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STABLE SOLVERS AND BLOCK ELIMINATION
FOR BORDERED SYSTEMS*

W. GOVAERTS-

Abstract. Linear systems with a fairly well conditioned matrix M of the form

b n

n

for which a "black-box" solver for A is available, are considered. To solve systems with M, a mixed block
elimination algorithm, called BEM, is proposed. It has the following advantages: It is easier to understand
and to program than the widely accepted deflated block elimination (DBE) proposed by Chan, yet allows the
same broad class of solvers and has comparable accuracy. (2) It requires one less solve with A. (3) It allows a
rigorous error analysis that shows why it may fail in exceptional cases (all other black-box methods known to
us also fail in these cases).

BEM is also compared to iterative refinement of Crout block elimination (BEC) introduced by Pryce and
Govaerts. BEC allows a more restricted class of solvers than BEM but is faster in cases where a solver is given
not for A but for a matrix close to A, which is often the case in applications like numerical continuation theory.

Key words, bordered matrix, block elimination, black-box solver

AMS(MOS) subject classification. 65F30

1. Introduction and notation. Let

be a bordered matrix. We want to solve

n

where x, fare n-vectors and y, g are scalars. In applications like numerical continuation
theory, a solver forA is often available because A has special structure (banded, symmetric,
sparse, or other). It is then advisable to use this solver to solve systems with M. Difficulties
arise when A is nearly singular (in the continuation context this means that we are near
a turning point; see Rheinboldt [13]).

Various authors (Keller 7 ], Moore 8 solved bordered singular systems by altering
A or the elimination strategy. Bj6rck [2] suggests rescaling the last row ofM in such a
way that Gaussian elimination (further denoted by GE) with row interchanges on M
does not pivot to the last row. The problem is then that ofGE with a badly scaled matrix
and Skeel [14] has shown that in most practical cases one iterative refinement leads to
a stable algorithm. This is close (but not equivalent) to BEC + (BEC is to be discussed
further; see also Govaerts and Pryce [5 ]). We concentrate, however, on the case where
a solver for A is given as a "black box," which in practice is often the case. The spirit is
therefore that of Chan and Resasco [3], [4].
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470 w. GOVAERTS

To be precise, we assume that a solver S for A is available, i.e., a map S Rn ._ R n

such that S(r) is an approximate solution to As r.
S is called stable if, when it is applied in floating-point arithmetic of unit roundoff

u, there exist a modest constant Cs, a matrix/A, and a vector Ar such that

(A + AA)S(r)= (r + Ar),

AA --< CsU A II, Ar Csu r ]1,

where is the 2-norm and Cs will be called the stability constant of S.
Block elimination (BE) is a method to solve by decomposing Mblockwise. One

way is to use the Crout factorization

(2)
c d c 6 0

followed by the solution of two block triangular systems.
This leads to the following algorithm.

ALGORITHM BEC.
1. Solve Av b
2. Compute 6 d- cv
3. Solve Aw f
4. Compute y (g cw) / i
5. Computex= w-vy

Another way is to use the Doolittle factorization

again followed by two solutions of block triangular systems.
This amounts to the following.

ALGORITHM BED.
1. Solve A c
2. Compute a d- b
3. Compute y- (g- g;f)/a
4. Solve Ax f- by

Both algorithms provide perfectly satisfying answers ifM, A are both well conditioned
and the solver for A (and in BED, for A T) is stable. IfA is less well conditioned then it
is generally a good idea to improve the obtained result by iterative refinement. If Alg
is any algorithm that produces x, y out off, g, we define Alg + k(k 0, 1, 2, -.-)
as follows.

ALGORITHM Alg+k.
1. Compute x, y out off, g using Alg
2. Fori= 1,2,-..,kdosteps3to5
3. Compute the residualsf f- Ax by and g g- cx dy
4. Compute x2, y2 out off, g using Alg
5. Compute x x + x2, y y + Y2

On first thinking, we might expect that:
(i) BEC and BED have roughly the same behaviour (in many treatments ofGauss-

ian elimination, the difference between the Crout and Doolittle decompositions is hardly
noticed).
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BORDERED LINEAR SYSTEMS 471

(ii) IfM is well conditioned and A tends to singularity, more and more iterations
of BEC (respectively, BED) will be necessary to produce accurate values for x and y.

