ENDOSCOPIC POSTOPERATIVE RECURRENCE IN CROHN’S DISEASE AFTER CURATIVE ILEOCCEAL RESECTION WITH EARLY PROPHYLAXIS BY ANTI-TNF, VEDOLIZUMAB OR USTEKINUMAB: A REAL-WORLD MULTICENTER EUROPEAN STUDY

1 Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
2 Sackler Faculty of Medicine, Tel Aviv University, Israel
3 Moscow Clinical Scientific Centre named after A.S. Loginov, Moscow, Russia
4 State Scientific Centre of Coloproctology named after A.N. Ryzhyh, Moscow, Russian Federation
5 Research Institute of Health Organization and Medical Management, Moscow, Russian Federation
6 Department of Gastroenterology, University Hospitals of Leuven, Leuven, Belgium
7 Department of Gastroenterology, GHA “Evaggelismos-Ophthalmiatreion Athinon-Polykliniki”, Athens, Greece
8 IBD Unit, IRCCS Humanitas Research Hospital, Department of Biomedical Sciences Humanitas University, Milan, Italy
9 CE MAD, IBD UNIT, Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
10 IBD Center, Humanitas Research Hospital-IRCCS, Milan, Italy
11 Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
12 Department of Internal Medicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
13 Department of Gastroenterology, University Medical Centre Ljubljana, Ljubljana, Slovenia
14 Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel
15 Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
16 Department of Public Health, University of Naples Federico II, Naples Italy
17 Department of Medicine, University of Szeged, Szeged, Hungary
18 Department of Gastroenterology, Hepatology and Nutrition, University Hospital Centre, Zagreb, Croatia
19 Irkutsk Scientific Center of Surgery and Traumatology, Russia
20 Department of Gastroenterology, Sheba medical center, Tel Hashomer, Israel
21 Gastroenterology Unit, Rho Hospital, ASST Rhodense, Rho (MI), Italy

©The Author(s) 2022. Published by Oxford University Press on behalf of European Crohn’s and Colitis Organisation. All rights reserved. For permissions, please email: journals.permissions@oup.com
22 Digestive Diseases Institute, Shaare Zedek Medical Center, Jerusalem, Israel
23 Faculty of Medicine, Hebrew University, Jerusalem, Israel
24 Clinical and Research Centre for Inflammatory Bowel Disease, ISCARE Clinical Centre, Prague, Czech Republic
25 Institute of Medical Biochemistry and Laboratory Medicine, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
26 Department of Gastroenterology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIIS-Princesa), Universidad Autónoma de Madrid (UAM), Spain
27 Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
28 IBD Unit, Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
29 Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
30 Department of Gastroenterology, Lyon-Sud hospital, Hospices Civils de Lyon, Lyon and INSERM U1111, CIRI, Lyon, France
31 Department of Gastroenterology and Hepatology, Kaplan Medical Center, Rehovot, Israel
32 Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
33 Concord Medical Center, Clalit Health Services, Bnei Brak, Israel
34 Imelda GI clinical research center, department of gastroenterology, Imelda General Hospital, Bonheiden, Belgium
35 Department of Gastroenterology, St Vincent’s Hospital, Melbourne, VIC, Australia
36 Department of Gastroenterology, University of Melbourne, Melbourne, VIC, Australia
37 Department of Gastroenterology, Austin Hospital, Melbourne, VIC, Australia
38 Inflammatory Bowel Disease Center, Department of Gastroenterology, Radboud University Medical Center, Nijmegen, The Netherlands and Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Canada
39 Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
40 European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
41 Division of Gastroenterology, Hospital da Luz Lisboa, Portugal
42 Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Lisbon, Portugal
43 Department of Gastroenterology, Venizeleio General Hospital, Heraklion, Crete, Greece
44 Department of Surgical Oncological & Gastroenterological Sciences (DiSCOG), Gastroenterology Unit, Padua University, Padua, Italy
45 Department of Gastroenterology, Metaxa Memorial General Hospital, Piraeus, Greece
46 Division of Gastroenterology Mater Dei Hospital, Msida, Malta
47 Department of Gastroenterology and Hepatology, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
48 Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
49 Rappaport Faculty of Medicine, The Technion - Israel Institute of Technology, Haifa, Israel
50 Institute of gastroenterology, Meir Hospital Sapir Medical Center, Kfar Saba, Israel
51 Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
52 Gastroenterology Department, University Hospital of Heraklion, Crete, Greece
53 Department of Gastroenterology, The Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Sciences, University of Manchester, Manchester, UK
54 Gastroenterology Department, Hospital de Bellvitge and IDIBELL, L’Hospitalet, Spain
55 Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Italy
56 Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, Rzeszów, Poland
57 Department of Medical Sciences, University of Turin, Turin, Italy
Abbreviations

CD-Crohn’s disease; CI-confidence interval; ePOR-Endoscopic post-operative recurrence; ICR-ileocecal resection; IMM-immunomodulators; IPTW-inverse probability treatment weighting; IQR-interquartile range; OR-odds ratio; Rutgeerts score (RS); UST- ustekinumab; VDZ-vedolizumab

Correspondence

Henit Yanai, MD MBA; Division of Gastroenterology, Rabin Medical Center 39 Ze’ev Jabotinsky St. Petah Tikva, 4941492, Israel; Email: henityanai@gmail.com

Conference presentation

Oral Abstract presentation at Israeli Week of Gastroenterology July 2021 (virtual), Poster presentation at ECCO Congress February 2022, Vienna, Austria

Data Availability Statement

The data underlying this article were provided by the ePOR study group collaborators. The data cannot be shared publicly for the privacy of individuals that participated in the study. The data will be shared on reasonable request to the corresponding author with the permission of ePOR collaborators.
ABSTRACT

Background

Endoscopic-post-operative-recurrence (ePOR) in Crohn’s disease (CD) after ileocecal resection (ICR) is a major concern. We aimed to evaluate the effectiveness of early prophylaxis with biologics and to compare anti-TNF therapy to vedolizumab (VDZ) and ustekinumab (UST) in a real-world setting.

Methods

A retrospective multicenter study of CD-adults after curative ICR on early prophylaxis. ePOR was defined as a Rutgeerts score \(\geq 2 \) or colonic-segmental-SES-CD \(\geq 6 \). Multivariable logistic regression was used to evaluate risk factors, and inverse probability treatment weighting (IPTW) was applied to compare the effectiveness between agents.

