
1 
 

A model-based scenario analysis of the impact of forest 1 

management and environmental change on the understorey 2 

of temperate forests in Europe 3 

Authors: Bingbin Wena, *, Haben Blondeela, Dries Landuyta and Kris Verheyena 4 

Address: aForest & Nature Lab, Department of Environment, Ghent University, 5 

Geraardsbergsesteenweg 267, 9090 Melle-Gontrode, Belgium 6 

*Corresponding Author: Bingbin Wen (bingbin.wen@ugent.be ) 7 

Abstract 8 

The temperate forest understorey is rich in terms of vascular plant diversity and plays a vital functional 9 

role. Given the sensitivity of this forest layer to forest management and global environmental change 10 

and the limited knowledge on its long-term dynamics, there is a need for decision support systems 11 

that can guide temperate forest managers to optimize their management in terms of understorey 12 

outcomes. In this study, using understorey resurvey data collected from across temperate Europe, we 13 

developed Generalized Additive Models (GAM) to predict four understorey properties based on forest 14 

management and environmental change data, and implemented this model in a web-based tool as a 15 

prototype understorey Decision Support System (DSS). Using seventy-two combined climate change, 16 

nitrogen(N) deposition and forest management scenarios, applied to two case study regions in Europe, 17 

we predicted temperate forest understorey biodiversity dynamics between 2020 and 2050. A 18 

sensitivity analysis subsequently allowed to quantify the relative importance of canopy opening, N 19 

deposition and climate change on understorey dynamics. Our study showed that, regardless of regions, 20 

understorey richness and the proportion of forest specialists generally decreased among most 21 

scenarios, but the proportion of woody species and the understorey vegetation total cover increased. 22 
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Climate warming, N deposition, and increases in canopy closure all influenced understorey dynamics. 23 

Climate warming will shift composition towards a selection of forest generalists and woody species, 24 

but a less open canopy could mitigate this shift by increasing the proportion of forest specialists. The 25 

case studies also showed that these responses can be context-dependent, especially in terms of 26 

responses to N deposition. 27 

Keywords: Temperate forest, climate change, N deposition, scenario analysis, DSS, sensitivity analysis, 28 

regional scale 29 

1 Introduction 30 

The forest understorey layer is the forest stratum composed of vascular plants with a height below ca. 31 

1 m, and is a crucial diversity reservoir in temperate forest ecosystems, containing more than 80% of 32 

the vascular plant diversity (Gilliam, 2007). Besides, this layer plays an essential functional role in 33 

temperate forests, for instance, by influencing tree regeneration, water cycling, nutrient, and carbon 34 

dynamics (Landuyt et al., 2019).  35 

Substantial research efforts have been invested into how the diversity and functioning of the 36 

understorey community is being affected by multiple environmental drivers during the last decade 37 

(e.g. (Bernhardt-Römermann et al., 2015; Dries Landuyt et al., 2020). These studies have found, for 38 

example, that climate warming can cause a “thermophilization” of the understorey community, 39 

reflected in declines in cold-adapted species and increases in warm-adapted species (De Frenne et al., 40 

2013; Zellweger et al., 2020a). Moreover, elevated levels of N deposition can lead to acidification and 41 

eutrophication at the forest floor (De Schrijver et al., 2011; Schmitz et al., 2019), leading to a 42 

replacement of oligotrophic species by eutrophic species (Dirnböck et al., 2014; Verheyen et al., 2012), 43 

and often also a decline in species richness (Gilliam, 2006). Besides these global change drivers, also 44 

management has been found to influence the understorey. Different forest management practices, 45 

ranging from drastic overstorey species conversion to subtle differences in silvicultural systems, have 46 
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all been shown to affect understorey composition. Verstraeten et al. (2013), for example, found that 47 

overstorey conversion from a temperate mixed deciduous forest to spruce plantation may lead to a 48 

compositional turnover in the understorey, leading to an increased abundance of light-demanding and 49 

acid-tolerant understorey species. Similar effects have been found when comparing alternative 50 

silvicultural systems. Selective cutting, for example, has been found to have a negative effect on both 51 

the structural and functional plant diversity compared to traditional coppice-with-standards 52 

management (Decocq et al., 2004). Finally, also forest management intensity may change the 53 

functional composition of the understorey  (Patry et al., 2017). Förster et al. (2017), for example, found 54 

that understorey species richness may increase in intensively managed forests, mainly because of an 55 

increase in canopy openness. In addition to these direct effects, forest management can also affect 56 

the availability of resources (mainly light) for the understorey, via its effect on tree cover, and can 57 

therefore decouple local resource availability and growing conditions from regional trends, potentially 58 

buffering responses of the understorey to global change(Depauw et al., 2020; Dries Landuyt et al., 59 

2020). 60 

Future responses of the understorey to global change, however, are still difficult to predict. Context-61 

dependencies and interactions between different global change drivers and forest management make 62 

it often hard to apply the findings above to predict understorey dynamics in a specific setting(Perring, 63 

et al., 2018). Especially since previous studies have focussed predominantly on system understanding 64 

and inference, and less on improving the predictive ability of their models (Landuyt et al., 2018). This 65 

lack of predictive models (in contrast to those available for overstorey modelling (e.g. Bugmann, 2001; 66 