These assertions are both incorrect, and the behaviour of iterations of BEC and
BED is far more complex. In [5] Govaerts and Pryce consider solvers based on an LU
or QR decomposition. They show that BEC + produces x and y accurately no matter
how ill conditioned A is (except in rare cases ofno practical interest). On the other hand,
BED produces y accurately but requires several iterations to find x (if at all). As made
clear in 5 the remarkable behaviour of BEC + in this case depends on properties of
matrix factorizations like LU and QR.

In 2 we describe some experiments in the case of a solver based on the precon-
ditioned conjugate gradient algorithm. They show that BEC + no longer works in this
case and also support the new algorithm BEM that we propose.

Section 3 gives an error analysis of BEM and shows that it usually produces x, y
accurately ifM is well conditioned and the solver is stable. It also highlights why excep-
tional cases may cause a failure. Propositions 3.1 and 3.3 further contain the basic in-
gredients to prove that in practically arising cases, BEM is stable.

Section 4 describes an "exceptional" situation. The aim is to compare the perfor-
mance ofBEM, BEC, a modified version ofBEC, the deflated block elimination ofChan
and Resasco [3], [4], and iterative refinements of these algorithms in a critical case.

Section 5 draws the final conclusions on the merits and disadvantages of the algo-
rithms.

2. Tests of block elimination algorithms with a solver based on conjugate gra-
dients. In the tests described in this section, A is an 80-by-80 symmetric nonnegative-
definite matrix. It is constructed as

A nlooon999" H2H1 diag 1.49, 1.48, 0.71,0)HH2. n999Hlooo,

where each matrix Hi (1 -<_ =< 1000) is a Householder elementary reflection matrix

Hi I 2hih and hi is a normalized random vector. Except for rounding errors, A has
singular values 1.49, 1.48, ...0.71, 0 and it is made nonsingular only by machine im-
precision. Obviously, A - 1.49.

Next, b, c, d, x, y are vectors and scalars with coefficients chosen uniformly random
in [0, 1]. We then compute f= Ax + by and g cx + dy and solve the resulting system
of the form by BEC, BED, and their iterations.

All computations are done in the PC-version of the Gauss programming language
with no extra precision in the computation of residuals or updating the solutions. Here
U 2 -52 2.2 10 -16. In all the examples M is well conditioned (2-norm condition
number smaller than 200).

The solver for A is the preconditioned conjugate gradient algorithm in Axelsson
and Barker [1, 1.4] with the diagonal ofA as a preconditioner. The stopping criterion
is that the norm ofthe residual must be bounded by 10-4 times the norm ofthe computed
solution. This ensures that the system with A is solved in a stable way (see 2 ). It is to
be remarked, however, that we had similar results with other stopping criteria, e.g., pre-
scribing a fixed number of iterations.

Table gives the logarithms of the relative errors of the computed x and y compo-
nents by BEC + k and BED + k (k 0, 1, 6). For comparison, we also give the
relative error in the solution by Gaussian elimination with row interchanges on the full
matrix M.

The columns BEC-x, BEC-y, and BED-x apparently support the hypothesis that
several iterations of BEC and BED are necessary to produce accurate values for x and
y. Since A is very nearly singular it may even seem surprising that the algorithms converge
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472 W. GOVAERTS

TABLE
Logarithms ofrelative errors in the computed x and y components by BEC, BED, and their iterations using

a preconditioned conjugate gradient solver.

Number
of

iterations

Full GE

BEC

-0.2348

--4.3612

-9.0570

13.5508

-15.7204

15.2564

-14.7037

-14.7330

-4.3704

-8.6889

-13.4635

-15.9106

-15.9106

-15.9106

-0.8711

-2.3433

-6.7891

-12.2967

-14.4728

-14.4763

-14.9900

BED

-14.7424

-13.5273

15.2063

15.8083

-14.6622

-15.1094

-15.5073

at all; however, Jankowski and Wozniakowski 6] have shown that iterative refinement
of almost any solution scheme to solve linear systems will ultimately converge to an
accurate solution (within the bounds posed by the condition of the system and provided
the solution scheme gives a solution with relative error smaller than one).

