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Abstract: Discrete wavelet transform is the useful means for crack identification of beam structures. 

However, its accuracy is severely dependent on the selecting mother wavelet and vanishing mo-

ments, which raises a significant challenge in practical structural crack identification. In this paper, 

a novel approach is introduced for structural health monitoring of beams to fix this challenge. The 

approach is based on the combination of statistical characteristics of vibrational mode shapes of the 

beam structures and their discrete wavelet transforms. First, this paper suggests using regression 

statistics between intact and damaged modes to monitor the health of beam structures. Then, it sug-

gests extracting quasi-Pearson-based mode shape index of the beam structures to use them as an 

original signal in discrete wavelet transforms. Findings show that the proposed approach has sev-

eral advantages compared with the conventional mode shape signal processing by the discrete 

wavelet transforms and significantly improves damage detection’s accuracy. 

Keywords: Pearson correlation-based damage detection; beam structures; discrete wavelet  

transforms; structural health monitoring 
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1. Introduction 

Damage detection of structures at the early stages plays a vital role in their health [1–

3]. In addition, timely damage detection saves many repair costs. Many damage detection 

methods have been developed to monitor structures’ health and detect their damages in 

recent decades [4–6]. Vibration-based damage detection is a large class of damage detec-

tion methods [7–9]. The modal characteristics such as structures’ stiffness, natural fre-

quencies, and mode shapes are used to detect damage in structures [10].  

In [6], it was proved that the local stiffness at the damage region reduces due to the 

damage. Moreover,, in a study, it was reported that the existence of damage decreases the 

natural frequencies of the structures [7]. In practice, obtaining the structures’ stiffness and 

natural frequencies corresponding to higher modes is impossible. Thus, mode shapes are 

suitable modal characteristics for simple damage detection in many structures. So far, 

many mode-shape-based damage detection methods have been developed by various re-

searchers. Yazdanpanah et al. [11] proposed an indicator for damage detection in beam 

structures using mode shape data. Moreover, Ratcliffe et al. [12] applied a modified La-

placian indicator on the mode shapes’ data to detect damages in beam structures. Dahak 
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et al. [13] present a damage detection approach by combining the mode shape and the 

curvature of beam structures. This investigation was based on the global first derivative 

of the beam’s mode shape. However, a practical signal processing-based damage detec-

tion method called wavelet transform can process mode shapes locally. So far, many in-

vestigations have been conducted for damage detection in beam structures by using 

wavelet transform. Generally, there are two main classes of wavelet transforms for the 

beam structures’ one-dimensional signal processing: one-dimensional continuous wave-

let transforms (1D-CWTs) and one-dimensional discrete wavelet transforms (1D-DWTs). 

In these transforms, signals are processed to localize the damage’s position and severity 

via the signal information obtained from the damaged structure [14]. Wavelets transform 

a signal into sub-signals to indicate the damaged signal’s discontinuity [15]. Janeliukstis 

et al. [16] performed an empirical investigation by 1D-CWTs for damage localization of 

beam structure based on mode shapes’ signal. Moreover, Montanari et al. [17] utilized the 

1D-CWTs to localize the cracks of beam structures. Rucka et al. [18] studied the applica-

tion of 1D-CWTs to detect beams’ damage.  

However, a significant weakness of the wavelet transform is that its accuracy de-

pends on the amount of the vanishing moments and the mother wavelet function. In other 

words, changing the amount of vanishing moments may change the outcome of the dam-

age detection. Dependence of accuracy of damage detection on the mentioned parameters 

is a significant disadvantage for detecting the damage because misidentifying it may have 

irreparable outcomes. Investigations have shown that, especially for low-level damages, 

this dependence is significantly increased, and the performance of the wavelet transform 

is impaired. In order to fix this problem and improve the accuracy of damage detection 

by 1D-DWTs in beam structures, this paper proposes creating a regression-based signal 

obtained from the correlations of the intact and damaged mode shapes. The importance 

of the study is that in this study, for the first time, it was suggested to use the Pearson-

based coefficient of damage mode shape for feeding in 1D-wavelet transform to have ac-

curate and robust damage detection. 