Reyer, 2015)  makes it extremely hard for forest managers to account for the understorey while taking 67 

management decisions. Since numerous forest managers are starting to acknowledge the importance 68 

of the understorey and are widely concerned about biodiversity, climate change, and forest 69 

regeneration in temperate deciduous forests (Blondeel et al., 2021), there is a clear need for predictive 70 

understorey models and, more importantly, decision support systems (DSS). These DSS generally 71 

combine a user interface with simulation tools whose outcomes are translated into relevant 72 
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information for decision-making (Muys et al., 2011). However, understorey DSS are currently not 73 

available, mainly due to the limited availability of understorey models with an acceptable predictive 74 

performance ( Landuyt et al., 2018; Blondeel et al., 2021).  75 

In this study, we present a proof-of-concept prototype understorey DSS and, by applying our DSS, 76 

show how forest understorey communities respond to a combination of changes in forest 77 

management and changes in environmental conditions. Based on the European scale understorey 78 

resurvey database forestREplot (http://www.forestreplot.ugent.be/) , we fitted multiple GAM models 79 

to establish empirical links between a set of key understorey properties, including species richness, 80 

vegetation cover, the percentage of woody species and the percentage of forest specialists, and a set 81 

of environmental predictors, including canopy closure, climate, N deposition and soil data. Next, we 82 

developed a web-based tool as a prototype understorey DSS using the fitted GAM model to predict 83 

future responses of the understorey to forest management interventions and global change. Using 84 

scenario analyses, we predicted understorey dynamics under multiple policy-oriented climate change, 85 

N deposition and forest management scenarios from 2020 to 2050, for two case study regions in 86 

Europe. Based on a sensitivity analysis, we finally quantify the relative importance of canopy closure, 87 

N deposition and climate change on understorey dynamics within both case study regions.  88 

2 Methods 89 

2.1 Model setup  90 

2.1.1Data collection 91 

Understorey data was retrieved from the forestREplot database (https://forestreplot.ugent.be/ ). 92 

From this database, we selected a subset of plots, following Perring et al.(2018), using 40 datasets 93 

(1814 plots) containing resurvey data (i.e. vegetation survey conducted at two points in time)  94 

distributed across temperate Europe, with an average interval of 38 years between the initial and 95 

recent vegetation surveys (Perring, Diekmann, et al., 2018). All plots are considered ancient forest 96 

http://www.forestreplot.ugent.be/
https://forestreplot.ugent.be/
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plots that have been forested continuously since 1850 or earlier. Each dataset (containing data on 97 

multiple plots within a specific region) in the forestREplot database comes from a relatively 98 

homogeneous area in terms of climate and atmospheric N deposition, so we considered all plots 99 

within a given dataset to experience similar macroclimatic and atmospheric N deposition conditions. 100 

We complemented the data from the forestREplot database with data from the PASTFORWARD 101 

database (https://pastforward.ugent.be/ ) , the latter containing data on 192 temperate forest plots 102 

scattered across 19 regions within the Central-Western European temperate deciduous forest biome 103 

along spatial environmental gradients of atmospheric N deposition and climate conditions (Maes, et 104 

al. 2020). For each plot, both databases hold information on plot size (m2), survey year, MAT( °C), 105 

atmospheric N deposition (kg ha-1 year-1 of N), mean annual precipitation (MAP, mm) and understorey 106 

and overstorey composition both for the original and repeated surveys (Bernhardt-Römermann et al., 107 

2015; Maes, et al., 2020; Perring, et al., 2018). We extracted topsoil pH (0-5 cm) values for all plots 108 

from the SoilGrids database with a spatial resolution of 250m (Batjes et al., 2020).  We recalculated 109 

tree cover percentages using the Fischer correction method to obtain total tree cover values between 110 

0 and 100% (Bernhardt-Römermann et al., 2015). These environmental variables (Figure 1) were used 111 

as predictor variables to train and test a set of general additive models to predict understorey 112 

composition (see section 2.1.2).  113 

We selected four understorey response variables, these being understorey species richness, Fischer-114 

corrected total understorey vegetation cover (%), the proportion of woody species (%) and the 115 

proportion of forest specialists (%). The richness and Fischer-corrected vegetation cover were directly 116 

estimated from the forestREplot and PASTFORWARD databases. We counted all woody species in a 117 

plot and calculated the proportion of woody species as the ratio of the number of woody species to 118 

total richness. This proportion of woody species can be a proxy for the amount of woody regeneration 119 

in the understorey. We extracted ‘woodiness’ (two levels: woody versus herbaceous) as a functional 120 

trait from the LEDA trait database (Kleyer et al., 2008). We used the proportion of forest specialists 121 

(specialist versus non-specialist) as a proxy for number of species with conservation concerns, as these 122 

https://pastforward.ugent.be/
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species are linked explicitly to ancient forests. Heinken et al. (2022) have created a list of vascular 123 

plant species for 24 geographical regions across 13 countries in Western, Central and Northern Europe 124 

to classify forest specialist and generalist species based on their affinity to forests. We tallied the 125 

number of times each species was counted as a specialist across all countries (categories “1.1” and 126 

“1.2”). If this specialist tally was higher than all other classes combined, it was classified as a specialist 127 

and otherwise as a generalist. These four variables (Figure 1) were used as response variables to train 128 

and test a set of general additive models (see section 2.1.2). As not all records in the final dataset 129 

contained data on all of the selected variables, we eliminated those records with missing data and 130 

retained a dataset with 3733 records for modelling, including records from both the initial and recent 131 

vegetation surveys conducted in the 2006 selected plots. 132 

2.1.2 GAM model training  133 

We applied general additive models (GAMs) to fit non-linear relationships between the environmental 134 

predictor variables and the understorey response variables using R 4.1.1(R Core Team, 2020; Wood, 135 