We can make two other observations:
Without any iteration BED produces y accurately. This result is confirmed by

many similar experiments and we shall prove it whenever A is solved in a stable way
(3).

(2) The relative error in the x-component of the solution by BEC + k + is of the
order of the relative error in the y-component of the solution by BEC + k (i.e., in the
preceding iteration) for k 0, 1, .... Again, this is confirmed by many similar exper-
iments and it will be proved in the important case where the y-component by BEC + k
is accurate ( 3 ).

To test this important case further we organize another experiment. The results are
collected in Table 2. Here we perform BEC and two iterations starting with the accurate
value for y and a zero vector for x. We also give the norm of the right-hand side vector
in step 3 of BEC and the norm of the computed solution (the importance of these
quantities will be clarified in 3).

Again, two things are to be remarked:
The first application of BEC already produces both x and y accurately. This is

what we hoped for and it confirms the second observation concerning Table 1.
(2) In the first application of A (step 3 of BEC) the computed solution has the

same size as the fight-hand side (remember that 11A
_

1.49). This is surprising since A
is nearly singular and for a random right-hand side vector the computed solution will
typically have the size u- AII - times the size of the fight-hand side. In 3 we show
that this observation is the key to the understanding of the algorithm.

The preceding experiments naturally lead us to first compute y by BED and to use
this value, together with a zero vector as approximation to x, in one step of BEC. The
resulting algorithm will be called BEM (block elimination mixed). It is given explicitly
by the following algorithm.
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BORDERED LINEAR SYSTEMS 473

TABLE 2
Logarithms of relative errors in the computed x and y components by BEC and two iterations where a

correct y and a zero vectorfor x are introduced (preconditioned conjugate gradient solver).

Introduced

BEC

+1

+2

Full GE

-14.0759

-15.4510

-15.4143

-15.4734

-15.7744

Norm of
fight-hand

side in
step 3

6.2112

1.9271E 15

8.3257E 16

-15.1916

Norm of
solution
in step 3

5.2935

0.06403

0.04805

ALGORITHM BEM
1. Solve A c
2. Compute 6l d- b
3. Compute y (g- f)/6
4. Solve Av b
5. Compute 6 d- cv
6. Computef f- by
7. Compute gl g- dy
8. Solve Aw
9. Compute y (g cw)/6
10. Compute x w vy
11. Compute y y + y
Remark that steps 1-3 ofBEM are identical to steps 1-3 ofBED. Steps 4-5 ofBEM

are identical to steps 1-2 of BEC. Steps 6-7 compute the residuals given y (from step 3)
and a zero vector for x as first approximations to the solution. Steps 8-10 correspond to
steps 3-5 of BEC applied to the new right-hand side components )], gl. Finally, step 11
updates y.

Remark that steps 4-5 of BEM are interchangeable with steps 6-7 of BEM. Step 4
of BED is omitted to avoid one solve with A (if included, steps 6-7 have to be adapted
and a step 12 is necessary to update x).

TABLE 3
Logarithms of relative errors in the computed x and y components by BEM and two iterations with BEC

(preconditioned conjugate gradient solver).

Step 3

Steps 10-11

+BEC

+BEC +

Full GE

-13.9947

-15.1867

-15.5406

-15.8359

-14.9328

-15.8359

Norm of
right-hand

side in
step 8(BEM),
step 3(BEC)

6.4435

5.1164E 14

2.3295E 15

-15.3589

Norm of
solution in

step 8(BEM),
step 3(BEC)

5.2883

0.5475

0.01477D
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474 W. GOVAERTS

Table 3 gives the result of a test with BEM (A, b, c, d, x, y, f, g, as before). Note
that BEM produces x, y accurately, as we hoped, and that the fight-hand side and com-
puted solution in step 8 have the same order of magnitude (cf. the discussion of Fig. 2).

For completeness, Table 3 also shows the effect of two further iterations with BEC.
The improvement so obtained is small and apparently not worth the effort.

