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Abstract: This paper presents the analysis of spectral wind-wave modelling (using SWAN) of the
North Sea focusing on the modelled wave parameters along the Belgian coast. Two wind databases
were used to drive the model: ECMWF-ERA5 reanalysis and the Dutch Offshore Wind Atlas. The
models were calibrated with measured data at various stations along the Belgian coastline. The
accuracy in terms of wave parameter statistics was compared for the calibrated and uncalibrated
models. It was found that a calibrated SWAN model does, in general, produce more accurate results
when compared to measured data for stations along the Belgian coastline even though not by any
significant margin. Comparing the two wind databases, on the modelling scale conducted in this
study, there is no advantage observed in using a spatially finer scale wind database over a coarser
database to force the model. The grid sizes were varied in the models and marginal differences were
observed in the modelled data. The long-term extreme value statistics were calculated for various grid
sizes and compared to published values. It is shown that the extreme value statistics are relatively
insensitive to the grid density and thus much time can be saved on long-term modelling on this
model scale. In addition, a benefit to the practise of grid nesting is demonstrated when considering
complex bathymetric effects that have an influence on wave transformation in the shallower areas of
the coast, especially along the Belgian coastline demarcated with its numerous sandbanks.

Keywords: SWAN; Belgium; wave modelling; wind-waves; ECMWF-ERA5; DOWA

1. Introduction

Economical coastal engineering design, which is intent on reducing failure risk and
the frequency of maintenance, is highly dependent on the quality of the input to the design
parameters. Structural coastal engineering requires future projected extreme events [1]
while beach stabilisation demands long-term operational conditions for its design to be
manageable and sustainable [2].

The quality of the inputs to the design formulas has a direct influence on the inherent
risk of design failure and, as a result, the economy of the design. In order to minimise the
design risk and improve the service life of the structure, design and maintenance input
with an acceptable amount of certainty is needed. The uncertainty inherent in coastal
engineering design is complicated by the dynamic coastal processes and resulting forces
that are often difficult to project into the future. After all, the only available reliable data is
from the past. In engineering practise, numerical models are utilised in order to quantify
design data for future long-term statistical probable events.

Over a vast region, as encompassed by the North Sea, limited options for numerical
forcing from actual wind and/or wave measurements are available. Apart from the
spatial sparsity of the available measurements, the temporal variation in the duration and
measurement periods, and the fact that the data is managed by a number of different
governments and/or private entities (e.g., platform operators, wind farm operators, etc.),
makes this option non-feasible from a modelling perspective.
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In order to bridge this problem, global scale atmospheric numerical models are used to
produce hindcast datasets of various meteorological and marine parameters using historical
data and validated against measurements. Not only are these datasets temporally and
spatially consistent, they are also deemed reliable in an assimilated manner where global
observations are combined with model data [3]. In typical engineering design, hindcast
data sets are used for model calibration and to produce long-term hindcast modelled wave
parameter databases while using observed/measured data as validation for the modelling
exercise. In most cases, the data required to force the models are available, however, the
inherent uncertainty with regard to their accuracy is not always known.

In essence, the quality of wind-wave modelled results is dependent on the quality
input forcing parameters, which, in this case, is the wind [4]. This is even more pertinent
when a semi-enclosed basin, as the case with the North Sea, is considered where the main
wave generation mechanism is wind-generated waves, especially during storm conditions
and related storm surges. Not only are the wave heights an important factor but also the
wave directions due to the geometry of the North Sea where a change in wind direction
alters the wind fetch and, as a result, alters the wave characteristics ([5,6]).

It is acknowledged that near-surface wind fields (say U10 is the wind velocity at
10 m height above the mean sea level) are by-products of meteorological models and not
necessarily the main focus of global atmospheric model output [7] which leads to, inter
alia, a significant variation in spatial wind density, generated by the various meteorological
products available (e.g., NOAA, ECMWF, KNMI). This stems mainly from the challenge
of collecting measurements over a vast ocean and validating the near-surface parameters
by re-tuning the model specifically for this purpose [8]. In addition, due to the limited
scale of the numerical atmospheric models, there inherently exists a good representation
of the synoptic variability scales but not of the smaller scales. Further, the wind at an
arbitrary height (U10) is characterised in terms of averages even though much variability
exists over the averaged time frame. Most atmospheric products report these averages in
hourly or 3-hourly increments [9]. Other factors that define the structure of the wind are
the geography of the area under consideration where the land/sea interface, orographic
effects, sheltering effects and sea-breeze may cause a complicated wind structure that
directly influences the local wave conditions. These conditions are even more exacerbated
by semi-enclosed basins where spatial boundaries are defined by land masses [10].

In order to take into account the mesoscale and small-scale variability in the wind,
the temporal and spatial resolution of the atmospheric models must be refined. However,
this comes at a high computational cost in addition to sensitivities to errors in the initial
and boundary conditions [10]. Higher resolution wind model output can be achieved
by Limited Area Models (LAM) such as LAMI or COAMPS, which have proved to pro-
duce more accurate wave modelling results within the context of an enclosed narrow
sea (Adriatic Sea) when compared to a coarser gridded atmospheric model wind output
(i.e., ECMWF T511). The fact that the higher resolution models contain a more accurate
representation of the orography is cited as the main reason for the increased accuracy [7].
In general, Mass et al. (2002) [11] reports that the representation skill of storms, sharper
mesoscale features and convective events increases with an improvement of atmospheric
model resolution.

However, an arbitrary increase in LAM model grid resolution (nested in a global
atmospheric model) does not necessarily result in a more accurate model. Instead, the
relationship between the parent (global model) and child model (LAM) is important for
the resulting accuracy of the wave model as inherent errors in the parent model can
propagate into and be processed in the LAM. This was further confirmed by using the fully
coupled WAM [4] wave model to calculate the wave heights given the various wind input
resolutions [12]. The authors found that an increase in modelled wind field resolution used
as input to the wave model, in general, improves the modelled wave parameter accuracy.
However, Cavaleri [13] pointed out that, even with an increase in the “quality” of the
wind used for input into the numerical models, the wind-wave models fail to simulate
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the peak wave heights of significant storm events. The reasons stated by Cavaleri are not
trivial matters as he presents a fine balance between model components representing the
wind-wave generation physics, the numerical discretisation (and associated assumptions)
and the wind input [13] (see also the paper presented by the WISE group [14]). Within the
context of storm wind conditions, Bricheno et al. (2013) [15] showed that by increasing the
atmospheric forcing model resolution from 12 km to 4 km, an increase in the modelled peak
wave heights was observed (using the wind-wave model WAM) in addition to an increase
in wave direction skill for the Irish Sea. The authors did not extend their wind-wave model
domain to include fetch-limited scenarios where the modelled wave conditions are attuned
by local winds.

Lavidas et al. (2017) [16] report on calculations from the SWAN numerical wave
models (TU-Delft, ref. [17]) covering the North of Scotland forced by ECMWF ERA-Interim
Re-Analysis wind (6-hourly data at 0.125◦) and the National Centre for Atmospheric
Research and the National Oceanic and Atmospheric Administration (NOAA) CFSR-NCEP
Re-Analysis dataset (hourly at 0.30◦ grid spacing) for the year of 2010 were compared
to each other. An increase in the spatial resolution of the wind having an impact on the
accuracy of the model was confirmed; however, no quantification of the relative influence
of the temporal resolution on the modelling accuracy was made. Using the SWAN wave
model, a numerical wave model across the Red Sea was forced with variable spatial and
temporal resolutions sub-sampled from the same source, i.e., the GFS4_anl wind product
from the NOAA, it was concluded that the spatial resolution has a more significant influence
on the resultant wave modelling accuracy compared to the temporal resolution [18]. In
addition to the spatial resolution of the input wind forcing playing a significant role, the
temporal resolution is another obvious factor that has been investigated [16].

In the literature presented, all indications are present that an increase in spatial and
temporal resolution of the wind input to a numerical wind-wave (phase averaging) model
will lead to an increase in the accuracy of the modelled wave parameters.

However, the question remains as to what degree of detail the wind input has to be
quantified in order to calculate reliable long-term wave parameters under strictly wind
forcing. In addition, spectral wind-wave models underestimate the wave peaks during
significant wave events, according to Cavaleri and the WISE group ([10,13,14]). Bear in
mind that the North Sea area is a semi-enclosed basin where fetch-limited winds and
local winds have an influence on the local wave climate on a much smaller scale than
coastlines along open oceans. Regardless of all the limitations and approximations inherent
to numerical models, Cavaleri does cite the most obvious improvement that can be made,
which is an increased resolution of the wind input to the numerical models.

Apart from introducing a new set of physics into the wave model that accounts for the
deficiencies inherent in meteorology, the most practical solution for the coastal Engineer is
to find and apply the highest quality forcing data he can find. In the context of the North Sea
and with a focus on the Belgian Continental Shelf, the question is which available database
delivers the most accurate and reliable wave calculations in terms of accuracy given the
industry standard numerical models engineers usually work with. Note that within this
context, accuracy is defined in accordance with the statistical methods employed.