2017). The separate non-linear effects for multiple environmental variables are added together in the 136 

GAM models, and thus produce complex compound effects depending on the input values.  The GAM 137 

model structure (see Equation 1) included seven independent variables, including five environmental 138 

variables (N deposition, MAT, Tree cover, MAP and pH), and two survey-related covariates (Plot 139 

size and Survey year). We consistently used the same independent variables in the GAMs for all four 140 

response variables, being species richness, the Fisher-corrected understorey vegetation total cover 141 

(%), the proportion of woody species (%) and the proportion of forest specialists (%). For each 142 

response variable, we selected optimal link functions given the distribution of the data rather than 143 

transforming the response variables to make residuals normally distributed. A Poisson distribution for 144 

richness was used because these are count values (Oksanen et al., 2019). For the three other response 145 

variables, the beta distribution was used because these continuous proportional values are bounded 146 
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between 0 to 1 (Douma & Weedon, 2019). For model training, we used data from the initial and recent 147 

survey as independent records, comparable to a traditional space-for-time approach. 148 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ~ 𝑠(𝑁_𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) + 𝑠(𝑀𝐴𝑇) + 𝑠(𝑇𝑟𝑒𝑒_𝑐𝑜𝑣𝑒𝑟) + 𝑠(𝑀𝐴𝑃) +  𝑠(𝑝𝐻) + 149 

𝑠(𝑃𝑙𝑜𝑡_𝑠𝑖𝑧𝑒) + 𝑠(𝑆𝑢𝑟𝑣𝑒𝑦_𝑌𝑒𝑎𝑟) 150 

(Equation 1)  151 

We first did multicollinearity analysis among selected seven independent variables, all VIF values were 152 

below 5 which means there is no multicollinearity among independent variables (see online 153 

supporting information Table S1). Then, we randomly split the complete dataset without empty 154 

records (n=3733) into five equal portions and divided the five equal portions into a training 155 

dataset(n=2986) and an independent training dataset (n=747). We first used the training dataset 156 

cross-validated the GAMs to select the optimal splining method and the dimension (k) of the included 157 

smoothing terms to make robust predictions, while avoiding overfitting. And then we used the testing 158 

dataset to test the final model performance when the training procedure via cross-validation was 159 

finished. The detailed cross-validation of the GAM model can be found in the online supporting 160 

information. Our analysis can be regarded as a machine learning approach, which aims to maximize 161 

the predictive performance rather than focus on statistical inference. Hence, spatial autocorrelation, 162 

potentially violating statistical model assumptions, was not considered as being problematic in our 163 

analysis.   164 

2.1.3 Model performance 165 

After model optimization, the penalty type was set to cubic regression splines, and the number of 166 

dimensions (k) was set to 3 (Final model see Equation S1).  When reviewing the model fits for the final 167 

GAMs (Figure S5), we found relatively low R2 values overall. These low R² values largely reflect the 168 

large variation in the observations (see pairwise scatterplots between all four response variables and 169 

each of the seven predictor variables in the online supporting information (Error! Reference source 170 
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not found.S4)). For understorey richness, the proportion of forest specialist and the proportion of 171 

woody species, the predictor variables explained 20% of the variation but with relatively even residual 172 

variance over the range of fitted values. This means that across the range of environmental values, 173 

the mean values of observations roughly match the mean values of predictions. However, for cover, 174 

R² was found to be low (10%), which resulted in a consistent prediction of the intercept value. Such a 175 

consistent prediction of the average cover value across the whole data range means that cover will 176 

likely be insufficiently sensitive to a change in environmental condition. Hence, both scatterplots 177 

showed that the GAMs cannot accurately predict forest properties in one particular site, but can pick 178 

up averaged trends of the species richness, proportion of woody species, and proportion of forest 179 

specialists across environmental gradients. 180 

2.1.4 Model predictions 181 

To perform predictions based on the fitted final GAM models (as done in the DSS and for the two cases 182 

studies in this manuscript), all predictor variables were set to a specific value, representing a certain 183 

environmental change and management scenario. Predictor variables that were less relevant for 184 

performing predictions, including ‘survey year’ and ‘plot size’, were either set to a fixed value (plot 185 

size was set to 100m²) or excluded from the model (survey year) when calculating a certain expected 186 

understorey response.,  While ‘survey year’ was excluded as a moderator on the expected value by 187 

using exclude function from mgcv library (Wood, 2017), it was included when calculating the standard 188 

error on the predictions. This means that, for a prediction in the future, ‘survey year’ will not change 189 

the value of the prediction but it will affect the amount of uncertainty associated to the predicted 190 

value.  191 

2.2 Development of the understorey DSS  192 

With our fitted models being the underlying machinery, we developed a proof-of-concept forest 193 

understorey DSS (named underscore, 194 
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see https://underscore.shinyapps.io/understorey_tool_project/ ) with the Shiny and Leaflet libraries 195 

from R (Chang, W.,et al., 2020; Cheng, J., et al., 2020; R Core Team, 2020). This web-based shiny 196 

application can provide the user with trends of changes in the understorey for a range of 197 

environmental scenarios between 2020 and 2050.  198 

2.2.1 Geographic extent and spatial resolution 199 

We set the spatial-environmental boundaries of the DSS to the temperate mixed deciduous forest 200 

biome of Central-Western Europe (Figure 2). To identify this biome, we selected the area taken up by 201 

the Atlantic Central, Atlantic North, Continental, Nemoral, and Pannonian Environmental Zones by 202 

using the climatic stratification of Europe(Metzger et al., 2005). We regionalized these environmental 203 

zones into the Nomenclature of Territorial Units for Statistics (NUTS) administrative regions of the 204 