3. Error analysis of BEM. Throughout this section we assume that M is well con-
ditioned, i.e., K(M) MI[. M- is modest.

Proposition 3.1 and its Corollary 3.2 contain the analysis of steps 1-3 ofBEM. The
important result is that y, as computed in step 3 of BEM, is accurate even ifA is very ill
conditioned. This is consistent with the numerical evidence in Table 3 and also explains
the observation made in 2 while discussing Table 1.

Proposition 3.3 is the backward error analysis of BEC. Its Corollary 3.4 draws the
important conclusion: the accuracy ofthe solution obtained by BEC depends exclusively
on the size of I[. This explains why we choose to represent this quantity in Tables 2
and 3.

Now the second part of BEM is precisely an application of BEC to a system trans-
formed by Steps 1-3 and 6-7. Theorem 3.5 shows that in this transformed system, v
is usually of order [IAI[ - IIM[I Ilzlt (even for nearly singular A), and therefore BEM
produces x, y accurately. This confirms the numerical results of Table 3. From the proof
of Theorem 3.5 it is clear that the essential results (a modest IIv and accurate x, y)
remain true if steps 1-3 of BEM are replaced by any method that produces y accurately.
This explains the observations ), (2) in the discussion of Table 2 in 2.

All computations described in this paper are done in the same floating-point precision
u. In general, 7 denotes the computed value of the quantity a (so d need not be close to
a in any sense).

In the error analysis, we use the notation introduced by Pryce 12 for manipulating
the relative error metric introduced by Olver 10 in the scalar case and generalized by
Pryce to the vector case. Throughout the analysis, 01, 02, denote scalar or n
n matrix quantities close to the identity. In the scalar case the notation 0 e (6) where 6
is a nonnegative constant, means 0 e where el --< 6. In the matrix case, it means that
0 is a product of a finite number of matrices exp (Ei) where Z Ei[[ <= 6.

With this understanding we have

fl (x op y)= O(x op y), 0e (u)

whenever x, y are scalars and "op" is one ofthe four basic operations. This remains true
if x, y are vectors and "op" is a componentwise combination. It is also true when "op"
denotes multiplication of a vector by a scalar.

Furthermore, there is a constant Cle such that

fl (xTy) xTOy, 0 (Gu),

where 0 is a diagonal matrix and C1e <= n (cf. 5 ]; in case ofdouble precision accumulation
we have CIp - ).

The obvious bounds

el[ =< e I111, I[e- Ill [10][ e I111

will often be used without notice.
PROPOSITION 3.1. Let S be a stable solverfor A 7- with stability constant Cs. Let

be the result computed in step 3 ofAlgorithm BEM. Then is the y-component of the
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BORDERED LINEAR SYSTEMS 475

exact solution ofa system near Mz h. More precisely, there exist AA, Ab, Ac, Ad,
Af, Ag, and xoo such that

(4)

and

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

(5)

(6)

(7)

(8)

c+ Ac d+ Ad g+ Ag

b+Ab=Obb, 0be 1((1 +CIp)u),

d+ Ad Odd, Od (U),

f+Af=Of, Ofel((2+Clp)U),

g+ Ag=Ogg, Oge (2u),

ac --< Csu c I1,

Proof. We have

(A + AN c + Ac, AN =< Csu AII,

O-=d-Ozb, 01 l(u),

03 (g (f) g 04f, 03 u ),

05.17= (g- f) /(1,

Ac Csu c II,

02 (CIpu),

04 e (CIPR),

056 l(u).

Combining (6), (7), and 8 ), we obtain

O Olg-0 O 04f(9) y=
07d-OTO2b

So 17 is the exact y-component of the solution of

(10) (A + AAc+ Ac O-{l d y 07 ol g
from which the proposition follows, if]

COROLLARY 3.2. Let the assumptions ofProposition 3.1 be satisfied. Suppose, in
addition, that M is nonsingular and

(lla)

where

(llb)

Then

(llc)

where

(lid)

and

(lie)

UCMr(M) <

CM=(2 + Cip+ 2Cs) exp ((1 + Cip)u).

y- Y <= Gu z[I

(C+CM)K(M)
blCMK(M)

C=(4 + C/e) exp ((2 + Cn,)U).

