
1.  Introduction
X-ray computed tomography (CT) is a non-destructive technique allowing the visualization of sample internal 
structure. A medical CT scanner consists in an X-ray source and a detector, which face each other and rotate 
around the sample. Bi-dimensional radiographic projections are acquired at various angles from 0° to 360° and 
then processed by a mathematical algorithm (i.e., image reconstruction) in order to obtain a 3D visualization of 
the object. Different types of image reconstructions exist, including the widely used filtered backprojection that 
requires little computational resources but produces less qualitatively accurate images, and iterative reconstruc-
tion, based on time consuming and numerically intensive algorithm but providing better images quality (Bush-
berg et al., 2012).

The images are displayed in a gray scale related to the X-ray attenuation by the sample materials (Rizescu 
et al., 2001).

Initially, this technology was developed for medical imaging, but its potential for other domains was rapidly 
understood (Mees et al., 2003).

This paper explores a specific CT methodology, called dual-energy CT scanning (DECT), elaborated for the 
first time in the seventies by Alvarez and Makovski  (1976). The technique consists in imaging objects with 
two different X-ray spectra and in combining the results to achieve various objectives, including one allowing 
the discrimination and identification of materials based on their density and elemental composition. From a 
physical perspective, DECT exploits the energy dependence of photoelectric absorption and Compton scattering 
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components of total attenuation (Duchesne et al., 2009). The method of Al-
varez and Makovski (1976) acts on the 2D radiographic projections and is 
therefore called a pre-reconstruction one.

During the same year, Rutherford et  al.  (1976) published another DECT 
methodology which, on the contrary, is post-reconstruction, meaning the cor-
rection is performed on the reconstructed data. This method is more sensitive 
to beam hardening artifacts, caused by the presence of highly attenuating 
materials in the sample (Remysen & Swennen, 2006). Several variations of 
the post-reconstruction approach have been developed afterward, in order to 
improve sample characterization (e.g., Jackson and Hawkes, 1981; Vinegar 
and Wellington, 1987; Torikoshi et al., 2003; Tsunoo et al., 2004; Bazalova 
et al., 2008).

One of the first DECT post-reconstruction applications in geology field 
was made by Van Geet et al. (2000), who adapted the mathematical formu-
las previously elaborated by Coenen and Maas (1994) in order to quantify 
the electron density (ρe) and the effective atomic number (Zeff) of reservoir 
rocks, properties originally analyzed only by destructive techniques (Alves 
et al., 2015). Then, geologists continued to improve this post-reconstruction 
dual-energy method ad hoc for earth's science (Duliu et al., 2003; Rizescu 
et al., 2001), sometimes building home-made CT scanner (Iovea et al., 2006) 
and better distinguishing similar minerals and rocks (Iovea et  al.,  2009; 
Remeysen & Swennen, 2008).

Later, Paziresh et  al.  (2016) applied the method of Alvarez and Mak-
ovski (1976) on geological samples adopting a protocol used for medical 
purposes. DECT techniques typically require the knowledge of the inci-
dent X-ray beam spectrum, a feature that is not always easy to calculate 
or to measure (Remysen & Swennen, 2006). Therefore, DECT methods 

that not require spectral information were developed and applied mostly to the field of medical imaging 
(e.g., Landry et  al.,  2013 and Bourque et  al.,  2014). While several authors explored the use of DECT on 
geological samples (e.g., Alves et  al.,  2015; Jussiani and Appoloni,  2015; Siddiqui and Khamees,  2004; 
Victor et  al.,  2017), they were mainly using micro-CT instruments for which the incident spectrum was 
easily available, focusing on artificial dense objects (metal bars) (Rezvan et al., 2011), or requiring intensive 
computation (Victor et al., 2017). This paper is the first to explore the use of polynomial DECT protocol to 
identify natural mineral samples because it has two main advantages: it can be easily be applied on medical 
CT images for which the spectral information of the incident X-ray is not easy to obtain or to measure, and 
it is computationally light.

2.  Materials and Methods
2.1.  CT-Scan Instrument

The instrument used in this paper is a Siemens Somatom Definition AS+128 located at the Institut national de 
la recherche scientifique, Centre Eau Terre Environment, Québec City, Canada. In this configuration the gantry 
moves along the examination table where the samples are placed (Figure 1) (Brunelle et al., 2016).