European Union (EU) and the United Kingdom(UK), which is a hierarchical system for dividing up the 205 

economic territory of the EU and the UK (Eurostat, 2018). We selected the NUTS level 1 for our 206 

purpose which separated administrative regions of countries on the level of major socio-economic 207 

regions (e.g. federated states in Germany) (Eurostat, 2018).  We randomly sampled 30 points within 208 

each NUTS region. These sample points were used to calculate regional averages of environmental 209 

variables and were used as the current input data for the DSS. 210 

2.2.2. Definition of current environmental conditions 211 

For each NUTS region, we included data on the current MAT, MAP, N deposition, and topsoil pH (0-212 

5cm) in the DSS. We used the CRU TS3.4 (Harris et al., 2014) climate database to calculate the long-213 

term climate between 1980-2015. We recalculated this monthly average surface temperature and 214 

precipitation data into MAT and MAP values and used them as current values. This climate dataset 215 

was also used to complement the understorey resurvey data with climate data, data that was used for 216 

model training (Perring et al., 2018; Maes et al., 2020).  We used the recent N deposition data for the 217 

year 2018 from the European Monitoring and Evaluation Program on air pollution data (EMEP, 2019)  218 

to estimate the current average annual N deposition at a spatial resolution of 1 degree by 1 degree. 219 

https://underscore.shinyapps.io/understorey_tool_project/
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We refrained from using long-term cumulative N deposition data, because such values currently do 220 

not have a clear policy implication while annual deposition values do (Dirnböck et al., 2018). We 221 

integrated the available data on dry and wet oxidized and reduced N from the EMEP MSC-W model 222 

(“DDEP_OXN_m2Grid”, “WDEP_OXN_m2Grid”, “WDEP_RDN_m2Grid”, “DDEP_RXN_m2Grid”), and 223 

recalculated the data into an average N deposition in kg N∙ha-1∙yr-1 as current values across the NUTS 224 

regions. We included information on topsoil acidity (pH 0-5 cm) using the 250m resolution spatial data 225 

from the SoilGrids database (Batjes et al., 2020). Given that there are no policy targets associated to 226 

MAP and topsoil pH, these two variables are treated as constant through time in the DSS and hence 227 

not considered as dynamic inputs that can be modified by the users.  228 

2.2.3. Definition of future environmental conditions 229 

For the definition of future global change scenarios in the DSS, we  build upon the work of Dirnböck 230 

et al.(2018), who evaluated forest plant species trajectories under current legislation emission 231 

scenarios of N deposition in combination with climate change scenarios (Representative Carbon 232 

Pathways, RCP). We allowed three types of model inputs to vary, being N deposition, climate, and 233 

canopy closure. The latter as a proxy for forest management intensity. We used existing policy 234 

scenarios for N deposition from the First Clean Air Outlook(COM(2018)446) (European Commission, 235 

2021) including a business-as-usual (BAU) scenario and a current legislation (CLE) scenario. The BAU 236 

scenario propagates the same annual rate of N deposition from 2018 until 2050. Data on the CLE 237 

scenario for N deposition are available on the Greenhouse Gas – Air Pollution Interactions and 238 

Synergies portal (GAINS: https://gains.iiasa.ac.at/models/ ) presented by the Clean Air Outlook. We 239 

selected the European N deposition EMEP 28km SVG gridded data, with the scenario specified as “EU 240 

Outlook 2017 – ver Dec. 2018” and “REF_post2014_CLE_v.Dec.2018” (see also Dirnböck et al., 2018). 241 

After recalculating the unit of N deposition by applying the conversion factor of 1 keq N ha-1yr-1 being 242 

equal to 14 kg N ha-1yr-1, we used 30 sample points per NUTS region to calculate an average N 243 

deposition of CLE.   244 

https://gains.iiasa.ac.at/models/
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Four climate change scenarios were used based on Shared Socioeconomic Pathways (SSPs). SSPs are 245 

a set of carbon emission scenarios driven by different socioeconomic assumptions for the future, 246 

including SSP1, SSP2, SSP3, SSP4 and SSP5 (IPCC, 2018). The SSP scenarios come with a narrative to 247 

describe the socio-economic pathway that leads to a specific emissions amount. SSP4 was not included 248 

in the DSS, because of the lack of available data for this scenario on the WorldClim database. The data 249 

of future climate under these four scenarios is available from the Couple Model Inter comparison 250 

Project Phase 6 ( CMIP6, O’Neill et al., 2016). We selected 10 minutes gridded data for the period 251 

2041-2060 (centered around the final year included in the DSS predictions (2050)) of the IPSL-CM6A-252 

LR model (among nine available models) in WorldClim v2.1(Boucher et al., 2018). We used 30 sample 253 

points per NUTS region to calculate an average MAT for the period between 2041 and2060, for each 254 

SSP scenario. Fischer-corrected tree cover(continuous values from 0%-100%) were used as the value 255 

of canopy closure (Bernhardt-Römermann et al., 2015) which represent forest management intensity. 256 

