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Abstract

A comprehensive data inventory of the current materials cycle in industry and

society is crucial for an informed discussion and for decision-making on the supply of

raw materials. Particularly, it is key to understand how these materials are function-

ally and nonfunctionally recycled, and enable the assessment of recycling indicators

needed for themonitoring of circular economy. In this context, a material system anal-

ysis (MSA) of cobalt for the European Union (EU) from 2012 to 2016 is presented and

discussed. Detailed results are provided for the year 2016, and the evolution of the

flows over time is presented from 2012 to 2016. In addition, six indicators are calcu-

lated to characterize the cobalt cycle. In 2016, the EU28 embedded around 24,000

metric tons (t) of cobalt in manufactured products, and 33,700 t were put into use. The

main losses of the system are due to nonselective collection of postconsumer waste

(disposed), and nonfunctional recycling of old scrap. From the years analyzed, it was

possible to detect a shift in the imports; the import of primarymaterial decreasedmore

than 99% between 2012 and 2016, and the import of semiprocessed and processed

materials increased around 31% in the same period. This indicates that after 2012, the

EUbecamemore dependent on imports in downstream stages of the supply chain. One

way to decrease this dependency is to establish higher collection targets, and to estab-

lish recycling targets based on the recovery of singlematerials, in order to decrease the

amount dissipated through nonfunctional recycling.

KEYWORDS

batteries, cobalt, industrial ecology, life cycle, material flow analysis, recycling

1 INTRODUCTION

Natural resourcesprovide thebaseof humankind’s existenceonEarth. Theydonotonly deliver abroad rangeof goods and services used in everyday

life but they are also required in the development of emerging technologies, the latter being an important driver for the increasing production and

use of manymetals andminerals (Langkau & Tercero Espinoza, 2018).
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In this context, securing access to a stable supply of these raw materials has become a major challenge and a priority for several national and

regional economies. The European Union (EU), the USA, and Japan have launched several initiatives to address this issue: The Raw Materials Ini-

tiative followed by the recent Action Plan on Critical RawMaterials of the EU (European Commission, 2017, 2020), the Critical Materials Strategy

of the USA (USGS, 2018), and the Resource Securement Strategies of Japan (Hatayama & Tahara, 2014). These initiatives aim to build knowledge

about the use of natural resources, addressing different aspects such as supply and demand, resource efficiency, and recycling. As part of its strat-

egy, the EU established in 2011 its first list of critical nonenergy rawmaterials, which has been updated every 3 years (updated in 2014, 2017, and

2020). These lists identify rawmaterials characterized by economic importance and supply risk for the region (European Commission, 2017).

One of these rawmaterials is the metal cobalt (Co), which has been identified as critical in all lists. Its criticality relies on different aspects. First,

its supply in the EU is highly dependent on imports, and it may possibly remain like this since the region possesses only 0.5% of the global reserves

of this metal (Minerals4EU, 2014; USGS, 2020). Second, its mainmining producer is the Democratic Republic of Congo (DRC), a politically unstable

country (World Bank, 2020). In 2017, the DRC accounted for 68% of the global production of Co, followed by the Philippines, Cuba, and Russia

(Darton Commodities Limited, 2018). Third, Co is key in the transition from fossil fuels to more sustainable sources of energy. In the last 20 years,

its refined global production increased more than fourfold, from approximately 27,000 to 119,000 metric tons per year (BGS, 2020). This growth

has beenmainly driven by an increasing use of Co in the production of rechargeable batteries, together with superalloys, catalysts, and hardmetals

(USGS, 2017, 2010).

For the development of robust mineral strategies, a good understanding of the value chain of the materials is required. In particular, a compre-

hensive data inventory of the materials cycle in industry and society is crucial for an informed discussion and decision-making on the supply of raw

materials. In the caseofCo, its cycle has been studied globally and regionally, fully or partially addressing the supply, demand, stocks, and flowsof the

metal. Many of these studies have been developed throughmaterial flow analysis (MFA) tools, applying static and dynamicmodels. Static studies at

a global scale are, for instance, Harper et al. (2012) andNansai et al. (2014), with both assessing the Co cycle in 2005. Dynamic studies at the global

scale comprise, for example, Tisserant and Pauliuk (2016) and Sun et al. (2019). The former assessed the future flows of Co and the latter the past

flows of Co. Static studies applied to economies such as theUnited States andChina includeHarper et al. (2012), National Research Council (1983),

OTA (1985), Shedd (1993), and Zeng and Li (2015). For the EU, a number of studies have been carried out. Some of them have targeted inventory

data (Godoy León &Dewulf, 2020; RPA, 2012), andmany others have focused on scenarios for future demand and dynamicMFA (Ait Abderrahim&

Monnet, 2018; Alves Dias et al., 2018; Bobba et al., 2019; Deetman et al., 2018; Godoy León et al., 2020; Tercero Espinoza et al., 2019). However,

to the best of the authors’ knowledge, only one study has dealt with static flows of Co in the EU. That study, developed by BIO by Deloitte (2015),

aimed tomap the flows and stocks of (critical)materials through the EUeconomy in 2012, in terms of entries into the economy,movements through

the economy, and additions to stock. However, several limitations arise from this study. First, it is somewhat outdated, as it assessed the Co cycle

of 2012. Second, the study did not consider magnets in the assessment, which currently corresponds to almost 7% of the demand of Co in the EU

(Roskill, 2019). Third, the study did not estimate the Co that is nonfunctionally recycled at the manufacturing phase (also known as downcycled,

where the metal is incorporated in an associated large-magnitude material stream, ending up in low-end products), and it assumed that there is no

nonfunctional recycling at the recycling phase (i.e., all recycled Co is functionally recycled). This stream is of crucial importance, as it is a significant

source of dissipation of Co in the technosphere (Godoy León et al., 2020).

In this context, a follow-up study was set up in 2019 by DGGROWand executed by DG-JRC of the European Commission assessing the flows of

a number of materials, among them Co, lithium (Li), manganese (Mn), natural graphite, and nickel (Ni). These metals were studied because of their

strategic relevance and increasing use in battery systems. The summary results related to these five rawmaterials were published inMatos, Ciacci,

et al. (2020). In addition, four scientific papers were developed, three of them for the single materials and one for a multilayer system assessment

(Ciacci et al., 2021; Lundhaug et al., 2021;Matos et al., 2021). This manuscript is one of the scientific papers related to single materials. It examines

the results related to the stocks and flows of Co in the EU in 2016, giving special attention to the recycling flows. It also analyses the evolution of

the flows between 2012 and 2016.