The X-ray tube can be operated at potentials between 70 and 140 keV and the 64-row detector is from the Stel-
larInfinity generation. Images were acquired in spiral mode with a pitch factor of 0.55, at 70 and 140 keV, 495 mA 
current and a beam collimation of 12 mm. Here, the reconstruction was performed with the ADMIRE suite, be-
longing to the category of statistical iterative reconstruction methods (Gordic et al., 2014). Reconstructed images 
are 512 × 512 pixels, covering a field of view of 50 × 50 mm wide (voxels of 97 μm along the axis). Pixel values 
depend on the object attenuation coefficient according to Beer's law (Cnudde & Boone, 2013), and expressed in 
Hounsfield units (HU), a relative scale tied to the attenuation of materials (conventionally water has HU = 0 and 
air HU = −1000), varying from −1024 to +3071 HU (normal scale), providing 4096 levels of gray (Brunelle 
et  al., 2016). The CT-scale can be extended by scaling down the HU value by a factor of 10, expanding the  

Figure 1.  Siemens Somatom Definition AS+128 located at the Institut 
national de la recherche scientifique, Centre Eau Terre Environnement, 
Québec City, Canada. X-ray source and detector face each other in the gantry 
and rotate around the sample. The scanner moves on rails (white arrows).
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possible values between −10240 and 30710 HU, a feature useful for very dense samples (Coolens & Childs, 2003). 
The reconstruction filter used was the D45s specifically designed by Siemens for dual-energy measurements and 
providing a balance between the preservation of spatial resolution and noise reduction.

2.2.  Stoichiometric Method

The stoichiometric method developed by Bourque et al. (2014) is a dual-energy CT protocol aiming at identi-
fying the nature of biological tissues for medical purposes. It was based on the work of Schneider et al. (1996), 
a calibration elaborated for single energy CT, and Bourque et al. applied it to DECT, in order to facilitate the 
determination of effective atomic number (Zeff) and electron density (ρe).

The theoretical effective atomic number Zeff of samples is calculated with the following equation:


 N

eff i iiZ f Z� (1)

where fi is the fractional mass of element Zi. As the literature reports, the exponent β can vary between 2.94 and 
3.8 (Bonnin et al., 2014; Spiers, 1946) and it is a function of photon energy, sample materials and system specifics 
(Alves et al., 2015; Azevedo et al., 2016; Landry et al., 2013).

Then, the theoretical electron density ρe, expressed in number of electrons per unit volume (electron·cm−3), is 
calculated as:

   1
N i

e i
i

Z
A� (2)

where Ai is the atomic mass of the element Zi and ρ is the material mass density (g·cm-3) (Manohara et al., 2008; 
Azevedo et al., 2016).

The materials linear attenuation coefficient is calculated converting back CT measurements (HU values) as 
(Boespflug et al., 1995; Watanabe, 1999):
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Two different calibration procedures are necessary: the first one relates to the effective atomic number and the 
second one to the electron density.

First, the two linear attenuation values, measured at low and high energy (Equation 3), and the calculated Zeff 
(Equation 1) of the basis set of samples are plotted to estimate the best relationship. In our case a second-or-
der polynomial (Equation 4) data-driven empirical model was used to set the a, b and c coefficients of the Zeff 
calibration.
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It is then possible to achieve the ρe calibration (finding another set of coefficients) plotting the ratio between 
measured μ and ρe (Equation 2), normalized by water electron density (ρe water = 3.34·1023) and Zeff determined 
in Equation 4:



 
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e e water

eff effd e Z f Z
or

/
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Again, the data-driven empirical model is a second-order polynomial. The E µ value can equally be those obtained 
low or high energy; it is also possible to use both equations to calculate ρe and average the outcomes.
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3.  Results
3.1.  Calibration

The calibration procedure consists in scanning a set of materials with a known chemical composition (their Zeff 
and ρe are calculated using Equations 1 and 2) in order to determine the unknown coefficients of Equations 4 
and 5.