Results

Included 297 patients (53.9% males, age at diagnosis 24y[19-32], age at ICR-34y[26-43], 18.5% smokers, 27.6% biologic-naïve, 65.7% anti-TNF experienced, 28.6% \(\geq 2 \) biologics, and 17.2% previous surgery). Overall, 224, 39 and 34 patients received anti-TNF, VDZ or UST, respectively. Patients treated with VDZ and UST were more biologic experienced with higher rates of previous surgery. ePOR rates within 1-year were: 41.8%. ePOR rates by treatment groups: anti-TNF 40.2%, VDZ 33% and UST 61.8%. Risk factors for ePOR at 1-year: past-infliximab (adj.\(\text{OR}=1.73[95\% \text{CI}:1.01-2.97] \)), past-adalimumab (adj.\(\text{OR}=2.32[95\% \text{CI}:1.35-4.01] \)) and surgical aspects. After IPTW, the risk of ePOR within 1-year of VDZ vs. anti-TNF or UST
vs. anti-TNF was comparable (OR=0.55[95%CI:0.25-1.19], OR=1.86[95%CI:0.79-4.38]), respectively.

Conclusion
Prevention of ePOR within 1-year after surgery was successful in ~60% of patients. Patients treated with VDZ or UST consisted of a more refractory group. After controlling for confounders, no differences in ePOR risk were seen between anti-TNF prophylaxis and other groups.

Keywords:
Crohn’s disease, Biologics, Post-operative recurrence
INTRODUCTION

Bowel damage is present in one-fifth to one-third of patients with Crohn’s disease (CD) at diagnosis and often leads to complications and surgery; up to 50% of the patients will have a surgical resection for CD, within ten years of diagnosis, with up to a third requiring multiple surgeries during their lifetime.1,2

Ileocecal resection (ICR) is the most frequent operation performed in ileocolonic CD.3 However, complete resection of the inflamed bowel segment does not imply a cure. It is well recognized that endoscopic postoperative recurrence (ePOR) precedes symptomatic recurrence and may reach 70% after one year.4 This has influenced paradigms of management with one of two alternatives: either routine endoscopic monitoring within 6 to 12 months of surgery and initiation of treatment in case of asymptomatic endoscopic recurrence based according to the severity of the endoscopic findings (classified by the Rutgeerts Score [RS]),5,6 or early postoperative pharmacological prophylaxis soon after surgery for high-risk patients.7 The benefit of endoscopy-guided therapy over early prophylaxis or vice versa is uncertain.

During the past decade, anti-TNF agents have become the mainstay of prophylaxis therapy for preventing postoperative recurrence in CD.3,8-10 The landmark randomized controlled pilot trial by Regueiro et al.11 that first paved the concept of postoperative prophylaxis with an anti-TNF demonstrated only 10% ePOR at 1-year in the infliximab treated group vs. almost 90% in the placebo arm. The concept was further confirmed in the PREVENT trial, demonstrating 22.4% ePOR 76 weeks after surgery in patients treated with infliximab, half
of the risk of ePOR in the group treated by placebo (22.4% vs. 51.3% p<.001). Similarly, in a post-hoc analysis of the POCER study, patients immediately treated with adalimumab ePOR had only 21% at 6-month after surgery.

Despite the effectiveness of anti-TNF treatment in CD, many patients fail this strategy with time, develop immunogenicity, and become refractory or intolerant due to side effects. The introduction of newer biologic agents with novel mechanisms of action, namely vedolizumab (VDZ) and ustekinumab (UST), has increased medical options for disease control. However, little is known about the efficacy of these newer biologics in preventing postoperative disease recurrence.

Here, we aimed to evaluate the effectiveness of prophylactic therapy in preventing ePOR after curative ICR among patients with CD in a real-world setting and compare the effectiveness of VDZ or UST to that of anti-TNF.

METHODS

Study design and population

This retrospective multicenter cohort study assessed ePOR after curative ICR. Data were collected from 38 centers in Europe, Australia, and Israel. Patients aged >17 years with CD who underwent curative ICR between 2015 and 2019 were included.

All patients were assigned early prophylactic treatment within six months of surgery (not endoscopy-driven). Prophylaxis included either an anti-TNF agent (infliximab, adalimumab, certolizumab pegol), VDZ, or UST. Concomitant non-biologic therapies were allowed after
surgery (aminosalicylates, corticosteroids, immunomodulators) and antibiotics as prophylaxis (imidazole). We included only patients who had a follow-up ileocolonoscopy conducted at least four months after commencing prophylaxis (to enable the assessment of treatment impact). All participants must have had at least 12 months of follow-up after surgery. Any exposure to immunomodulators (IMM), biologics, or previous CD surgeries were assessed and recorded. Patients were excluded if they had a stoma, evidence of inflammation at remote sites outside the resected area including active perianal disease, if they underwent surgical procedure other than ICR (segmental small bowel resection, subtotal or total colectomy), if they were operated for other indications than those related to refractory disease (i.e., malignancy) or if they were pregnant.

Participants were assessed for the first endoscopic, biochemical, and clinical POR up to 1-, 2-, and 3-years post ICR. Participants without outcome data for any of the aforementioned time periods were excluded from that particular time period analysis to minimize bias. If a participant had reached a POR outcome at an early time period, this outcome was also considered a POR for the following time periods. The proportion of events was calculated as the number of patients with an event divided by the number of patients with data at that time point. The end of follow-up was determined by the last clinic visit, death, or discontinuation/drug switch.

Data collection and definitions

Local investigators had access to all source documents, and patients were pseudo-anonymized. An appropriate CRF was designed to collect disease and patients' characteristics. Data included: patient demographics, smoking history, disease phenotype
(Montréal classification), presence of extraintestinal manifestations, history of IBD related medications, previous surgeries, indications for surgery, perioperative medications, surgical information, postoperative complications, postoperative regimen, postoperative endoscopic, clinical, and biochemical assessment, postoperative IBD related hospitalizations, surgeries, and adverse events.

Curative ICR was defined as the resection of all macroscopic disease. Endoscopic recurrence was defined as a RS $\geq i2$ (both i2a and i2b) or colonic segmental SES-CD≥ 6 as specified by the sub investigators at each participating site. Biochemical recurrence was defined as C-reactive protein (CRP)≥ 10 milligram/Liter or fecal calprotectin (FC) > 150 microgram/gram stool. Clinical recurrence was defined as Harvey-Bradshaw index (HBI) > 4 or Physician Global Assessment (PGA) ≥ 1. To assess the impact of pre-surgical biologic exposure, patients were divided into four subgroups: (a) biologic naïve, (b) past biologic exposure, but off biologic at the time of ICR (defined as less than three consecutive months of biologic therapy before surgery), (c) treated with biologic therapy at the time of ICR and continued the same class for prophylaxis, and (d) treated with biologic therapy at the time of ICR and switch out of class for prophylaxis. For standardized analysis, the 1, 2, and 3-years periods were defined: 6 to 18-months, 18 to 30-months, and 30 to 42-months after surgery, respectively.
Outcomes

The primary outcome was the ePOR rate within 1-year after ICR. Secondary outcomes included: ePOR, clinical, biochemical, and surgical recurrence rates at 24, and 36-months, and the safety profile of these treatment strategies.

