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Abstract

Position-controlled systems driving repetitive tasks are of significant importance in industrial machinery. The elec-
tric actuators used in these systems are responsible for a large part of the global energy consumption, indicating that
major savings can be made in this field. In this context, motion profile optimization is a very cost-effective solution
as it allows for more energy-efficient machines without additional hardware investments or adaptions. In particular,
mono-actuated mechanisms with position-dependent system properties have received considerable attention in liter-
ature. However, the current state-of-the-art methods often use unbounded design parameters to describe the motion
profile. This both increases the computational complexity and hampers the search for a global optimum. In this pa-
per, Chebyshev polynomials are used to describe the motion profile. Moreover, the exact bounds on the Chebyshev
design parameters are derived. This both seriously reduces the computational complexity and limits the design space,
allowing the application of a global optimizer such as the genetic algorithm. Experiments validate the added value of
the chosen approach. In this study, it is found that the energy consumption can be reduced by 62.9% compared to a
standard reference motion profile.
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1. Introduction

In the last decades, economic considerations and stricter government regulations have driven engineers to come up
with new techniques to reduce the energy consumption of industrial machinery. Statistics indicate that electric motors
are generally responsible for about 2/3 of the industrial electricity consumption, which indicates that major savings
are to be made in this field [1].

In this context, several technologies and methods have been developed to reduce the electrical energy consump-
tion of mechatronic systems. For instance, [2] has demonstrated that acquiring new machinery with existing well-
established energy-conserving technologies results in savings of approximately 57%. Nevertheless, the adoption of
new equipment entails certain costs, which hampers the wide spread of these innovations.

Motion profile optimization on the other hand, is a cost-effective alternative which can be implemented without
additional investments in hardware. It starts from the idea that in many industrial applications, only part of the motion
is constrained by the process requirements. Hence, an optimization potential rises in the non-constrained part of the
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position function θ(t), in between the start θ(tA) = θA and endpoint θ(tB) = θB of the point-to-point (PTP) motion (Fig
1). Moreover, since many industrial applications involve repetitive movements, the motion profile optimization effect
will be perceptible every machine cycle, thus, making it an indispensable step in modern energy-efficient machine
design.

?

?

?

?

Figure 1: Motion profile of a PTP movement with constraints θA, θB, tA and tB.

Within this scenario, several motion profile optimization techniques have been proposed in multiple disciplines.
An overview of this is covered in survey [3] and book [4]. In general, the current techniques can be classified based
on application type, system property identification, optimization algorithm and motion profile function θ(t).

As for the application type, a vast amount of research is focused on the optimization of conventional industrial
robots (IRs) such as a 6-DOF serial robotic arm. For example, recent literature [5] proved that asymmetric jerk profiles
can be enacted as an effective tool for the trajectories planning of IRs. Moreover, [6] presented an optimization
approach which interfaces with current robot offline programming tools used in industrial practices. However, these
type of robots are specifically designed to work in flexible production environments and are not suitable for those
manufacturing environments where very high dynamics and accuracy are of utmost importance.

Therefore, lots a mechatronic systems are designed as rod mechanisms with a dedicated actuator. Given the
tendency to evolve from a monoactuator driving all machine components towards dedicated positioners for each
machine movement [7], it is evident that one machine can contain numerous motion profile optimization opportunities.
For example, in [8], various motion laws were compared for mechanical systems with constant load parameters such
as the inertia J. In [9], an analytic methodology is is developed for 1-DOF systems moving a constant inertia load.
However, as indicated in literature [10], it is essential to consider varying loads to cover the majority of machine
applications, which is also the focus of the present study.

For what concerns the system property identification approach, one can distinguish either analytic or CAD-based
approaches. Analytic identification used in [11] and [12] apply Hamilton’s principle and Lagrange multipliers to
obtain the differential-algebraic equations of the system. In [13], a method of virtual work is described to obtain the
system matrix while [14] determines the inertia profile using the method of kinetic energy. In [15], analytic equations
were derived for a two-link flexible manipulator. However, these analytic approaches are cumbersome, complex,
error-prone, and are not easily applicable. Especially given the trend indicated in [16] that there is a demand for
methods that take into account the ease of implementation.

Fortunately, machine builders often already design their machines in 3D CAD multibody software, which can be
used to extract crucial information. Hence, in [17], the authors of this paper describe a technique to derive the position
dependency of critical parameters inertia J(θ) and load torque τl(θ), based on only three CAD motion simulations.
The latter is also utilized in this paper. Similarly, if no CAD data is available, one can resort to online estimation
techniques as described in [18] and [19].