2. Basic Formulations 

2.1. Finite Element Modeling 

The equation of motion based on the finite element model (FEM) for the free vibration 

on the beam is presented as follows [7]: 

[𝑀]{𝑥̈ (𝑡)} + [𝐾]{𝑥(𝑡)} = 0 (1) 

where [𝑀] and [𝐾] denote the mass and stiffness matrices in the global coordinate, re-

spectively. Likewise, the {𝑥̈ (t)} and {𝑥(𝑡)} show the acceleration and displacement vec-

tors, respectively. 

By assuming the response {𝑥}={𝜑}ei𝜔𝑡, the Equation (1) is rewritten as follows: 

[M]{−ω2{φ}} + [K]{φ} = 0 (2) 

For the 𝑖th mode, Equation (2) is rewritten as follows [19]: 

[𝑀]{−𝜔𝑖
2{𝜑𝑖}} + [𝐾]{𝜑𝑖} = 0 (3) 

where ωi shows the 𝑖th natural frequency, and φi is its corresponding 𝑖th mode shape. 

Equation (4) is named as the 𝑖th eigenvalue equation. Assuming 𝜔𝑖
2 = 𝜆𝑖, the Equation 

(3) can be written in the following standard form [20]: 

[𝑀]{−𝜆𝑖{𝜑𝑖}} + [𝐾]{𝜆𝑖} = 0 (4) 

The matrices [𝐾] and [𝑀] are obtained by assembling the element stiffness matrix 

[𝐾𝑒] and the element mass matrix [𝑀𝑒], respectively. The element stiffness matrix and the 

element mass matrix for the steel beam structures are expressed as follows: 
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The natural frequencies are obtained from the following equation: 

𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡([𝐾] − 𝜆𝑖[𝑀]) = 0 (7) 

Finally, the mode shapes are obtained from the following expression: 

[[𝑀]{−𝜆𝑖} + [𝐾]]{𝜑𝑖} = 0 (8) 

2.2. Regression 

Regression is an index which by the relationship between one or more independent 

variables and a dependent variable is estimated. The regression analysis has different 

types, and one of the most widely used regression analyses is a linear regression analysis. 

In this paper, linear regression examines the modal shape’s data points to examine the 

beam structure’s health. 

Consider a dataset as {𝜑𝑖
𝑖𝑛𝑡𝑎𝑐𝑡 , 𝜑𝑖

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙
}𝑖=1
𝑛 containing n data points. When 

𝜑𝑖
𝑖𝑛𝑡𝑎𝑐𝑡  and 𝜑𝑖

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙
are considered as dependent (intact mode shape) and (damaged 

mode shape) independent variables; respectively, a linear regression can be expressed as 

follows:  

𝜑𝑖
𝑖𝑛𝑡𝑎𝑐𝑡 = 𝛽0 + 𝛽1𝜑𝑖

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙
+ 𝜖 (9) 

The above equation shows a line equation with an additional term called error ϵ. The 

parameters of this linear model are the vertical intercept 𝛽0 and the slope of the line 𝛽1. 

The slope of the line in the linear regression model indicates the sensitivity of the inde-

pendent variable. The vertical intercept represents the value of the dependent variable, 

which is calculated as zero for the value of the independent variable. Alternatively, the 

constant value or the vertical intercept can be considered the average value of the depend-

ent variable for deleting the independent variable. There are several ways to define and 

minimize an error ϵ. The criterion used in the simple linear regression model is to mini-

mize the sum of squares of error. Since the mean of the error values is zero, it is known 

that the sum of the squares of the error will be minimal when the data distribution is 

normal. As a result, the normality of the dependent variable or residual data is one of the 

essential assumptions for a simple linear regression model.  