In the DSS, we included 3 different canopy closure values: 25% and 100% cover indicative for open 257 

and closed forest conditions, respectively, and 75% cover as an intermediate value between both 258 

extremes (Meeussen et al., 2021). These options were made available for both the starting and ending 259 

conditions. As main outputs, the underSCORE DSS provides trends for four understorey properties, 260 

including species richness, the Fisher-corrected understorey vegetation total cover (%), the proportion 261 

of woody species (%) and the proportion of forest specialists (%).  262 

2.2.4. Graphical user interface 263 

The interface of the DSS, shown in Figure 2, includes three panels: the first panel allows users to select 264 

a region of interest on the map to start the simulation procedure. When choosing a region of interest, 265 

the current environment values (MAT, MAP, N deposition, pH) for the region will be shown on the 266 

map. In the left panel, users can adjust the current environmental conditions and select future change 267 

scenarios for the period 2020-2050. Predicted understorey trends for the selected region and global 268 

change scenario will be displayed in the right panel. 269 
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2.3 Scenario analysis  270 

Based on our built GAM model, we projected scenario analysis and sensitivity analysis in two case 271 

study regions, to show how forest understorey communities respond to a combination of changes in 272 

forest management and changes in environmental conditions in the future. 273 

2.3.1 Case study areas  274 

We selected Flanders (NUTS code BE2) and Slovakia (NUTS code SK) as our case study regions. Flanders 275 

is located in the north of Belgium, with 13.625 km2 area and a 6.6 million population, is a highly 276 

industrialized and densely populated area with a total forest cover of 11%, being one of the least 277 

forested regions of Europe (EU, 2021). Slovakia is located in Central Europe, with 49.034 km2 area and 278 

a ca. 5.3 million population, with a high total forest cover of 45.3 % (EU, 2021). In Flanders, the current 279 

MAT is 10.6℃ , the current annual N deposition value is 19.3 kg ha-1 year-1, and the current MAP is 280 

832 mm. In Slovakia, the current MAT is 8.1 ℃, the current annual N deposition value is 10.2 kg ha-1 281 

year-1, and the current MAP is 756 mm. We extracted top soil pH data from the SoilGrids database 282 

(Batjes et al., 2020) , where the average  soil pH value of Flanders is 5.5, and the average soil pH value 283 

of Slovakia  is 5.8.  284 

2.3.2 Scenario analysis 285 

To predict the understorey dynamics under management interventions and multiple environmental 286 

changes between 2020 and 2050 in the two selected case study regions, we carried out a full scenario 287 

analysis, including 2 N deposition scenarios, 4 climate change scenarios and 9 forest management 288 

scenarios, which in combination give rise to 72 (2x4x9) individual scenarios to be analyzed. The 289 

scenarios information for two case study areas can be found in the Table 1.  290 

For each case study, we used the GAMs model to predict, for all four response variables and 72 291 

scenarios, a trend between 2020 and 2050. For these predictions, regional means of annual 292 

precipitation (MAP) and soil pH were treated as constants. Next, we calculated the change of each 293 
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predicted response variable as the difference of each understory property value between 2020 and 294 

2050 (Equation 2 and Equation 3, with response variable i and scenario j). This scenario analysis hence 295 

resulted in one absolute change values for all response variables and for all 72 scenarios. 296 

△ �̂�𝑖∙j = �̂�𝑖∙j∙2050 − �̂�𝑖∙j∙2020  297 

Equation 2 298 

𝑆𝐸△�̂�𝑖∙j
= √𝑆𝐸�̂�𝑖∙j∙2050

2 + 𝑆𝐸�̂�𝑖∙j∙2020

2  299 

Equation 3 300 

2.3.3 Sensitivity analysis 301 

To analyze the sensitivity of the model to changes in its predictor variables, we fitted linear regression 302 

models relating both changes and starting conditions in forest management and environmental 303 

drivers to the predicted changes in understorey response variables, for both case studies separately.  304 

The obtain standardized regression coefficients (SRC) denote the relative importance of each predictor 305 

variable, representing the sensitivity of all response variables to multiple environmental changes and 306 

forest management interventions. As predictor variables, we included N deposition decrease, annual 307 

temperature increase (climate warming), the initial canopy closure, and canopy closure trend. We 308 

didn’t include the current N deposition load because that can be regarded as a constant within each 309 

case study region. As response variables, we included change in species richness, change in 310 

understorey vegetation total cover (%), change in proportion of woody species (%), and change in 311 

proportion of forest specialists (%). N deposition decrease (as N deposition is expected to decrease 312 

under the proposed Clean Air Outlook policy scenario) was defined as the difference between the 313 

future N deposition and the current N deposition. Difference in MAT was defined as the difference 314 

between future MAT and current MAT and denoted here as ‘Climate warming’, as it is expected to 315 

increase in all future scenarios, including the most stringent SSP1 scenario. Canopy closure trend was 316 

defined as the difference between canopy openness in 2050 and the current canopy openness. As 317 
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mentioned in section 2.2.3, we had three possible current canopy conditions (25%,75% and 100%), 318 

and three possible 2050 canopy conditions (25%, 75% and 100%).  319 

We first standardized the independent variables and response variables, and then fitted linear 320 

regression models for the four response variables separately. Next, we selected the optimal model 321 

using a multilevel model selection approach based on AIC by applying the dredge function from the 322 

MuMIn library in R 4.1.1 (Barton & Barton, 2020; R Core Team, 2020) to get the standardized 323 

regression coefficient for each independent variable.  324 

3 Results 325 

3.1 Understory biodiversity dynamics between 2020 and 2050 326 

We found significant negative changes in understorey species richness for 70 out of 72 scenarios in 327 

Flanders. The forecasted change in understorey richness ranged between -2.46 and 0.095 species. In 328 