Statistical analysis

Categorical variables were presented as frequency and percentage, while continuous variables were summarized as the median and interquartile range (IQR). Comparison of categorical variables was performed using the Chi-square test or Fisher's exact test, and continuous variables were compared using the Mann-Whitney U test. Bonferroni method was used to adjust for multiple comparisons.

Multivariable logistic regression using a backward stepwise method for variable selection (p-value>0.1 on Wald test was used for variable removal) was utilized to assess risk. Sex, age at surgery, disease duration, disease behavior (B phenotype), extraintestinal manifestation, smoking status, biologic naïve at surgery, past -infliximab, past -adalimumab, past-VDZ, past-UST, past ICR, surgical properties (open vs. laparoscopic and type of anastomosis [stapler vs. handsewn]), anastomotic type (end-to-end vs. end-to-side vs. side-to-side anastomosis) and prophylactic treatment group (anti TNF, VDZ, or UST) were included in the initial analysis.

To better control for differences between groups, the propensity score was calculated by multivariable logistic regression for the probability of a patient to be assigned a prophylactic treatment with either VDZ vs. an anti-TNF therapy, UST vs. an anti-TNF therapy, or VZD vs.
UST therapy. Sex, age at surgery, disease duration, extraintestinal manifestation, smoking status, past anti-TNF, past-VDZ, past-UST, history of ≥ 2-biologics, past ICR were included in the regression model for the propensity scoring. Next, inverse probability of treatment weighting (IPTW) with stabilized weights and truncation of 5% extreme score was applied. All reported p-values are two-sided. P-values <0.05 were considered significant. Data were analyzed using SPSS (IBM SPSS statistics, version 27.0, IBM Corp., Armonk, NY, USA).

ETHICAL CONSIDERATIONS

The study was approved by each participating center’s local institutional review board (Ethics committee), and the requirement for documented informed consent was waived. The investigators and the participating sites treated all information and data related to the study as confidential and did not disclose such information to any third parties or use such information for any purpose other than the performance of the study.

RESULTS

Patients

Disposition

Overall, 522 patients were screened for eligibility, of whom 297 were eligible for analysis: 224 treated with anti-TNF, 39 - VDZ, and 34 - UST. Patients' disposition is presented in supplementary figure 1.

Characteristics

Of the 297 patients included, 44.1% (n=131) were females, median age at CD diagnosis was 24 (IQR:19-32) years, disease duration at surgery was 8 (IQR:3-13) years, active smoking rate was 17.8% (n=53), 72.4% of patients (n=215) were experienced with biologics, of whom
28.6% (n=85) received more than two biologics, 16.5% (n=49) more than two classes of biologics, and 17.2% (n=51) underwent previous CD related surgery (seven patients >1 surgery). Overall, 152/297 patients were operated on in the emergent or urgent setting (60 for a perforating complication). Forty-three patients received steroids within 30 days before the ICR, while only six patients were on steroids after the surgery. Early (within 30 days) post-ICR leak occurred in three patients (10%), two of these patients were treated with steroids before surgery. Of note, laparoscopic surgery was more common among patients who were operated on between 2017-2019 vs. 2015-2016 (62.1% vs. 48.5%, p =0.027). See Tables 1 and 2 for patients’ characteristics before and after ICR.

After ICR, the majority (224/297 [75.4%]) were assigned an anti-TNF for prophylaxis. Of these, 112 patients (50%) had received an anti-TNF therapy before the ICR (81/112 patients continued the same therapy, and 31/112 were switched in class). When comparing treatment groups, patients treated with VDZ and UST were more biologics-experienced and more likely to have had previous surgery compared to those receiving an anti-TNF (biologic experience: VDZ-87.2% and UST-94.1% vs. anti-TNF-66.5%, p<0.001; previous surgery: VDZ-25.6% and UST-38.2% vs. anti-TNF-12.5%, p<0.001); see table 1 for baseline characteristics. Patients in the VDZ and UST groups had more stricturing complications leading to surgery than those treated with anti-TNF (obstructive complication: VDZ-79.5% and UST-76.5% vs. anti-TNF-60.3%, p=0.021). Combination with an IMM was similar across treatment groups: anti-TNF- 22.3%, VDZ-25.6% and UST-14.7%, p=0.499. After ICR, most of this cohort were treated with standard dosing of biologics for CD (274/297). Twenty patients were on escalated dose (17 on anti-TNF and three on VDZ), while three on UST were given psoriatic
dosing (45 mg every 8 weeks). Later, and following the first index endoscopy, three patients who did not have evidence of ePOR underwent dose escalation within 3-months of that colonoscopy: two with mild endoscopic activity (designated RSi1). Active smoking after ICR and time to prophylaxis were also similar between all treatment groups (smoking rates: anti TNF-19.2%, VDZ-23.1%, UST-8.8% p= 0.257, median time to prophylaxis in months: anti TNF-1.6 (IQR 1.0-2.6), VDZ- 2.1 (IQR 1.1-3.3), UST- 1.5 (IQR 1.0-3.2), p=0.137). See table 2 for surgical characteristics.

Postoperative endoscopic recurrence rates

Within 1-year after surgery, 41.8 % of the cohort (124/297) had ePOR. This rate did not significantly increase with longer follow-up (48.6% [129/263] and 48.6% [90/185] within 24 and 36-months, respectively). The 1-year RS was: 36.6% i0, 22.1% i1, 28% i2, 7.3% i3, and 5.9% i4. Only five patients (1.6%) out of the cohort had an endoscopic recurrence in the colon.

When comparing 1-year ePOR rates per prophylactic agents we noted that there were no significant differences between patients treated with anti-TNF vs. UST (40.2% vs. 61.8%, p=0.054), or anti-TNF vs. VDZ (40.2% vs. 33.3%, p=0.999), but patients treated with VDZ had significantly lower ePOR rates compared to patients treated with UST (33.3% vs. 61.8%, p=0.045). See figure 1 for ePOR per treatment group.
Combining IMM was not associated with lower ePOR within 1-year after ICR (IMM-36.9% vs. no-IMM-43.1%, p=0.396). Only one of the three patients given UST prophylaxis at a lower dose than standard had an ePOR at the index colonoscopy.

The 1-year ePOR based on the RS showed similar distribution between anti-TNF and VDZ, while in the UST group (p=0.074), there was a numerically higher proportion of RS i2 (anti-TNF -27.8%, VDZ-17.9%, UST-41.2%), see figure 2. When analyzing only patients with no/minimal ePOR (RS i0 or i1) vs. significant ePOR (RS i3 or i4), results were similar between treatment groups (p=0.123); however, patients treated with anti-TNF had numerically lower rates of significant ePOR (16.0%) compared to UST (35.0%), p=0.059. Comparing patients’ sub-groups based on RS i0 vs. RS i1 vs. RS i≥2 reveled several differences; more prevalent penetrating phenotype among patient with RS i ≥ 2 (42.5%, 40.5%, and 57.1%, respectively, p=0.035), more extraintestinal manifestations among RS i≥2 (21.7% vs. 12.5% vs. 31.1%, respectively, p=0.016) and more than 2 anti-TNFs and 2 classes of biologics among the RS i≥2 (15.1% vs. 10.9% vs. 34.5%, respectively, p<0.001, and 22.6% vs. 14.1% vs. 40.3%, respectively, p<0.001). The entire set of comparisons between these sub-groups is presented on supplementary table 1.