2 METHODOLOGY

2.1 Estimation of stocks and flows

For the estimation of the stocks and flows of Co, the method known as material system analysis (MSA) was used. The MSA is a tool of the MFA

family, led by the European Commission to guide its raw materials policies. It is based on specific materials flows of selected raw materials and/or

semifinished goods at various levels of detail and application (e.g., cobalt, cobalt hydroxides, and batteries). It considers the different phases of the

lifecycle of the material and related applications, taking into account the inputs and outputs of each phase. It is applied for a specific region and

a defined time span to assess materials that raise particular concerns related to the sustainability of their use, the security of their supply to the

economy, and/or the environmental consequences of their production and consumption (OECD, 2008).
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The entire lifecycle was considered for the Co MSA in the EU, including mining and extraction, processing, manufacturing, use, and end-of-

life (EoL); the latter comprising collection and recycling. Different aspects were considered to estimate the flows and stocks of Co: Entries into

the economy through extraction and import; movements through the economy through production, consumption, and export; additions to the in-

use stock; and additions to the stock of EoL products (i.e., EoL products hoarded by users). In addition, the lost flows and stocks were estimated.

These include the waste produced in the different phases, and the nonfunctionally recycled material. It is important to indicate that all the afore-

mentioned stocks correspond to cumulative stocks (hereinafter referred to simply as stocks).

In general terms, in nonfunctional recycling, thematerial is collected and incorporated in an associated large-magnitudematerial stream, ending

up in low-end products where the original function is not required, or as a contaminant. While the material is not dissipated into the environment,

it is dissipated in the technosphere, as it is generally unfeasible to recover it from the large-magnitude stream (Buchert et al., 2009; Graedel et al.,

2011; Zimmermann & Gößling-Reisemann, 2013; Zimmermann, 2017). In the case of Co, the metal is usually nonfunctionally recycled in the pro-

duction of stainless steel, where it does not perform any particular or essential function (Akcil et al., 2015; European Commission, 2017).

The stocks and flowswere calculated through a set of equations. A description of the phases and themain equations are provided in the following

paragraphs (a diagram with the nomenclature is given in the Supporting Information). These include some equations from the original method and

some new equations. The original method is available in the document “Study on Data for a Raw Material System Analysis: Roadmap and Test of

the Fully Operational MSA for RawMaterials” by BIO by Deloitte (2015), and in “Material System Analysis of Five Battery-Related RawMaterials:

Cobalt, Lithium, Manganese, Natural Graphite, Nickel” by Matos, Ciacci, et al. (2020), where it is possible to find the description of the stocks and

flows (there called “parameters”) and a full explanation of the model. The applied methodology also considers the improvements presented by

Matos,Wittmer, et al. (2020). The results are shown inmetric tons (t).

2.1.1 Mining and extraction

This phase refers to the domestic mining and the following extraction of primary Co from the environment toward the technosphere. It accounts

for the extraction as the main product and/or as a byproduct, and the produced waste. A fraction of the primary domestic material is used in the

EU, and the rest is exported. For this phase, the stock of the reserves and in tailings are provided. To calculate the Co stock of tailings (B.1.5) (metric

tons), the following equation was used:

B.1.5 =
T∑
t

B.1.2 ⋅
1 − 𝜆E

𝜆E
(1)

where B.1.2 (metric tons) is the Co concentrate obtained in year t, T is the year of the assessment, and 𝜆E is the extraction efficiency. The stock was

calculated based on historical data, considering the oldest registered production of Co concentrate in the EU.

2.1.2 Processing

The input to the processing phase consists of primary and secondary domestically produced Co; and imports of primary, secondary, and semipro-

cessed material. Based on this input, processed material is produced. In function of the efficiency of the process, the processing waste is also esti-

mated. The processedmaterial is further used in the EU or exported.

In the case of Co, the production of processed material (C.1.1) (metric tons) can be obtained from various open data sources, such as geological

surveys. Using this data and Equation (2), themass balance for this phase was closed, estimating the import of semiprocessedmaterial.

C.1.1 = (B.1.2 − B.1.3 + C.1.3 + C.1.4 + C.1.8 + G.1.1) ⋅ 𝜆P (2)

where B.1.3, C.1.3, C.1.4, C.1.8, andG.1.1 are the export of primary material; the import of primary, secondary, and semiprocessed Co; and a frac-

tion of the functionally recycled Co domestically produced (metric tons), respectively. The parameter 𝜆P corresponds to the average process effi-

ciency.

2.1.3 Manufacturing

This phase refers to the production of final products related to the different applications of the material. The embedded material is calculated

based on the demand share of processed material between the various applications. This share is specific for the EU. The inputs of this phase



4 GODOY LEÓN ET AL.

comprise domestic and imported processed material, and domestic and imported secondary material. It may also consider primary material and

imports of products that need further manufacturing, although these were neglected in the case of Co. The produced waste (called new scrap)

can be sent back to processing, be internally reprocessed, nonfunctionally recycled, or be disposed. The final products are domestically used or

exported.

Themanufacturing of applications was calculated using the following equation:

D.1.1i = (C.1.1 − C.1.2 + D.1.3 + D.1.9 + G.1.2) ⋅ 𝜆M ⋅ 𝛼i (3)

where D.1.1i is the manufactured amount of application i (metric tons); and C.1.2, D.1.3, D.1.9, and G.1.2 are the export of processed

material, the import of processed and secondary material, and a fraction of the functionally recycled Co domestically produced (metric

tons), respectively. The parameter 𝜆M corresponds to the average manufacturing efficiency and 𝛼i to the manufacturing share demand of

application i.

2.1.4 Use

The in-use stock and the stock of EoL products are estimated in the use phase, considering the annual addition to both stocks. It is assumed that

finished products enter the use phase in the same year of production. The phase considers the use of domestically produced products and imported

ones. Parameters such as the lifetime, the hoarding rate, and the hoarding period of each application are required for this phase. Hoarding (Dewulf

et al., 2021; Haig et al., 2011; Sarigöllü et al., 2020) refers to the dead storage of a product that is no longer in use, for example, an oldmobile phone

kept in the attic. This concept is also known as hibernation (Inghels & Bahlmann, 2021; Rizos et al., 2019; Wilson et al., 2017); nevertheless hiber-

nation is a broader concept since materials can also hibernate at companies (stock piling), in landfills, in tailings, whereas hoarding is hibernation at

the user (Dewulf et al., 2021; vanOers et al., 2020). The hoarded products conform the stock of EoL products.

The in-use stock (E.1.1) (metric tons) and EoL stock (E.1.2) (metric tons) were calculated per application iwith the following equations:

E.1.1i = (D.1.1i + E.1.4i − D.1.2i) ⋅

⎛⎜⎜⎜⎝
1 −

(
1

1+Gi

)li
1 −

1

1+Gi

⎞⎟⎟⎟⎠ ⋅ (1 − 𝜅i) (4)

E.1.2i = (D.1.1i + E.1.4i − D.1.2i) ⋅
(

1
1 + Gi

)li

⋅

⎛⎜⎜⎜⎝
1 −

(
1

1+Gi

)hi
1 −

1

1+Gi

⎞⎟⎟⎟⎠ ⋅ 𝜗i ⋅ (1 − 𝜅i) (5)

whereE.1.4i andD.1.2i are the import andexport of application i in yearT (metric tons);G is the annual growth rateof the consumptionof application

i; l and h are the lifetime and hoarding time of application i (years); and 𝜅 and 𝜗 are the in-use dissipation rate and hoarding rate of application i,

respectively. This approach assumes thatG cannot be zero, that is, there is an increase or decrease of the consumption.