In order to compute the Pearson-based correlation between the intact and damaged 

modes, the following expression is used by setting 𝜑𝑖
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

= 𝜅𝑖 and 𝜑𝑖
𝑖𝑛𝑡𝑎𝑐𝑡 = 𝜁𝑖: 

𝐶(𝑖) =
(𝜅𝑖 − 𝜅𝑖̅̅ ̅)(𝜁𝑖 − 𝜁𝑖

̅ )

√(𝜅𝑖 − 𝜅𝑖̅̅ ̅)²(𝜁𝑖 − 𝜁𝑖
̅ )

     𝑖 = 1,2,… ,𝑛 (10) 

where 𝜁𝑖
̅  and 𝜅𝑖̅̅ ̅ are mean of the (intact mode shape, subtractable from arrays of the vec-

tor 𝜁𝑖) dependent and mean of the (damaged mode shape, subtractable from arrays of the 

vector 𝜅𝑖) independent variables. Moreover, 𝐶𝑖 are the quasi-correlation coefficients. 𝑛 
is the number of sampling points of the signal. Finally, the Pearson-based correlation co-

efficients mode shape index are defined as follows: 
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𝑅(𝑖) = 𝜅𝑖 −
(𝜅𝑖 − 𝜅𝑖̅̅ ̅)(𝜁𝑖 − 𝜁𝑖

̅ )

√(𝜅𝑖 − 𝜅𝑖̅̅ ̅)²(𝜁𝑖 − 𝜁𝑖
̅ )

 (11) 

2.3. One-Dimensional Discrete Wavelet Transform 

An important type of wavelet transform is one-dimensional discrete wavelet trans-

form. The one-dimensional discrete wavelet transforms for the signal R(i) are defined as 

follows: 

𝑅(𝑖) = 𝜅𝑖 −
(𝜅𝑖 − 𝜅𝑖̅̅ ̅)(𝜁𝑖 − 𝜁𝑖

̅ )

√(𝜅𝑖 − 𝜅𝑖̅̅ ̅)²(𝜁𝑖 − 𝜁𝑖
̅ )

= 𝐴𝑗(𝑖) + ∑ 𝐷𝑗(𝑖)

𝑗<𝐽

 (12) 

where 𝐴𝑗 show approximation signals at level j, 𝐷𝑗  are detail signals at level j.  

The approximation signals at level j are obtained as follows [21]: 

𝐴𝑗(𝑖) = ∑ 𝑐𝐴𝑗,𝑘

+∞

𝑘= −∞

𝜙𝑗,𝑘(𝑖) (13) 

where 𝑐𝐴𝑗,𝑘 are approximation coefficients at level j. 𝜙𝑗,𝑘(𝑖) indicate scaling functions at 

level j. 

The detail signals at level j denote expressed as follows [21]: 

𝐷𝑗(𝑖) = ∑𝑐𝐷𝑗,𝑘𝜓𝑗,𝑘(𝑖)

𝑘𝜖𝑍

 (14) 

where 𝑐𝐷𝑗,𝑘 are detail coefficients at level j. 𝜓𝑗,𝑘(𝑖) indicate wavelet functions. 

3. Proposed Approach 

In this section, the proposed approach is presented. The approach is based on statis-

tical features of intact and damaged mode shapes related to the beam structures, and dis-

crete wavelet transforms. As seen in Figure 1, in the first step, the health of beam structure 

is monitored by the regression applied between intact and damaged mode shapes. For 

practical applications, the first intact and mode shapes can be used. Note that the pair 

mode shapes are obtained either experimentally or numerically. As seen in Figure 1, when 

the regression factor (R) is equal to 1, it means that the beam structure is intact, and when 

it is between 0 and 1, it means that the beam structure has experienced damage, at least. 

If 0 < R < 1, the damage detection process begins according to the flowchart shown in 

Figure 2. 
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Figure 1. Flowchart of beam structure’s health monitoring by regression indicator. 

As seen in Figure 2, for the proposed damage detection approach, the Pearson-based 

correlation coefficients between the intact and damaged mode shapes are calculated to 

use as the processing signal in the one-dimensional discrete wavelet transform instead of 

using a damaged mode shape signal. Therefore, in this study, damage detection is per-

formed based on the Pearson-based correlation coefficients between the intact and dam-

aged mode shapes in order to improve the power of damage detection by the one-dimen-

sional discrete wavelet transform and eliminate the weakness related to selecting the best 

mother wavelet and vanishing moments.  

 

Figure 2. Flowchart of beam structure’s damage detection by combining the abilities of the Pearson-

based correlation coefficient and the one-dimensional discrete wavelet transform. 