D
ow

nl
oa

de
d 

09
/2

4/
12

 to
 1

40
.1

17
.3

6.
11

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



476 W. GOVAERTS

(12)

where

(13)

and

Proof. By Proposition 3.1 we have

(M+ AM)(z + Az) h + Ah

z+Az

Z/=
Ac Ad Ag

Now standard perturbation arguments yield

azll _< uC,Ilzl[

where we have used the bounds (4a)-(4f). From this, c) follows. Ul
PRO’OSITION 3.3. Let S be a stable solver for A with stability constant Cs and let, f be the components of( by BEC. Then , exactly satisfy the matrix equality

(14) ( A +c d+b+ b )( (f+ f + ()
where

]IAA]I _--<(2 +Cs)u exp (2u) [IAI[,

]IAcI[ =<(5 +C,,)u exp ((5 +Ctp)u)llcll,

Proof. The computed quantities , , 37, satisfy

15 (A + AvA

(16) (A + AwA)ff= f+ Af,

g-- cOvff
06)----, 06 (3U), 07 6 (Cnu),

d-cO8

09.," 010J, 09E I(U), 010E I(U).

(14a)

(14b)

(14c)

(4d)

(14e)

(4)

(14g)

17 08 (Cn,u),

(18)

Eliminating )7 from 17 and 8) we get

19 06 df+ 06 080 -(J 09 g+ c( 06080 ]-( 07 ,
Combining (18), 15 ), and (16), we get

(20) (A + AA)O-fOg+(b+ Ab))7= f+ Af+[(AA--AwA)+(A + AA)(O-{--I)]ff.
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BORDERED LINEAR SYSTEMS 477

Now 19 and (20) may be rewritten as

+ W
c+ Ac d+ Ad g U

where bounds for Ilzx/ll, Ilzxbll, IlzXcll, IlzXdll, IlzXfll, 117"11, and Ilgll can be computed
from the bounds in 15 )-(18).

COROLLARY 3.4. Let the assumptions ofProposition 3.3 be satisfied and define

(21a) C (5 + 2Cs+ uCs + 2CIp) exp ((6 + Cl,)u),

(21b) C/=(lO+Ci,+2Cs)exp((5+Cip)u).

Assume that uC’r M) < and define

C’M + Cs (M)
(21c) Cz

UC’MK(M)

C’h K(m)
(21d) C UC’M(M)

Then

(22) - z[[ < uCzll z[[ + uC’ [[.

So ifM is well conditioned, then the accuracy ofthe computed solution Y is determined
by the size of ff.

Proof. Rewrite (14) as

(M+ k/)Y +
g

where bounds for k/l[, Af [[, T[I, UI[ follow from 14a)-(14g).
The result now follows by standard perturbation arguments.
THEOREM 3.5. Let be the x-component obtained by BEM. Let be the y-component

obtained by BEM with step 11 omitted, and 2 the y-component obtained by BEM with
step 11 included. Assume that

23 UC’M(M) < 1.

(24a)

(24b)

(24c)

112- xl] _-< uC []zl[ + u2CC’z[[I (A + AwA)- MII
[lY-y II--< uC[lzll,

l[)72-yl[ <= ue"(C + 1)]]z[[ + uZcC’e"I[(A + AwA)-’IIM[I IIz[],

where we have defined

(25a)

(25b)

(25c)

(25d)

C’= 2e+(1 +uCy)(4e2+Cs(1 + e+ 2e2)),

UC’M(M)

c C’z + c,
C=Cs+Cy+e+(1 +uCy)(2e2+Cs(1 + e"+ 2e2")).
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478 W. GOVAERTS

Proof. Let 37 be the y-component computed in step 3 of BEM. Define

(26a) fl,o f- bfi,

(26b) g,o g- djT,

(26c) y y- 37.

Then

Y \g,o

First note that

(28a) f O,l (f O,2bf),

(28b) g-S=O3(g-O4df),

Applying Proposition 3.3 we get

011,012E I(U),

013,014E (U).

with bounds for zLr, Aft, T, U as in 14a)-(14g). Put

(30a) f =f,o +

(30b) g.0 + Ag.