The losses of this phase are related to the in-use dissipation of the products (i.e., material flows that are not accumulated into anthropogenic

stocks, and a lack of collection prevents any form of recovery at EoL) (Ciacci et al., 2015). It can happen because the function of the product is

intentionally dissipative (e.g., medicines or vitamins) or because of the wear of the product (e.g., hardmetals).

2.1.5 Collection

When the products reach their EoL after use or hoarding, they are collected. The collected waste (also known as old scrap) can be exported or be

domestically treated. The treatment considers recycling (via selective collection) or disposal (via nonselective collection) of the waste domestically

collected and imported.

The flow of EoL products collected for treatment (E.1.6) (metric tons) was calculated per application as follows:

E.1.6i = (D.1.1i + E.1.4i − D.1.2i) ⋅

(
1 − 𝜗i

(1 + Gi)
li
+

𝜗i

(1 + Gi)
li+hi

)
⋅ (1 − 𝜅i) ⋅ (1 − 𝜓i) (6)

where 𝜓i is the export rate of EoL products of application i.
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2.1.6 Recycling

The last phase is recycling. It may consider pretreatment followed by the recycling process itself. The collected old scrap for recycling can be func-

tionally or nonfunctionally recycled (functional recycled andnonfunctional recycled arehereinafter referred to as FRandNFR, respectively). TheFR

material is sent back to processing, to manufacturing, or can be exported. Depending on the products, different recycling processes can be applied.

Based on the efficiency of the involved processes, the waste is also estimated.

The landfill stock (F.1.5) (metric tons) was calculated considering the waste produced due to the inefficiency of the processes and the nonselec-

tive collection. TheNFRstock (G.1.6) (metric tons) considers thenonfunctional recyclingof newandold scrap. Theequationsused for the calculation

are:

F.1.5 =
n∑
i

(D.1.4i + F.1.3i + G.1.5i) ⋅

⎛⎜⎜⎜⎝
1 −

(
1

1+Gi

)f
1 −

1

1+Gi

⎞⎟⎟⎟⎠ + C.1.5 ⋅

⎛⎜⎜⎜⎝
1 −

(
1

1+G∗

)f
1 −

1

1+G∗

⎞⎟⎟⎟⎠ (7)

G.1.6 =
n∑
i

(D.1.11i + G.1.4i) ⋅

⎛⎜⎜⎜⎜⎝
1 −

(
1

1+G∗
i

)b

1 −
1

1+G∗
i

⎞⎟⎟⎟⎟⎠
(8)

where n is the total number of applications; C.1.5, D.1.4, F.1.3, and G.1.5 are the waste produced during processing, manufacturing, (nonselective)

collection, and recycling in year T (metric tons); f is the period that the material has accumulated in the landfill (years); G∗ is the average annual

growth rate of all processed material consumption; D.1.11 and G.1.4 are the NFRmaterial from new and old scraps in year T (metric tons); and b is

the timespan considered appropriate for the calculation of the NFR stock (years). The latter depends on historical data about the production and

consumption of the studiedmaterial.

2.2 Cobalt commodities and applications

TheMSAmethodwas applied to estimate the stocks and flows of Co in the technosphere. A number of commodities containing Cowere considered

in the study, classified as primary, secondary, semiprocessed, and processed material. Primary material refers to mined Co and includes Co mined

as the main product and as a byproduct from nickel and copper ores. Secondary material refers to Co sourced from secondary sources (e.g., waste

and scrap). Semiprocessed material refers to materials that are not fully processed (e.g., crude oxides and hydroxides, and Co–Ni mattes). In this

case, they need to be further processed at the processing phase in order to obtain refined (processed) Co. Processed material refers to refined Co

obtained from the processing phase in the form of Cometal (e.g., Co powder) or Co compounds (e.g., Co chlorides), which are used in the manufac-

turing of final products.

Two commodities were considered as secondary material: Co waste and scrap and Ni waste and scrap originating from superalloys. The latter

can contain about 4% of Co (see the Supporting Information).

In addition, the Co contained in final products was studied. These products were categorized into seven high-end applications: Batteries, cat-

alysts, intentionally dissipative uses (modeled mainly as pigments), hard metals, magnets, superalloys, and other uses (e.g., tool steels) (Figure 1).

Three subcategories were studied for batteries: Portable batteries, industrial batteries, andmobility batteries (including e-bikes). The focus was on

Co-bearing rechargeable batteries. In the case of catalysts, three subcategories were studied: For hydroprocessing, for hydroformylation, and for

the production of polyester (PET) precursors. For intentionally dissipative uses, the focus was on pigments. A description of these applications can

be found inGodoy León andDewulf (2020). TheCo that isNFRends up in stainless steel, which is not considered a high-end application of themetal.

The Co-containing commodities and applications considered in the study are listed per life cycle phase in the Supporting Information. It also

indicates to which classification they belong (see Figure 1), and their PRODCOMand CombinedNomenclature (CN) codes.

2.3 System boundaries and temporal coverage

The flows and stocks of Co were assessed for the EU between 2012 and 2016. The calculations were made per year. The year 2016 was chosen as

the most recent year for the assessment since it had the most complete dataset (information on more recent data is provided in the paper about

the multilayer system assessment) at the moment of the study. The analysis was done for the EU plus the UK, as the EU still was composed of
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F IGURE 1 Classification of the commodities and applications containing Co. The commodities were classified as primary, secondary,
semiprocessed, and processedmaterial. The applications consider seven categories. Co-bearing ores and concentrates include Comined as the
main product and as a byproduct of nickel and coppermining. * Nickel waste and scrap originating from superalloys

28member states in the considered time span. Given the current transition of the EU, a short discussion will be given about the impact of Brexit on

the results. The dataset for the EUwithout the UK is available in the Supporting Information.

The scope of this research considers a complete analysis for 2016, regarding Co’s production, trade, and stocks according to the different com-

modities and applications containing the metal. The aim was to better understand the Co cycle for the most recent assessment year, giving special

attention to EoL and recycling flows. In addition, the evolution of the flows over time was assessed between 2012 and 2016 to examine the trends

of the cycle along these 5 years.

2.4 Data and assumptions

Two approaches were applied for the data acquisition and following calculations. A bottom-up approach was used for the steps of extraction and

processing, since data on production and tradewas reasonably available and itwas possible to estimate theCo content due to the limited number of

commodities involved at these steps in the EU. A top-down approach was applied for the manufacturing and following steps, mostly because of the

large number of semifinished and finished products, data gaps regarding the flows of specific products, and the lack of data related to their material

content. Here, a brief description of both approaches is given. An exhaustive explanation of both approaches is available in BIO byDeloitte (2015).