As for optimization algorithms, several approaches are possible. On the one hand, [20] and [21] use an indirect
approach such as Pontryagin’s Maximum Principle to obtain the best possible control. However, this method tends to
be abandoned recently due to the small convergence area and difficulties incorporating constraints [22].

On the other hand, dynamic programming can be used to solve unconstrained low-dimensional problems, but it
does not scale well to high-dimensional systems and is computationally expensive due to the curse of dimensionality
[23].

Finally, direct approaches recast the optimization into a nonlinear optimization (NLP) problem, which can be
solved with different numerical methods. In particular, [24] and [10] use gradient-based methods such as Sequential
Quadratic Programming (SQP) that are known to have very low solve times and good scalability. However, these
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algorithms can only deliver local optimal solutions and are not suited for problems with multiple minima. Moreover,
as indicated in [25], the optimum obtained with gradient-based methods is greatly influenced by the selected starting
points, which are to be chosen arbitrarily.

To avoid this problem, heuristic optimization algorithms a such as generalized pattern search (GPS) [6] or genetic
algorithms (GA) [17] are of interest. In contrast to gradient-based algorithms that do not search the entire design
space of the NLP problem, derivative-free algorithms like GA often sample a wide part of the design space in order
to be successful [26]. Nevertheless, because these heuristic solvers do not exploit gradient information, they are not
computationally competitive with gradient-based methods [27]. In this paper, both a gradient-based and heuristic
genetic algorithm are use to assess the trade-off between computational effort and global optimality.

Regarding the motion profile function, several papers rely on piecewise position functions, where either cubic [28],
quintic [29], or trigonometric [30] splines are used. However, the objective functions in these works, are characterized
by many local minima, causing the risk of getting stuck in a suboptimal solution. For instance, in [31], the usage of
cubic splines resulted in a savings difference of 18% between the global and local optimum. Moreover, in [32] it is
emphasized that for the optimization problem using splines, the global optimum is not guaranteed and is undiscovered
in some optimization cases. In [33] and [34], also trapezoidal and cycloidal speed profiles are compared. However, as
these motion laws are defined by the time and position constraints, they only allow to optimize the intermediate time
instances without actually altering the position function itself.

Finally, continuous motion profile functions such as classic polynomials [35] are also popular because they do not
introduce high jerk peaks into the system, which increases the wear of the components. In [36], third and fifth-order
polynomials are used to describe the motion profile the end-effector, yet only for functionally redundant mechanisms.
[37] also employs polynomials but only considers an acceleration constraint without looking at the energy consump-
tion. Nevertheless, the resulting polynomial optimization problem is known to be badly conditioned. For example in
[17], the coefficients reached values up to 1.8 1020.

To overcome this issue, Chebyshev polynomials have been introduced before in [38] and [39] to solve generic
optimal control problems due to their orthogonal properties and important advantages regarding numerical analysis.
However, contrary to the present paper, these approaches use Chebyshev approximations of the system dynamics
due to the fact that they are described for a broader class of optimal control problems. Moreover, to the authors
knowledge, no exact bounds on the coefficients of the Chebyshev polynomials have been derived before, which is
crucial for limiting the design space and reducing the chance of failing to identify the global minimum.

Recently, a Cheyshev based motion profile optimization routine has been presented by the authors in [40]. How-
ever, due to the numerous symbolic calculations involved in constructing the objective function, solve times of almost
2 hours were reported. In addition, the solutions in [40] were obtained using gradient-based solvers which have a high
risk of getting stuck in local minima. Finally, only theoretical reductions were reported, thus, leaving the feasibility
of the proposed motion profiles undetermined. This paper builds upon these previous results by providing five critical
improvements:

• In order to reduce the computational burden, a discrete approach is presented which eliminates the use of
symbolic operations. To do so, the discrete system property data which originates from the CAD motion
simulations have to be properly rescaled and interpolated.

• As an accurate model of the system dynamics is crucial for a correct optimization, the dynamics of the mecha-
nism are extended by including damping and friction into the optimization routine. In addition, a new identifi-
cation procedure is described which is validated on an industrial case.

• A derivation for exact bounds of the Chebyshev polynomial coefficients is introduced. This allows limiting the
feasible design space. The latter is essential for heuristic optimizers to reduce their computation time and the
chances that the global optimum remains unidentified.