Secondary outcomes

The biochemical recurrence rate at 1-year was 43.5% (110/253), and a comparison between treatment groups revealed a higher biochemical recurrence rate in the VDZ group (anti-TNF-40.0%, VDZ-65.7%, UST-39.3%, p=0.017). Seventy-six patients had an elevated CRP with a median level of 15.9 mg/L (IQR: 13.1-25.0), and 82 patients had elevated FC with a median level of 440 microgram/gram (IQR: 297-750). CRP levels in the VDZ group was numerically
higher compared to the other treatment groups although not reaching statistical significance (anti-TNF 15.8mg/L [IQR: 13.0-24.5], VDZ 20.5mg/L [IQR: 4.0-27.3], UST 15.3 [IQR: 10.6-19.0], p=0.421). Similarly, FC levels were significantly higher among patients treated with VDZ (anti-TNF 405 (IQR: 288-750), VDZ 465 (IQR: 360-725), UST 180 (IQR: 160-622), p= 0.025).

The 1-year clinical recurrence rate was 64.1% and comparable between treatment groups: anti-TNF-62.0%, VDZ-78.1%, UST-60.9%, p=0.201. Rates of biochemical and clinical recurrence slightly increased from 1-year to 2-years (43.5% vs. 51% and 61.4% vs. 70.6%, respectively). These rates remained stable for 3-years. Surgical recurrence during follow-up occurred in 9/297 (3.0%) patients within a median follow-up of 9.1 (IQR: 3.4-23.4) months. CD-related hospitalization was reported in 17/297 (5.7%) patients within a median of 8.6 (IQR: 2.1-24.8) months. See supplementary table 2.

Adverse events after prophylactic therapy were reported in 19/224 (5.8%) patients. All were treated with an anti-TNF; four patients with severe infectious complications: Legionella pneumonia, catheter sepsis, Staphylococcal skin abscess, a leak after surgery with pelvic collection requiring drainage and antibiotics. One patient developed Hodgkin’s lymphoma while treated with UST; this patient was previously treated with azathioprine and anti-TNF. See supplementary table 3 for adverse events.
Risk factors associated with endoscopic recurrence

In univariate analysis prophylaxis treatment group was associated with ePOR at 1-year, (anti-TNF 40.2% vs. VDZ-33.3% vs UST -61.8%, p=0.031). However, in the last step of the multivariable analysis, only past exposure to either infliximab or adalimumab and side-to-side and end-to-side anastomoses compared to end-to-end anastomosis were associated with the risk of ePOR at 1-year: adjusted OR: 1.73 (95% CI 1.01-2.97), 2.32 (95% CI 1.35-4.01), 0.38 (95% CI 0.17-0.83), and 0.34 (95% CI 0.13-0.92), respectively; see table 3 for risk factors for ePOR at 1-year. Neither prophylaxis with VDZ vs. anti-TNF, UST vs. anti-TNF, nor active smoking were associated with significant risk for ePOR at 1-year and therefore were not included in the final model (adjusted OR: 0.59 [95% CI 0.25-1.38], 1.55 [95% CI 0.62-3.85], and 1.15 [95% CI 0.56-2.36], respectively). There were no differences in risk between patients with stricturing (B2) vs. penetrating phenotype (B3) (0.97 [95% CI 0.55-1.71]). Still, it was not possible to properly assess the risk between B2 or B3 vs. B1 as only a few patients in this cohort were operated on while having an inflammatory phenotype (B1). Results of multivariable analysis for risk factors to ePOR after 2- and 3-years are presented in supplementary table 4, and risk factors for biochemical POR are presented in supplementary table 5.

In a sub-analysis, patients were divided into four sub-groups based on pre-surgical therapeutic exposure: biologic naïve (n=82); exposed, but off biologics at the time of ICR (n=43); on biologic at the time of ICR and continued the same biologic for prophylaxis (n=125); and on biologic at the time of ICR but switched out of class for post-surgical prophylaxis (n=47). Proportion of ePOR within 1-year: 32.9%, 51.2%, 42.4%, 46.8%,
respectively, \(p=0.196 \). When comparing disease duration between these sub-groups, it was noted that biologic naïve patients before surgery had significantly shorter disease duration compared with patients who were pre-surgically exposed to biologics (naïve- 5 years [IQR: 1-13], exposed but off biologics- 11 [IQR: 7-15], same class – 8 [IQR:4-13], switched out of class -9 [4-11], \(p=0.006 \)). There were no differences in disease duration between patients that continued the same class after surgery and patients who were switched out of class (\(p=0.963 \)).

Finally, as patients treated with VDZ and UST consisted of a more refractory group, we further performed a propensity score analysis applying the IPTW to compare groups and account for these confounders. There were no differences in 1-year ePOR risk when comparing the VDZ vs. the anti-TNF groups (OR 0.55 [95% CI 0.25-1.19, \(p=0.131 \)) and the UST vs. the anti-TNF groups (OR 1.86 [95% CI 0.79-4.38], \(p=0.156 \)). However, significantly increased 1-year ePOR risk was observed among UST- compared with VDZ treated patients (OR 3.75 [95% CI 1.33-10.6, \(p=0.012 \)).

DISCUSSION

In this large multicenter real-life cohort of patients with CD after curative ICR who received early postoperative prophylaxis with a biologic agent, ePOR was observed in 41.8%, 49%, and 48.6% within 1, 2, and 3 years, respectively. Most patients in this cohort (75%) were treated with an anti-TNF for prophylaxis. Rates of ePOR within the first year after ICR per prophylactic agent were: 40%, 33%, and 61% among patients on anti-TND, VDZ, and UST, respectively. Patients treated with VDZ and UST prophylaxis comprised a distinct and more
refractory group, highly experienced with biologics and more likely to have had previous CD-related surgeries.

The overall rate of ePOR observed at 1-year in our cohort is double that previously reported in both the PREVENT and POCER trials [12,13]. This higher ePOR rate could be explained by a relatively high number of risk factors for disease recurrence in our cohort: 49.5% operated while having penetrative disease phenotype, 17.2% with a previous ICR, and the majority were biologic experienced (65% had failed an anti-TNF, and 16.5% failed two lines of biologic therapy). In comparison, patients included in the PREVENT trial had a shorter median disease duration: 5.2 vs. 8-years in our cohort, and only 25.3% were treated with an anti-TNF before surgery. Previous exposure to an anti-TNF in the POCER trial cohort was also lower than in our cohort (39% vs. 65%). Notably, patients included in POCER and PREVENT were not exposed to any other class of biologics.