Data about the producedmaterial of the extraction and processing phaseswas obtained directly from various open data sources, such as geolog-

ical surveys (bottom-up approach). The main consulted sources were the British Geological Survey (BGS, 2020), the US Geological Survey (USGS,

2020), and theAustrianFederalMinistry of Sustainability andTourism (BMNT, 2019). The stockof tailingswas calculated throughEquation (1) using

the data of BGS, considering the oldest registered production of Co in Finland (which corresponds to production in 1970). The trade was obtained

for specific compounds from the Eurostat database (Eurostat, 2019). The trade statistics for semiprocessed Co was incomplete since no data was

reported for some key countries such as Finland. However, using data from the UN Comtrade database (UN Comtrade, 2019) and the Finnish cus-

toms database (ULJAS, 2019), it was possible to estimate a trade balance for semiprocessed Co, in order to close the mass balance between the

extraction phase and the processing phase.

From themanufacturing phase to the recycling phase, the flows and stockswere calculatedbasedon trade statistics of finishedproducts, average

lifespan of products, and collecting and recycling practices (top-down approach). As in the previous phases, the Eurostat database was consulted

for the trade. From the values provided by the database, the percentages of the import and the export of applications in relation to their domestic

production were obtained. Based on these numbers and the manufacturing of applications calculated with Equation (3), the trade of applications

was estimated. Themanufacturing demand of Co per application was obtained fromRoskill (2019).

Regarding the recycling phase, three recycling routes were considered: A chemical process for functional recycling, obtaining Co metal or a

Co compound; the Zn process for functional recycling, obtaining W-Co powder; and a nonfunctional recycling process. The products recycled by

the first route are batteries, catalysts, hard metals, and superalloys. The obtained material can be used to produce any of the cobalt-intended
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applications described in section 2.2 (high-end applications). The Zn process is only used to recycle EoLmaterials classified under the application of

hardmetals for the production of newmaterials; and the nonfunctional recycling process is used for catalysts, hardmetals, magnets, and other uses.

Theobtainedmaterial is used in theproductionof stainless steel (GodoyLeón&Dewulf, 2020).Given thepurposeof this study, the recycling process

routes were not analyzed in detail, as the model only requires the efficiency of the whole phase (shown in the Supporting Information). However,

it is important to keep in mind that these routes consist of subprocesses. In the case of Li-ion batteries, for example, there is pretreatment that

includesmechanical separation (applying crushing, shredding, sorting and sieving steps,magnetic separation and air separationmethods), a thermal

process (heating the samples at 150–500◦C), a dissolution process (using solvents), and physical–chemical methods (using high-energy ball milling

to induce physical and chemical changes of active materials). Functional recycling processes have been classified as hydrometallurgy-dominant

methods, where valuable metals are separated by leaching, precipitation and solvent extraction; pyrometallurgy-dominant methods, where high

temperature (higher than 1400◦C) is used to enhance the physicochemical separation of valuable metals; and mild recycling methods, where

hydrometallurgy-dominant and pyrometallurgy-dominant methods are integrated (Liu et al., 2019; Zhang et al., 2014).

For the calculation of the NFR stock, the UN Comtrade database was used as a reference. Based on its records about the trade of pro-

cessed material and applications, which are from the late 1980s or early 1990s, a time span of 25 years was assumed to calculate the NFR

stock (see Equation (8)). This assumption is in line with the trend of the refined global production of Co, which skyrocketed from 1993 onwards

(BGS, 2020).

Several parameters per life cycle phase were required to calculate the stocks and flows along the value chain. Some examples are the extraction,

processing, manufacturing, and recycling efficiencies; the lifetime, hoarding rate, hoarding period, and annual growth rate of consumption of the

applications; and the collection and recycling rates of old scrap. Some of the values were obtained from or calculated based on private markets

reviews, and others from scientific papers and public reports (Asari & Sakai, 2013; Baldé et al., 2017; Godoy León & Dewulf, 2020; Harper et al.,

2012;Huisman et al., 2020;Nomura and Suga, 2013; thinkstepAG, 2017). In addition, due to the lack of data, someof the parameterswere assumed

based on expert estimations and some as hypotheses. These were made based on the assumptions considered in BIO by Deloitte (2015). In the

Supporting Information, the value of the parameters together with the description of the assumptions is presented.

An updated database of the H2020 ProSUM project (Huisman et al., 2020; RMIS, 2019) was used to estimate the stocks and flows related to

the manufacturing and use phases of batteries. The in-use stock and the EoL stock were provided aggregated, and it was not possible to further

differentiate between one and another. For this reason, the in-use stock and EoL stock of Co are presented together in the results. Nevertheless,

the ProSUM dataset integrates several data sources to get a comprehensive picture of the overall battery flows entering the European market.

Data originating from Avicenne on the volumes of rechargeable batteries are combined with information sourced from Eurostat and European

Alternative Fuels Observatory. These are linked with statistics from several national authorities as well as with the ProSUMdata for batteries con-

tained in electronic equipment. The data structure takes into account average battery lifetimes to calculate trends of the battery stocks and related

waste-generation trends. It allows for a clear differentiation between electrochemical systems and battery applications of portable, industrial, and

mobility batteries.

An overview of the inputs (data and assumptions) and outputs (calculated values) of the model per life cycle phase is given in the Supporting

Information.

2.5 Indicators

Six indicators were calculated to characterize the Co cycle in the EU: Total scrap recycling input rate (TS-RIR), old scrap ratio (OSR), end-of-life

recycling rate (EoL-RR), recycling process efficiency rate (RPER), self-sufficiency potential (SSP), and pre-consumer loss rate (PCLR). The former

four were obtained from UNEP (2011) (in UNEP (2011) the TS-RIR is named RIR), and Tercero Espinoza and Soulier (2018); the fifth one comes

from Eurostat (2021); and the last one was developed by Matos, Ciacci, et al. (2020) to characterize the results of the Co system and the other

four battery-related raw materials systems. These indicators are calculated due to their importance for the EU’s policy. For example, the SSP and

EoL-RR are part of the EU’s monitoring framework for the circular economy (European Commission, 2018). Table 1 shows a brief description of the

indicators. More details about the indicators and their equations are available in the Supporting Information and the paper about the multi-layer

system assessment (Matos et al., 2021).

3 RESULTS AND DISCUSSION

3.1 Co cycle in the EU in 2016

Based on the dataset collected and themodel’s equations (see the Supporting Information), the Co cycle for the EU in 2016was estimated, which is

presented in Figure 2. The trade of commodities and applications is shown per life cycle phase. The stocks of Co are also presented, which include

the stock of the reserves in the EU and the stocks of Co in-use and EoL products, tailings, landfills, and NFRmaterial.
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TABLE 1 Description of the indicators

Indicator Abbreviation Description

Total scrap recycling input

rate

TS-RIR (RIR according

to UNEP (2011))

It represents howmuch of the inputs to processing and

manufacturing come from domestic and imported scrap,

considering both new and old scrap.

Old scrap ratio OSR It describes the fraction of old scrap in the recycling flow of new

and old scrap. It only considers functionally recycled scrap

that is produced domestically.