This study focuses on the accuracy of a spectral wave model (SWAN) relative to
measured parameters at specific locations along the Belgian coastline when forced purely
by wind over a sufficiently large domain. The benefit, in terms of accuracy and calibration
effort, of a calibrated SWAN model relative to an uncalibrated model when forced with the
ECMWF-ERA5 Reanalysis (“ECMWF-ERA5”) and Dutch Offshore Wind Atlas (“DOWA”)
are unknown for the Belgian coastline at this scale, specifically whether the “quality” of
the wind input data makes a difference in the model results. The interpolation of ECMWF-
ERA5 and DOWA wind data onto the SWAN coarse and finer computational grids could
result in the loss of small-scale wind information which could influence the accuracy of the
model results. The discretisation of the model grid has a great impact on the economy of
the computational time of the model. As such, various grid discretisations are implemented
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in the SWAN models and compared statistically to gauge the relative accuracy of the model
results. Given the computational economy of a coarser grid, the accuracy of long-term
extreme value calculations is investigated for a fine and coarse grid forced with both the
ECMWF-ERA5 and DOWA wind databases. Finally, grid nesting is implemented in the
models and the accuracy for each of the stations is compared with the measured values
in order to gauge whether the added complexity and refinement lead to greater statistical
accuracy in the results.

This study compares the results of various features (i.e., wind database, calibration
status and grid discretisation) configured within a particular SWAN model with measured
parameters along the Belgian coast. Table 1 lists the model features varied within each
section of this study.

Table 1. Various model features investigated.

Wind Database Model Calibration Average Grid Cell Dimension

ECMWF-ERA5 DOWA Calibrated Uncalibrated 7.5 km 5 km 2.5 km Nested Grids

Section 4.1: Statistical Comparison Y Y Y Y Y Y
Section 4.2: LTEVA Y Y Y Y Y Y
Section 4.3: Grid nesting Y Y Y Y Y

2. Area of Study

The North Sea is located between the British Isles and the continent of Europe. In
particular, it is bordered by England and Scotland to the west, Norway and Denmark in
the east and France, Belgium, The Netherlands and Germany in the south. The North Sea
is connected to the Atlantic ocean through the English Channel (in the southwest) and the
North West Atlantic in the north. With an area spanning approximately 570,000 square km,
the North Sea is an important area for shipping and fishing feeding some of the world’s
busiest ports, i.e., Rotterdam, Antwerp and Zeebrugge. The bathymetry of the North Sea
and adjacent seas is shown in Figure 1 where the shallower regions are indicated by the red
colouring. The North Sea is a shallow sea ranging in depths from 200 m in the North to
20 m along the Belgian/Dutch/German coast with an average depth of around 80 m [19].
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Figure 1. Bathymetry of the North Sea and adjacent seas [20].

3. Materials And Methods
3.1. Methodology

When sufficient measured or validated data is available, numerical models are gener-
ally calibrated to the data (e.g., buoys, satellite data, etc.), which increases confidence and
the level of accuracy of the numerical model results. However, data sufficient to calibrate
the model is not always available. This paper looks at various factors that could influence a
model’s accuracy when compared to physical measured data with a specific focus on the
relative accuracy of the wind databases used to force the model.



J. Mar. Sci. Eng. 2022, 10, 1138 6 of 30

The first part of this study investigates the accuracy of a calibrated and an uncali-
brated numerical wave model, using two wind databases, ECMWF-ERA5 and DOWA. A
systematic calibration of the SWAN numerical wave model for the two wind databases
was performed by incrementally tuning the coefficients related to the rate of white capping
dissipation (Cds1 for the KOMEN formulation and Cds2 for the Janssen formulation). The
modelling results are statistically compared to measured values for the period 1 October
2015 to 31 March 2017. Note that the uncalibrated SWAN models assume the default values
determined by Komen et al. (1984) [21] and Jansen (1992) [22] (as per Table 2).

These models are varied further by implementing two grid discretisation, i.e., a coarse
grid and a finer computational grid. The results of these various models are evaluated
by comparing the model output to wave data measured along Belgian coastal measuring
stations using calculated statistical parameters. In addition, the spectral parameters are
compared to measured wave spectra for two arbitrary storm events. In order to analyse the
accuracy of the SWAN models in terms of the calculated long-term extreme values (LTEVA),
the SWAN models (calibrated/uncalibrated forced with ECMWF-ERA5 and DOWA) are
run over an eight-year period on a coarse and fine numerical grid. The calculated LTEVA
for the measured values is compared with the calculated LTEVA of each SWAN model and
with published values.

The final section of this study investigates whether nested grids (three nested grids
at a reduction scale of 1:5) have an impact on the model results when considering the
calibrated and uncalibrated SWAN models forced with the ECMWF-ERA5 and DOWA
wind databases. The model results are compared to measured data along the Belgian coast.

3.2. Wind Hindcast Databases

Wind hindcast databases are used as input to force the SWAN numerical wave model
in order to produce wave parameters as output. The hindcast near-surface wind datasets
used in the numerical modelling originates from the ECMWF-ERA5 wind database ([23,24])
and the DOWA database ([25–27]).

3.2.1. ECMWF-ERA5 Reanalysis

Global long-term hindcast wind data and forecast data (from 1979 to present) are
primarily available from the ECMWF-ERA5 database developed through the Copernicus
Climate Change Service (C3S) and available from the Copernicus Data Store [23]. The
ECMWF-ERA5 dataset is a combination of modelled and observed values, calculated using
4D-Var data assimilation techniques via the ECMWF Integrated Forecast System (IFS),
cycle 41r2 ([24,28]). The ECMWF-ERA5 database publishes atmospheric data on an hourly
temporal scale and on a 0.25◦ × 0.25◦ spatial scale.

3.2.2. Dutch Offshore Wind Atlas (DOWA)

Wind data from the DOWA database was released in 2018. The DOWA aims to
improve on the KNW-atlas through better representation and correlation of the diurnal
cycle. The wind atlas generates realistic three-dimensional wind fields and incorporates
meteorological measurements recorded between 2008 and 2017. The forecasting model
HARMONIE/AROME [29] has been used by KNMI since 2012, to downscale the DOWA
to a horizontal grid of 2.5 km. Innovative measurements, not used by ECMWF-ERA5,
are assimilated into the DOWA thereby adding realistic detail to the wind speeds and
directions ([25,26]). Duncan et al. ([25,26]) validated the DOWA modelled wind speeds
and directions with offshore and nearshore LiDAR, wind-mast measurements and ASCAT
satellite observations for the year 2013. The authors found that the DOWA compared
very well to the measurements. It is reported by the authors that the DOWA did not
improve the relative error of the average wind speeds at 10 m above MSL when compared
to ASCAT measurements and to the ECMWF-ERA5 data. In addition, ref. [25] reports
that the DOWA, on average, overestimates the average wind speeds at 10 m heights while
ECMWF-ERA5 shows almost zero bias. However, the DOWA did show an improved
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correlation to measurements and better capture of the small-scale structures in the wind
fields. Note, however, that most of the comparisons were made for winds at 90 m heights
above MSL as opposed to 10 m above MSL used as input for wave models.

3.3. Buoy Measured Wave Data

Measured wave data from various stations throughout the Belgian continental shelf
were obtained from the Flemish Agency for Maritime Services and Coast (MDK) for the
analysis period [30]. The data at the various points were measured with waverider buoys.
For some stations only non-directional data is available. The data is validated internally
by the data controllers at MDK. Live and historical data is also available online from the
Vlaamse Meetnet Banken portal. The wave data measurement locations are shown in
Figure 2.

Figure 2. Map of observation stations located throughout the Belgian Continental Shelf.

3.4. Numerical Formulation of SWAN

The SWAN software solves the action balance equation, where the rate of change of
the action density N(x, y, t, σ, θ) at a particular point in space, is given as follows ([4,31]):

∂N
∂t

+∇x,y · [(cg + U)N] +
∂cσ N

∂σ
+

∂cθ N
∂θ

=
Stot

σ
(1)

where:

• ∇x,y · [(cg + U)N] denotes the wave energy propagation (which includes wave shoal-
ing) where:

– cg is the group velocity; and
– σ2 = g|k|tanh(|k|d) follows from the dispersion relation where k is the wave

number vector and d the water depth

• ∂cσ N
∂σ is the term that shifts the radian frequency due to depth and current in-

duced diffraction;
• ∂cθ N

∂θ represents refraction due to currents and bathymetry changes where the propa-
gation velocities in spectral space (σ,θ) are represented by cσ and cθ ; and

• Stot
σ contains the non-conservative terms that represent the sink/source terms (e.g.,

wind growth, etc.) that redistributes, generates or dissipates energy at a point in space.
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The non-conservative terms that contribute to Stot within the SWAN model are:

• Sin: wave growth by wind (energy generation);
• Snl3: three wave energy transfer (redistribution of energy);
• Snl4: four wave energy transfer (redistribution of energy);
• Sds,w: white capping (energy dissipation);
• Sds,b: bottom friction (energy dissipation); and
• Sds,br: depth limited wave breaking (energy dissipation).