4. Results 

4.1. Numerical Results  

The FEM is applied to calculate the intact and damaged mode shapes of beam struc-

ture for the numerical investigation. As indicated in Figure 3, the beam is divided into 40 

elements (81 nodes). The constant properties of the studied steel beam structure are tabu-

lated in Table 1. 

Table 1. The constant properties of studied beam structure. 

Property Symbol Value (Unit) 

Cross-sectional area (m2) 𝐴 1.82 × 10−4 

Moment of inertia (m4) 𝐼 1.46 × 10−9 

Density (kg/m3) 𝜌 2685  

Total length of beams ( m) 𝐿 0.5  

length of each element ( m) 𝑙𝑒 0.1  
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Figure 3. The considered beam in numerical investigation. 

According to the Figure 3, the damage is applied to element number twenty. Moreo-

ver, each element has three nodes. According to Table 2, in the numerical investigations, 

four damage scenarios are applied on the beam to investigate the performance of our pro-

posed method. Damages are applied by reducing the stiffness of the twentieth element as 

following: 

[K𝑒]𝑑 = 𝛼[K𝑒] 

𝐷 =
[K𝑒] − [K]𝑒

𝑑

[K]𝑒
× 100 =  

[K]𝑒 − 𝛼[K]𝑒  

[K]𝑒
× 100 = (1 − 𝛼) × 100 

(15) 

where 𝐷 is damage level, [𝐾]𝑒
𝑑

 is stiffness of the damage element. Moreover, 𝛼 is a con-

stant (0 < 𝛼 < 1). 

4.2. Numerical Investigations for Structural Health Monitoring 

In this section, numerical investigations are performed for structural health monitor-

ing. According to Table 2, four different damage scenarios are considered to evaluate the 

performance of our regression-based approach for structural health monitoring of beam-

like structures. 

Table 2. Four damage scenarios for structural health monitoring. 

Scenarios No. 
Damage Location 

Damage Level 
Element No. Nodes No. 

1 20 39, 40, 41 90% 

2 20 39, 40, 41 70% 

3 20 39, 40, 41 50% 

4 20 39, 40, 41 30% 

The 90% damage is applied to the twentieth element (i.e., in nodal coordinate, nodes 

39, 40, and 41) in the first damage scenario. In the second, third, and fourth damage sce-

narios, 70%, 50%, and 30% damages are applied to the same location (i.e., nodes 39, 40, 

and 41), respectively. Figure 4 shows eight mode shapes obtained from four different 

damage scenarios. As seen in this figure, damage causes the shift of the intact mode shapes 

in all scenarios. Moreover, results show that as the damage level increases, the shift in-

creases. This finding was reported in the literature that stated that damage shifts mode 

shapes. As seen in Figure 4, the location of damage cannot be determined using mode 

shape directly. The damaged mode shapes provide a qualitative tool to structural health 

monitoring. This qualitative way is considered a weakness when level of damage is low. 

For fixing this problem, this paper proposes a quantitative approach called regression.  
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Scenario 1 Scenario 2 

  

Scenario 3 Scenario 4 

Figure 4. Differences in intact and damaged modes for four considered damage scenarios. 

As mentioned, the regression index R can show health of beam, if the regression in-

dex is R = 1, then the beam structure is intact, and when it is between 0 and 1, it means 

that the structure has been experienced the damage, at least. Figure 5 shows the regression 

diagram between the first mode and the first mode. As expected, the value of the regres-

sion index is  R = 1. 
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Figure 5. Regression diagram for two intact modes. 

On the other hand, Figure 6 shows the regression diagram for the four considered 

scenarios. This figure shows that the regression index 0 < R < 1 is different for the four 

different scenarios considered. The findings demonstrate that as the damage level in-

creases, the R decreases. Moreover, Figure 6 shows that even for the low-level damages, 

reporting R is possible. In contrast, when the level of damage, it is challenging to detect 

the difference between intact and damaged modes. 

After it is specied using the regression index that the beam is damaged. Our proposed 

method is tested. Figure 7a shows the original signal s (damaged mode shape) and the 

results of their one-dimensional discrete wavelet transform. 