End-of-life recycling rate EoL-RR It indicates howmuch of the collected old scrap is functionally

recycled.

Recycling process

efficiency rate

RPER It gives the overall recycling efficiency rate, considering

functional recycling of both old and new scrap.

Self-sufficiency potential SSP It indicates the amount of material going to the use phase that

comes from domestic production. Domestic production

includes primarymaterial and secondarymaterial produced

by functional recycling of old scrap.

Pre-consumer loss rate PCLR It describes the losses that occur before the use phase.

F IGURE 2 Co stocks and flows in the EU in 2016. Values are shown inmetric tons (t). The trade is aggregated per lifecycle phase. Textured
rectangles represent stocks. s: stock, aa: annual addition, NFR: non-functional recycled. Green: preconsumer flows within the system,
orange/yellow: postconsumer flows within the system, light blue: imports, pink: exports, grey: waste. The width of the streams represents the
magnitude of the flows. Because of this, flows with low content are barely depicted in the figure. Three streams are not shown due to their low
contribution: the flow frommanufacturing to the NFR stock (5 t), the flow frommanufacturing to processing (14 t), and the import to collection
(28 t)

In 2016, around 3000 t of primary Co were mined within the EU (specifically in Finland), and about 2300 t were extracted as Co concentrates.

After considering imports of secondary material (400 t) and semiprocessed material (around 10,000 t), and adding up a fraction of the domestic

FR material (1900 t), almost 15,000 t of Co were used for the production of processed material. This means that the domestic production of pri-

maryCo contributed only 16% to the processing input. Afterward, after considering the trade of secondarymaterial (import of 400 t) and processed

material (net import of 5600 tofCo) and the rest of thedomestic FRmaterial (4000 t), almost24,000 twereused for themanufacturingof final prod-

ucts of the different applications. This phase was characterized by a high efficiency, as most of the waste was internally reprocessed. Accordingly,

23,800 t of Co ended up in final products, of which half was exported. The other half was domestically used, together with 21,800 t of Co imported

in final products. About 33,700 t were put into use. Figure 2 shows an estimated stock of 334,000 t of Co for the use phase, which corresponds to

the in-use stock plus the EoL stock. For most of the applications, these stocks were calculated separately through Equations (4) and (5). However,

an aggregated stock (i.e., in-use + EoL) was obtained for batteries from ProSUM. Therefore, the stock presented in the figure also corresponds to

an aggregated stock. The net annual addition to this stock was 12,000 t. After the use phase, about 21,000 t of Co in old scrap were collected for
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further treatment. It was estimated that 60% went to recycling facilities through selective collection and 40% to disposal facilities through nonse-

lective collection. The collected amountwas calculated using Equation (6), which depends on the annual growth rates of the products’ consumption

(consider constant and different from zero between 2012 and 2016), and the manufacturing, import, and export flows of the applications of the

assessed year. This is one of the limitations of the applied methodology, since it assumes that the production and trade of the applications in the

past follows the same trend as in the present. Therefore, the dynamics of the market are not captured by the methodology, which could result in

an overestimation or underestimation of the stocks. This is a considerable assumption, especially in the case of mobility batteries, for which the

demand has increased considerably in the last years.

It is observed that the nonselective collection of old scrap represents one of the major losses of Co in the whole value chain, accounting for 52%

of the total losses. Finally, from the recycling phase, 53%was FR, 34%wasNFR, and 13%was disposed. From the FRCo, 30%was sent to processing,

61% tomanufacturing, and the rest was exported.

The earlier-described flows and stocks are for the EU considering all its member states in 2016 (28 member states). However, an overall reduc-

tion in the amount of Co going into the EU economy is expected due to the departure of the UK. According to the BGS (Petavratzi et al., 2019),

the manufacturing demand of Co in the UK was around 1500 t in 2017, which represents about 6% of the EU demand. The UK is not a producer

of primary Co. It is a net importer of cobalt scrap and small quantities of ores and concentrates; and it is a net exporter of unwrought, wrought,

and cobalt oxides. The metal is mainly used to produce superalloys for the aerospace sector, hard metal, magnet, and special steel industries. Co

chemicals aremainly used by glass and ceramicmanufacturers and, increasingly, in batterymanufacture. Regarding the refining of Co, it is reported

that Vale-owned nickel refinery at Clydach in SouthWales processes nickel intermediates, whichmay contain Co (Petavratzi et al., 2019). However,

cobalt is not recovered on-site during nickel’s refining but outside the UK after an initial processing (Vale, 2018). In the Supporting Information

(table S1), it is possible to observe how the departure of the UK from the EU affects the trade of Co-containing commodities. It is observed that for

2016, the EUwithout the UK presents a higher import of primary Co, Co powders, Co oxides and hydroxides, and Co chlorides; and a lower import

of secondary Co and Co sulfates. In terms of export, it is higher for primary and secondary Co, Co powders and Co sulfates; and lower for Co oxides

and hydroxides andCo chlorides. Regarding the trade between the EU and theUK, it is observed that theUKwasmainly an importer of Co powders

from the EU. It was also an exporter of nickel waste and scrap and Co oxides and hydroxides. Depending on the commodity, Brexit affects the EU

trade to different degrees. For example, for nickel waste and scrap, the import to the EU from the UK corresponded to 23% of the total import in

2016. In the case of the export of Co sulfates, only about 1% of the total EU export was to the UK.

3.1.1 Co trade flows

As it was mentioned in Section 1, the presented research was developed in the context of a study commissioned by the European Commission and

some information is considered sensitive, the reasonwhy it is not disclosed in themanuscript. Actors in the value chain are few and thismakes them

reluctant to disclosemarket information. For this reason, the trade flows of Co are presented aggregated per lifecycle phase, and the analysis of the

trade is presented per category and not per commodity.

The primary rawmaterial used in the EUmainly was sourced domestically (the trade was almost negligible), which was used primarily within the

region. Regarding secondary Co, the EUwas neither amajor importer nor exporter of this material.

It is observed that the EU is a net importer of semiprocessed and processed material. As mentioned before, imports of semiprocessed material

were key in the EUCo cycle, as itwas one of themain inputs of the processing phase. The imported processedmaterial was also relevant in the cycle,

corresponding to 31% of the total manufacturing input. In 2016, the leading exporter of semiprocessed material to the EU was the Democratic

Republic of Congo. In the case of processed material, the main exporters to the region were the United States, Madagascar, Zambia, Norway, and

Russia, accounting together for 68% of the total export to the region (Eurostat, 2019; UNComtrade, 2019).

Finally, the largest share of the trade, for both imports and exports, corresponded to applications (about 22,000 and12,000 t of Co, respectively).

As presented in Table 2, superalloys, magnets, and portable batterieswere themain imported applications; and superalloys and dissipative uses, the

main exported ones. Overall, the EUwas a net importer of most of the applications.

In regard to batteries, Table 2 presents the results for all the batteries that contain Co. Co imported in Li-ion batteries represents 90% of Co

imported in all portable batteries, 81% of Co imported in all mobility batteries, and 100% of Co in industrial batteries. This demonstrates the domi-

nant use of Co in Li-ion batteries in comparison with its use in other battery chemistries as Ni metal hydride.