Several real-world studies addressed the issue of ePOR, most reporting higher ePOR rates compared with the results in the randomized control trials, ranging between 30%-70%. In fact, in some studies, ePOR rates were as high as the rates reported in the seminal studies by Rutgeerts et al., when no prophylactic treatment was administered. Most of these studies have significant methodological heterogeneity; thus, these cohorts cannot be directly compared. However, one study from the ENEIDA Registry investigated the impact of early prophylaxis with anti-TNF following ICR (a median time of 29 days after surgery). It demonstrated an overall lower rate of ePOR, reaching 34%. This observation, together with the 40% ePOR rate in our cohort, where most patients also started prophylaxis early
after ICR (a median time of 1.7 months from surgery), may suggest an advantage to the strategy *early prophylactic therapy vs. endoscopy-driven management* for high-risk patients in the postoperative setting.

Data on VDZ and UST as POR prophylaxis are scarce.9,10 In our real-world cohort, only 25% received prophylactic therapy with either VDZ (n=39) or UST (n=34). These groups were relatively small and consisted of distinct refractory patients different than the anti-TNF group; thus, we employed a propensity score analysis considering all relevant variables. We used the IPTW approach to compare the risk of ePOR at 1-year. After controlling for disease severity characteristics, we showed that postoperative treatment with UST or VDZ resulted in a similar ePOR risk to prophylaxis with anti-TNF. A comparison of UST vs. VDZ groups revealed an increased 1-year ePOR risk among UST-treated patients (OR 3.75 [95% CI 1.33-10.6, \(p=0.012\)]). These findings should be interpreted with caution as the numbers were small, and our analysis allows only for approximation of randomization. Further investigation of larger populations in a prospective randomized trial is required to address UST vs. VDZ effect on ePOR.

Discordant endoscopic, biochemical, and clinical recurrence rates were noticed for the various agents, specifically the VDZ and UST groups. Several factors could account for the discordant biochemical and endoscopic recurrence rates in our cohort; first, it is well established that there is high variability in FC levels in patients with CD.24 Likewise, it has been previously shown that the sensitivity of FC for assessing either endoscopic healing or endoscopic inflammation in the postoperative setting is only moderate.25-27 In fact, it was...
shown that the trajectory of serial FC measures is a better indicator of ePOR compared with a single FC measure (as was taken in our cohort). Furthermore, endoscopic healing may miss residual histologic inflammation, possibly explaining some of the discrepancies in FC measurements. As for CRP, levels were only mildly elevated (up to 3-4 times the ULN), and we had only one measurement at each time-period, while data regarding the trajectory of repeated CRP levels were missing. While postoperative endoscopy only reaches the anastomosis, it is possible that more proximal inflammation may confound endoscopic measures of inflammation that were reflected by either elevated FC and/or CRP. Ultimately, it is important to acknowledge that both the VDZ and UST groups were very small, and we believe that most of this variability is explained by the small sample size in these groups and therefore, clear conclusions cannot be drawn. Inconsistency between clinical and endoscopic recurrence is a well-known phenomenon in CD, and other factors may contribute to the symptoms reported by the patients in this cohort, including bile acid diarrhea, bacterial overgrowth, infections, and functional.

In our cohort, pre-surgical exposure to an anti-TNF was a predictor of ePOR. A similar finding was observed in other real-world cohorts. Pre-surgical exposure to anti-TNF is a marker for the more refractory and long-standing disease. Continuation of anti-TNF treatment after surgery resulted in a similar numerical rate of ePOR as switching to a different mechanism of action. Our findings corroborate the previous report by Assa and colleagues, showing that re-introduction of the same anti-TNF agent that had failed to prevent surgery is an effective strategy for preventing postoperative recurrence.
Our study also showed that surgical technique might be a factor in the risk of ePOR; a side-to-side anastomosis was shown to be a protective factor for ePOR (Adj. OR 0.38 [95% CI 0.17-0.83, p<0.015]). Indeed, in the past decade, evidence in favor of a side-to-side anastomosis has emerged and was confirmed. Similarly, a network meta-analysis of 11 trials and 1113 patients confirmed the superiority of stapled side-to-side anastomosis in overall complications, clinical recurrence, and reoperation for recurrence. Moreover, we noted that patients who underwent laparoscopic surgery trended towards a better outcome with lower ePOR rates compared with patients who underwent an open surgery (37% vs. 47.5%, p=0.072), this was probably driven by the fact that patients with the less complicated disease are referred for laparoscopy rather than open surgery.

Our study has several important strengths. It is a large multicenter study focusing on a select population who underwent curative ICR and started early prophylaxis therapy. It contributes novel data on the use of newer biologics in the setting of early postoperative prophylaxis with a biologic in a real-world environment. This study also demonstrates the complexity of preventing disease recurrence in treatment-experienced patients. Limitations include the relatively small sample of patients treated with newer biologic agents, the retrospective study design, variability in the timing of endoscopic evaluation, the lack of central reading and missing data for the 2 and 3-years periods, as well as lack of data regarding the reason for biologic failure before surgery. We also acknowledge potentially missing some patients who did not complete a colonoscopy after starting prophylaxis (either complete remitters or treatment failures); however, facing the nature of this refractory population and the standards of care in the participating centers, we assume that these
cases represent the minority. Similarly, Kaplan-Meyer analysis was not performed in this study as the nature of endoscopic evaluation in the postoperative setting is a follow-up examination that is scheduled based on physician/patient preferences/willingness and health insurance coverage, and it is not conducted to assess clinical exacerbation to confirm or exclude active disease. We do not report rates of endoscopic progression (the transition rates from RS i2 to RS i3-4) through time, and we do not report other risk factors associated with ePOR like myenteric plexitis as these data were not collected. Finally, this study was underpowered for an insightful comparison of the effectiveness of the three studied prophylactic agents.