• To check the robustness of the proposed method against getting stuck in local optima, the resulting optimization
problem is solved with both a fast gradient-based and a global heuristic solver (i.e. GA).

• Experimental tests have been carried out on an industrial pick-and-place unit to quantify the actual measured
energy savings and check the feasibility of the optimized motion profiles.
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2. System Modeling

The complete mechatronic system can be divided into two subsystems (Fig. 2). On the one hand, there is the
mechanical subsystem which describes the dynamics of a generic single-axis system. For high dynamical applications,
these systems usually consist of slider-crank mechanisms and four-bar linkages [7]. Nevertheless, the approach is valid
to any position-controlled system where the mechanism is driven by a single actuator.

On the other hand, there is the actuation subsystem which converts the electrical energy into mechanical energy and
drives the mechanism. For the envisaged position-controlled systems, PMSMs are becoming the industry standard for
rotary applications, whereas linear motors are used for fast and precise linear movements [41]. In Fig. 2, the PMSM
actuator is represented by an equivalent DC model.
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mechanical subsystemactuation subsystem
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Figure 2: Schematic of the q-axis of a single axis mechanism.

2.1. Mechanical subsystem

The dynamics of a single axis DOF mechanism can be described by means of the torque equation [10, 42] :

τm(t) = τl(θ) + J(θ)θ̈︸︷︷︸
τa

+
1
2

dJ(θ)
dθ

(θ̇)2︸        ︷︷        ︸
τv

+τ f (θ̇) . (1)

With reference to Fig. 2 and equation (1), let us define θ = θ(t) as the Lagrangian coordinate which describes
the angular position of the main driving axis as a function of time t. The motor torque τm(θ) is defined as the driving
torque generated by the motor. The load torque τl(θ) contains both gravitational forces as well as external process
powers that act on the mechanism.

Furthermore, all inertias of the mechanism’s components are related to the main driving axis resorting to the
concept of reduced moment of inertia. Therefore, the reduced inertia of the complete system J(θ) is defined as a
combination of the reduced load inertia Jl(θ) and inertia of the motor shaft itself Jm. Note that the position-dependent
inertia of the system J(θ), results in two torque components when it is reduced to the motor side. The acceleration
torque τa represents the part of the motor torque responsible for the motor acceleration forces that arise during the
movement, while the variation torque τv compensates for the variation of inertia in the system.

Finally, the frictional torque τ f (θ̇) is defined as the result of frictional forces such as, for instance, viscous brush
friction or dry bearing friction in the motor bearings and mechanical system. A commonly used model of friction
shows three components of force: Coulomb (sliding) friction, viscous damping, and static friction [43]. Regarding
the PMSM, as indicated in [44, p. 175], the only appreciable friction effect in operation is viscous friction. Thus,
coulomb and static frictions can be neglected in the PMSM model. For what concerns the mechanical model, only
the viscous damping is modeled since the other friction components are constant and will not have an effect on the
optimal motion profile:

τ f (θ̇) = µvθ̇ , (2)

with µv the equivalent viscous friction coefficient.
The key benefit of the formulation in (1) is that it permits to model every possible mechanism with a known

geometry and allows to define a generic optimization approach.
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2.2. Actuation subsystem

Concerning the dynamics of the PMSM as depicted in Fig. 2 (represented by an equivalent DC model), the
electromechanical behavior can be easily described by the following basic laws [45, p. 843]:

τm = kti , (3)

u = Ri + L
di
dt

+ e = Ri + L
di
dt

+ pkvθ̇ , (4)

with electric back emf e, resistance R, back emf constant kv, motor torque constant kt, and number of pole pairs p,
which can be found in the motor data sheet.

In equation (4), the voltage drop L di
dt due to the armature inductance is omitted as the mean value of its reactive

power will be zero and therefore does not contribute to the system’s energy need [10].
Depending on whether the electric power flows from the drive unit to the PMSM’s or vice versa, the PMSM

operates in respectively motor or generator mode. In this latter condition, depending on the capabilities of the drive
unit, the generated electric power can be either stored in a capacitor, dissipated as heat on a braking resistance,
or transferred back to the energy source. Recent commercial PMSM drives are sized so that no electric power is
actually dissipated during normal functioning so that the braking resistance is actually activated only under emergency
conditions [7]. Therefore, in what follows, it is assumed that all the generated energy is returned to the grid and no
losses occur in the process.