A set of 18 calibration materials covering the range of Zeff and ρe encountered in geological specimens (Figure 2) 
was selected: common geological minerals (halite, crystalline quartz, pyrite, fluorite, albite) completed by Sodi-
um Iodide (NaI) solutions at different concentrations, an aluminum and a titanium bar. The first ones are natural 
samples, so they do not have a precise chemical composition and always contain impurities, but their presence 
is important for the subsequent validation, being of the same nature as investigated samples (Stamm, 1974). 
Details about these calibration materials are available in Table S1 in Dataverse repository (see Data Availability 
Statement).

As anticipated, the best possible β exponent (Equation  1) varies between 2.94 and 3.8 (Bonnin et  al.,  2014) 
depending on the material, the instrument and the energy considered. Our choice is based on the behavior of 
determination coefficient (R2) as function of β in the fitting of Equation 4; Figure 3 shows the best value in the 
possible range is 2.94.

The effective atomic number calibration, following Equation 4 to find a, b and c coefficients, is performed by 
plotting the Zeff and μlow/μhigh values of basis samples (Figure 4); this fit presents R2 = 0.97.

Figure 2.  Electronic density and effective atomic number theoretical value distribution of calibration samples.
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Figure 3.  R2 values against possible β of Equation 1.

Figure 4.  Coefficients related to Equation 4 and calibration curve with μlow/μhigh as function of Zeff.
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Then, the electron density calibration, related to Equation 5 aiming to obtain d, e and f coefficients, is shown 
in Figure 5. As already mentioned, we can freely choose to use μlow or μhigh in this model. We opted for μlow 
obtained at 70 keV because the correlation was stronger (R2 = 0.98) compared to the one obtained at 140 keV 
(R2 = 0.96).

3.2.  Validation

A set of 23 relatively common minerals were used for the validation of the stoichiometric method (Table 1, col-
umn 1). Samples were about the same size as the ones of the calibration set (≃ 3 × 3 cm), and selected to ensure 
they cover a wide range of effective atomic number and electronic density. Their theoretical values of Zeff and ρe 
have been calculated using Equations 1 and 2 (Table 1, columns 3 and 4) starting from their theoretical chemical 
composition (Table 1, column 2).

Using the same acquisition conditions of the calibration step (Equation 4) the Zeff model and the measured lin-
ear attenuation coefficients μ (Equation 3) at low and high energy (details are available in Table S2, Dataverse 
repository, see Data Availability Statement), we calculate the minerals Zeff values (Table 1, column 5). Then, 
the  relative difference between these measured values of Zeff and the theoretical ones is shown in column 6 
(Table 1).

Figure 5.  Coefficients related to Equation 5 and calibration curve with Zeff as function of μlow/(ρe/ρe water).
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Successively and always using the same acquisition conditions, Equation 5, the ρe model and the measured linear 
attenuation coefficients μ acquired at low energy, we calculate the minerals ρe (Table 1, column 7). Again, the 
relative difference between this measured values of ρe and the theoretical ones is shown in column 8 (Table 1).

3.3.  Mineral Identification

The next step is to develop a tool to identify unknown minerals using Zeff and ρe values measured by the du-
al-energy stoichiometric method. An ad hoc library of 69 common minerals (chosen from the database http://
webmineral.com/, accessed Oct. 2020) was built using Python 3.7 as programming language (CommonMiner-
als_database.py in Dataverse repository, see Data Availability Statement) mapping them to their respective Zeff 
and ρe (theoretically properties calculated by Equations 1 and 2).

Zeff and ρe values differ by two orders of magnitude, thus they are normalized using the feature scaling method 
(Youn & Jeong, 2009):

 
   







min
max min

x x
x

x x�

(1) (2) (3) (4) (5) (6) (7) (8)

Mineral Chemical composition
Theoretical 

Zeff

Theoretical 
ρe (e

−·cm−3)
Measured 

Zeff

% Difference between 
theoretical and measured  

Zeff values
Measured 

ρe

% Difference between 
theoretical and 

measured ρe values

Albite NaAlSi3O8 11.472 7.82·1023 11.743 2.4% 7.81·1023 0.1%

Almandine Fe3
2+Al2Si3O12 18.655 1.23·1024 20.514 9.9% 9.44·1023 2.2%

Andesine (Ca,Na)(Al,Si)4O8 13.249 7.97·1023 12.599 3.1% 8.32·1023 4.3%

Ankerite Ca(Fe2+,Mg,Mn)(CO3)2 16.989 9.05·1023 15.094 11.2% 7.29·1023 19.4%

Anorthite CaAl2Si2O8 13.206 8.21·1023 12.778 3.2% 8.27·1023 0.6%

Augite (Ca,Mg,Fe2+,Fe3+,Ti,Al)2(Si,Al)2O6 14.849 1.01·1024 15.589 4.9% 9.58·1023 5.6%