Then by (26a) and (28a)

(31a) ll,sfll <=ueUllfll + 2ueZu(1 /uCy)llmllllzll,

IIAgll <= uellgll + 2ue2U( + ufy)llMIIIIzll.(31b)

Now rewrite (34) as

(32) (M+ //)
Yl gl,0

By straightforward computation we obtain from c), (14e), and (26a)-(31b)

(33 [1Ah --< uC’’ MI[ z[[ + uC’ [1MI[ v
Using (27), (32), (33), the assumption (23), and lc) again, we obtain

(34)
37 Y

Clearly, the size of v is all-important. By the stability assumption we have

(35) (A + AwA)ff,= f + Aft,

35a) AwA <- uCsl[ A

35b) f, --< ufsll f,

By straightforward computations using (26a), (30a), (3 a), and (28a) we find

(36) I1 II--< Ilxll /Cull(A /AwA)-’I[IIMIIIIzlI.
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BORDERED LINEAR SYSTEMS 479

Inserting (36) into (34) we get

(37)
1 Yl

This implies (24a). Of course (24b) is just 11 c).
To prove (24c) first remark that

1137= y (1 --) Y

----< 110(7--Y) / 110sY--Yll
----< ell7, y, / ue 11Y II.

Formula (24c) follows by inserting the bound in (37) for 137 YI in this inequality.
DISCUSSION 3.6. The error bounds in (24b) and (24c) suggest that step 11 of

BEM can be omitted. This is indeed true for perfectly well conditioned M. Since in
practice we deal with less extreme cases, we strongly recommend retaining step 11, whose
computing cost is negligible anyway.

(2) The bound in (24a) shows that the accuracy of the x-component computed by
BEM depends entirely on the size of (A / XwA)-’ II. In particular, the x-component is
accurate whenever (A + AwA)-III < u-ll MI1-1. This is the case that typically occurs
in practice because roundofferrors in the computation ofA and in the solution ofsystems
with A tend to produce this bound.

(3) It is possible to construct highly artificial situations where BEM produces x
accurately and (A + AwA)-l is arbitrarily large (provided there is no overflow or
underflow in the computations). This may be achieved by choosing all components of
A, b, c, d, x, y as appropriate integers in such a way that no roundoff error occurs.
Typically, however, BEM will produce a completely nonaccurate x-component whenever
(A + AwA )-ill > u-2 MII -l. This is best seen from 35 ). Indeed,J +/ will probably

contain a vector of size at least u MII Ilzll in the singular direction of(A + ,SwA). Therefore
we expect

This means that may have a relative error of order one.
(4) In the intermediate case

u-Ill MI1-1 __< (A + AwA )-Ill < u-2 MII
we infer from (24a) that x has a relative error of order less than one. In this case itera-
tive refinement of BEM is in practice very satisfactory (cf. Jankowski and Woznia-
kowski 6 ).

4. A series of experiments in an unusual situation. In this section we describe a
series of experiments with four algorithms to solve bordered singular systems.

These methods are BEM, DBE, BEC + 1, and BEC2.
BEM (block elimination mixed) was introduced in 2 and studied in 3.
DBE (deflated block elimination) is the method introduced by Chan [3 ], [4]. We

used the form proposed in [4].
BEC + (block elimination (Crout)) is the BEC algorithm described in with

one iterative refinement. It was studied by Govaerts and Pryce 5 ].
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480 w. GOVAERTS

BEC2 is a modification of BEC + in which step 5 of BEC is replaced by simply
making all components of x zero. In the iteration, however, step 5 is retained.

As remarked before, in most practically occurring cases, the solver has norm bounded
by u-1 MI1-1. This is typically caused by roundoff error even ifA is theoretically singular.

Tests with such solvers are described in [3] (DBE) and [5] (BEC + ). Section 2
of this paper describes a test with BEM in the case of a conjugate gradient solver. These
and similar experiments show that all four methods produce accurate results in the cases
of practical interest (BEC + and BEC2 only for solvers based on decompositions like
LU or QR, not for solvers based on the conjugate gradient method).

Since our error analysis shows that in certain cases of little practical interest BEM
may fail, it is ofinterest to know whether the other methods might do better. Since mildly
pathological cases might also arise, we can further ask whether iterative refinement is
useful in such cases.