Conclusion

In this real-world cohort of patients with CD that underwent curative ICR, rates of ePOR at 1-year were 40% and remained stable through 3-years. Patients treated with VDZ or UST prophylaxis consisted of a more refractory group. After controlling for disease severity characteristics, there were no differences in ePOR risk between anti-TNF prophylaxis and the other treatment groups. Our findings highlight the need for more effective therapeutic strategies in the postoperative setting, particularly for refractory patients.
Funding: This work was not supported by any financial contribution

Declaration of personal interests

HY: reports receiving research grants from Pfizer; consultancy, advisory, and speakers’ fees from: AbbVie, Janssen Pharmaceuticals, Pfizer and Takeda
GJM: Advisor/lecturer for AbbVie, Celgene, Celtrion, Ferrirng, Genesis, Hospira, Janssen, MSD, Mylan, Pfizer, Takeda, Vianex, Falk Pharma; Consultation fees for AbbVie, MSD and Takeda; research support from AbbVie, Genesis, Vianex, MSD, and Ferring
AA: consulting and/or advisory board fees from AbbVie, Allergan, Amgen, Arena, Biogen, Bristol-Myers Squibb, Celgene, Celltrion, Ferrirng, Gilead, Janssen, Lilly, MSD, Mylan, Pfizer, Samsung Bioepis, Sandoz, Takeda; lecture and/or speaker bureau fees from AbbVie, Amgen, Biogen, Ferring, Gilead, Janssen, MSD, Mitsubishi-Tanabe, Nikkiso, Novartis, Pfizer, Sandoz, Samsung Bioepis, Takeda; and research grants from MSD, Pfizer, Takeda, Biogen
DP: speaker fees from Janssen, Pfizer, Takeda and Galapagos; Advisory Board from Pfizer
FF: Janssen, Pfizer, MSD, Abbvie
GF: Janssen, Takeda, Pfizer, Amgen, Sandoz, Ferring, Samsung Bioepis, Galapagos, Vifor
DD: speaker, a consultant and an advisory board member for MSD, Abbvie, Takeda, Pfizer, Janssen, Amgen, Biogen and Krka
TK: speaker for Takeda, Abbvie, Pfizer, Janssen and Amgen
NM: speaking and/ or consulting fees from Pfizer, Takeda, Janssen, Ferring, BiomX, BMS, Nestle and grant support from Takeda, Janssen, Abbott, Pfizer, BMS, Corundum Innovation Ltd
FC: speaker, a consultant and an advisory board member from Abbvie, Takeda, Jansen, Pfizer, Biogen, Fresenius, Sandoz
OMN: speaker fees from Janssen, Ferring, Pfizer
KF: speaker’s honoraria from AbbVie, Janssen, Ferring, Takeda and Goodwill Pharma
TM: speaker’s honoraria from MSD, AbbVie, Egis, Goodwill Pharma, Takeda, Pfizer and Teva
ZK: Janssen, Abbvie, Takeda, Celtrion, Pfizer- speaker honoraria
MB: Janssen, Abbvie, Takeda, Pfizer- speaker honoraria
CB: Janssen, Abbvie, Takeda
MC: speaker, as consultant or has received research or education funding from MSD, Abbvie, Hospira, Pfizer, Takeda, Janssen, Ferring, Shire Pharmaceuticals, Dr. Falk Pharma, Tillotts Pharma, Biogen and Gilead
SN: Janssen, Abbvie, Takeda, MSD, Pfizer, Tillotts Pharma, Novartis
TL: Financial support for research from Abbvie, Viatris, MSD, Mundipharma, Biogen, Janssen, Pfizer and Takeda; Speaker fees from Ferring, MSD, Abbvie, Janssen, Amgen, Fresenius Kabi, Galapagos, Viatris and Takeda; Consultancy fee from Janssen, Galapagos, Amgen, Bristol Myers Squibb Fresenius Kabi and Takeda
JPG: speaker, a consultant and advisory member for or has received research funding from MSD, Abbvie, Pfizer, Kern Pharma, Biogen, Mylan, Takeda, Janssen, Roche, Sandoz, Celgene, Gilead, Ferring, Faes Farma, Shire Pharmaceuticals, Dr. Falk Pharma, Tillotts Pharma, Chiesi, Casen Fleet, Gebro Pharma, Otsuka Pharmaceutical, and Vifor Pharma
SS: AbbVie, Takeda, Janssen, Arena, Gilead
PB: financial support for research from AbbVie, Mundipharma, Pfizer, Janssen, Amgen and Mylan; lecture fees from AbbVie, Takeda, Pfizer and Janssen; advisory board fees from Abbvie, Arena pharmaceuticals, BMS, Takeda, Hospira, Janssen, MSD, Mundipharma, Roche, Pfizer, Sandoz, Galapagos, PSI-CRO and Pentax

FH: speaker for Abbvie, Janssen-Cilag, MSD, Takeda, Celltrion, Teva, Sandoz and Dr Falk.

Funding (Grants/Honoraria): Dr Falk, Janssen-Cilag, Abbvie, Takeda. Consulting Fees: Celgene

CV: Janssen

JT: speaker fees from Janssen and consulting fees from Arena Pharmaceuticals, Pfizer, Gilead and Galapagos

KK: speaker fees from Abbvie, Aenorasis, Janssen, MSD, Pfizer and Takeda. Consultation or advisory board member fees from Abbvie, Amgen, Ferring, Galenic, Genesis, Janssen, MSD, Pfizer and Takeda

ES: lecture or consultancy fees from Abbvie, Amgen, Bristol-Myers Squibb, Fresenius Kabi, Janssen, Merck & Co, Sandoz, Sofar, Takeda

CCS: Janssen

RW: speaker for Takeda, AbbVie and Janssen

CE: speaker, a consultant or an advisory board member for Takeda, Janssen Cilag, Pfizer, Abbvie, and has received research funding from the Regional Agreement on Medical Training and Clinical Research between Region Örebro County and Örebro University: ALF IEK: Advisory board member for Abbvie, Astelas, Genesis, Janssen, MSD, Pharmacosmos, Pfizer, Shire and Takeda; Speaker for AbbVie, Astelas, Genesis, Janssen, MSD, Takeda and Mylan; research support Abbvie and Ferring

JKL: Speaker and consultancy fees: Abbvie, Arenna pharma, Galapagos, Janssen, MSD, Pfizer, Takeda and Tillots. Reserarch support: Galapagos and Takeda

EL: Speaker fee: Janssen, Research support: Galapagos

EC: lecture fees for Abbvie, Takeda, Pfizer, Sandoz and Janssen

FZ: lecture fees for Janssen, Takeda

DGR: Janssen, Abbvie

ID: Advisory board, consultation and speaking fees from: Janssen, Abbvie, Takeda, Pfizer, Genentech/Roche, Arena, Neopharm, Gilead, Galapagos, Celltrion, Rafa Laboratories, Ferring, Falk Pharma, Cambridge Healthcare, Sublimity, Sandoz, Sangamo, Nestle, Wild bio, Food industries organization, Integra Holdings, Athos, Iterative Scopes, Celgene/BMS, Abbott

UK: Research support: Takeda Medtronic Jannsen

Advisory/speaker fees- Abbvie Jannsen BMS Takeda Novartis Medtronic Rafa Pfizer

ABS: reports consulting/advisory fees from Takeda, Janssen, Neopharm Pfizer and AbbVie; Speaking and teaching fees from Takeda, Janssen, AbbVie, Neopharm, and Pfizer; and research support from Takeda and Janssen