Slovakia, all scenarios decreased understorey richness ranging between -10.52 and -5.82 species, a 329 

more substantial change compared to Flanders (Figure 3). N deposition barely influenced understorey 330 

species richness in Flanders, but significantly changed understorey richness in Slovakia. The 331 

understorey species richness decreased under warming (from SSP1 to SSP5), across the majority of 332 

canopy scenarios, regardless of region. (Figure 3) 333 

In Flanders, the understorey vegetation total cover ranged between 71% and 81% and is expected to 334 

increase across all 72 scenarios. The forecasted change in understorey vegetation total cover in 335 

Flanders ranged between 4.1% and 12.8%. In Slovakia, the total cover ranged between 68% and 78%, 336 

and is expected to increase in 64 out of 72 scenarios. The forecasted changes in understorey 337 

vegetation total cover of Slovakia ranged from -1.9% to 8.0%. The understorey vegetation total cover 338 

increased when warming occurred under all canopy scenarios in both regions. In Flanders, 339 

understorey vegetation total cover is expected to increase slightly with decreasing N deposition. In 340 
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Slovakia, however, understorey vegetation total cover is expected to decrease mildly with decreasing 341 

N deposition (Figure 4). 342 

We observed significant positive changes in the proportion of woody species for 66 out of 72 scenarios 343 

in Flanders. The forecasted change in the proportion of woody species ranged between -4.4% and 344 

27.9%. In Slovakia, the proportion of woody species is expected to increase under 67 scenarios, and is 345 

expected to decrease under the other 5 scenarios. The forecasted change in the proportion of woody 346 

species ranged between -5.4% and 33.3%. Independent of the region, the proportion of woody species 347 

is expected to sharply increase when warming occurs under closed canopy conditions. The proportion 348 

of woody species hardly responded to changes in N deposition in Flanders. However, in Slovakia, with 349 

N deposition decreasing, changes in the proportion of woody species significantly increased (Figure 5). 350 

In Flanders, the proportion of forest specialists is expected to decrease across 56 out of 72 scenarios, 351 

with the change in the proportion of forest specialists ranging between -23.9% and 9.5%. In Slovakia, 352 

the proportion of forest specialists is expected to decrease across 60 out of 72 scenarios, with the 353 

forecasted changes in the proportion of forest specialists ranging between -27.8% and 6.8%. In both 354 

regions, climate warming will shift the composition towards a higher share of forest generalists. A 355 

closure of the canopy over time (e.g. O to I, O to C) in combination with lower N deposition rates (CLE) 356 

are expected to benefit forest specialists (Figure 6). 357 

3.2 Sensitivity analysis  358 

The standardized regression coefficients (SRC) that quantify the relative importance of all 359 

environmental drivers in determining changes in the understorey for the two selected case study areas 360 

are shown in Table 2. The sensitivity analysis showed that N deposition decrease was the most 361 

important driver (absolute value of SRC＞0.6) for changes in understorey species richness in Slovakia, 362 

with an SRC of 0.62. However, no significant effect of N deposition decrease on understorey richness 363 

was found in Flanders. Climate warming was observed to be the most influential indicator for changes 364 
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in understorey vegetation cover, with positive effects in both regions, with an SRC of 0.75 for Flanders 365 

and an SRC of 0.82 for Slovakia. Both in Flanders and Slovakia, the closure of the canopy over time was 366 

found to be the most influential indicator for changes in the proportion of woody species, with an SRC 367 

of 1.08 for Flanders and an SRC of 0.95 for Slovakia, indicating that a closure of the canopy over time 368 

leads to a higher proportion of woody species. Also for the proportion of forest specialists, changes in 369 

canopy openness was found to be the strongest predictor, with an SRC of 0.95 for Flanders and an SRC 370 

of 0.97 for Slovakia, indicating that a decrease in canopy openness over time increases the proportion 371 

of forest specialists (Table 2) and vice versa. 372 

4 Discussion 373 

In this study, we used a GAM model-based scenario analysis combined with a sensitivity analysis to 374 

project how understorey dynamics can be altered by global change in temperate deciduous forests.  375 

We found that climate warming, N deposition, and canopy opening all influenced understorey 376 

dynamics. Although changes in understorey richness and the total cover were not huge, the predicted 377 

changes were mainly affected by climate warming (both richness and total cover) and the interaction 378 

between changes in canopy opening and initial canopy openness (for richness only). The proportion 379 

of woody species increased a lot with climate warming and an increase in canopy closure. The 380 

proportion of forest specialist decreased with climate warming, but an increase in canopy closure may 381 

reverse this expected reduction. The forecasted changing trends were generally similar across both 382 

regions, but differed in term of the response to N deposition.  383 

4.1 Strengths and weaknesses of the proposed approach 384 

An important step in environmental decision support is to predict the consequences of different 385 

management alternatives for achieving societal goals (Reichert et al., 2015). Ecological modelling and 386 

scenario analysis can be used to support this step. An essential aspect of making ecological models 387 

useful for environmental management is to align model inputs and outputs with management 388 
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decisions (Schuwirth et al., 2019). In our GAM model, input indicators, such as MAT, N deposition, and 389 

canopy opening, are related to management and policy priorities, while the  output indicators, four 390 

understorey properties, are related to the foci (e.g. biodiversity loss, forest regeneration) from 391 

decision-makers in temperate deciduous forests (Blondeel et al., 2021). Similarly, the two global 392 

environmental change drivers we selected for scenario development, climate change and N deposition, 393 

can be considered the dominant drivers that will shape future environmental conditions with clearly 394 

defined future targets that are focused upon by policy makers. Finally, the forest management 395 

scenarios are closely related to the actions taken by local managers in the field. This combination of 396 

policy and manager-oriented scenarios can be considered as a main strength of our DSS.  397 