After it is specified using the regression index (R) that the beam is damaged. Our 

proposed method is tested. Figure 7a shows the original signal s (damaged mode shape) 

and the results of its one-dimensional discrete wavelet transform. The wavelet family 

Symlet decomposes the signal s, and the vanishing moment is equal to 2 for this figure. 

The damage level in this figure equals 90%, and the damage is located at the twentieth 

element. 

  

Scenario 1 Scenario 2 
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Scenario 3 Scenario 4 

Figure 6. Regression diagram for the four considered scenarios. 

 

(𝐚) 

 
(𝐛) 

Figure 7. The effect of increasing the vanishing moments on the accuracy of damage detection by 

1D-DWT from damaged mode shape signal by 90% damage: (a) vanishing moments = 2, (b) van-

ishing moments = 5. 
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4.3. Numerical Investigations for Damage Detection 

After the structural health monitoring health phase, if 0 < R < 1, the beam structure 

has experienced damage. Thus, damage detection should be performed to prevent further 

losses. This section presents numerical investigations for damage detection. According to 

Table 3, three different damage scenarios are considered for evaluating the performance 

of our proposed damage detection method. Similar to the structural health monitoring 

health phase, in this section, damages of all damage scenarios are located at element num-

ber 20 (i.e., in nodal coordinate, nodes 39, 40, and 41). In the first, second, and third sce-

narios, damages levels are 90%, 70%, and 10%. 

Table 3. Three damage scenarios for structural health monitoring. 

Scenarios No. 
Damage Location 

Damage Level 
Element No. Nodes No. 

1 20 39, 40, 41 90% 

2 20 39, 40, 41 70% 

3 20 39, 40, 41 10% 

Results of numerical investigations for damage detection are presented in Figures 7–

13. These results prove that the performance approach acts better than the conventional. 

Figures 7b, 8b, 9b, 10b, 11b, 12b and 13b demonstrate that using the vanishing moments 

5, damage detection both by model shape signals and Pearson-based mode shape signal 

brings accurate results. However, for vanishing moments 2, the proposed Pearson-based 

mode shape signals bring better damage detection results than the conventional mode 

shape signals. 

 

(𝐚) 
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(𝐛) 

Figure 8. The effect of increasing the vanishing moments on the accuracy of damage detection by 

1D-DWT from Pearson-based mode shape signal by 90% damage: (a) vanishing moments = 2, (b) 

vanishing moments = 5. 

 

(𝐚) 
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(𝐛) 

Figure 9. The effect of increasing the vanishing moments on the accuracy of damage detection by 

1D-DWT from damaged mode shape by 70% damage: (a) vanishing moments = 2, (b) vanishing 

moments = 5. 

 

(𝐚) 
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(𝐛) 

Figure 10. The effect of increasing the vanishing moments on the accuracy of damage detection by 

1D-DWT from damaged mode shape by 70% damage: (a) vanishing moments = 2, (b) vanishing 

moments = 5. 

 

(𝐚) 
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(𝐛) 

Figure 11. The effect of increasing the vanishing moments on the accuracy of damage detection by 

1D-DWT from the Pearson-based coefficient extracted from intact and damaged mode shapes by 

70% damage: (a) vanishing moments = 2, (b) vanishing moments = 5. 

 

(𝐚) 
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(𝐛) 

Figure 12. the effect of increasing the vanishing moments on the accuracy of damage detection by 

1D-DWT from the Pearson-based coefficient extracted from intact and damaged mode shapes by 

10% damage: (a) vanishing moments = 2, (b) vanishing moments = 5. 

 

(𝐚) 
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(𝐛) 

Figure 13. The effect of increasing the vanishing moments on the accuracy of damage detection by 

1D-DWT from the Pearson-based coefficient extracted from intact and damaged mode shapes by 

10% damage: (a) vanishing moments = 2, (b) vanishing moments = 5. 