For a correct model of the actuation subsystem and prediction of the energy usage, it is important to model other
losses such as cooling fans and drive circuitry as well. Nevertheless, the power consumption of these devices is
generally considered constant and is therefore not affected by the motion profile [6].

In order to minimize the total energy need E of the application, it is crucial to quantify the input energy of the
complete system. Therefore, similar to [7], a formulation of the input electrical energy E is derived and a torque-based
design objective is obtained which allows minimizing the energy solely based on the mechanical parameters.

Starting from equations (3) and (4), the instantaneous power Pe is defined as

Pe = u i =
R
k2

t
τ2

m +
pkv

kt
τmθ̇ . (5)

The motion profile is defined on the time interval t ∈ [tA, tB] and must have zero initial and final speed and
acceleration, i.e. θ̇(tA) = θ̇(tB) = θ̈(tA) = θ̈(tB) = 0. The total energy can be expressed as

E =

∫ tB

tA

Pe dt =

∫ tB

tA

[
R
k2

t
τ2

m +
pkv

kt
τmθ̇

]
dt . (6)

Then, by incorporating the torque equation from (1), the total energy of the motion is given by:

E =
pkv

kt

∫ tB

tA

(τa + τv)θ̇ dt︸              ︷︷              ︸
Ek

+
pkv

kt

∫ tB

tA

τl θ̇ dt︸      ︷︷      ︸
Ep

+

∫ tB

tA

[
R
k2

t
τ2

m +
pkv

kt
τ f θ̇

]
dt︸                         ︷︷                         ︸

El

.

(7)

Here, the first term Ek represents the kinetic energy of the moving masses in the system. Due to the rest-to-rest
motion of the envisaged applications, this term reduces to zero. Further, the term Ep represents the potential energy
stored in the system. As this term Ep only depends on the fixed start θA and end position θB, it is disregarded in the
optimization routine [7]. The final term El represents the energy that is lost due to the coil resistance and frictional
forces and is the only term that is affected by optimizing the motion profile θ(t). Nevertheless, in many industrial
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applications, the frictional forces τ f are negligible [20], especially if the inertial loads are predominant. Thus, the
energy losses El can be expressed as:

El =

∫ tB

tA

R
k2

t
τ2

mdt =
R∆t
k2

t
τ2

rms , (8)

where τrms is the RMS value of the motor Torque τm. This proves that the RMS torque τrms can be effectively used
as an optimization objective to minimize the total energy usage of the system. This is very useful in situations where
the motor coil properties are unknown or where parameters are missing [7].

3. Identification

3.1. Inertia and Load Torque

Identification of all the position varying parameters in the highly nonlinear differential torque equation (1) is not
straightforward. Fortunately, machine builders design their machines in 3D CAD multibody software. For this reason,
[7] and [17] describe a technique to derive the position dependency of critical parameters inertia J(θ) and load torque
τl(θ), based on three CAD motion simulations. (Fig. 3).

gravity off
driver

gravity off
driver

gravity on 
driver

CAD Motion
Simulations

Figure 3: Schematic overview of the procedure for extracting position-dependent properties J(θ) and τl(θ) based on three different CAD motion
simulations [17].

In this paper, the identification routine is illustrated by applying it to an industrial pick-and-place unit (Fig. 4)
that performs repetitive movements between start point A with angular position θA = 0 and endpoint B with angular
position θB = 173.6◦. The resulting inertia J(θ) and load torque τl(θ) profiles are presented in Fig. 5. Because of the
machine position limits θA and θB, only the green shaded part of the system properties is relevant during operation.

3.2. Viscous Friction Coefficient

Once the system properties J(θ) and τl(θ) are determined, the only indefinite term in Eq. (1) is the friction torque
τ f , and more specifically µk. In the previous description of the energy flows, the friction torque τ f was neglected,
leading to a simple objective (i.e. τrms) to quantify the energy consumption. However, it is important to verify this
statement for the intended setup. Therefore this section describes a method to quantify the frictional forces τ f .

Since the viscous friction coefficient µk parameter is highly dependent on the practical setup, it is often only
possible to determine this parameter experimentally. Therefore, a first measurement is carried out by using an arbitrary

Figure 4: Experimental set-up (left) and schematic overview (right) of the pick- and place unit.
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Figure 5: Values of system properties inertia J(θ) and load torque τl(θ).

motion profile θ∗(t) as a set point and recording the resulting actual motor torque τe
m(t) and position θe(t). The arbitrary

motion profile θ∗(t) can be determined by using a default motion law such as a trapezoidal or s-curve profile.
After this measurement, a least squares fit can be used to determine the experimental value of µk, by fitting the

torque model τm(θe(t), µk) with the measured torque τe
m.