3.5. Wind Formulation in SWAN: Sin

Contribution to the source terms by Sin in SWAN is calculated using the wave reso-
nance method (Phillips, 1957) [32] and the wave feedback method (Miles, 1957) [33]. As
such, wave growth is calculated in SWAN as the sum of a linear (A) and an exponential
(BE(σ, θ)) growth term of a wave component as follows:

Sin(σ, θ) = A + BE(σ, θ) (2)

where A and B depend on the wave and wind frequencies (σ) and directions (θ). The input
wind vector, u10, is assumed to be at 10 m height above reference level and translated to a
friction velocity u∗ and the drag coefficient CD computed, as follows:

u2
∗ = CDu2

10,

CD(u10) = (0.55 + 2.97u− 1.49u2)/1000,

u =
u10

ure f
=

u10

31.5 m/s

(3)

as detailed in Zijlema et al. (2012) [34] where the authors fitted a weighted best-fit second
order polynomial to observed values of the wind drag coefficient from various published
studies. The reference value ure f = 31.5 m/s is the wind speed where the drag coefficient
is a maximum from the polynomial fit.

SWAN uses the formulation of Phillips for the initial linear wave growth calculation
and the formulation based on Miles to calculate the feedback wind-wave growth.

3.5.1. Linear (Initial) Wave Growth Component

The linear component (A) of the wind wave source term is based on the assumption
of Phillips [32] that for a constant wind, the transfer from the air-pressure waves to the sea
surface gravity waves by resonance, is constant in time, therefore leading to linear growth
in time (Equation (2)). The linear component is calculated using the formulation of Cavaleri
and Malanotte-Rizzoli (1981) [35] where initial waves are imposed on the model using their
empirical formulation:

Sin,l( f , θ) =

{
Cα[u∗cos(θ − θwind)]

4 for |θ − θwind| ≤ 90o and f ≥ fPM

0 for all other wave components
(4)

where Cα = 1.5×10−3

2πg2 and θwind is the wind direction and fPM is the Pierson–Moskowitz
peak frequency. Note that Sin,l( f , θ) is only valid for initial wave growth as this source term
is much smaller than the wind-wave source term contribution Sin( f , θ).

Tolman [36] added a low frequency filter to Equation (4). He argued that, at the initial
point of wave generation, wave growth takes place at high frequencies. However, the
model is calculated on a discrete frequency grid where dependence on the low-frequency
extent of the frequency discretization could lead to artificial initial wave growth. As such,
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mean wave parameters are not influenced at initial growth. The equation then takes the
form of:

Sin,l( f , θ) = Cα[u∗max[0, cos(θ − θwind)]]
4 × exp

[
−
(

f
fPM

)−4
]

fPM =
2π × 0.13g

28u∗

(5)

Equation (5) is implemented in SWAN to compute the initial linear growth of the
wind-waves; however, this linear term must be explicitly activated in SWAN.

3.5.2. Exponential Component

Two expressions for the calculation of the exponential component B are available
in SWAN:

Komen et al. (1984) [21] The authors formulated the wind growth source term as a func-
tion of the phase speed cph as follows:

B = max

[
0, 0.25ε

(
28u∗
cph

cos(θ − θwind)− 1

)]
σ (6)

where ε = ρa/ρw with ρa the density of the air and ρw the density of the water.

Janssen (2004) [9] Janssen formulates the exponential term, Sin = BE(σ, θ) according to
his quasi-linear wind-wave theory derived from Miles’ scaling arguments [33]. First,
the wind profile is assumed

u0(z) =
u∗
κ

ln
(

z + z1

z0 + z1

)
(7)

where the momentum loss by air processes are represented by a background rough-
ness length and is given by a Charnock-like relation z0 = αcu2

∗/g and z1 the roughness
length representing the effect of gravity waves on the wind profile. κ = 0.41 is the
Von Karman constant. Janssen notes that the determination of αc = 0.01 is not so
trivial due to the fact that the ratio of τw/τ is not known. As such, the wave models
were run iteratively with the value of αc = 0.01 as recommended [9].
Let z2 = z0 + z1 represent the effective surface roughness which can be expressed in
terms of the wave-induced stress τw and the total surface stress τ as:

z2 =
z0√

1− |τw |
|τ|

(8)

where, assuming that the wave momentum is given by P = kE(σ, θ), the wave-
induced stress is given by

τw(z = 0) =
∫

∂σ∂θk
d
dt

E(σ, θ)wind

= ρw

∫ 2π

0

∫ ∞

0
σBE(σ, θ)

k
k

dσdθ

(9)

and the total stress by
τ = ρa|u∗|u∗ (10)

The exponential term B = εωβx2 is then calculated as given in Appendix A
(Equation (A5)) where βm = 1.2 (Equation (A4)) was chosen so that the growth rate
agrees with the numerical results obtained by Miles’ theory and with observations.
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3.6. Wave Dissipation Dynamics: White Capping: Sds,w

White capping is one of the least understood processes represented in numerical
models. Strictly speaking, the physics of energy loss due to white capping is linked to
the wind-wave growth/dissipation as white capping is directly related to the momentum
transfer of the wind-wave energy in an active sea [10]. SWAN utilises the white capping
formulation proposed by Komen et al. (1984) [21] where the energy dissipation is modelled
using the spectral mean wave steepness. Using the average wave steepness across a wave
spectrum, which includes wind- and swell-seas, introduces the problem that the dissipation
rate is too high for the swell part and too little for the wind part of the spectrum. The
proposed source term (Sds,w) formulation by Komen et al. is based on the pulse-based
model proposed by Hasselman (1974) [37], reformulated by the WAMDI group (1988) [38]
to be applicable to shallow water and adjusted by Günther et al. (1992) [39] as follows:

Sds,w(σ, θ) = −Γσ
k
k

E(σ, θ), where

Γ = Cds

(
(1− δ) + δ

k
k

)(
s

sPM

)p

s = k
√

Etot

(11)

and s is the total wave steepness with sPM =
√

3.02× 10−3 the value of the wave steepness
in the Pierson–Moskowitz spectrum. The calculation of σ,k and Etot is as defined by the
WAMDI Group [38]. The parameters defined by the white capping coefficient, Cds, δ and p
are coefficients intended to tune the numerical model for a given modelling scenario [31].

Two sets of coefficients have been determined by Komen et al. (1984) and Janssen
(1992) by assuming idealised growth conditions and closing the energy balance of the
waves. The coefficients are summarised in Table 2.

Table 2. White capping coefficients as determined by Komen et al. (1984) and Janssen (1992).

Cds δ p

Komen et al. (1984) [21] 2.36 × 10−5 0 4
Janssen (1992) [22] 4.10 × 10−5 0.5 4

Van der Westhuysen (2007) [40] proposed an alternative white capping formulation
used in conjunction with the wind formulation of Yan (1987) [41] and is an option for
wind-wave growth in SWAN. The advantage of the Komen/Janssen formulations is that
the wind-wave growth of either formulations can be used interchangeably with the white
capping formulations whereas Van der Westhuysen and Yan are inseparable and cannot be
combined with Komen or Janssen formulations [31].

3.7. Computational Domain

The computational grid is an important part of the model design. For instance, the
wind input forcing dataset has a spatial discretisation that could be finely- or coarsely
defined relative to the SWAN model computational grid. Typically, a bilinear interpolation
function is used to spatially map the given input wind grid to the computational grid [31]
in SWAN. As such, when the wind data is spatially coarsely distributed (relative to the
computational grid in the spatial domain), it can be safely assumed that no new, smaller
scale, structural wind information will be added due to the interpolation. Conversely, a
spatially dense wind forcing database that is interpolated onto a coarser computational
grid, might lead to a significant loss in the smaller scale wind information that was orig-
inally contained in the denser wind grid. The ECMWF-ERA5 database is supplied on
an approximate 5 km × 5 km spatial scale while the DOWA database is output on an ap-
proximate 2.5 km × 2.5 km spatial scale; i.e., mapping the DOWA wind to a 5 km × 5 km
computational grid in SWAN possibly might result in a loss of wind information.
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Cavaleri et al. (2018) [10] advises that the wave model computational grid should be
“sufficiently fine” for accurate results and the optimal manner is through grid nesting at
a maximum of ρ5 (1:5 reduction in scale), in their experience. A sufficiently fine grid is a
relative term that points to the obvious difficulty that finer grid cells are needed where
wave conditions cause high gradients, which cannot be determined a priory.

For this study, three SWAN computational grid resolutions of approximately
2.5 km × 2.5 km, 5 km × 5 km and 7.5 km × 7.5 km are used. The definition of grids is
shown graphically in Figure 3.

Figure 3. SWAN model grid discretisation for the dense (approx 2.5 km), medium (approximately
5 km) and coarse (7.5 km) computational grids.