3.1.2 Anthropogenic Co stock

In 2016, the biggest stock corresponded to the in-use and EoL stock, which comprises (i) the Co embedded in products being used and (ii) the Co

embedded in consumer-hoarded products. This stock was calculated using Equations (7) and (8) for all applications except for batteries, for which

direct data from ProSUM (Huisman et al., 2020) was used. The use of this data allowed including in the analysis e-bikes (accounted in mobility
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TABLE 2 Trade flows of Co per application in the EU in 2016

Application Imported (metric tons Co) Exported (metric tons Co)

Portable batteries 3600 0

Mobility batteries 890 440

Industrial batteries 310 0

Catalysts 280 280

Intentionally dissipative uses 450 1760

Hardmetals 1330 440

Magnets 4830 420

Other uses 30 20

Superalloys 10,180 8720

Total 21,900 12,080

F IGURE 3 (a) Selective collection (SC) and non-selective collection (NSC) of Co per application in 2016. (b) Functional recycling (FR) and
non-functional recycling (NFR) of Co per application in 2016. The applications refer to the source of scrap for recycling. Underlying data for this
figure are available in Tables S10 and S11 of Supporting Information S2

batteries due to their low contribution) and industrial batteries, and it permitted to harmonize the data related to rechargeable batteries for all the

involved rawmaterials (Co, Li, Ni, Mn, and natural graphite).

The main addition to the in-use and EoL stock in 2016 came from superalloys, magnets, and intentionally dissipative uses. On the one hand, the

three applications are the main ones used in the EU (30, 18, and 17%, respectively, see the Supporting Information). On the other hand, compared

to the other applications, they also have the longest lifetime (between 11 and 16 years, see the Supporting Information), staying longer in the use

phase.

The in-use and EoL stock represents the potentially recoverable Co from the technosphere in the short-medium term (within 25 years, see

Dewulf et al. (2021)). As such, it provided the main input to the recycling phase through selective collection. As shown in Figure 3, the main con-

tributors to this flow were superalloys and magnets, followed by catalysts, hard metals, and batteries. Of the latter, 86% corresponded to portable

batteries, 7% tomobility batteries, and 7% to industrial batteries.

3.1.3 Co losses

The stocks of lost Co comprise the stock in tailings, landfills, and of NFR material. The former two correspond to the stock of Co that has been

lost in the technosphere due to the inefficiency of the processes and the nonselective collection. The latter corresponds to the stock of Co that

has been dissipated in the technosphere through nonfunctional recycling. According to Dewulf et al. (2021), metals present in these three stocks

are most probably not recoverable in the short-medium term, but could be potentially recovered in the long term. According to the authors, the

best estimate to recover materials from tailings and landfill is 65 years. In the case of NFR material, the best estimate is 500 years. Some of the

main constraints to recover these materials are socio-economic and technological constraints. In the case of materials contained in tailings and
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landfills, their inaccessibility arises from the lack of proper technology to make use of the materials (e.g., too low concentrations) or lack of interest

in particular raw materials (e.g., co-occurring metals) at the point of their generation. In addition, economic recovery may be influenced by the

spatial context and the presence of penalty elements. Related to Co, there are a few initiatives taking place. For example, the French Geological

Survey (BRGM) developed a bioleaching technology for the reprocessing of sulfidicminewastes, being applied at the Kasese tailings site in Uganda,

where Co was produced from old copper mining waste tailings (Blengini et al., 2019). In the DRC, a project is under construction, which comprises

the reprocessing of old Co and copper tailings from previous mining operations, with an annual capacity of 24,000 t of Co (Mining Weekly, 2018).

In the case of NFRmaterial, Dewulf et al. (2021) indicate that there is hardly any information on developments on economically viable technologies

that are capable to recover particular rawmaterials or metals out of anthropogenic stocks.

Remarkably, the total losses in 2016 corresponded to 37% of the total input of Co to the system (considering imports and domestic produc-

tion). Among the lost stocks, the landfill stock corresponded to the largest one in 2016, with the highest annual addition per year (about 10,000 t

compared to 700 and 4000 t to the tailing stock and NFR stock, respectively). Its main contributor was the nonselective collection of old scrap,

comprising almost 80% of the annual addition. Fifty percent of the nonselective collection flow corresponded to intentionally dissipative uses, as

this application is not recycled. This application was modeled mainly as pigments, the reason why it is considered disposed at the end of its life and

not dissipated in-use. The rest corresponded to hard metals (20%), batteries (15%, of which 95% was portable batteries), and catalysts (14%) (see

Figure 3).

Even though landfills were the biggest lost stock, the stock produced by nonfunctional recyclingwas equally large, being the secondmain reason

for Co losses in the technosphere (27% of the total losses). Themain contribution to this stock is the nonfunctional recycling of old scrap.

Through nonfunctional recycling, cobalt ends up embedded in stainless steel at low concentrations. Currently, there is no technology available

to recover Co from steel. Therefore, nonfunctional recycling of cobalt does not contribute to the circularity of the metal, the reason why here it is

considered a loss. In fact, according to Dewulf et al. (2021), nonfunctional recycling is one of the six actions that leads to (long-term) inaccessibility

of themetal.

This is one of themain findings of thiswork since previous assessments barely consideredwhat is lost in the technosphere through nonfunctional

recycling. Fromapolicy perspective, to keepCo longer in the cycle, efforts should be concentrated not only in the collection phasewith, for example,

better take-back systems, but also in the recycling phase. Nowadays, collection and recycling targets in the EU are based on total mass and not on

recovery rates of specificmaterials. This is the case, for example, for batteries andWEEE (waste electrical and electronic equipment). The target for

batteries was to collect at least 45% in weight of the amount placed on the market by 2016, with a recycling of at least 50% by average weight

(European Parliament, 2006). A new regulation concerning batteries and waste batteries is proposed by the European Commission, in which

mandatory minimum levels of recycled content for industrial and electric-vehicle Li-ion batteries are set for 2030 and 2035 (e.g., 12% cobalt in

active materials in those batteries as of January 1, 2030, increasing to 20% from January 1, 2035) (European Parliament, 2021). Recovery tar-

gets established per specific material would drive companies to improve their processes (and/or to invest in further research) in order to achieve

them.

In addition, researchers should systematically consider nonfunctional recycling of Co in future assessments. To do so, it has to be taken into

account that the share between functional and nonfunctional recycling varies over time, as materials are functionally or nonfunctionally recy-

cled due to economic and/or technological constraints. For instance, to date there are no industrial facilities to recover Co from magnets (Liu &

Chinnasamy, 2012; BRGM, 2018; CMI, 2018; UK Magnetics Society, 2018), although laboratory research continues to develop (Van Loy et al.,

2020). In the case of superalloys, functional and nonfunctional recycling depends on the value of Co in the market (Glencore-Nikkelverk, 2018).