However, using the measured position θe and its time derivatives θ̇e, θ̈e in the torque equation (1) leads to unfeasible
results since the derivatives amplify any noise that is present in the measurement. Therefore, the measured position
θe(t) is fitted with an n-th degree polynomial θp(t) =

∑n
i=1 aiti and differentiated symbolically to smooth out any noise.

The friction parameter µv is thus determined by comparing the measured torque τe
m(t) with virtual model and fitted

motion profile τm(θp(t)):

minimize
µv ∈R

||τe
m(t) − τm(θp(t), µv)||2 . (9)

For the pick-and-place unit, a viscous damping coefficient of 0.0157Nms/rad was found. In Fig. 6, a comparison
of the measured τe

m(t) and virtual τm(θp(t)) torque is presented. The difference between the virtual torques with and
without friction is minimal, which indicates that the friction can be neglected for the present case. The graph also
shows a close correlation between the virtual and measured torque, which indicates that the virtual model can be
effectively used to minimize the RMS torque τrms and, by extension, the energy consumption E.

Figure 6: Comparison of the virtual τm(θp(t)) and measured torque τe
m(t) (with and without friction).
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4. Optimization Approach

4.1. Motion Profile Definition & Rescaling

In this paper, a Chebyshev polynomial
∑n

i=0 piTi(x) is used to define the position profile θ(t), where t ∈ [tA, tB], in
between the start- (θ(tA) = θA) and endpoint (θ(tB) = θB) of the motion task. The sequence of orthogonal Chebyshev
polynomials Tk(x) = Tk(cos(ϑ)), defined on the interval x ∈ [−1, 1], is obtained from the recurrence relation:

T0(x) = 1, T1(x) = x,

Tk+1(x) = 2xTk(x) − Tk−1(x),
(10)

Alternatively, the polynomials can be derived from the trigonometric definition, which gives exactly the same
results:

Tk(x) = Tk(cos(ϑ)) = cos(kϑ). (11)

To use Tn(x) as a representation for the position profile, a linear transformation from t into the range [−1, 1] of x
is required [46]:

t =
1
2

(tB − tA)x +
1
2

(tB + tA) = ax + b, (12)

where scale factors a and b are defined for the purpose of the following paragraphs. In addition, the position
θ ∈ [θA, θB] is also rescaled to the interval φ ∈ [−1, 1], which makes it possible to obtain strict bounds on the
design space in (32). Thus, the rescaled motion profile description φ(x) of degree n with optimizable coefficients
p = [p0, p1, . . . , pn]T is obtained.

φ(x) =

n∑
i=0

piTi(x), x ∈ [−1, 1]. (13)

The output of the motion simulations in the previous section deliver ns samples of inertia J = [J1, . . . , Jns ]
T , load

torque τl = [τl,1, . . . , τl,ns ]
T and corresponding angle query points θ = [θ1, . . . , θns ]

T . Due to the position rescaling of
the motion profile φ(x), the angle query points θ have to be rescaled accordingly:

φ =
2

(θB − θA)
θ −

(θB + θA)
(θB − θA)

= cθ + d. (14)

Moreover, as the property description is now defined on the rescaled interval φ ∈ [−1, 1], the following relationship
holds with regard to the derivative properties such inertia variation dJ(φ)

dφ :

dJ(φ)
dφ

=
1
2

(θB − θA)
dJ(θ)

dθ
= e

dJ(θ)
dθ

. (15)

When using the rescaled position profile φ(x), it is important to rescale the torque equation (1) as well. Otherwise,
the resulting values of the torque profile τ(x) are distorted which results in different objective values (i.e. τrms) and
solutions. To preserve the motor torque’s absolute values, the following rescaled torque equation is introduced:

τm(x) = τl(φ) +
1
2

dJ(φ)
dφ

1
e

(
φ̇

a.c

)2

+ J(θ)
φ̈

a2.c
+ µk

φ̇

a.c
. (16)

An overview of the position and torque rescalings is presented in Fig. 7. The new system equation (16) ensures
the system dynamics are equally scaled and the minima are not altered.