3.8. Bathymetry

Various sources of bathymetric data were used in the model setup. Measurements at
84,252 points over an area of 5625 km2, including a large amount of LiDAR data for Belgian
beaches, collected from various measuring campaigns from 2009 to 2013, were provided by
MDK for this study. External data from the Etopo2 global database were used to define
the offshore regions. The bathymetric data used are expressed with respect to Mean Sea
Level (MSL). Note that the modelled water depths for the various stations are as follows:
AKZ 22.6 m; KWI 21.3 m; OSN 16.8 m; SWI 11.8 m; TRG 9.6 m; WDL 13.7 m; WHI 29.6 m
with depth relative to MSL.
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3.9. SWAN Model Settings

For the most part, the SWAN model settings are determined by the specific modelling
campaign. However, as mainly the wind and white capping parameters are investigated
in this study, the following model settings representing the model physics (Table 3) and
numerical parameters (Table 4) are kept consistently throughout this study:

Table 3. Physical parameters used in the SWAN model setup.

Wind formulation and White capping The third generation model of SWAN is used. The wind-wave and white
capping formulation varies with modelling campaign

Quadruplets The default option is selected: “Fully explicit computation of the nonlinear
transfer with DIA per sweep” [31]

Wave Breaking The formulation of Battjes and Janssen [42] with α = 1.0 and γ = 0.78 is used
Bottom friction The JONSWAP coefficient of 0.038 m2/s3 is applied as a constant over

the domain following [34]
Triads The default value for Triads are used, i.e., the LTA method of Eldeberky (1996) [43]
Limiter The default limiter values are used, i.e., Ursell upper threshold = 10 and the

fraction for breaking waves = 1.0
Vegetation, Mud, Obstacles, These options are not activated as these
Setup and Turbulence processes are not relevant on this scale
Diffraction The activation if diffraction is irrelevant in this study

Table 4. Numerical parameters used in the SWAN model setup.

Propagation The BSBT Scheme is used,
Numerical parameters The default numerical parameters are used.
Iteration Stop Criteria The iteration stop criteria is set at 2% and run in non-stationary mode.

3.10. Computer Hardware

The model runs were conducted on a dual processor machine (2 × Intel Xeon Gold
6140 2.3 G) with a total of 18 cores (36 threads) per processor and a total of 64 Gb of memory
on a Linux Mint LMDE3 platform.

4. Results
4.1. Model 1: Calibrated vs. Uncalibrated SWAN Model
4.1.1. Visual Comparison

The significant wave heights, peak spectral period and spectral peak wave directions
for the calibrated and uncalibrated models are compared to measured wave data for a
number of stations along the Belgian coastline. Figures 4 and 5 are time series plots showing
model results for both the ECMWF-ERA5 and DOWA wind databases, respectively, at the
Kwintebank measuring station which show that the SWAN models appear to have a good
visual correlation with the measured data.

4.1.2. Statistical Analysis: Significant Wave Height

The statistical accuracy (see Appendix B for the definition of the formulas used) for
the calibrated and uncalibrated models forced by the ECMWF-ERA5 and DOWA wind
databases, modelled on a 5.0 km × 5.0 km grid, are given in Tables 5 and 6, respec-
tively. The statistical comparisons, for the calibrated and uncalibrated SWAN models on a
2.5 km × 2.5 km grid, are shown in Tables 7 and 8 forced by the ECMWF-ERA5 and DOWA
databases, respectively.

In each model, the relevant wind database is interpolated onto both the coarse and
finer SWAN computational grids (Section 3.7).
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Figure 4. Significant wave height (top panel), peak period (centre panel) and peak wave direction
(bottom panel) time series plots for the ECMWF-ERA5 forced SWAN model showing the measured
data vs. the uncalibrated SWAN model and calibrated SWAN model for the Kwintebank station.

Figure 5. Significant wave height (top panel), peak period (centre panel) and peak wave direction
(bottom panel) time series plots for the DOWA forced SWAN model showing the measured data vs.
the uncalibrated SWAN model and calibrated SWAN model for the Kwintebank station.

Table 5. Significant wave height statistical parameters calculated for the calibrated and uncalibrated
SWAN models, 5.0 km × 5.0 km computational grid, forced by the ECMWF-ERA5 database.

ECMWF-ERA5 Mean (m) SD (m) Bias (m) RMSE (m) Corr Coeff (-)

Station Mea-
sured

Uncali-
brated

Cali-
brated

Mea-
sured

Uncali-
brated

Cali-
brated

Uncali-
brated

Cali-
brated

Uncali-
brated

Cali-
brated

Uncali-
brated

Cali-
brated

AKZ 1.03 0.93 0.98 0.63 0.56 0.58 0.10 0.05 0.23 0.20 0.95 0.95
KWI 1.00 0.89 0.95 0.61 0.54 0.56 0.10 0.05 0.22 0.19 0.95 0.95
OSN 0.93 0.84 0.88 0.58 0.51 0.53 0.09 0.04 0.21 0.18 0.95 0.95
SWI 0.54 0.64 0.68 0.35 0.40 0.42 −0.10 −0.13 0.16 0.16 0.70 0.70
TRG 0.58 0.60 0.63 0.41 0.36 0.38 −0.02 −0.05 0.17 0.17 0.91 0.91
WDL 0.75 0.81 0.85 0.49 0.49 0.51 −0.06 −0.10 0.17 0.17 0.82 0.82
WHI 1.11 0.96 1.01 0.69 0.57 0.59 0.16 0.10 0.28 0.24 0.91 0.91
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Table 6. Significant wave height statistical parameters calculated for the calibrated and uncalibrated
SWAN models, 5.0 km × 5.0 km computational grid, forced by the DOWA database.

DOWA Mean (m) SD (m) Bias (m) RMSE (m) Corr Coeff (-)

Station Mea-
sured

Uncali-
brated

Cali-
brated

Mea-
sured

Uncali-
brated

Cali-
brated

Uncali-
brated

Cali-
brated

Uncali-
brated

Cali-
brated

Uncali-
brated

Cali-
brated

AKZ 1.03 1.12 1.01 0.63 0.68 0.63 −0.09 0.02 0.23 0.19 0.95 0.95
KWI 1.00 1.10 0.99 0.61 0.67 0.61 −0.10 0.00 0.21 0.17 0.96 0.96
OSN 0.93 1.02 0.92 0.58 0.63 0.58 −0.10 0.00 0.20 0.16 0.96 0.96
SWI 0.54 0.80 0.72 0.35 0.51 0.48 −0.17 −0.10 0.24 0.17 0.71 0.71
TRG 0.58 0.76 0.69 0.41 0.47 0.44 −0.18 −0.11 0.25 0.20 0.93 0.93
WDL 0.75 0.99 0.89 0.49 0.61 0.56 −0.17 −0.08 0.25 0.18 0.83 0.83
WHI 1.11 1.18 1.07 0.69 0.72 0.66 −0.06 0.05 0.20 0.19 0.91 0.92

Table 7. Significant wave height statistical parameters calculated for the calibrated and uncalibrated
SWAN models, 2.5 km × 2.5 km computational grid, forced by the ECMWF-ERA5 database.

ECMWF-ERA5 Mean (m) SD (m) Bias (m) RMSE (m) Corr Coeff (-)

Station Mea-
sured

Uncali-
brated

Cali-
brated

Mea-
sured

Uncali-
brated

Cali-
brated

Uncali-
brated

Cali-
brated

Uncali-
brated

Cali-
brated

Uncali-
brated

Cali-
brated

AKZ 1.03 0.94 1.04 0.63 0.56 0.61 0.09 −0.01 0.21 0.19 0.95 0.95
KWI 1.00 0.90 1.00 0.61 0.53 0.57 0.10 0.00 0.21 0.18 0.96 0.95
OSN 0.93 0.84 0.94 0.58 0.51 0.55 0.08 −0.01 0.20 0.18 0.95 0.95
SWI 0.54 0.64 0.71 0.35 0.39 0.42 −0.10 −0.17 0.14 0.18 0.71 0.70
TRG 0.58 0.63 0.70 0.41 0.38 0.41 −0.04 −0.11 0.17 0.20 0.91 0.91
WDL 0.75 0.81 0.89 0.49 0.49 0.53 −0.06 −0.15 0.15 0.18 0.82 0.82
WHI 1.11 0.97 1.07 0.69 0.57 0.62 0.14 0.04 0.27 0.21 0.91 0.91

Table 8. Significant wave height statistical parameters calculated for the calibrated and uncalibrated
SWAN models, 2.5 km × 2.5 km computational grid, forced by the DOWA database.