Biotite K(Mg,Fe2+)3 14.046 9.26·1023 13.741 2.2% 7.7·1023 16.1%

Bytownite (Ca,Na)[Al(Al,Si)Si2O8] 12.961 8.09·1023 11.953 7.8% 8.13·1023 0.4%

Calcite CaCO3 15.079 8.15·1023 15.398 2.1% 7.96·1023 2.3%

Chalcopyrite CuFeS₂ 24.568 1.20·1024 22.741 7.4% 9.55·1023 20.4%

Diopside CaMgSi2O6 13.729 1.02·1024 13.971 1.1% 9.59·1023 6.1%

Dolomite CaMg(CO3)2 13.057 8.53·1023 13.101 0.3% 8.46·1023 0.9%

Gypsum CaSO4·2H2O 14.109 7.11·1023 14.246 0.9% 7.13·1023 0.2%

Hematite Fe2O3 22.962 1.52·1024 17.882 22.1% 1.73·1024 13.9%

Ilmenite FeTiO3 21.327 1.37·1024 18.331 14.1% 1.40·1024 2.4%

Labradorite (Ca,Na)(Si,Al)4O8 16.608 8.06·1023 12.558 0.4% 8.26·1023 2.5%

Magnetite Fe3O4 23.231 1.47·1024 20.773 10.6% 8.57·1023 41.9%

Microcline KAlSi3O8 13.018 7.64·1023 12.558 3.5% 7.95·1023 3.9%

Muscovite KAl2(Si3Al)O10(OH,F)2 12.403 8.46·1023 12.999 4.8% 8.06·1023 4.7%

Olivine (Mg,Fe)2SiO4 15.215 9.80·1023 12.701 16.5% 9.60·1023 2.1%

Phlogopite KMg3(Si3Al)O10(F,OH)2 12.278 8.46·1023 14.769 20.3% 5.43·1023 35.7%

Quartz SiO2 11.561 7.97·1023 11.632 0.6% 8.11·1023 1.7%

Talc Mg3Si4O10(OH)2 11.154 8.30·1023 11.587 3.9% 8.52·1023 2.7%

Table 1 
Validation Minerals With Their Theoretical Chemical Composition and Theoretical Zeff and ρe Calculated Using Equations 1 and 2. Then, Zeff and ρe Calculated 
Using Stoichiometric Method and Their Relative Difference (in %) With the Theoretical Values

http://webmineral.com/
http://webmineral.com/
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where x is the original value and x’ is the normalized value. Then, another Python routine (Minerals_Identifica-
tion.py in Dataverse repository, see Data Availability Statement) searches this library to find the minerals with 
the shortest Euclidean distance to these theoretical properties, and provides a list of minerals with increasing 
Euclidean distance.

Table 2 shows the three closest minerals found using the searching program for each validation set of samples 
from Table 1.

4.  Discussion
The calibration step yielded very high R2 correlation coefficients (0.97 for Zeff model and 0.98 for ρe model), in 
spite of two outliers. Titanium bar in Figures 4 and 8% NaI in Figure 5 do not perfectly fit: considering similar 
samples perform very well (another pure metal bar and other solutes), it is difficult to explain why these two 
outliers appear. However, despite their presence, the calibration is adequately performed.

The stoichiometric method validation estimated the effective atomic number Zeff with less than 10% difference com-
pared to theoretical value: out of a total of 23 minerals, 17 have less than 5% difference and, conversely, the largest 
deviations are for magnetite, ankerite, ilmenite, olivine, phlogopite and hematite in ascending order (Table 1).

Bourque et al. (2014) obtained a smaller error, but in this study 10% is acceptable considering the samples we 
investigated, denser and more complex than human tissues; moreover, the final goal is the mineral identification 
among those of a chosen database, which is influenced by several factors and not only by the percentage error.