For what concerns the constraints, the rest-to-rest motion requires zero speed φ̇ and acceleration φ̈ in the start and
endpoint:

φ(−1) = −1 , φ̇(−1) = 0 , φ̈(−1) = 0,
φ(1) = 1 , φ̇(1) = 0 , φ̈(1) = 0. (17)
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Figure 7: Original θ(t) and rescaled position profiles θ(x), φ(x) with their corresponding torque equations.

Referring to (13), and by incorporating the motion profile constraints (17), the lower degree coefficients [p0, ..., p5]T

can be written as a function of the remaining coefficients [p6, ..., pn]T , such that n − 5 degrees of freedom (DOF) are
kept available for the optimization algorithm [11]. Thus, the energy optimal motion profile problem is formulated as
the following minimization problem with design variable vector o = [p6, ..., pn]T :

minimize
o ∈Rn−5

τrms =

√
1
2

∫ 1

−1
τm(φ(x, o))2 dx. (18)

In some applications, an additional constraint of zero jerk in the begin and endpoint can be imposed to limit the
vibrations:

...
φ (−1) = 0 ;

...
φ (1) = 0. (19)

Because of these two extra equations, the DOF is reduced to n− 7 and the design variable vector can be expressed
as o = [p8, ..., pn]T .

4.2. Initialization & Design Space

In this paper, the resulting optimization problem is solved with both a fast gradient-based solver, the BFGS
(Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton method [47], and a global heuristic solver, the genetic algorithm
[48].

For gradient-based optimization, a starting point needs to be defined. The use of the Chebyshev basis Ti(x) in
representation (13) allows initializing the optimization parameter vector at zero since the coefficients in a convergent
Chebyshev series development of the motion profile function φ(x) would converge to zero [49]. Here, we can safely
assume some similar behavior for the coefficients pi in (13).

For what concerns the genetic algorithm, a similar approach is used for the initialization of the population. How-
ever, because a GA often samples a wide part of the design space [26], it is beneficial to determine the exact bounds
on the design vector o. By doing so, the solver can cover a large part of the design space and reveal the global optimal
solution. In the following paragraphs, thanks to the rescaled Chebyshev motion profile φ(x), strict bounds on the
design vector o can be derived.
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To define these bounds, we take a look at the projection of the position profile φ(x) onto the orthogonal Chebyshev
polynomial basis Tl(x). Given that x = cos(θ), we introduce the inner product F:

F = 〈φ(x),Tl(x)〉 =

1∫
−1

φ(x)Tl(x)
√

1 − x2
dx

=

2π∫
0

φ(cos θ)Tl(cos θ) dθ.

(20)

Then, by taking into account the position function definition (13), we find the following result:

F =

2π∫
0

 n∑
k=0

pkTk(cos θ)

 Tl(cos θ) dθ

=

n∑
k=0

pk

2π∫
0

Tk(cos θ)Tl(cos θ) dθ.

(21)

Here, the integral I =
2π∫
0

Tk(cos θ)Tl(cos θ) dθ can be further simplified by using the Chebyshev polynomial orthog-

onality properties, which are rederived here for the sake of readability. Because of Eq. (11) and by using the inverse
Simpson rule of trigonometry, the integral I can be written as:

I =

2π∫
0

cos(kθ) cos(`θ) dθ

=
1
2

2π∫
0

cos
(
(k + `)θ

)
dθ +

1
2

2π∫
0

cos
(
(k − `)θ

)
dθ.

(22)

This integral can be split into three cases:

1. k = ` = 0

I = 2π, (23)

2. k = ` , 0

I = π, (24)

3. k , `

I = 0. (25)

Thus, by taking into account (25), only the term for which k = l remains in the summation F:

F = p`

2π∫
0

cos2(`θ) dθ. (26)
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This can be split into two cases. For ` = 0 and by making use of (23) and (20) we find:

p0 =
1

2π

2π∫
0

φ(cos θ) dθ, (27)

and for ` > 0, by making use of (24) and (20):

p` =
1
π

2π∫
0

φ(cos θ) cos(`θ) dθ. (28)

For θ ∈ [0, 2π], cos θ lies in interval [−1, 1]. Because of the position rescalings of the motion profile φ(x), the
image φ(cos θ) also lies in the interval [−1, 1]. Thus, we find:

|p0| ≤
1

2π

2π∫
0

|φ(cos θ)| dθ ≤
1

2π

2π∫
0

dθ = 1. (29)

and

|p` | ≤
1
π

2π∫
0

|φ(cos θ)|| cos(`θ)| dθ ≤
1
π

2π∫
0

| cos(`θ)| dθ. (30)