DOWA Mean (m) SD (m) Bias (m) RMSE (m) Corr Coeff (-)

Station Mea-
sured

Uncali-
brated

Cali-
brated

Mea-
sured

Uncali-
brated

Cali-
brated

Uncali-
brated

Cali-
brated

Uncali-
brated

Cali-
brated

Uncali-
brated

Cali-
brated

AKZ 1.03 1.14 1.02 0.63 0.69 0.63 −0.11 0.01 0.24 0.19 0.95 0.95
KWI 1.00 1.10 0.99 0.61 0.66 0.61 −0.11 0.01 0.21 0.17 0.96 0.96
OSN 0.93 1.03 0.92 0.58 0.62 0.57 −0.10 0.00 0.20 0.16 0.96 0.96
SWI 0.54 0.79 0.71 0.35 0.50 0.46 −0.25 −0.17 0.23 0.16 0.72 0.72
TRG 0.58 0.80 0.72 0.41 0.49 0.46 −0.21 −0.13 0.28 0.22 0.93 0.93
WDL 0.75 0.99 0.88 0.49 0.61 0.55 −0.24 −0.14 0.25 0.17 0.83 0.83
WHI 1.11 1.20 1.07 0.69 0.73 0.67 −0.09 0.03 0.20 0.19 0.92 0.91

Considering the 5.0 km × 5.0 km grid resolution SWAN model results shown in
Tables 5 and 6, it can be observed that the bias for the uncalibrated SWAN model forced
with DOWA skews towards the modelled values in the order of 5 cm to 18 cm in all
stations. Both the calibrated SWAN models (forced with ECMWF-ERA5 and DOWA) and
the uncalibrated model forced with ECMWF-ERA5 are, for all stations except Westhinder
(WHI), biased between 5 cm and 13 cm. Considering the same dataset, the mean wave
height is underestimated for stations AKZ, KWI, OSN and WHI and overestimated for
stations SWI, TRG and WDL. The uncalibrated DOWA forced SWAN model consistently
calculates a higher mean significant wave height compared to the measured values.

The calculated RMSE for all models and all stations, lie between 15 cm and 28 cm.
In particular, it can be seen that the calibrated SWAN model forced with ECMWF-ERA5
improves the RMSE, in general, by approximately 4 cm while the calibrated DOWA forced
SWAN model improves the RMSE, in general, in the order of 4 cm to 7 cm. The calibrated
SWAN model forced with DOWA has a lower RMSE in the order of 1 cm to 5 cm relative to
the calibrated ECMWF-ERA5 forced SWAN model.

Comparing the effect of the grid resolution, i.e., Table 5 with Table 7 (5 km coarser
grid vs. 2.5 km fine grid for the SWAN model forced with ECMWF-ERA5) and Table 6 with
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Table 8 (5 km coarser grid vs. 2.5 km fine grid for the DOWA forced SWAN model), no clear
improvement in the metrics from large grid to smaller grid are observed. In general, the
metrics are within 1 cm–3 cm of each other and a marginal improvement of the calibrated
models (mean significant wave height and RMSE) are seen by reducing the resolution of
the SWAN computational grid to 2.5 km × 2.5 km.

Comparing the ECMWF-ERA5 forced SWAN wind-wave model statistical results with
that of the SWAN model forced with the DOWA wind database, the results show small
differences in all statistical parameters when considering the varied grid sizes and the
calibration status of each of the models. The largest differences in the RMSE metric are
observed between the uncalibrated models (e.g., stations WDL and WHI) in the order of
7 cm to 10 cm (Tables 5–8). For the calibrated models, the largest difference of 5 cm in RMSE
is seen at station WHI for the 5.0 km grids whereas the improvement of RMSE in the finer
(2.5 km) grid is in the order of 2 cm at station TRG.

The RMSE is significant in terms of the average wave heights. This indicates that an
RMSE of, say 20 cm, with an average wave height of 1.0 m implies a 20% error on the part
of the model. In particular, the DOWA forced uncalibrated SWAN model seems to result
in higher RMSE values for stations with lower average wave heights. This implies that
the relative modelled error increases for these stations, e.g., for station SWI, where the
measured average wave height is 54 cm and the RMSE for the uncalibrated model is 24 cm,
implies a significant error, in the order of 44% of the measured average wave height and
for station WHI, where the measured average wave height is 1.11 cm and the RMSE for the
uncalibrated model is 20 cm, implies an error in the order of 18% of the measured average
wave height.

4.1.3. Wave Direction

The influence of the grid size on the model results relative to the measured data (in
terms of peak wave direction) is shown for the Westhinder station in Figures 6 and 7.

Considering the modelled wave direction results, no significant difference can be seen
between the calibrated and uncalibrated SWAN model results forced with the ECMWF-
ERA5 and DOWA databases, nor any differences in the models run with the coarse (5 km)
and finer (2.5 km) computational grids. In fact, both the ECMWF-ERA5 and DOWA forced
SWAN models show the same dominant wind trend from the south-westerly sector.

In contrast, the measured wave directions show a significant dominant north north-
eastern component which is not present in the modelled results. The measured data
show an almost even split between westerly and west-south westerly waves whereas the
modelled waves only emphasise the west-south westerly waves. This trend is observed
across all wave heights for all the models, i.e., measured data reports dominant north-
northeasterly waves while the modelled results show the waves to be dominant west-south
westerly waves.

4.1.4. Spectral Comparison

The spectral energies for two storm wave events at their peaks are spectrally analysed
and the SWAN modelled (5 km computational grid) and measured data compared for the
Kwintebank measuring station. Note that measured spectral data is only available for a few
Belgian stations. The measured significant wave height series for these two storm events
are shown in Figure 8.

Figures 9–12 show the 1D spectral energies for the measured, SWAN uncalibrated and
calibrated models for the two chosen storms at Kwintebank. The calculated significant
wave height for each 1D spectrum is shown in the respective figure.

The high-frequency tail and the lower spectral frequencies are well represented by the
SWAN model. The SWAN models calculate the cumulative wave energy at the measured
spectral frequencies well; however, the spectral peak is not well represented by the SWAN
models in all modelled cases. The calibrated models have a limited influence on the spectral
shape and peak. However, the calibrated models forced with the ECMWF-ERA5 database
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do seem to improve the accuracy of the significant wave height while the uncalibrated
SWAN model forced with the DOWA database, appears to reflect the measured significant
wave height more accurately.

Figure 6. Wave roses (significant wave height) for the 5 km computational grid showing the measured
data, the calibrated and uncalibrated SWAN models forced with the ECMWF-ERA5 and DOWA
wind databases.
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Figure 7. Wave roses (significant wave height) for the 2.5 km computational grid showing the
measured data, the calibrated and uncalibrated SWAN models forced with the ECMWF-ERA5 and
DOWA wind databases.

Figure 8. Significant wave height peaks of two storms chosen for spectral analysis at Kwintebank
(forced with the DOWA wind). The storm peaks considered are at 21 November 2015 16:00 and 15
January 2016 01:00.
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Figure 9. Spectral comparison for the Kwintebank station on 21 November 2015 16:00 showing the
uncalibrated and calibrated SWAN models forced with ECMWF-ERA5.

Figure 10. Spectral comparison for the Kwintebank station on 21 November 2015 16:00 showing the
uncalibrated and calibrated SWAN models forced with DOWA.

Figure 11. Spectral comparison for the Kwintebank station on 15 January 2016 01:00 showing the
uncalibrated and calibrated SWAN models forced with ECMWF-ERA5.
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Figure 12. Spectral comparison for the Kwintebank station on 15 January 2016 01:00 showing the
uncalibrated and calibrated SWAN models forced with DOWA.

4.2. Model 2: Long Term Extreme Value Analysis (LTEVA)
4.2.1. Introduction

This section reports on the long-term wave statistics for the period 2010 to 2017
(inclusive) by means of an Extreme Value Analysis (EVA). See Appendix C for the EVA
used in this study. The measured data EVA is compared to the SWAN modelled calibrated
and uncalibrated EVA for both the DOWA and ECMWF-ERA5 wind databases in order to
determine the influence on calculated design parameters (e.g., the 1:100 years significant
wave height). Here we compare the modelled EVA for the coarse grid (7.5 km × 7.5 km)
with the EVA for the fine grid (2.5 km × 2.5 km). We investigate whether a coarse grid with
a significantly faster computational time (relative to the fine grid), has any influence on the
accuracy of the calculated modelled EVA when compared to measurements and published
data at the same locations along the Belgian coastline.

4.2.2. Model Setup

The SWAN models were run with the same setup as reported in Section 3.9 for the
long-term period and applied to the two computational grids (Figure 3). The modelled
LTEVA is calculated from hourly significant wave height model output and compared to an
EVA calculated with available measured data at hourly intervals in addition to published
values [44].