HAB, AK, OK, SH, KM, SY, RS, EC, MLM, ML, MT, IAB, JEO, SS, PB, JS, AP, JR, MV, PM, ET, PE, DBH, TN, KF, GS, RF, YS, IG, HBE, YB, MAG- none
Author contributions

Guarantor of the article: HY
Study concept and design: HY
Data integration and project manager: MAG
Statistical analysis, data analysis and interpretation: HY and MAG
Writing the manuscript: HY, MAG, IAB, KEO
Data acquisition and manuscript critical revision: HY, HAB, AK, OK, JS, SH, GJM, KM, DP, AA, FF, GF, DD, TK, SY, NM, FC, OMN, RS, KF, TM, ZK, MB, EC, MLM, UK, CB, ABS, ML, MC, MT, SN, IAB, JO, ID, TL, JPG, SS, PB, PB, JS, FH, CV, AP, JT, JR, KK, MV, ES, PM, ET, PE, CCS, RW, DBH, TN, CE, IEK, KF, JKL, EL, GS, EC, FZ, RF, DGR, YS, IG, HBE, YB, MAG

All authors approved the final version of the manuscript.

Acknowledgments

The authors thank Ms Vardit Shay, the study research coordinator, who vastly contributed to data collection.
REFERENCES

FIGURE LEGENDS

Figure 1: Endoscopic postoperative recurrence (ePOR)

Endoscopic postoperative recurrence (ePOR) rates were stratified by time from surgery and by treatment groups. ePOR rates are defined as Rutgeerts score (RS) i2-i4 or simple endoscopic score for Crohn’s disease (SES-CD) ≥6. Anti-TNF-anti tumor necrosis factor; UST-ustekinumab; VDZ-vedolizumab

Figure 2: The Rutgeerts score at 1-year

Rutgeerts score (RS) stratified by treatment groups; RS i0-i1 - endoscopic remission, RS i2 – endoscopic postoperative recurrence (ePOR), RS i3 or i4 - significant ePOR. Anti-TNF-anti tumor necrosis factor; UST-ustekinumab; VDZ-vedolizumab
Table 1. Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>Entire cohort N=297 (100)</th>
<th>Anti TNF n=224 (75.4)</th>
<th>VDZ n=39 (13.1)</th>
<th>UST n=34 (11.4)</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis, years, median (IQR)</td>
<td>24 (19-32)</td>
<td>23 (19-31)</td>
<td>25 (19-40)</td>
<td>25 (19-33)</td>
<td>0.634</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>166 (55.9)</td>
<td>122 (54.5)</td>
<td>26 (66.7)</td>
<td>18 (52.9)</td>
<td>0.343</td>
</tr>
<tr>
<td>Montreal – location, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1, ileal disease</td>
<td>151 (50.8)</td>
<td>119 (53.1)</td>
<td>16 (41.0)</td>
<td>16 (47.1)</td>
<td>0.339</td>
</tr>
<tr>
<td>L3, ileocolonic disease</td>
<td>146 (49.2)</td>
<td>105 (46.9)</td>
<td>23 (59.0)</td>
<td>18 (52.9)</td>
<td></td>
</tr>
<tr>
<td>L4, upper GI</td>
<td>26 (8.7)</td>
<td>17 (7.6)</td>
<td>3 (7.7)</td>
<td>6 (17.6)</td>
<td>0.199</td>
</tr>
<tr>
<td>Montreal -behavior, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1, inflammatory</td>
<td>15 (5.1)</td>
<td>9 (4.0)</td>
<td>1 (2.6)</td>
<td>1 (2.9)</td>
<td>0.247</td>
</tr>
<tr>
<td>B2, stricturing</td>
<td>205 (69.0)</td>
<td>100 (44.6)</td>
<td>17 (43.6)</td>
<td>22 (64.7)</td>
<td></td>
</tr>
<tr>
<td>B3, penetrating</td>
<td>147 (49.5)</td>
<td>115 (51.3)</td>
<td>21 (53.8)</td>
<td>11 (32.4)</td>
<td></td>
</tr>
<tr>
<td>Perianal disease, n (%)</td>
<td>67 (22.6)</td>
<td>52 (23.2)</td>
<td>8 (20.5)</td>
<td>7 (20.6)</td>
<td>0.894</td>
</tr>
<tr>
<td>Extraintestinal manifestation, n (%)</td>
<td>70 (23.6)</td>
<td>49 (21.9)</td>
<td>11 (28.2)</td>
<td>10 (29.4)</td>
<td>0.480</td>
</tr>
<tr>
<td>Smoking status– ever, n (%)</td>
<td>109 (36.7)</td>
<td>84 (39.3)</td>
<td>15 (38.5)</td>
<td>10 (29.4)</td>
<td>0.546</td>
</tr>
<tr>
<td>Treatment history, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Past immunomodulator</td>
<td>182 (61.3)</td>
<td>137 (61.2)</td>
<td>20 (51.3)</td>
<td>25 (73.5)</td>
<td>0.153</td>
</tr>
<tr>
<td>Biologic Naïve</td>
<td>82 (27.6)</td>
<td>75 (33.5)</td>
<td>5 (12.8)</td>
<td>2 (5.9)</td>
<td><0.001a,b</td>
</tr>
<tr>
<td>Past anti-TNF</td>
<td>195 (65.7)</td>
<td>130 (58.0)</td>
<td>34 (87.2)</td>
<td>31 (91.2)</td>
<td><0.001a,b</td>
</tr>
<tr>
<td>More than 2 anti-TNFs</td>
<td>67 (22.6)</td>
<td>36 (16.1)</td>
<td>13 (33.3)</td>
<td>18 (52.9)</td>
<td><0.001a,b</td>
</tr>
<tr>
<td>More than 2 classes of biologics</td>
<td>49 (16.5)</td>
<td>25 (11.2)</td>
<td>8 (20.5)</td>
<td>16 (47.1)</td>
<td><0.001b,c</td>
</tr>
<tr>
<td>More than 2 biologics</td>
<td>85 (28.6)</td>
<td>47 (21.0)</td>
<td>16 (41.0)</td>
<td>22 (64.7)</td>
<td><0.001a,b,c</td>
</tr>
<tr>
<td>Surgical history, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous CD related surgery</td>
<td>51 (17.2)</td>
<td>28 (12.5)</td>
<td>10 (25.6)</td>
<td>13 (38.2)</td>
<td><0.001a,b</td>
</tr>
<tr>
<td>More than one CD related surgery</td>
<td>7 (2.4)</td>
<td>2 (0.9)</td>
<td>3 (7.7)</td>
<td>2 (5.9)</td>
<td>0.013a,b</td>
</tr>
</tbody>
</table>

* p-values for comparison between the three treatment groups; statistical significance (p<0.05): a- anti TNF vs VDZ; b- anti TNF vs UST; c- VDZ vs. UST