To calculate this last integral, we use the periodicity of the function cos(`θ). This function has a period of 2π/`, so
goes ` times up and down on the interval [0, 2π]. So, after taking the absolute value of this function, we find 2` times
the integral over the positive part of a period, for example, the interval [−π/2`, π/2`]:

1
π

2π∫
0

| cos(`θ)| dθ =
2`
π

π/2`∫
−π/2`

cos(`θ) dθ =
4
π
. (31)

Thus, the following bounds for the coefficients pi are obtained:

|p0| ≤ 1 and |p` | ≤
4
π
, ` = 1, . . . , n. (32)

These constraints on the design space simplify the subsequent optimization.

5. Results

5.1. Motion Profile Optimization
In order to assess the performance of the proposed method, a set of optimizations has been performed on the

industrial pick-and-place unit depicted in Fig. 4. The mechanism is required to move between its start position θA of
0◦ and end position θB of 173.6◦ and has a motion time ∆t of 73.5ms. As for the constraint, two different cases are
considered, namely

• Jerk Free (JF): Only the boundary constraints of (17) are taken into account. The corresponding rescaled
Chebyshev position profile φ(x) of degree n is hereafter referred to as cheb”n”. A 5th-degree polynomial,
hereafter indicated as poly5, is taken as the reference motion profile for comparison purposes. This is the
smallest degree polynomial that satisfies the constraints.

• Jerk Zero (J0): In addition to the constraint of a jerk-free optimization, a zero-jerk constraint is added in the
start, and endpoint (19) is added to the motion profile definition. The resulting n-th degree position profile φ(x)
is referred to as cheb”n”J0. The reference motion profile is in this case a 7th-degree polynomial, hereafter
referred to as poly7J0.
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Table 1: Results of the motion profile optimization (Jerk Free).
Gradient-Based Genetic Algorithm

JF τrms [Nm] tsol [s] τrms [Nm] tsol [s]
poly5 (ref.) 22.48 - 22.48 -

trap
17.16

-23.7% -
17.16

-23.7% -

cheb7
13.78

-38.7% 0.21
13.78

-38.7% 3.28

cheb9
12.47

-44.5% 0.32
12.47

-44.5% 40.33

cheb11
12.33

-45.2% 0.51
12.33

-45.2% 67.05

cheb13
12.29

-45.4% 1.06
12.29

-45.4% 142.34

Table 2: Results of the motion profile optimization (Jerk 0).
Gradient-Based Genetic Algorithm

J0 τrms [Nm] tsol [s] τrms [Nm] tsol [s]
poly7J0 (ref.) 28.44 - 28.44 -

cheb9J0
16.12

-43.3% 0.27
16.12

-43.3% 6.15

cheb11J0
13.61

-52.2% 0.38
14.11

-50.4% 175.23

cheb13J0
12.98

-54.4% 0.77
13.15

-53.8% 195.02

For every case, the resulting optimization problem is solved in a MATLAB environment for degrees n = 7, 9, 11,
and 13. The results are presented in Fig. 8 and Tables 1 & 2 where for every motion profile, the corresponding RMS
torque τrms and solve time tsol are displayed. Savings up to 54.4% are obtained in under 0.77 s. The results clearly
converge towards a minimal value for increasing degree n. In general, the motion profiles which include the jerk
constraint (19), have slightly bigger τrms values, which is to be expected due to the fact that this extra constraint limits
the acceleration near the endpoints while it is desirable to have high accelerations here since the inertia is low.

In Table 1, the τrms values of a conventional trapezoidal 1/3 motion profile are presented as well, which accelerates
during 1/3rd of the time, moves at a constant speed during 1/3rd, and decelerates at the last 1/3rd [20]. What is
interesting in this table is that the torque demand can already be significantly reduced by selecting an adequate default
motion law. Notwithstanding that the greatest savings are realized after optimization.

It is worth noting that for the jerk-free motion profiles, the same solution was found for both the genetic algorithm
and gradient-based solver. However, the calculation times with GA are considerably higher. When including the jerk
constraint, the GA comes close but does not completely reveal the full optimization potential. Therefore, for what
concerns the present study, gradient-based optimizations algorithms are preferable. Since the GA did not obtain a
better solution for any motion profile in the bounded search space, we can expect that the results obtained with the
gradient-based method are global optimal solutions.