4.2.3. Extreme Value Analysis

The extreme value analysis is performed with the pyextremes.EVA package in Python
3.7. [45]. The software accepts, as input, a series of significant wave heights. The following
parameters are assumed and used as input into the EVA analysis:

• Method: Block Maxima
• Block window: 7 Days
• Model fit criterion (AIC) [46]: The fit_model method selects the best model applicable

to extracted extremes using the Akaike Information Criterion (AIC)
• Continuous distributions fit to the data: Maximum Likelihood Estimate (MLE)

The pyextremes.EVA package returns a series of estimated extreme values for a list
of given return period 1/p years along with a linearised GEVA plot showing calculated
significant wave height vs. return period (years). The LGEVA calculation is made for
each Belgium measuring station and the SWAN modelled data for the calibrated and
uncalibrated models forced with the ECMWF-ERA5 and DOWA wind databases. Extreme
value plots for significant wave height against the calculated return period are presented in
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Figures 13–15. The confidence interval (95%) is shown in the blue shaded upper and lower
bounds. Note that only the calculated EVA graphs for the fine (2.5 km × 2.5 km) grid is
shown. Note that the values from the LGEVA calculations for the calibrated and uncali-
brated models forced with the ECMWF-ERA5 and DOWA wind databases, represented by
the plots, are given in Tables 9 and 10 for the 2.5 km grid and 7.5 km grid, respectively, for
the Westhinder station only.

The calculated long-term extreme values for a given return period are given in Table 9
for the Westhinder Station and compare the LGEVA of the measured data and the SWAN
modelled data (fine grid) with published data from the Flemish Hydraulic Institute’s
(Waterbouwkundig Laboratorium) published extreme value report [44]. The values in
brackets indicate the percentage difference between the measured EVA values and the EVA
values calculated from the SWAN models. The LGEVA of the SWAN modelled data for the
7.5 km coarse grid is given in Table 10.

Figure 13. Linearised General Extreme Value Analysis plots for calculated significant wave height vs.
return period (years) for measured significant wave heights at various Belgian stations.

Figure 14. Linearised General Extreme Value Analysis plots for calculated significant wave height
vs. return period (years) for the ECMWF-ERA5 forced calibrated SWAN modelled significant wave
heights at various Belgian stations computed on the 2.5 km grid.
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Figure 15. Linearised General Extreme Value Analysis plots for calculated significant wave height vs.
return period (years) for the DOWA forced calibrated SWAN modelled significant wave heights at
various Belgian stations computed on the 2.5 km grid.

The omni-directional significant wave height values, published in the report (for
30 min intervals) and reproduced here, are taken from a long-term analysis conducted
from measurements at Westhinder and gap-filled with measurements from Akkaert-Zuid
for the period between 1984 and 2019 [44]. Note that the values were read off from the
omni-directional plot given in Figures 14 and 15 (directional and omni-directional return
values for significant wave heights—30 min series) in the report.

Table 9. Calculated EVA values (and percentage difference between the measured and modelled
values) from measurements and SWAN models, computed on the fine grid (2.5 km), compared to
published values for deep water station at Westhinder.

Return Published Measured Calibrated SWAN Model Uncalibrated SWAN Model
Period Values [44] Values ECMWF-ERA5 DOWA ECMWF-ERA5 DOWA

1 4.6 m 4.5 m 3.9 m (−14.1%) 3.9 m (−12.8%) 3.6 m (−20.7%) 4.3 m (−4.0%)
5 5.2 m 5.2 m 4.6 m (−12.4%) 4.6 m (−12.4%) 4.2 m (−20.0%) 5.0 m (−4.8%)
10 5.5 m 5.5 m 4.8 m (−11.6%) 4.8 m (−12.4%) 4.4 m (−19.6%) 5.2 m (−5.3%)
20 5.8 m 5.7 m 5.1 m (−11.0%) 5.0 m (−12.2%) 4.6 m (−19.3%) 5.4 m (−5.6%)
50 6.1 m 6.0 m 5.4 m (−10.0%) 5.3 m (−11.8%) 4.9 m (−18.9%) 5.6 m (−6.0%)
100 6.4 m 6.2 m 5.6 m (−9.2%) 5.5 m (−11.6%) 5.0 m (−18.5%) 5.8 m (−6.3%)
200 6.6 m 6.4 m 5.8 m (−8.5%) 5.6 m (−11.6%) 5.2 m (−18.3%) 6.0 m (−6.6%)

Table 10. Calculated EVA values (and percentage difference between the measured and modelled
values) from measurements and SWAN models, computed on the coarse grid (7.5 km), compared to
published values for deep water station at Westhinder.

Return Published Measured Calibrated SWAN Model Uncalibrated SWAN Model
Period Values [44] Values ECMWF-ERA5 DOWA ECMWF-ERA5 DOWA

1 4.6 m 4.5 m 4.0 m (−12.9%) 4.0 m (−11.4%) 3.9 m (−15.0%) 4.5 m (0.3%)
5 5.2 m 5.2 m 4.7 m (−10.6%) 4.7 m (−10.7%) 4.6 m (−12.9%) 5.3 m (1.6%)
10 5.5 m 5.5 m 5.0 m (−9.6%) 4.9 m (−10.3%) 4.8 m (−12.0%) 5.6 m (2.1%)
20 5.8 m 5.7 m 5.2 m (−8.7%) 5.1 m (−10.1%) 5.1 m (−11.2%) 5.9 m (2.6%)
50 6.1 m 6.0 m 5.6 m (−7.3%) 5.4 m (−9.6%) 5.4 m (−10.0%) 6.2 m (3.4%)
100 6.4 m 6.2 m 5.8 m (−6.3%) 5.6 m (−9.2%) 5.6 m (−9.1%) 6.4 m (3.9%)
200 6.6 m 6.4 m 6.0 m (−5.4%) 5.8 m (−8.9%) 5.9 m (−8.3%) 6.7 m (4.4%)

From Tables 9 and 10 it can be seen that the EVA for the MDK-measured data
(Section 3.3) compares very well with the published values [44]. This is to be expected as
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measured data from the same source is used; clearly, there is confidence in the algorithms
used in the EVA model software (pyextremes.EVA package).

All the calculated SWAN modelled EVA values for the 2.5 km fine grid are lower than
the calculated EVA values from measurements. In some cases, the calculated values are
between 18.3% and 20.7% lower than the published values for the ECMWF-ERA5 forced
uncalibrated SWAN model calculated EVA results. The uncalibrated SWAN model forced
with the DOWA dataset, showed the best correlation to the measured data calculated EVA
for both the fine 2.5 km and coarse 7.5 km grids. This best model estimate for the fine
grid is lower than the measured data calculated EVA by between 4.0% and 6.6%. The
SWAN modelled values for the 7.5 km grid seem to be closer to the published values with
the uncalibrated SWAN model forced with the DOWA dataset showing EVA significant
wave heights higher than the published values. The calibrated SWAN model EVA values
forced with the ECMWF-ERA5 and the calibrated SWAN model EVA values forced with
the DOWA database are in the same order of magnitude; between 8.5% and 14.1% for the
2.5 km fine grid and between 12.9% and −5.4% for the 7.5 km coarse grid when compared
to the EVA values calculated from the measured data. The uncalibrated ECMWF-ERA5
forced SWAN model EVA values show the worst comparison to the published values for
both fine and coarse grids while the uncalibrated DOWA forced SWAN model shows the
best comparison for both grid sizes.

4.3. Model 3: Nested Grids
4.3.1. Geographical Extent and Setup

Here, we describe the relative model accuracy for the calibrated and uncalibrated
model forced with the ECMWF-ERA5 and DOWA wind databases for a nested SWAN
model. Note that, for consistency, the 5.0 km × 5.0 km calibrated and uncalibrated SWAN
models are used (refer to Section 3.1) and nested grids are added to the models. As such,
the model was not re-calibrated given the nested grids. Rather, the aim is to see if the
nesting of grids improves the accuracy of the results.

The grids used in the nesting of the SWAN model follow a 1:5 (ρ5) decrease in average
grid size; i.e., the parent grid (“coarse”) is on average a 5 km× 5 km grid, the 1st nested grid
is a 1 km× 1 km resolution grid (“medium”) and the smallest grid resolution approximately
200 m × 200 m (“dense”) grid. The medium grid is orientated with the coarse grid while
the dense grid is orientated parallel to the Belgium coast. The geographical extents of the
grid setups are shown in Figure 16.

The various model results are again described in terms of the computed statistical
parameters, i.e., mean significant wave height, RMSE, bias and correlation coefficient
(Appendix B). Tables 11 and 12 show the calibrated nested SWAN model forced with the
ECMWF-ERA5 and DOWA wind databases, respectively, while Tables 13 and 14 show the
uncalibrated nested SWAN model statistics forced with the ECMWF-ERA5 and DOWA
wind databases, respectively. Note that for each table the grids are arranged from coarse to
medium to dense and compared to each other per statistical parameter.

Table 11. Calibrated SWAN model forced by the ECMWF-ERA5 wind database showing the mean
wave heights, RMSE, Bias and correlation coefficient relative to measured data at Belgian coastal
measuring stations.

