the modality-specific region proposals, Mul-
timodal Fusion Transformer (MFT) is introduced to merge the ROI pairs for class and
bounding box predictions.
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Fig. 2. Our proposed Cross-modality Attention Transformer (CAT). We divide fea-
ture maps fc and ft from the two feature extractors into patches as input, and fold
the output patches to form the attended modality-specific feature maps yc and yt. Dif-
ferent from previous works, we introduce cross-modality attention to utilize the other
modality information for encouraging the model to focus on the regions ignored by the
current modality but highlighted by the other.

discussion about enhancing modality-specific features before fusion is quite lim-
ited. Modality-specific information plays an important role in single modality
detection, such as textures in color images. Therefore, in this part, we aim at
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Fig. 3. Illustration of cross-modality attention. Instead of computing the queries with
all modality keys, we introduce a novel way to only reference the complementary keys
for introducing new perspectives from the other modality.

enhancing and preserving the modality-specific features before fusion by our
proposed cross-modality attention mechanism. Specifically, we argue that with
our enhanced modality-specific features it is possible to achieve more accurate
region proposals.

Cross-Modality Attention As we have already learned, fused features usually
cannot fully exploit modality-specific information and become dominated by
strong cues from one of the modalities. In order to explore specific features of each
modality, we introduce a novel attention mechanism to reference cross-modality
data and to enhance our feature extraction. The main idea behind this design is
to utilize the cross-modality information in order to encourage the model to focus
on the regions ignored by the current modality but highlighted by the other. For
this purpose, we use cross-modality attention transformers, which significantly
outperform conventional CNN in discovering subtle and distant correlations in
different modalities.

As illustrated in Fig. 3, instead of computing the scaled dot-product of the
query with all modality keys, we only compute the scaled dot-product with the
complementary keys. To be more specific, following [3]’s standard ViT architec-
ture, we divide the input feature map pairs f i

c and f i
t from a certain layer i

of the feature extractors into Nx patches for each modality, and then we flat-
ten the patches and project them into Nx dx-dimensional input sequences as
(x1

c , ..., x
Nx
c ) and (x1

t , ..., x
Nx
t ).

Further, we add Nx dx-dimensional learnable positional embeddings Eposx

to each modality, and define the new matrices as Xc and Xt of size RNx×dx .
Different from the traditional transformer layers in ViT [3], we introduce CAT
layers containing cross-modality attention module to utilize the other modality
information. Our cross-modality attention operates on the queries and values
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from color patches as Qc, Vc, keys from thermal patches as Kt. Hence, in every
CAT layer, the cross-modality attention matrix of the color sequence for single
head can be written as:

Attention(Qc,Kt, Vc) = softmax(αQcK
T
t )Vc, (1)

where α is the scaling factor, and Qc = W qXc, Kt = W kXt, and Vc = W vXc

are linear transformations. W q,W k,W v ∈ Rdx× dx
Nh are the weight parameters

for query, key, and value projections and Nh is the number of heads. As same as
above, the attention matrix of the thermal sequence is: Attention(Qt,Kc, Vt) =
softmax(αQtK

T
c )Vt. Different from the other multimodal transformers [21, 26,

16], we do not consider all the modality keys to find the attention weights. In-
stead, we introduce the perspective from the other modality by cross-referencing
the keys to see if there is any target sensed by the other sensor and enhance the
current sensor’s features.

The output of the cross-modality attention module is then passed into Layer
Normalization and MLP layers to get the attended features for color and thermal
modalities. Next, we repeat several CAT layers and fold the attended output
patches to form the feature maps yic and yit, which represent the additional
modality-specific features learned from the other modality. Note that we still
use the values from each modality to form the outputs, which means we do not
directly fuse the multimodal features here. Then, we concatenate the output
feature maps to the corresponding input features. Network-in-Network (NIN)
[17] is applied to reduce the dimension and merge them with the input features.
Furthermore, we apply our CAT on three different scales for considering coarse
to fine-grained modality-specific features in practice.