Mineral specimen 1st 2nd 3rd

Albite Albite Anorthoclase Oligoclase

Almandine Fluorite Ankerite Epidote Almandine is the 51th

Andesine Alunite Lepidolite Illite Andesine is the 12th

Ankerite Gypsum Orthoclase Microcline Ankerite is the 31th

Anorthite Aluminum Lepidolite Anorthite

Augite Apatite Olivine Fluorite Augite is 5th

Biotite Aluminum Microcline Orthoclase Biotite is the 33th

Bytownite Labradorite Andesine Quartz Bytownite is the 5th

Calcite Calcite Glauconite Bassanite

Chalcopyrite Epidote Ankerite Fluorite Chalcopyrite is the 32th

Diopside Olivine Biotite Apatite Diopside is 8th

Dolomite Dolomite Muscovite Phlogopite

Gypsum Gypsum Orthoclase Cristobalite

Hematite Maghemite Arsenopyrite Hematite

Ilmenite Ilmenite Chromite Pyrite

Labradorite Alunite Lepidolite Illite Labradorite is the 6th

Magnetite Ankerite Glauconite Fluorite Magnetite is the 65th

Microcline Andesine Aluminum Labradorite Microcline is 10th

Muscovite Bytownite Labradorite Anorthite Muscovite is the 15th

Olivine Enstatite Andalusite Biotite Olivine is the 4th

Phlogopite Carnallite Halite Natron Phlogopite is the 29th

Quartz Quartz Andesine Beryl

Talc Phlogopite Muscovite Illite Talc is 4th

Table 2 
The Three Closest Identified Minerals Obtained Using the Searching Script Applied on the Validation Set of Minerals. The 
Last Column Shows the Rank of the Sought Mineral When It Was Not Identified in the Three Closest Minerals



Geochemistry, Geophysics, Geosystems

MARTINI ET AL.

10.1029/2021GC009885

9 of 14

Figure 6 shows the iterative reweighted least squares trendline (red line) of minerals theoretical versus measured 
Zeff perfectly matches with the least squares trendline (black line) and the theoretical trendline (dashed line, 
slope = 1); comparing the slopes, we observe our measurements underestimates the values.

The results for electron density ρe characterization are similar: 16 minerals have a difference between the measured 
and the theoretical values of less than 10%, of which 14 of them less than 5%, and the largest difference occurs 
for hematite, biotite, ankerite, chalcopyrite, almandine, phlogopite and magnetite in ascending order (Table 1).

Figure 7 shows that iterative reweighted least squares trendline (red line) of minerals theoretical versus measured 
ρe involves a clear improvement of the fit compared to the least square method (black line), perfectly matching 
with the theoretical dashed line (slope = 1); nevertheless most outliers present underestimated values.

The identification routine allowed to correctly pinpoint 7 minerals, including very common ones, i.e., albite, 
quartz and calcite (Table 2). An interesting example is hematite: its identification is well performed, although 
its properties values present an high percentage error. Considering Zeff and ρe distribution of the 69-mineral 
library (Figure 8), we observe the majority is situated in a cluster of the graph having small Zeff and ρe instead, 
common minerals with high Zeff and ρe are less frequent. Thus, we successfully identified hematite even 
though its validation performance is weak because the Euclidean distance to its closest neighbor is larger than 
others (Figure 8).

Figure 6.  Cross plot of theoretical versus measured Zeff of minerals, using stoichiometric method.
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Several reasons could explain why some mineral samples have a wide difference between theoretical and meas-
ured values. First, because natural minerals contain impurities that are unknown in this experiment, it is likely the 
Zeff and ρe calculated using Equations 1 and 2 and theoretical mineral compositions are not reflecting the actual 
composition of the minerals used for both the calibration and the validation.