To construct our DSS and the underlying models, we applied a space-for-time approach. The validity 398 

of this approach has been debated in the literature, with conclusions ranging from strong support 399 

(Blois et al., 2013) to strong rejection (Damgaard, 2019). The main assumption behind a space-for-400 

time approach is that spatial and temporal patterns of biodiversity response to environment are 401 

equivalent (Pickett, 1989), however, biodiversity changes may be lagging behind environmental 402 

changes (Bertrand et al., 2016) leading to the fact that space-for-time approaches often fail to 403 

accurately predict biodiversity change as a response to environmental change over time. On the other 404 

hand, a space-for-time model usually has less uncertainties than a temporal model (De Lombaerde et 405 

al., 2018). Moreover, space-for-time approaches often make use of a broader range of environmental 406 

variables for model training, limiting the need for extrapolation beyond the dataset limits when 407 

predicting into the future as aimed for in our study.  408 

The rather low predictive performance of our GAM models, suggesting that our models can not 409 

accurately predict changes in understorey composition for a specific stand, can be considered the 410 

main weakness of our DSS. However, the predicted mean trends remain meaningful when interpreted 411 

on the regional scale. This low predictive performance was expected because we did, for instance, not 412 

consider local variation in edaphic conditions, land-use history, the local understorey species pool and 413 
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forest age. Although including these additional predictor variables would probably increase model 414 

performance significantly, it would also increase data needs substantially, not only for setting up 415 

scenarios, but also for setting current environmental conditions by the end-users of the DSS.  416 

4.2 Global change effects on understorey dynamics 417 

In two regions, understorey richness and total cover are not the primary expected changes, hence 418 

understorey alpha diversity and productivity are likely not threatened in the future. However, we can 419 

expect major compositional shifts in extreme scenarios, where climate warming will benefit woody 420 

species and forest generalists, but a closed canopy could mitigate this shift by slowing down the 421 

decrease in forest specialists, such findings provide us with a perspective that increasing canopy 422 

closure is key for understorey conservation in forest management. Increases in the proportion of 423 

woody species with warming was expected, as previous studies already reported that the understorey 424 

can shift to more woody species as a response to warming (Blondeel et al., 2020; Govaert et al., 2021).  425 

Warming is an important driver of tree regeneration (and hence woody species in the understorey), 426 

which has been found to influence temperate deciduous tree seedling performance positively by both 427 

increasing survival and growth (e.g Carón et al., 2015; De Lombaerde et al., 2020).  Additionally,  in a 428 

long-term warming experiment, Govaert et al., (2021) found that competitive generalists performed 429 

better at the cost of forest specialists,  as the forest specialist (e.g. Anemone nemorosa) was found to 430 

be negatively affected by warming at the expense of the fast-growing generalists (e.g. Rubus 431 

fructicosus). Indeed, across wide spatiotemporal gradients, forest generalists with large ranges are 432 

now taking over at the expense of small-ranged forest specialists leading to a homogenization pattern 433 

in forest understories (Staude et al., 2020). However, increasing canopy tree cover can reduce 434 

warming rates inside forests (De Frenne et al., 2019; Zellweger et al., 2020b) and, hence, mitigate this 435 

shift, leading to a more stable number of forest specialists over time.  436 

We additionally found that there were obvious differences between the two case study regions, 437 

especially in terms of the responses to N deposition decrease. The influence of N deposition decrease 438 
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on understory richness was only found in Slovakia, and not in Flanders. This might be caused by the 439 

initial high N deposition in Flanders. Bernhardt ‐ Römermann et al., (2015) analyzed temporal 440 

understorey diversity changes across European temperate forests, and found that the initial level of 441 

N deposition determined the subsequent diversity changes. If the initial level of N deposition was high, 442 

the understorey richness changes was lower. High N deposition benefits nutrient-demanding species 443 

(often large-ranged species), which replace small-ranged species, so that species turnover leads to no 444 

net loss in local alpha diversity (Staude et al., 2021). Another alternative explanation is that the effects 445 

of N-deposition in high deposition regions are no longer noticeable because the most sensitive species 446 

are already lost (Walter et al., 2017).  A reduction of N-deposition will not bring back the species that 447 

have been lost from the regional species pool, given the slow colonizing capacity of forest specialists 448 

(Verheyen et al., 2003). Additionally, Dirnböck et al., (2018) who assessed benefits of the CLE scenario 449 

on understorey vegetation also found that the decrease in N deposition under the CLE scenario was 450 

not enough to result in species recovery from eutrophication and suggested that N emission reduction 451 

targets needed to be considerably more ambitious in high N deposition regions. In relation to our case 452 

studies, we can conclude that the N reduction target under the CLE scenario for Flanders is probably 453 

too restricted to yield species recovery. In regions with a high current N deposition rate, there is clearly 454 

a need for more stringent targets, to provide opportunities for lost species to recover.  455 