Modality-Specific Region Proposal In order to fully exploit the modality-
specific features, we propose two independent region proposal networks to find
the proposals separately. Different from the previous works [31, 9, 11, 13, 20], we
suggest that using the fused features to perform region proposal might limit
the discrimination ability because the fused features might be dominated by
one modality without considering the other. Therefore, in our work, we perform
region proposal separately relying on our enhanced modality-specific features to
explore the potential candidates. Afterwards, we use IoU threshold to match
the proposals from the two modalities to fetch ROI pairs. In order to maximize
the recall rate, we form the union of the proposals to involve all the possible
candidates and to avoid mismatches. In other words, if a proposal from thermal
sensor is not matched, we still use the bounding box to fetch the ROI from the
RGB sensor to form a ROI pair.

3.2 Multimodal Fusion

In order to optimally use the modality-specific cues from thermal and color im-
ages to perform detection, we propose a Multimodal Fusion Transformer (MFT)
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Fig. 4. Our proposed Multimodal Fusion Transformer (MFT). We divide ROI pairs
from the two modalities into patches and prepend class and bbox for learning image
representations. Different from CAT, we treat all the modality input sequences equally
to apply pair-wised attention for computing attention weights.

to perform the fusion of the features. Instead of considering the whole image
pair with background clutter, our fusion scheme only focuses on combining each
ROI pair separately for lower computation time. In addition, to learn more dis-
criminative feature representations, we introduce content-aware loss to enforce
MFT to group the features based on the content.

Modality-Specific Features Fusion As illustrated in Fig. 4, we divide each
ROI into Nr patches and project the flatten patches into Nr dr-dimensional
input sequences as (r1c , ..., r

Nr
c ) and (r1t , ..., r

Nr
t ). In addition, we also add Nr

dr-dimensional learnable positional embeddings Eposr , and similar to [3], we in-
troduce two dr-dimensional learnable embeddings class and bbox, whose output
state serve as the image representation for classification and bounding box pre-
dictions. Then, we concatenate input sequences with the embeddings as input
and feed them into the MFT layers.

Different from the traditional ViT [3], we propose pair-wised attention mod-
ule inside the MFT layers to apply the self-attention to all the input sequences to
perform prediction. In particular, for merging the ROI pairs, we need to consider
all the pair-wised modality patches to transfer the complementary information.
During the pair-wised attention, we mix all the paired sequences and compute
the scaled dot-product of queries with all the modality keys to fuse the features
from the two sensors. After several MFT layers, finally, we forward the output
of class and bbox token to two independent MLP layers for the classification
prediction Pcls and bounding box prediction Pbbox. We argue the differences
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from the previous studies [6, 14] as follows: without designing external network
to learn balancing parameters, we utilize the self-attention mechanism to find
the attention weightings and perform information fusion on each ROI pair.

Content-Aware Loss For learning better feature representations, we propose
content-aware loss to utilize the label information of each ROI pair. We im-
pose content-aware loss Lca on each output state of class token Ycls,c, where
c indicates the class label, 0 for background and 1 for foreground, to maxi-
mize the inter-class discrepancy and minimize intra-class distinctness. Specif-
ically, for each input batch, we average the all the Ycls,1 to fetch the rep-
resentative feature of foreground: Yfg =

∑
batch Ycls,1/Nf , where Nf repre-

sents the number of outputs with pedestrian annotation. As the same way,
we can fetch representative feature of background Ybg. Then, the distance be-
tween each Ycls,c and the corresponding center feature can be calculated as:
dbg =

∑
batch ∥Ycls,0 − Ybg∥ , dfg =

∑
batch ∥Ycls,1 − Yfg∥. With the above defini-

tions, the proposed content-aware loss Lca can be written as:

Lca = max (dbg + dfg − ∥Ybg − Yfg∥+m, 0), (2)

where m > 0 is the margin enforcing the separation between foreground and
background features. By this way, we shorten the intra-class feature distance
and expand the inter-class distance for better discrimination ability. For each
training iteration, we optimize the following objective function:

Ltotal = LRPNc
+ LRPNt

+ Lcls + Lbbox + λLca, (3)

where LRPNc
and LRPNt

represent the loss from region proposal networks [22]
of color and thermal modality, and Lca is weighted by a balancing parameter λ.
Similar to the Faster R-CNN [22], we use cross entropy and smooth L1 loss as
the classification Lcls and bounding box regression loss Lbbox of MFT. Moreover,
for better understanding, we also show the pseudo-code of our proposed method
in Alg. 1 to illustrate the whole process.

4 Experiments

In order to evaluate the performance of our proposed method, we conduct several
experiments on the KAIST [7] and CVC-14 [5] datasets to compare with the
previous methods. Furthermore, we also conduct ablation studies to demonstrate
the impact of the proposed components. In all the experiments, we follow [31]’s
settings and use log-average Miss Rate over the range of [10−2, 100] false positive
per image (FPPI) as the main metric to compare the performance.

4.1 Dataset and Implementation Details

KAIST dataset The KAIST dataset [7] consists of 95, 328 visible-thermal im-
age pairs captured in urban environment. The annotation includes 1, 182 unique
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Algorithm 1: Multimodal Fusion for Pedestrian Detection
Input : Color Image: Ic, Thermal Image: It
Output : Classification and bounding box predictions Pcls, Pbbox

// Step 1: Feature extraction
for three different scales i during feature extraction do

Extract color and thermal feature maps fi
c and fi

t from VGGc(Ic) and VGGt(It).
// Enhance modality-specific features by Cross-modality Attention Transformer

(CAT)

yi
c = CAT(fi

c), y
i
t = CAT(fi

t )
// Concatenate with fc and ft, and reduce the dimension with NIN [17]

fi+1
c = NIN(fi

c, y
i
c), f

i+1
t = NIN(fi

t , y
i
t)

end

// Step 2: Modality-specific region proposals
// Use feature extractor outputs Fc and Ft as inputs
Rc = ROIpooling(RPNc(Fc)), Rt = ROIpooling(RPNt(Ft))

// Step 3: ROI matching
Rp = ROImatch(Rc, Rt)

// Step 4: Multimodal Fusion
// Perform feature fusion and prediction by Multimodal Fusion Transformer (MFT)

forall ROI pairs Rk
p and learnable embeddings class and bbox do

Pk
cls, P

k
bbox = MFT(Rk

p, class, bbox)

end

pedestrians with 103, 128 bounding boxes. After applying the standard criterion
[7], there are 7, 601 training image pairs and 2, 252 testing pairs. We train our
model on the paired annotations released by [31] and apply horizontal flipping
with single scale 600 for data augmentation. For fair comparison with the ref-
erence state-of-the-art methods, we evaluate the performance on ”reasonable”
day, night, and all-day subsets defined by [7] with sanitized labels [13].

CVC-14 dataset The CVC-14 dataset [5] consist of 7, 085 and 1, 433 visi-
ble (grey) and thermal frames captured in various scenes at day and night for
training and testing. Different from the KAIST dataset, the field of views of the
thermal and visible image pairs are not fully overlapped and calibrated well. The
authors provided separated annotations for each modality and cropped image
pairs to make thermal and visible images share the same field of view. In our
experiments, we use the cropped image pairs and annotations to evaluate our
method. The data augmentation strategy is as same as the KAIST dataset.

Implementation In our proposed method, we use two independent VGG-16
[23] pretrained on ImageNet [12] to extract color and thermal modality feature.
Subsequently, we apply our proposed Cross-modality Attention Transformer
(CAT) on the last three different scales with patch size 16, 3, and 3 without
overlap to reference the other modality. Each of the transformer contains 3 CAT
layers. For the proposed Multimodal Fusion Transformer (MFT), we also use
3 MFT layers with patch size 3, and each input patch dimension is 1, 024. Ex-
cept the attention modules, we follow [3]’s architecture to design CAT and MFT
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Table 1. Comparisons with the state-of-the-art methods on the KAIST dataset.