The results of the one-dimensional discrete wavelet transform for mode shape signals 

and Pearson-based signals for two vanishing moments (i.e., 2 and 5) are shown in Figures 

7–13 to simultaneously investigate the effect of both using the proposed Pearson-based 

signals in the result and increasing the order of vanishing moments. In the results pre-

sented in Figures 7–13, a1 indicates the approximation signal at level 1, and d1 indicates 

the detail signal at level 1. The approximation a1 is the high-scale, low-frequency compo-

nent of the original signal. The detail d1 is the low-scale, high-frequency component of 

the original signal. Therefore, it is expected to search the damage’s location in the detail 

signals. 

By comparing the images shown in Figures 7–13, it is found that our proposed ap-

proach eliminates the need for selecting vanishing moments. It is also seen that our pro-

posed method introduces a good alternative for mode shape signals to improve the accu-

racy of damage detection. Thus, using the Pearson-based correlation coefficients of the 

mode shapes instead of the mode shapes in the wavelet transform can improve the dam-

age detection’s accuracy, especially in low-level damages. Moreover, the findings show 

that the damage location, if detected, appears in the detail signals and the approximation 

signals, as expected, are a general approximation of the signals. The results show that it is 

possible to identify damage and cracks in the structure using wavelet transformation of 

Pearson-based correlation coefficients at level 1; as a result, there is no need to choose 

vanishing moments. This is an important advantage over the conventional wavelet trans-

form because it eliminates trial and error efforts for the selection of the best mother wave-

let function. 

4.4. Experimental Results  

Careful design and maintenance of various structures such as buildings, bridges, 

dams, airplanes, trains, beams, etc., is essential. One of the requirements for the design 

and maintenance of structures is their dynamic analysis. Due to the unavailability of ana-

lytical solutions for complex structures, with different loads and boundary conditions, as 

well as errors such as errors resulting from the application of inappropriate assumptions 
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and theories, errors in modeling the details of complex structures, and lack of accurate 

information about the properties materials, numerical approximation models such as the 

finite element method also face problems. Therefore, modal testing is a suitable tool to 

achieve the dynamic properties of the structure. 

In order to implement the modal test, the intact steel beam is used, as shown in Figure 

14. Then, according to Figure 14a, the intact beam is cracked to be used to have the corre-

sponding cracked beam, as shown in Figure 14. The beams are suspended with a soft 

clamp to implement free-free boundary conditions as seen in Figure 14b. A DJB A120V 

accelerometer is used to measure acceleration. This accelerometer is installed at point 4 of 

the structure. An 8202BK vibrating hammer equipped with an 8200BK dynamometer is 

used to apply force to the structure. A 2647A amplifier is also used to convert the power 

signal. The steel beam is divided into 10 points. The accelerometer is fixed at point 4, and 

at all points, the impact force is applied with a hammer. This test is performed once for a 

healthy beam and once for a damaged beam. 

 

(a) (b) 

Figure 14. Intact steel beam and its divisions. 

In order to have damage on the steel beam, at a distance of 30 cm from the head of 

the beam, slot-shape damage with 0.5 mm deep and 1 mm wide across the width of the 

beam is created using a CNC milling machine (Figure 15a). Also, Figure 15b shows the 

cracked steel beam and its free-free boundary conditions. 
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(𝐚) 

 
(𝐛) 

Figure 15. (a) Using CNC milling machining for creating damage on the steel beam, (b) the cracked 

steel beam and its free-free boundary conditions. 

As mentioned, the modal test is performed at all beams’ points (the accelerometer is 

fixed at point 4, and the hammer is moved at other points). The test frequency range is 0 

to 100 Hz. The frequency response functions obtained for the intact beam (Figure 16) have 

been calculated using the BK3560D analyzer and Pulse 8 software by performing experi-

ments and measuring force and acceleration signals. 
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Figure 16. The frequency response functions obtained for the intact beam. 

At the end of the experiment, the mentioned frequency response functions are sent 

to the Icats software and analyzed. After this analysis, the natural frequencies, damping 

coefficients, and the beam modes’ shape are obtained. The natural frequencies and damp-

ing coefficients are reported in Table 4. Moreover, the normalized mode shapes of the steel 

beam in the intact conditions is presented in Table 5. 

Table 4. Experimental natural frequencies and damping coefficients of the intact steel beams. 