4.3 Outlook 456 

A DSS should be generally applicable for multiple professional groups, e.g. scientists, educators, forest 457 

managers, policy makers and consultants (Blondeel et al., 2021). Our online DSS is currently more 458 

oriented towards policy-makers that operate on a regional scale, rather than being oriented towards 459 

day-to-day practitioners that are responsible for the management of specific forest sites. Practitioners 460 

are likely more interested in a DSS that could underpin decision-making at a local stand-scale. Site-461 

specific factors, such as forest structure and tree species composition as well as soil properties (e.g. 462 

soil pH, C/N ratio, soil moisture,..) , are known to significantly influence understorey composition and 463 
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diversity (Weigel et al., 2019; Zellweger et al., 2015). Future work should focus on integrating these 464 

site specific data which will help to obtain more accurate site-specific predictions under global change.  465 
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482 

Figure 1. Graphical overview of the spread of understorey community properties and regional environmental 483 

conditions included in the forestREplot database.  484 

 485 

Figure 2. Screenshot of the underSCORE DSS showing the map with all included EU-NUTS administrative regions 486 

and the scenario panel at the left, and the predicted trends at the right.  487 
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 488 

Figure 3. Understorey richness changes under different scenarios in Flanders and Slovakia. BAU and CLE are N 489 

deposition scenarios, representing the business as usual and current legislation EU scenarios, respectively. SSP1, 490 

SSP2, SSP3, SSP5 are four climate change scenarios. Panel titles represent expected canopy dynamics between 491 

2020 and 2050, with “C” representing a closed canopy (100% cover), “I” an intermediately open canopy (75%), 492 

and “O” an open canopy (25%).   493 
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 494 

Figure 4. Understorey vegetation total cover changes under different scenarios in Flanders and Slovakia. BAU 495 

and CLE are N deposition scenarios, BAU and CLE are N deposition scenarios, representing the business as usual 496 

and current legislation EU scenarios, respectively. SSP1, SSP2, SSP3, SSP5 are four climate change scenarios. 497 

Panel titles represent expected canopy dynamics between 2020 and 2050, with “C” representing a closed canopy 498 

(100% cover), “I” an intermediately open canopy (75%), and “O” an open canopy (25%).  499 
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 500 

Figure 5. Understorey Woody species proportion changes under different scenarios in Flanders and Slovakia. 501 

BAU and CLE are N deposition scenarios, representing the business as usual and current legislation EU scenarios, 502 

respectively. SSP1, SSP2, SSP3, SSP5 are four climate change scenarios. Panel titles represent expected canopy 503 

dynamics between 2020 and 2050, with “C” representing a closed canopy (100% cover), “I” an intermediately 504 

open canopy (75%), and O an open canopy (25%).   505 

 506 
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 507 

 508 

Figure 6. Understorey forest specialist species proportion changes under different scenarios in Flanders and 509 

Slovakia. BAU and CLE are N deposition scenarios, BAU and CLE are N deposition scenarios, representing the 510 

business as usual and current legislation EU scenarios, respectively. SSP1, SSP2, SSP3, SSP5 are four climate 511 

change scenarios. Panel titles represent expected canopy dynamics between 2020 and 2050, with “C” 512 

representing a closed canopy (100% cover), “I” an intermediately open canopy (75%), and “O” an open canopy 513 

(25%).  514 
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Tables 515 

Table1. Annual N deposition under two N deposition scenarios, MAT under four climate change scenarios, and canopy closure under forest management scenarios (column 516 

headings) for the two case areas (row headings). 517 

Areas 

Annual N deposition (kg 

ha-1 year-1) 
Mean annual temperature (MAT) (℃) 

Canopy closure of forest management 

scenarios (start condition) 

Canopy closure of forest management 

scenarios (end condition) 

Business 

as usual 

Current 

legislation 
SSP1 SSP2 SSP3 SSP5 Open Intermediate Closed Open Intermediate Closed 

Flanders 19.30 17.1178 12.08304 12.30506 12.63691 13.14018 

25% 75% 100% 25% 75% 100% 

Slovakia 10.20 7.703684 10.30073 10.45817 10.91309 11.6152 

 518 

Table2. Standardized regression coefficients showing the importance of forest management interventions and multiple environmental drivers (row headings) for determining 519 

changes in several understorey properties (column headings), for the two case studies separately. Background colours refer to the following value ranges: grey for -0.6 < SRC 520 

<-0.3, white for -0.3 < SRC < 0.3, light orange for 0.3 < SRC < 0.6, bright orange for 0.6 < SRC < 0.9, dark orange for SRC＞0.9. ***, ** and * denote p values <0.001, <0.01 and 521 

<0.05, respectively. 522 
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 523 

Input drivers 

Delta Richness 
Delta understorey vegetation 

total cover 
Delta woody proportion Delta forest specialist proportion 

Flanders Slovakia Flanders Slovakia Flanders Slovakia Flanders Slovakia 

Climate warming  -0.25* -0.36*** 0.75*** 0.82*** 0.35*** 0.36*** -0.18*** -0.24*** 

N deposition decrease  0.63*** -0.35*** 0.25***  -0.45*** -0.06*** -0.04*** 

Canopy closure trend × Initial canopy 

closure 
-0.44** -0.35*** -0.26*** -0.21** 0.07* 0.06* 0.04** 0.03** 

Canopy closure trend 0.03 0.02 0.18* 0.18* 1.07*** 0.95*** 0.95*** 0.97*** 

Initial canopy closure 0.11 0.09 0.03 0.05 0.22*** 0.23*** -0.05* -0.01 

Canopy closure trend × Climate warming     0.07* 0.08**   

Canopy closure trend × N deposition 

decrease 
  

  

 -0.10***   

Initial canopy closure× Climate warming     0.05 0.06   

Initial canopy closure× N deposition 

decrease 
  

  

 -0.07*   

Climate warming × N deposition decrease      -0.04   
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