Calibrated Mean Significant Wave Height (m) RMSE (m) Bias (m) Corr Coeff (-)

ECMWF-ERA5 Mea-
sured Coarse Med Dense Coarse Med Dense Coarse Med Dense Coarse Med Dense

AKZ 1.03 0.98 0.96 0.90 0.20 0.21 0.26 0.05 0.07 0.14 0.95 0.95 0.94
KWI 1.00 0.95 0.93 0.86 0.19 0.20 0.25 0.05 0.07 0.14 0.95 0.95 0.95
OSN 0.93 0.89 0.86 0.81 0.18 0.19 0.23 0.04 0.07 0.12 0.95 0.95 0.95
SWI 0.54 0.68 0.67 0.61 0.16 0.15 0.14 −0.13 −0.12 −0.07 0.70 0.71 0.72
TRG 0.59 0.64 0.59 0.58 0.18 0.17 0.16 −0.05 −0.01 0.00 0.91 0.91 0.92
WDL 0.75 0.86 0.83 0.78 0.17 0.16 0.16 −0.10 −0.08 −0.02 0.82 0.83 0.82
WHI 1.12 1.01 0.99 0.94 0.24 0.26 0.31 0.10 0.13 0.17 0.91 0.91 0.90
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Table 12. Calibrated SWAN model forced by the DOWA wind database showing the mean wave heights,
RMSE, Bias and correlation coefficient relative to measured data at Belgian coastal measuring stations.

Calibrated Mean Significant Wave Height (m) RMSE (m) Bias (m) Corr Coeff (-)

DOWA Mea-
sured Coarse Med Dense Coarse Med Dense Coarse Med Dense Coarse Med Dense

AKZ 1.03 1.02 0.99 0.94 0.19 0.20 0.23 0.02 0.04 0.09 0.95 0.95 0.94
KWI 1.00 1.00 0.97 0.92 0.17 0.18 0.20 0.01 0.03 0.08 0.96 0.96 0.95
OSN 0.93 0.93 0.90 0.85 0.16 0.17 0.18 0.00 0.03 0.08 0.96 0.96 0.96
SWI 0.54 0.72 0.71 0.65 0.17 0.16 0.13 −0.18 −0.17 −0.11 0.71 0.72 0.74
TRG 0.59 0.70 0.64 0.63 0.20 0.18 0.15 −0.11 −0.06 −0.05 0.93 0.91 0.94
WDL 0.75 0.90 0.87 0.81 0.18 0.16 0.15 −0.14 −0.12 −0.06 0.83 0.83 0.83
WHI 1.12 1.08 1.05 1.02 0.19 0.21 0.24 0.04 0.07 0.10 0.92 0.91 0.90

Table 13. Uncalibrated SWAN model forced by the ECMWF-ERA5 wind database showing the mean
wave heights, RMSE, Bias and correlation coefficient relative to measured data at Belgian coastal
measuring stations.

Uncalibrated Mean Significant Wave Height (m) RMSE (m) Bias (m) Corr Coeff (-)

ECMWF-ERA5 Mea-
sured Coarse Med Dense Coarse Med Dense Coarse Med Dense Coarse Med Dense

AKZ 1.03 0.93 0.91 0.85 0.23 0.24 0.29 0.10 0.13 0.18 0.95 0.95 0.94
KWI 1.00 0.90 0.88 0.82 0.22 0.23 0.28 0.10 0.12 0.18 0.95 0.95 0.95
OSN 0.93 0.84 0.82 0.77 0.21 0.22 0.26 0.09 0.11 0.16 0.95 0.95 0.95
SWI 0.54 0.64 0.63 0.58 0.15 0.15 0.14 −0.10 −0.09 −0.04 0.70 0.70 0.72
TRG 0.59 0.60 0.56 0.55 0.17 0.18 0.17 −0.02 0.03 0.03 0.91 0.91 0.92
WDL 0.75 0.81 0.79 0.74 0.16 0.16 0.18 −0.06 −0.04 0.02 0.82 0.82 0.82
WHI 1.12 0.96 0.94 0.90 0.28 0.30 0.35 0.16 0.18 0.22 0.91 0.91 0.90

Table 14. Uncalibrated SWAN model forced by the DOWA wind database showing the mean wave heights,
RMSE, Bias and correlation coefficient relative to measured data at Belgian coastal measuring stations.

Uncalibrated Mean Significant Wave Height (m) RMSE (m) Bias (m) Corr Coeff (-)

DOWA Mea-
sured Coarse Med Dense Coarse Med Dense Coarse Med Dense Coarse Med Dense

AKZ 1.03 1.13 1.10 1.05 0.23 0.21 0.21 −0.10 −0.07 −0.01 0.95 0.95 0.94
KWI 1.00 1.11 1.08 1.02 0.21 0.20 0.18 −0.11 −0.08 −0.02 0.96 0.96 0.96
OSN 0.93 1.03 1.00 0.94 0.21 0.19 0.16 −0.10 −0.07 −0.01 0.96 0.96 0.96
SWI 0.54 0.81 0.79 0.72 0.24 0.23 0.17 −0.26 −0.25 −0.18 0.71 0.72 0.74
TRG 0.59 0.77 0.71 0.70 0.26 0.22 0.19 −0.19 −0.13 −0.12 0.93 0.91 0.94
WDL 0.75 1.00 0.97 0.91 0.26 0.23 0.18 −0.25 −0.22 −0.15 0.83 0.83 0.83
WHI 1.12 1.20 1.17 1.13 0.19 0.19 0.22 −0.08 −0.05 −0.02 0.92 0.91 0.90

Figure 16. Geographical extents of the nested grids: Coarse grid shown in left panel; Medium grid
shown in top-right panel; and the Dense grid in the bottom-right panel.).
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4.3.2. Computational Statistical Comparison

Considering the statistical analysis for the calibrated SWAN models (presented in
Tables 11 and 12), it can be seen that the model forced with the DOWA database shows the
best results in terms of the RMSE and the average significant wave heights. In both the
SWAN models forced with the ECMWF-ERA5 and DOWA winds, the average significant
wave heights decrease and diverge away from the average measured values with a decrease
in the grid size except for the shallow water stations SWI, TRG and WDL (i.e. shallower
water and closer to the coast than the other stations). These three stations also appear to
show a fairly constant RMSE for ECMWF-ERA5 forced SWAN model and a decrease in
the RMSE for the SWAN model forced with the DOWA wind database while the average
significant wave height shows convergence towards the average measured significant
wave heights. For all other deeper water stations (AKZ, KWI, OSN and WHI), the RMSE
seems to increase by between 5 cm and 7 cm from the coarse grid to the dense grid for the
ECMWF-ERA5 forced SWAN model results and between 2 cm and 5 cm for the DOWA
forced SWAN model results.

A similar pattern is observed for the uncalibrated models (presented in Tables 13 and 14)
when compared with the calibrated models. However, the uncalibrated DOWA forced
SWAN model shows an overestimation of the average significant wave height for the
coarse grid in all of the stations but shows a convergence toward the measured average
significant wave heights with a decrease in the grid density. In addition, the RMSE shows
an improvement (decrease) with a decrease in the grid size from coarse to dense.

5. Discussion

Comparing model results with measurements visually (line graphs), the SWAN model
is very capable of modelling the wave parameters given various calibration parameters
and wind input. Very few differences are observed in this manner. However, considering
the statistical analysis for significant wave height, it is clear that an added advantage in terms
of the RMSE, at the most 10 cm, is gained from a calibrated numerical model relative to
an uncalibrated model. A calibrated model forced with the DOWA wind database has a
small advantage over the calibrated SWAN model forced with the ECMWF-ERA5 database
with an improvement in the RMSE in the order of 2 cm. In particular, calibration of the
numerical model does not significantly improve the model results in terms of significant
wave height RMSE (or other statistical parameters) when compared to the SWAN model
run with the default (recommended) wind formulation and white capping settings when
compared with station measurements along the Belgian coast. Both databases produce the
same order of results with the ECMWF-ERA5 forced uncalibrated SWAN model producing
marginally better results than a SWAN model forced with the DOWA database. The reverse
is true for the calibrated models (DOWA forced SWAN model is marginally better than
ECMWF-ERA5 forced model). In essence, no discernible difference is seen in the accuracy
between the SWAN model forced with the ECMWF-ERA5 database and the SWAN model
forced with the DOWA database when comparing the wave statistics.

Considering the modelled vs. measured wave directions, the SWAN model results
clearly disagree with the measured directional data with regards to the dominant spectral
peak wave direction. Keep in mind that the SWAN models in the study are, by definition,
purely driven by the wind database’s velocities and directions which model the waves
generated by the wind reflected in the wind databases. The wind-driven forcing imposed
on the model seems to produce a relatively accurate record of significant wave heights
but reports an overall misalignment of the dominant wave directions when compared to
measured data.

The spectral peak of the SWAN modelled wave energy is underestimated in most of
the analysed cases relative to measured spectral wave data. However, the tail of the spectra
is shown to be well represented by the SWAN modelled data. This is an important result
when providing modelled boundary conditions for models where the high-frequency tail
is an important aspect (e.g., sediment models). Note that the measured wave data is not
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considered accurate at low frequencies beyond 0.05 Hz. As such, not much discussion is
relevant apart from the peak energy and, to a limited extent, the tail of the spectrum.