To get insight into the critical cases we consider the ill-reputed matrix A

ifi=j,

W,(i,j)= -1 if i>j,

0 ifi<j.

If 2" > u -1 this triangular matrix has a unique small singular value of order 2-""
the near null vector is (2-" + 1, 2-n+ 2, ). Moreover, small perturbations of the
nonzero elements of W, do not essentially change this behaviour and (W, + A W,)-is of order 2" in this case (small random perturbations in all elements of W,, however,
tend to reduce W, + A W,)-11[ to order u-1 ). The solver for W, is forward elimination
in all cases and u 10 -16.

In all the experiments, b, c, d, x, y are chosen uniformly random in [0, 1] and f,
g are computed in the same precision as f Ax + by and g cx + dy. The resulting
system is then solved by the four algorithms and for each ofthem two iterative improve-
ments are performed as well. This is done for n 20, 40, 60, 80, 100, 120, 140, and 160.
Since the computed 37 is always accurate (137 Y l/I]zll is of the order of u), only the
logarithmic relative error log (I]- xll/II x][ in the x-component is represented.

20 4 60 80 O0 120 14

/..
I"

/

BEM:
BEM 1:
BEM 2:

FIG. 1. BEM with an ill-conditioned triangular A.
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-2

-4

-6

-8

-I0

-12

-14

20

(11 -xlog..

/../..

../../.i
40 60 80 I0 120 14b 16

DBE:
DBE 1:
DBE 2:

Fla. 2. DBE with an ill-conditioned triangular A.

The following should be noted.
Figure shows that BEM produces an accurate x-component for n < 60. Since

2 60 1018, this confirms Discussion 3.6(2).
(2) Figure also shows that BEM + produces accurate results for n < 120 and

that more iterations will not further improve the accuracy for higher n.
This is consistent with Discussion 3.6 (2) and 3.6 (3). Actually, the numerical results

are even better than expected from theory. This might be due, however, to the special
nature ofA.

(3) Figure 2 shows that numerically, DBE behaves very much like BEM. In par-
ticular, it is not always a stable method. In the (admittedly rare) cases where it is not, it
may be improved greatly by one iterative refinement.

(4) BEC + as such is an inferior method in the case where (A + AwA)-I >
u -1 MII-l, since it does not improve by iterative refinement. The reason is obviously

4’o

BEC 1:
BEC 2:
BEC 3:

Fla. 3. BEC + k with an ill-conditioned triangular A.
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-I0

-12

-14

2O 40 6’0 80 100 120 1;0 1’60

BEC 2:
BEC2
BEC2 2:

FIG. 4. BEC2 with an ill-conditioned triangular A.

that the large size of, computed in step 5 of BEC, causes catastrophic roundoff error
in the computation of the residual (Fig. 3).

(5) BEC2 avoids this problem by simply omitting the computation of in the
first round of BEC. The results are then strikingly similar to those of BEM and DBE
(Fig. 4).

5. Conclusions. BEC + is implemented very easily. It has the further possible
advantage that it only needs a solver for A, not forA r. The computational cost is minimal:
essentially three solves with A. Next, it fits well in applications like numerical continuation
theory where a solver for a matrix close to A might be available. Therefore it is highly
recommended in most practical cases.

BEC + has the disadvantage that it requires a solver based on a decomposition
like LU, QR, or a similar one. It fails, e.g., for a solver based on the conjugate gradient
method for a symmetric positive-semidefinite matrix A.

BEC2 is an alternative to BEC + and has the same properties. Its one advantage
is that it can be improved by iterative refinement in some exceptional cases where
BEC + fails because (A + AwA)-’II is excessive. Remark that BEC2 + requires five
solves with A.

Now let the solver be general, i.e., not necessarily based on an LU or QR decom-
position. A solver for A T is often also available in practice. Then BEM has the same cost
as BEC + 1. A solver for a matrix close to A can be used only if BEM is iterated once.
Remark that the cost of an iterative refinement is only one solve with A and that
BEM + is also more accurate in the cases with excessive

DBE has roughly the same requirements as has BEM and similar performance as
well. It uses, however, four solves with A and we think BEM also allows an easier im-
plementation (see also Moore 9 for the error analysis of DBE).
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