In this study, it was assumed that superalloys are 100% FR, taking into account the increasing Co price since 2012 (Alves Dias et al., 2018).

Finally, it is observed that theNFRmaterial in 2016 could have covered about17%of theEU’smanufacturing demandof the sameyear if replaced

by functional recycling.

3.1.4 Indicators

Six indicators were calculated to characterize the Co cycle. The calculated values are presented in Table 3. Focusing on 2016, it is observed that

the input of scrap accounted for 45% of the total input to processing and manufacturing, which means that more than 50% of the input still comes

from primary material. In addition, less than 40% of the input of scrap corresponded to old scrap, indicating that most of the recycled scrap is new

scrap. If one considers only the input of old scrap (EoL-RIR), this value becomes 22% for the EU (without the UK) and 23% for the EU28 (Matos,

Ciacci, et al., 2020). From the collected old scrap, only 32% became secondary material, as the rest was lost mostly due to nonselective collection

and nonfunctional recycling. The nonfunctional EoL-RR corresponded to 20%, which explains why the RPER was 74%, even though the average

recycling efficiency considered in the calculations was around 80% (see the Supporting Information, table S2).

When compared to the global cycle, several differences are noted. For instance, in the work of Sun et al. (2019) the global TS-RIR in 2015 corre-

sponded to11%,whichmeans that theEUprocessed about four times the amount of secondaryCoper refinedproduct in a year. TheUNEP reported

in 2011 a value between 25%and 50% for theOSR andmore than 50% for the EoL-RR (UNEP, 2011). The EUpresents amatching value for theOSR
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TABLE 3 Indicators of the Co cycle in the EU from 2012 to 2016

Indicator Abbreviation 2012 2013 2014 2015 2016

Total scrap recycling input rate TS-RIR 42% 42% 44% 45% 45%

Old scrap ratio OSR 36% 36% 36% 37% 38%

End-of-life recycling rate EoL-RR 33% 33% 29% 30% 32%

Recycling process efficiency rate RPER 80% 79% 71% 72% 74%

Self-sufficiency potential SSP 24% 27% 23% 24% 25%

Preconsumer loss rate PCLR 4% 5% 3% 3% 4%

and a lower one for the EoL-RR. These differences could be explained by different geographical and temporal EoL practices; and due to differences

in the share of the demand, as the recycling (and nonfunctional recycling) of Co depends strongly on it.

Remarkably, the nonfunctional recycling of Co has not received much attention in previous studies, the reason why it is difficult to compare our

findings. To the best of the authors’ knowledge, there are no other estimations of how much Co is dissipated via nonfunctional recycling at the EU

level. At the global level, Harper et al. (2012) estimated that theNFRmaterial corresponded to about 9%of the collected old scrap, about half of the

value found in this study.

The SSP indicator shows that 25% of the material used by final consumers was domestically sourced, which means that 75% of this material

was imported, exhibiting that the EU is highly dependent on imports of Co. In addition, this indicator can be calculated per phase. As shown in the

Supporting Information, the highest SSPwas for the processing andmanufacturing phases, with values of 70% and 71%, respectively (values of this

indicator for the EUwithout the UK are reported inMatos, Ciacci, et al., 2020). In contrast, it corresponded to only 18% for extraction, indicating a

high import reliance of the EU at the upstream stage of the value chain.

Finally, as shown in Figure 2, the preconsumer losses only represented a small fraction of the total losses.

3.2 Evolution over time

Next to the assessment of theCocycle in 2016, an analysis of the temporal behavior of the flowswasperformed. It is important tomention thatmost

of the parameters (such as the share of the Co demand for the manufacturing of applications) were considered constant in time in the calculations.

Figure 4 represents the Co flows from 2012 to 2016. Figure 4a shows the annual input flow of Co to each one of the analyzed lifecycle phases

(extraction, processing, manufacturing, use, collection, and recycling). In general, the flows increased over time, except from 2014 to 2015 where

a rather small decrease is observed. An increase of almost 50% from 2012 to 2013 is observed for domestic extraction. However, after 2013, the

flow stayed relatively constant, with an average content of 2800 t of Co per year. In contrast to the extraction phase, the input flows to the other

phases do not present a substantial change from2012 to 2013 (less than 10%difference). However, they exhibit a significant increase from2013 to

2014, mainly in the recycling phase (72% higher), collection phase (59% higher), and use phase (52% higher). The main reason for this increase was

a higher import; 40% higher than in 2013, with the exports increasing only 17%. The growth of the imports was mainly due to the higher import of

applications (52% higher), semiprocessed material (39% higher), and processed material (28% higher). Among the applications, magnets and hard

metals presented the highest rise (308 and 62%, respectively).

According to Sinha et al. (2017), recent advances in defense and aerospace have escalated the demand for SmCo magnets, which could explain

the enormous increase in the imports and the domestic production of magnets. According to a previous study (Godoy León et al., 2020), the manu-

facturing Co demand for magnets in 2012 was 1.6% of the Co demand in the EU. This means that between 2012 and 2016, the demand increased

on average 42% per year, considering a demand in 2016 of 6.6% (see the Supporting Information).

There was a decrease in the flows between 2014 and 2015. Themain reason for this decrease is a lower import of semiprocessedmaterial (26%

lower compared to the previous year). From2015 to2016, therewas an increase in the flows, proportional to the decrease between2014and2015.

Again, this was due to the import of semiprocessed material. A possible explanation of this variation is the fluctuation of the Co price in the market

(around US$27, US$34, and US$24 per thousandmetric tons, in 2014, 2015, and 2016, respectively) (Alves Dias et al., 2018). Years with low prices

may imply a stocking period by the industry (built by imports) and a year with high prices a destocking period.

The preconsumer stages present a shift of the imports, from primary material to semiprocessed and processed material, which indicates that

between 2012 and 2016, the EU became more dependent on imports in later stages of the supply chain. Imports decreased by 99.7% for primary

material, from around 700 t in 2012 to about 2 t in 2016, and imports of semiprocessed and processed materials increased by 31% in the same

period 2012–2016, from around 13,000 t in 2012 to about 17,000 t in 2016.

Figure4b shows theevolutionover timeof functionally andnonfunctionally recycledCo.Overall, both flowshave increasedover time. Theannual

change of the FR Co occurred at a similar rate to that of the input flow to the use phase presented in Figure 4a. The NFR Co, however, presented a
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F IGURE 4 Evolution between 2012 and 2016 of themass flows of Co in the EU. (a) Co flow to the different phases of its life cycle. (b) Co
functionally recycled (FR) and non-functionally recycled (NFR). (c) Losses of Co to tailings, due to in-use dissipation, due to non-functional
recycling, and to landfills. Underlying data for this figure are available in Tables S12–S14 of Supporting Information S2

different behavior. The bigger change took place between 2013 and 2014. In 2014, a higher collection flow ofmagnets was estimated as the import

of magnets for the use phase was higher. Therefore, the NFRCo also increased, as magnets are fully nonfunctionally recycled.