CD- Crohn’s disease; UST-ustekinumab; VDZ-vedolizumab ; ICR: ileocecal resection; Immunomodulator- a thiopurine or methotrexate; IQR: interquartile range
Table 2. Surgical characteristics

<table>
<thead>
<tr>
<th></th>
<th>Entire cohort N=297 (100)</th>
<th>Anti TNF n=224 (75.4)</th>
<th>VDZ n=39 (13.1)</th>
<th>UST n=34 (11.4)</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at surgery, years, median (IQR)</td>
<td>34 (26-43)</td>
<td>33 (26-42)</td>
<td>36 (22-50)</td>
<td>38 (28-46)</td>
<td>0.462</td>
</tr>
<tr>
<td>Disease duration at surgery, years, median (IQR)</td>
<td>8 (3-13)</td>
<td>8 (3-13)</td>
<td>8 (3-11)</td>
<td>11 (5.7-17.2)</td>
<td>0.132</td>
</tr>
<tr>
<td>Smoking status-active, n (%)</td>
<td>53 (17.8)</td>
<td>41 (19.2)</td>
<td>9 (23.1)</td>
<td>3 (8.8)</td>
<td>0.257</td>
</tr>
<tr>
<td>Indication for surgery, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refractory inflammation</td>
<td>37 (12.5)</td>
<td>32 (14.3)</td>
<td>2 (5.1)</td>
<td>3 (8.8)</td>
<td>0.275</td>
</tr>
<tr>
<td>Structuring complication (obstruction)</td>
<td>192 (64.6)</td>
<td>135 (60.3)</td>
<td>31 (79.5)</td>
<td>26 (76.5)</td>
<td>0.021</td>
</tr>
<tr>
<td>Penetrating complication (abscess)</td>
<td>95 (32.0)</td>
<td>75 (33.5)</td>
<td>12 (30.8)</td>
<td>8 (23.5)</td>
<td>0.503</td>
</tr>
<tr>
<td>Surgical properties, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open (vs. laparoscopic)</td>
<td>122 (41.1)</td>
<td>88 (41.1)</td>
<td>13 (33.3)</td>
<td>21 (61.8)</td>
<td>0.036</td>
</tr>
<tr>
<td>Stapling (vs. handsewn)</td>
<td>187 (63.0)</td>
<td>144 (72.0)</td>
<td>17 (44.7)</td>
<td>26 (83.9)</td>
<td>0.001</td>
</tr>
<tr>
<td>Anastomosis type, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End to end</td>
<td>36 (12.1)</td>
<td>27 (13.3)</td>
<td>5 (13.2)</td>
<td>4 (12.5)</td>
<td></td>
</tr>
<tr>
<td>Side to side</td>
<td>192 (64.6)</td>
<td>135 (66.5)</td>
<td>32 (84.2)</td>
<td>25 (78.1)</td>
<td>0.065</td>
</tr>
<tr>
<td>Elective surgery (vs. urgent or emergency)#</td>
<td>141 (48.1)</td>
<td>109 (49.5)</td>
<td>15 (38.5)</td>
<td>17 (50.0)</td>
<td>0.431</td>
</tr>
<tr>
<td>Time to prophylaxis, months, median (IQR)</td>
<td>1.7 (1.0-2.8)</td>
<td>1.6 (1.0-2.6)</td>
<td>2.1 (1.1-3.3)</td>
<td>1.5 (1.0-3.2)</td>
<td>0.137</td>
</tr>
<tr>
<td>Combination with an immunomodulator, n (%)</td>
<td>65 (21.9)</td>
<td>50 (22.3)</td>
<td>10 (25.6)</td>
<td>5 (14.7)</td>
<td>0.499</td>
</tr>
<tr>
<td>Combination with an azole antibiotics, n (%)</td>
<td>105 (35.6)</td>
<td>74 (33.2)</td>
<td>20 (51.3)</td>
<td>11 (33.3)</td>
<td>0.090</td>
</tr>
</tbody>
</table>

*p-values for comparison between the three treatment groups; statistical significance: a- anti TNF vs VDZ; b- anti TNF vs UST; c- VDZ vs. UST
Immunomodulator- a thiopurine or methotrexate; UST-ustekinumab; VDZ-vedolizumab; IQR: interquartile range;
#urgent surgery- within 2 months from admission, emergency surgery- at the index hospitalization
Table 3: Risk factors associated with ePOR at 1-year by multivariable logistic regression analysis

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Adjusted OR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female sex</td>
<td>1.6</td>
<td>0.93</td>
<td>2.75</td>
</tr>
<tr>
<td>Past infliximab</td>
<td>1.73</td>
<td>1.01</td>
<td>2.97</td>
</tr>
<tr>
<td>Past adalimumab</td>
<td>2.32</td>
<td>1.35</td>
<td>4.01</td>
</tr>
<tr>
<td>Stapling vs. handsewn anastomosis</td>
<td>1.737</td>
<td>0.96</td>
<td>3.16</td>
</tr>
<tr>
<td>Anastomosis type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End to end</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side to side</td>
<td>0.38</td>
<td>0.17</td>
<td>0.83</td>
</tr>
<tr>
<td>End to side</td>
<td>0.34</td>
<td>0.13</td>
<td>0.92</td>
</tr>
</tbody>
</table>

ePOR—endoscopic post operative recurrence
Anti-TNF—anti tumor necrosis factor; UST—ustekinumab; VDZ—vedolizumab
Multivariable logistic regression adjusted for: sex, age at surgery, disease duration, disease behavior (B phenotype), extraintestinal manifestation, smoking status, biologic naïve at the time of ICR, past infliximab, past adalimumab, past VDZ, past UST, past ICR, surgical properties (open vs. laparoscopic and type of anastomosis [stapler vs. handsewn]), anastomotic type (end-to-end vs. end-to-side vs. side-to-side anastomosis) and prophylactic treatment group (either anti-TNF, VDZ or UST).
Figure 1: Endoscopic postoperative recurrence (ePOR)

<table>
<thead>
<tr>
<th></th>
<th>1-year</th>
<th>2-years</th>
<th>3-years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra cohort</td>
<td>41.80%</td>
<td>46.00%</td>
<td>48.60%</td>
</tr>
<tr>
<td>Anti-TNF</td>
<td>61.80%</td>
<td>66.50%</td>
<td>72.40%</td>
</tr>
<tr>
<td>Vedolizumab</td>
<td>53.30%</td>
<td>44.40%</td>
<td>47.90%</td>
</tr>
<tr>
<td>Ustekinumab</td>
<td>53.30%</td>
<td>44.40%</td>
<td>44.00%</td>
</tr>
</tbody>
</table>

p = 0.031
p = 0.028
p = 0.478
Figure 2: Rutgeerts score at 1-year (n=289)

Anti-TNF

Vedolizumab

Ustekinumab

RS 0-1 RS 2 RS 3-4

p-value = 0.074