Mode Number 1 2 

Frequency (Hz) 27.309 73.9782 

Structural Damping coefficient 0.0037 0.0019 

Table 5. Experimental normalized mode shapes obtained from the modal test of the intact steel 

beam. 

Node Number Mode 1 Mode 2 

1 −2.599334 −2.051736 

2 −1.076546 0.222916 

3 0.260243 1.82904 

4 1.125964 1.509068 

5 1.677929 0.790353 

6 1.68134 −0.780846 

7 1.246111 −1.89759 

8 0.294394 −2.135082 

9 −0.808516 −0.486373 

10 −2.331891 1.687432 

Then, after applying damage to the beam, the test is performed again in the same 

way as before. The accelerometer is installed at point 4, and a hammer blow is applied at 

all points. The test frequency range is 0 to 100 Hz. The frequency response functions ob-

tained for the damaged beam (Figure 17) have been calculated using the BK3560D ana-

lyzer and Pulse 8 software by performing experiments and measuring force and accelera-

tion signals. 
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Figure 17. The frequency response functions obtained for the damaged beam. 

After testing, the obtained frequency response functions are sent to the Icats software 

and analyzed. After this analysis, the natural frequencies, damping coefficients, and the 

damaged beam modes’ shape are obtained. The natural frequencies and damping coeffi-

cients are reported in Table 6. Moreover, the normalized mode shapes of the steel beam 

in the damaged conditions are presented in Table 7. The plot of experimental intact and 

cracked mode shapes is presented in Figure 18 with the red line and blue line, respectively. 

Experimental findings demonstrate that damage causes to reduce natural frequencies 

(Tables 3 and 5). Moreover, similar to the numerical study, damage causes shift mode 

shapes (Figure 18). Experimental results verify that our proposed method for structural 

health monitoring is effective (Figure 19). In addition, the experimental findings verify 

that our proposed method improves the performance of the conventional 1D-DWT (Fig-

ures 20 and 21). 

Table 6. Experimental natural frequencies and damping coefficients of the damaged steel beams. 

Mode Number 1 2 

Frequency (Hz) 27.303 73.9384 

Structural Damping coefficient 0.0035 0.0012 

Table 7. Experimental normalized mode shapes obtained from the modal test of the damaged steel 

beam. 

Node Number Mode 1 Mode 2 

1 −2.455124 −1.785898 

2 −1.153495 0.273122 

3 0.209485 1.536691 

4 1.168128 1.984244 

5 2.038565 0.724189 

6 1.864971 −0.814256 

7 1.316461 −1.883213 

8 0.365667 −1.860149 

9 −0.942927 −0.424004 

10 −2.225317 1.283471 
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Figure 18. Experimental damaged and intact first mode shapes. 

  

(𝐛) (𝐚) 

Figure 19. Regression plot for (𝐚) regression diagram for two experimental intact mode shapes and 

(𝐛) regression diagram for experimental damaged and intact mode shapes. 
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Figure 20. Damage detection by 1D-DWT from experimental damaged mode shape. 

 

Figure 21. Damage detection by 1D-DWT from the Pearson-based coefficient extracted from exper-

imental intact and damaged mode shapes. 

5. Conclusions 

In this study, a novel strategy for structural health monitoring and damage detection 

of the beam structure is present to improve the efficiency of the one-dimensional discrete 

wavelet transforms 1D-DWT. For structural health monitoring of beam structures, it is 

proposed to use regression index (R) to know damage conditions numerically. The regres-

sion index is beneficial, especially for level damages and great damage-sensitive applica-

tion of beam structures. There is no apparent difference between intact and damaged 

mode shapes under low-level damages. Findings show that the performance approach 

acts better than the conventional. In addition, findings demonstrate that using the vanish-

ing moments 5, damage detection both by model shape signals and Pearson-based mode 

shape signal brings accurate results. However, for vanishing moments 2, the proposed 
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Pearson-based mode shape signals bring better damage detection results than the conven-

tional mode shape signals. In order to verify the performance of our proposed method in 

practice, experimental investigations are performed. The experimental results demon-

strate the efficiency of using the Pearson-based coefficients of vibrational mode shapes of 

the beam structures instead of damaged mode shaped to process by 1D-DWT. 
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