Methods
Feature

extractor
Miss Rate (IoU = 0.5)

All Day Night

ACF [7] - 47.32% 42.57% 56.17%
Halfway Fusion [9] VGG-16 25.75% 24.88% 26.59%
Fusion RPN + BF [11] VGG-16 18.29% 19.57% 16.27%
IAF + RCNN [14] VGG-16 15.73% 14.55% 18.26%
IATDNN + IASS [6] VGG-16 14.95% 14.67% 15.72%
CIAN [30] VGG-16 14.12% 14.77% 11.13%
MSDS-RCNN [13] VGG-16 11.34% 10.53% 12.94%
AR-CNN [31] VGG-16 9.34% 9.94% 8.38%
MBNet [32] ResNet-50 8.13% 8.28% 7.86%
MLPD [10] VGG-16 7.58% 7.95% 6.95%
Ours VGG-16 7.03% 7.51% 6.53%

Table 2. Comparisons with the state-of-the-art methods on the CVC-14 dataset.

Methods
Feature

extractor
Miss Rate (IoU = 0.5)

All Day Night

MACF [20] - 69.71% 72.63% 65.43%
Choi et al. [2] VGG-16 63.34% 63.39% 63.99%
Halfway Fusion [20] VGG-16 31.99% 36.29% 26.29%
Park et al. [20] VGG-16 26.29% 28.67% 23.48%
AR-CNN [31] VGG-16 22.1% 24.7% 18.1%
MBNet [32] VGG-16 21.1% 24.7% 13.5%
MLPD [10] VGG-16 21.33% 24.18% 17.97%
Ours VGG-16 20.58% 23.97% 12.85%

layers. The λ parameter for Lca is 0.001. For more details, please refer to the
Supplementary Materials.

4.2 Quantitative Results

Evaluation on the KAIST dataset As illustrated in Table 1, we evaluate our
method and compare it with other recent related methods. Our method achieves
7.03% MR, 7.51% MR, and 6.53% MR on day, night, and all-day subsets under
the 0.5 IoU threshold. This table clearly shows that our method can achieve
superior performance on all the subsets.

Evaluation on the CVC-14 dataset As for the KAIST dataset, we show the
evaluations of our method and compare it with other state-of-the-art models in
Table 2. In this table, we follow the setting introduced in [20] to conduct the
experiment. Our method achieves 20.58% MR, 23.97% MR, and 12.85% MR on
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Table 3. Ablation studies of proposed cross-modality attention and content-aware loss
on the KAIST dataset. The baseline model is Halfway fusion [9], and we evaluate the
model with or without the proposed components to verify the improvements.

Methods
CAT MFT Miss Rate (IoU = 0.5)

Cross-modality
Attention

Pair-wised
Attention

Content-aware
Loss

All Day Night

Baseline - - - 25.75% 24.88% 26.59%

Ours - ✓ - 13.54% 14.87% 13.01%
- ✓ ✓ 12.42% 13.75% 12.11%
✓ - - 10.14% 10.87% 9.74%
✓ - ✓ 7.03% 7.51% 6.53%

day, night, and all-day subsets under the 0.5 IoU threshold. We can observe that
our method outperforms the other method under all the subsets.

4.3 Ablation Study

Effects of cross-modality attention For further analysis of the effect of our
proposed cross-modality attention, we conduct an experiment to compare the
results with or without the cross-modality attention mechanism. In Table 3 we
list four models to demonstrate the advantages of our method. Instead of using
cross-modality attention in CAT, we use pair-wised attention to allow free atten-
tion flow between the modalities to compute the attention matrix (computing
queries with all the modality keys) and to compare it with our proposed method.
We find that cross-modality attention improves the performance of the reference
models by a large margin. The performance can be improved by referencing the
complementary information from the other modality rather than allowing free
attention flow and directly fusing all the modality data in the early stage.