Although only the forward motion is considered here, similar results can be obtained for the return motion by
simply changing the position constraints.
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Figure 8: Results of the motion profile optimization for different degrees n.

5.2. Measurements
The theoretical results are validated against experimental measurements on the pick-and-place unit (Fig. 4). The

setup comprises a Beckhoff CX5140 PLC, a Beckhoff AX5901 motor drive, and a Beckhoff AM3064 PMSM, which
is connected to the shaft of the mechanism. In order to measure the input electrical energy, a Tektron PA4000 power
analyzer is used to analyze the power supply (Fig. 9).

Motor AM3064

PLC CX5140

Pick-and-place unit
Power 

Drive AX5901

Figure 9: Schematic overview of the experimental setup.

The theoretical savings potential of the motion profile optimization is only fulfilled when the motor is capable of
following the optimized position setpoint. Therefore, a performant motion controller needs to be designed in order to
keep the tracking error as low as possible. Here, similar to [17], a cascade controller with torque and speed feedforward
is employed as it has proven to be successful for high dynamic systems. The look-up table for the feedforward torque
is determined using the torque equation (16).

P PI

Cascade control loops
+Speed feedforward
+Torque feedforward

Lookup Table:
Position

Lookup Table:
Torque

SYS-
TEM

Virtual 
Axist

Figure 10: Schematic overview of the cascade motion controller with feedforward [17].

In Tables 3 and 4, the results of both the measured RMS torque τrms and measured input electrical energy E for
different motion profiles are presented. As expected from the simulations, the lowest absolute energy consumption
is obtained when using jerk-free motion profiles. When the jerk constraint is active, a decrease of 62.9% in energy
consumption can be achieved by optimizing the motion profile, while a relative saving of 52.5% is possible if no extra
constraint on the jerk is imposed.

The measured τrms;meas and calculated RMS motor torque τrms show a very high similarity, which confirms that
the present system model is valid.
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Table 3: Experimental results with energy measurement (Jerk Free).
JF τrms [Nm] τrms;meas [Nm] Emeas [Wh]

poly5 22.48 19.59 312.2

trap
17.16

-23.7%
15.88

-18.98%
215.1

-31.1%

cheb7
13.78

-38.7%
13.40

-31.6%
181.7

-41.8%

cheb9
12.47

-44.5%
12.07

-38.4%
152.3

-51.2%

cheb11
12.33

-45.2%
11.93

-39.1%
150.1

-51.9%

cheb13
12.29

-45.4%
11.83

-39.6%
148.2

-52.5%

Table 4: Experimental results with energy measurement (Jerk Zero).
J0 τrms [Nm] τrms;meas [Nm] Emeas [Wh]

poly7J0 28.44 25.30 458.5

cheb9J0
16.12

-43.3%
15.81

-37.5%
222.9

-51.4%

cheb11J0
13.61

-52.2%
13.08

-48.3%
170.3

-62.9%

cheb13J0
12.98

-54.4%
12.72

-49.7%
170.8

-62.7%
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6. Conclusion

This study proposes a novel approach for motion profile optimization of PTP motions with Chebyshev polynomi-
als. At first, system properties have been extracted from both CAD motion simulations and measurements to obtain
an accurate virtual twin of the system. A Chebyshev motion profile with scaling laws is presented. Especially novel
in this paper is the derivation of the boundary conditions of this profile which enables to define bounds for the design
variables. The latter allows to use an optimizer that is designed to obtain globally optimal solutions, i.e. Genetic Algo-
rithm. In addition, the solutions are validated with fast gradient-based optimization algorithms. Finally, experimental
optimization results have been considered to verify the feasibility of the proposed solutions.

The numerical results, achieved on an exemplary model, clearly show that large τrms savings of up to 53.8% can
be achieved. In addition, it is shown that by employing Chebyshev polynomials for the motion profile, a fast gradient-
based optimization can be effectively employed with solve times under 0.8s. At last, the validation measurements
show that similar savings are obtained on the real machine with a maximum energy reduction of 62.9%.

Due to the straightforward implementation of both the optimization itself and integration of the resulting motion
profiles in the motor drive, the proposed method can be easily adopted in any existing configuration where the CAD
is data available. Therefore, the proposed method is expected to have a beneficial impact on the energy usage of the
envisaged PTP applications.
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