Finally, Figure 4c presents the evolution of the losses of Co. Regarding tailings, it is observed that the evolution of this loss is in line with the

evolution of the input flow to extraction. The main change is between 2012 and 2013, where the losses increased 49%. The losses due to in-use

dissipation evolved at a similar rate to that of the input flow to use, where the main change took place between 2013 and 2014. The applications

thatwere lost in thisway are catalysts andhardmetals. Asmentionedbefore, therewas a substantial increase in the imports of hardmetals between

2013 and 2014, which explain the higher amount of in-use dissipation. It is important to mention that intentionally dissipative uses were modeled

mainly as pigments, the reason why this application was not dissipated during the use phase but assumed to be landfilled after its use. Finally, for

the Co going to landfills, it is observed that the main variation occurred between 2013 and 2014, in line with the higher input of Co to the phases

from processing to recycling.

This graph shows that despite the efforts to increase the recycling of EoL products, there is still a significant amount of Co lost in the techno-

sphere, which has increased over time. Table 3 shows that the EoL-RR has been relatively constant in time, but the RPER has decreased between

2012 and 2016, mostly due to the higher amount of NFR Co. Therefore, improvements are required in order to reduce the lost flows, especially at

the collection and recycling phases.

Another way to establish the changes between 2012 and 2016 is by comparing our results with the results obtained in the previous MSA (BIO

byDeloitte, 2015). This comparison is provided in the Supporting Information (see figure S1).

3.3 Limitations of the study

Despite the several improvements in the methodology and the inclusion of new aspects in the analysis, the earlier-mentioned results have to be

considered carefully. The results from the manufacturing phase to the recycling phase have a high uncertainty mainly related to data availability
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and quality. They are estimative, calculated based on average consumption growth rates, trade statistics of finished products, average lifetimes of

products, and collection and recycling practices. This is driven by the fact that the available production and trade codes are highly aggregated. An

increase in the resolution of these codes could improve the understanding of how the different Comaterials and products are produced and traded.

Furthermore, theuse, collection, and recyclingphases rely considerablyonassumptionsdue todata limitations. For example, several assumptions

were considered for the applications intentionally dissipative uses, magnets, and other uses for the use phase. These assumptionsmainly affect the

calculation of the in-use and EoL stock. These applications cover about 35% of the Co embedded in finished products used in the EU, which means

that the assumptions could have a high impact on the calculated stock. However, by modifying the values of the hoarding times and hoarding rates

by 10%, 20%, and 30%, the in-use and EoL stock only varies between 1.1% and 4.6%.

In addition, the availability of data also affected the temporal coverage of this study. The most recent year of the study corresponds to 2016,

depicting the Co societal metabolism of already 6 years ago. Nevertheless, it is important to keep in mind that the data collection for a certain

year is time-consuming, and that 2016 was the year with the most complete dataset. Despite the time gap, the results of this study support the

raw material policy development, and in the mid-term provide a basis for developing sustainable resource-management strategies. It is used, for

example, in the criticality assessment, which is based on data from the recent past. It also provides useful information supporting other activities,

such as themonitoring of the circular economy. TheEuropeanCommission already commissioned a newMSAstudy, being developedbetween2021

and 2022, covering data up to 2018 (European Commission, 2021).

Other limitations of the study arise from the applied methodology, the geographical coverage of the data, and the lack of consistency of the

data when obtained from different sources (e.g., the USGS, BGS, and BMNT report different values of the mineral production). Further research is

required especially for the latter, in order to compare data from different sources and identify the extent and reasons for their differences.

Many of the limitations found in this study (see the Supporting Information for further discussion of the limitations of the study) are not only of

scientific nature but rather related to the (un)availability of information at national and international bodies. The availability is limited because of

the complexity and the volume of information to be collected, in addition to economic interests that complicate the acquisition. For example, the

high aggregation of trade codes in combinationwith themultitude of products in which cobalt is traded, as well as the lack of published information

by the industry, were obstacles in obtainingmore solid results.

It is clear that the Co cycle in the EU has undergone a significant change. Moreover, considering the recently launched European Green Deal

(European Commission, 2019) and the current situation derived from the COVID-19 outbreak, it is expected to continue changing in the coming

years.

4 CONCLUSIONS

AnMSAwas applied to study the cobalt (Co) cycle in the EU between 2012 and 2016. A number of commodities of Cowere considered in the study,

classified as primary, secondary, semiprocessed, and processed material. In addition, seven final applications were studied: Batteries, catalysts,

intentionally dissipative uses, hardmetals, magnets, superalloys, and other uses.

The Co cycle of 2016was quantified, describing the production, trade, and usage patterns of Co in the EU. It was found that the primarymaterial

extracted in the EU was almost fully used in domestic refining industries, and a significant share of semiprocessed and processed material was

imported for the production of applications. Around half of this production was exported, and the rest was domestically used together with almost

22,000 t of Co imported in final products. This accounted for almost 34,000 t of Co that were put into use. With an EoL recycling rate of 32%,

around6600 tofCowere recovered fromold scrap, both for domestic use andexports tonon-EUcountries. Themain lossesof the systemwere from

nonselective collection and nonfunctional recycling of old scrap,which accounted for 52%and27%of the total losses, respectively. The applications

that mostly contributed to these losses were intentionally dissipative uses andmagnets.

The flows of Co changed substantially from 2012 to 2016. For example, the input to the use phase increased by around 1.7 times. In addition, a

shift of the imports is observed at the preconsumer stages, from primarymaterial to semiprocessed and processedmaterial. The import of primary

material decreased more than 99% between 2012 and 2016, and the import of semiprocessed and processed materials increased around 31% in

the same period.

The uncertainty of the study depends mainly on data quality and gaps. The estimates could be improved by developing more disaggregated

trade codes and improved industry data (more transparent and available). Nevertheless, a number of improvements were introduced in this study

compared to the predecessor study of 2015 (BIO by Deloitte, 2015). Twomajor differences are the introduction of magnets as one of the assessed

applications, and the nonfunctional recycling of Co, not only at the EoL phase but also at the manufacturing phase. This was of high importance to

better describe the Co cycle, as nonfunctional recycling is one of Co’s main sources of losses.

The results can be an input for policymakers, industries, and researchers, contributing to the sustainable management of the metal in the EU.

First, the estimated indicators are key in a circular economy, and the estimated values can be used, for example, in criticality assessment. Second,

it is clear that collection targets should be higher, and that recycling targets should be established based on the recovery of single materials. This

could help to increase the circularity of Co in the EU, decreasing the dependency on imported material. Third, the estimated secondary sources of
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Co indicate a significant stock of the metal in landfills, which could be exploited in the future. This would also help decrease the dependence of the

EU on third parties.

This study contributes to a better understanding of the Co cycle in the technosphere. Another publication (Matos et al., 2021) was developed

from the presented results, using a multilayer system approach for Li-ion battery systems, involving Co and other four materials: Lithium, nickel,

manganese, and graphite. This allows analyzing the links between the different materials and how their cycles can affect each other.
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