In addition, we also show the feature maps of the models with and without
cross-modality attention in Fig. 5 to demonstrate our advantages qualitatively.
Heat maps in this figure are generated by averaging the final convolution layer of
RGB feature maps and superimposing them on the RGB image. We observe that
with our proposed cross-modality attention, the model can correctly identify the
pedestrians. In contrast, without cross-modality attention, the model can hardly
focus on the targets.

Effects of content-aware loss In Table 3, we also compare the the results with
and without the content-aware loss to discuss the effect of content-aware loss.
We can see that our proposed loss further improves the detection performance
irrespective of the cross-modality attention or pair-wised attention. Especially
when the content-aware loss is applied to the model with cross-modality atten-
tion, the result shows the best performance and largest improvement among all
the combinations, which can demonstrate the effectiveness this component.
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(c) Features w/o CAT (d) Features w/ CAT(a) Detection results w/o CAT (b) Detection results w/ CAT

Fig. 5. The effects of cross-modality attention transformer. The left column (a) and
(b) show the RGB image with detection results comparison, and the right column (c)
and (d) show the feature maps with/without our proposed cross-modality attention
transformer. The green boxes represent the correct detection results, and the red and
orange boxes represent false negative and false positive samples respectively.

Effects of proposed components In order to demonstrate the contributions
of all the proposed components, we evaluate the model with/without the com-
ponents to verify the improvements. In Table 4, we use Halfway fusion [9] as our
baseline model, and then apply the proposed components gradually to show the
performance difference.

First, we only apply CAT to enhance modality-specific features and concate-
nate the features for single region proposal network. There is only a marginal
improvement because the potential ROIs might not be fully explored. In ad-
dition, for different proposals, an advanced fusion process is also required to
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Table 4. Ablation studies of our proposed components on the KAIST dataset. The
baseline model is Halfway fusion [9], and we evaluate the model with/without the pro-
posed components to verify the improvements. The results show that the proposed
transformer significantly improves the detection performance and outperforms the pre-
vious models to achieve the best performance among all the combinations.

Methods CAT
Modality-specific

RPNs
MFT

Miss Rate (IoU = 0.5)

All Day Night

Baseline - - - 25.75% 24.88% 26.59%

Ours ✓ - - 20.45% 21.66% 20.47%
✓ ✓ - 13.12% 14.45% 12.87%
✓ ✓ ✓ 7.03% 7.51% 6.53%

handle various illumination scenes. Secondly, we apply two independent region
proposal networks for each modality to find proposals and merge the ROI pairs
by concatenation. This leads to a larger improvement, demonstrating that the
enhanced modality-specific features and independent RPNs can truly help the
model to find more potential proposals.

Furthermore, we apply MFT to fuse the ROI pairs instead of feature concate-
nation to verify the effect of fusion by the attention mechanism. The results show
that the proposed transformer significantly improves the detection performance
and outperforms the previous models to achieve the best performance among all
the combinations.

5 Conclusions

In this paper, we propose a novel fusion scheme to combine visible and ther-
mal image pairs to perform multimodal pedestrian detection. We introduce the
Cross-modality Attention Transformer (CAT) to reference complementary in-
formation from the other modality during feature extraction to investigate the
potential of modality-specific features to improve detection performance. Instead
of directly fusing all the modality data, by our proposed cross-modality atten-
tion, we can extract more discriminative details. Moreover, we propose modality-
specific region proposal networks to explore the potential candidates and merge
the modality features pair-wisely by our proposed Multimodal Fusion Trans-
former (MFT) to make better predictions. Finally, a novel content-aware loss
is proposed to separate the foreground and background features to increase the
discrimination ability. The experiment results on the public KAIST and CVC-14
datasets confirm that our method can achieve state-of-the-art performance, and
the ablation studies also clarify the effectiveness of the proposed components.
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