The second reason, similar to the first one, is that some minerals can easily interchange cations within their 
lattice, yet their precise elemental composition is rather impossible to obtain without specific analysis. Nine 
validation minerals fall under this case, explaining the poor identification obtained for phyllosilicates, such 
phlogopite, muscovite and biotite, and others such as ankerite (Table 1). However, chalcopyrite, hematite, 
ilmenite and magnetite, in spite of their chemical formula not allowing for lattice cation substitutions, also 
have large differences with theoretical results for Zeff, ρe or both properties: these minerals are the densest 
ones and, among the validation samples, it is remarkable that their values are mainly underestimated, accord-
ing to iterative least squares trend. The performance of the stoichiometric protocol, previously developed for 
medical physics and human tissues, could be weaker for dense samples. It is possible that the exposure time 
with our medical CT is too low for having an accurate measurement of μ. Figure 9 shows the cross plot of 
minerals μ at low and high energy and the relative error bars having 95% confidence level: it is calculated 
following (Hazra, 2017):


sx Z
n�

where x is our measurement, Z is the value for determining confidence interval (here Z = 1.96), s is the standard 
deviation and n is the number of observations.

Figure 7.  Cross plot of theoretical versus measured ρe of minerals, using stoichiometric method.



Geochemistry, Geophysics, Geosystems

MARTINI ET AL.

10.1029/2021GC009885

11 of 14

In order to avoid the overlapping, only some samples are illustrated but all of them present the same characteris-
tic: horizontal error bar, related to low energy, is larger than the vertical one. This is true for minerals having large 
or small confidence intervals, so, probably, the need for improving the signal-to-noise ratio is stronger for lower 
voltage acquisitions (Gordic et al., 2014).

The third possible reason is this stoichiometric method is not so well suited for dense samples; indeed, Bour-
que et al. used 140 keV as high energy, but the materials they aimed to characterize have smaller values of Zeff 
and ρe than those investigated here. However, this explanation does not hold a close examination of our results 
because some dense minerals such as hematite and ilmenite (Zeff = 22.96 and 21.3 respectively) are correctly 
identified (Table 2). Our probable explanation is the answer resides in a combination of the above-mentioned 
factors: some samples have an underestimation for Zeff and an overestimation for ρe and inversely, bringing the 
minerals in a value range favorable to their identification. Indeed, having a small relative difference between 
theoretical and measured values is not always sufficient to correctly identify the objects using the shortest 
Euclidean distance.

A possible improvement of this stoichiometric method could reside in increasing the exposure time or to acquire 
repeated scans in order to improve the signal-to-noise ratio (e.g., Larmagnat et al., 2019), especially when very 
dense minerals, reducing the number of photons reaching the detectors, are present.

While the list of existing minerals totals more than 4000, our ad hoc library was limited to the 69 most common 
ones; however, in the most of the cases, some basic knowledge of natural samples such a rock would consider-
ably shorten the list of potential minerals, hence improving the rate of correct classification. If the list of dense 
potential minerals remains limited to one or two, the method will likely be able to provide a correct identification.

Figure 8.  Cross plot of Zeff versus ρe of minerals chosen to develop the Python dictionary.
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Therefore, despite some drawbacks, stoichiometric method is a suitable option for the characterization of im-
portant and common minerals for geological field (quartz, calcite, dolomite) that are not distinguishable using 
single energy imaging method having very similar density values. Because CT-scanning rock and sediment cores 
is fast and non-destructive, this method is laying the foundation for an easy access to mineralogical information 
on geological samples.

5.  Conclusion
Stoichiometric calibration is a methodology previously elaborated for medical purposes aiming to characterize 
the human tissues while removing the need for the knowledge of the incident X-ray energy spectra.

This work tested for the first time this technique on geological specimens, materials of greater density than 
the formerly studied biological samples. Two different calibrations were performed to characterize the effective 
atomic number and the electron density using six natural minerals, two metal bars and 11 saline solutions at 
different concentrations. Then, the calibration was validated with a set of 23 natural mineral samples selected 
to ensure they cover a wide range property values. Finally, an ad hoc routine search the minerals closest to the 
calculated Zeff and ρe values and provides a list of decreasing possibilities.

We showed this stoichiometric dual-energy CT method is easy to implement and well suited to identify the most 
common minerals.

Data Availability Statement
All the data about calibration materials, measured linear attenuation coefficients μ of minerals and the Python 
scripts used for their identification are available at the Dataverse repository: https://doi.org/10.5683/SP2/P4IY8Y.

Figure 9.  Cross plot of minerals μ at low and high energy and the relative error bars having 95% confidence level.

https://doi.org/10.5683/SP2/P4IY8Y
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