The calculated EVA values for the SWAN models underestimate the calculated mea-
sured data EVA values. This confirms the result by Cavaleri (2009) [13] pointing out that
SWAN wind models fail to simulate the peak wave heights of significant storm events.
The calibrated SWAN models show consistent results when the EVA values of the models
forced with the ECMWF-ERA5 and DOWA databases are compared with each other, i.e.,
they seem to calculate EVA values within the same order of magnitude. However, the
ECMWF-ERA5 forced SWAN model shows a marginally more accurate estimation than
the DOWA forced SWAN model when compared to the measured data EVA values. The
calculated EVA values for the uncalibrated SWAN models forced with the ECMWF-ERA5
and DOWA databases vary significantly relative to each other and to the measured data
EVA values. Even though the DOWA forced SWAN model calculated EVA values show the
best fit relative to the measured data EVA values, an uncalibrated SWAN model introduces
additional uncertainties into the results. A counterintuitive result showed that the SWAN
model (coarse 7.5 km grid, uncalibrated model forced with the DOWA wind database) is
the most accurate in terms of the EVA calculations.

For nested grid simulations, a difference in the results for deeper water stations is
observed relative to the shallower water stations, i.e., in terms of the RMSE, the coarse
grid shows the most accurate results and becomes less accurate as the grid size decrease
whereas the shallower coastal stations show an improvement as the grid size decreases.
It is pertinent to note that the increase in the RMSE is in the order of 2 cm to 7 cm which
translates to a general increase in the relative error of between 4% and 7% in the significant
wave height for waves averaging Hs = 1.0 m. In other words, for offshore stations, the
relative RMSE error increases by a relatively small amount but a decrease in the relative
RMSE is seen in the shallower stations. Of course, the coastal bathymetry along the
Belgian coast is an important factor to consider due to the locations of the various shallow
sandbanks and the relative location of the measuring stations in relation to these sandbanks.
As such, it is intuitive that a finer resolution grid will have an influence on shallower
stations where wave transformations (shoaling, breaking, diffraction, etc.) around these
artefacts are important factors.

6. Conclusions

Comparing the calibrated and uncalibrated model results, it can be concluded that the
uncalibrated SWAN model settings produced relatively accurate results regardless of the
wind database used to force the model. Improvements in the RMSE for the calibrated model
relative to the uncalibrated model can be achieved through the meticulous calibration of
the numerical model; however, in this study, it was shown that a calibrated numerical
model only improves the relative error by a small margin compared to the uncalibrated
numerical model.

From this study, it can be concluded that a calibrated SWAN model does, in general,
produce more accurate results when compared to measured data for stations along the
Belgian coastline even though not by any significant margin. However, a calibrated model
is only possible if adequate and sufficient measurements are available to compare the
model results and to be able to calibrate the models. In the absence of available measured
results, this study has shown that uncalibrated model results are reliable provided that
the numerical and physical tuning parameters in the published literature are adopted in
the models.

Comparing the two wind databases, within the context of wind-wave generation along
the Belgian coast, it can be concluded that the SWAN models forced with the databases
produce very similar results in terms of wave parameter statistics. On the modelling
scale conducted in this study, there is no advantage observed in using a spatially finer
scale wind database (DOWA) over a relatively coarser wind database (ECMWF-ERA5).
In essence, when a limited amount of wind input databases are available, a calibrated
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wind-wave model with the available database is sufficient within the context of engineering
design activities.

The question of computational grid sizes vs. the wind grid size used as input to the
SWAN spectral model shows no real significant benefit using a small grid resolution when
comparing the RMSE for the finer (2.5 km) computational grid with the coarser 5.0 km
resolution grid. A small improvement in the order of 1 cm–2 cm is seen for the calibrated
models for SWAN models forced with the ECMWF-ERA5 and the DOWA wind databases,
respectively. There is a more significant improvement from the uncalibrated to the cali-
brated model than from the coarser to the finer computational grids. The same argument
seems to be true for the LTEVA calculations for the deeper water station Westhinder (WHI)
where it is shown that the 7.5 km resolution coarse grid showed a better comparison to
measured and published LTEVA values than the finer 2.5 km resolution grid. It can be
concluded that the additional computational time required for the finer grid does not
produce any notable benefit in terms of an increase in the accuracy of the results when it
comes to large-scale wind-driven regional spectral wave modelling. However, a benefit
to the practise of grid nesting is demonstrated when considering complex bathymetric
effects that have an influence on wave transformation in the shallower areas of the coast,
especially along the Belgian coastline demarcated with its numerous sandbanks.
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Appendix A. Parametrise Wind-Wave Growth from ~u10

Janssen [9] concludes that wave age, wind gusts and the wave phase speed to wind
friction velocity relationship (cph/u∗) are important factors in calculating the wind-wave
growth. In order to parametrise the wind-wave growth, Janssen introduces the background
roughness length z0, that accounts for momentum loss due to factors not considered
explicitly (Charnock’s relation z0 = αcu2

∗/g). In addition, the log-profile wind velocity,
which introduces a roughness length z1 as follows:

u0(z) =
u∗
κ

log
(

z + z1

z0 + z1

)
(A1)

that represents the effect of gravity waves on the wind profile, is assumed which simplifies
the parametrisation of the wind-wave growth. Thus, following the scaling arguments
presented by Miles [33], the growth rate x can be expressed in terms of the dimensionless
phase speed u∗/cph, adjusted for the relative wind/wave angle cos(θ − θwind)

x =
u∗
cph

cos(θ − θwind) (A2)

and a profile parameter Ωm that is essentially Charnock’s relation and is expressed as fol-
lows:

(z0 + z1) =
u2
∗

g
αCH =

u2
∗

g
Ωm

κ2

Ωm = gκ2 (z0 + z1)

u2
∗

(A3)

The profile parameter Ωm relates the roughness of the airflow (z0 + z1) and the sea
state to the wave growth rate.

A final factor that must be accounted for is the so-called Miles parameter that considers
the dimensionless critical height µ = kzc, given a logarithmic wind profile, as follows:

β =
βm

κ2 µ log4(µ), where µ < 1,

µ =

(
u∗
κc

)2
Ωm exp(κ/x)

(A4)

where βm is a constant.
As such, the wind-wave growth rate γ is given as

γ = βεx2σ

= β
ρa

ρw

[(
u∗
cph

)
max[0, cos(θ − θw)]

]2

σ
(A5)

where ρa the density of the air and ρw the density of the water and the contribution to the
wind input source term, Sin = γE where E is variance spectrum.

Appendix B. Statistical Evaluation Equations

Appendix B.1. Mean Absolute Error (MAE)

MAE =
∑N

1 |Xo − Xm|
N

(A6)

where N is the number of samples, Xm the modelled values and Xo the observed (mea-
sured) values.
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Appendix B.2. Root Mean Squared Error (RMSE)

RMSE =

√√√√ 1
N

N

∑
1
(Xo − Xm)2 (A7)

Appendix B.3. Bias

BIAS = Xo − Xm (A8)

where X = 1
N ∑N

i=1(Xi) is the average over the sample space.

Appendix B.4. Correlation Coefficient

r = ∑N
1 (Xo − Xo)(Xm − Xm)√

∑N
1 (Xo − Xo)2 ∑N

1 (Xm − Xm)2
(A9)

Appendix B.5. Bias θ

BIASθ =
1
N

N

∑
i=1

Θi (A10)

where N is the number of samples and Θ = 180− |180− |θo − θm||.

Appendix B.6. Root Mean Squared Error (RMSE)

RMSEθ =

√√√√ 1
N

N

∑
i=1

Θ2
i (A11)

Appendix C. Extreme Value Analysis: Theory

The extreme value analysis is performed by considering the maximum of significant
wave height values within a seven-day window forming a set of independent random
variables, i.e., Hsn = max{Hs1, Hs2, . . . , Hsi}where Hsn represents the 7-day maximum for
the nth 7-day window, and the series of Hsn follows some form of a distribution function. It
is assumed that the weekly maximums, constructed from the significant wave height time
series, follow some form of statistical distribution, unknown at this point. The Generalized
Extreme Value Distribution (GEVA) combines the Weibull, Gumbel and Frechet distributions
as follows [47]:

G(z) = exp{−[1 + η(
z− µ

σ
)]
− 1

η } (A12)

where 1 + η(z− µ)/σ > 0, σ > 0 and −∞ < µ, η < ∞.
From Equation (A12) it can be seen that η is the shape parameter, σ is the scale

parameter and µ the location parameter [47].
For a large enough n, the distribution of Hsn can be approximated by a member of

the distributions represented by Equation (A12). As such, by inverting Equation (A12),
extreme quantiles can be found as follows:

zp =

{
µ− σ

η [1− {− ln(1− p)}−η ], for η 6= 0

µ− σ ln{− ln(1− p)}, for η = 0
(A13)

where zp is related to the return period such that it is expected that zp is exceeded every
1/p years [47]. Note that Equation (A13) can graphically interpreted as a return level plot
by defining yp = − ln(1− p) such that
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zp =

{
µ− σ

η [1− (yp)−η ], for η 6= 0

µ− σ ln yp, for η = 0
(A14)
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