
Computer Vision and Image Understanding 221 (2022) 103445

A
M
I

A

C

M
6
6

K
O
P
R

v
l
c
i
G
(
p
o
O
F
c
(
a
p
o
o
m

d
t
e
q
h
T

h
R
A
1
(

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier.com/locate/cviu

nchor pruning for object detection
axim Bonnaerens ∗, Matthias Freiberger, Joni Dambre

DLab-AIRO, Ghent University - imec, Gent, Oost Vlaanderen, Belgium

R T I C L E I N F O

ommunicated by Nikos Paragios

SC:
8T07
8T45

eywords:
bject detection
runing
eal time

A B S T R A C T

This paper proposes anchor pruning for object detection in one-stage anchor-based detectors. While pruning
techniques are widely used to reduce the computational cost of convolutional neural networks, they tend to
focus on optimizing the backbone networks where often most computations are. In this work we demonstrate an
additional pruning technique, specifically for object detection: anchor pruning. With more efficient backbone
networks and a growing trend of deploying object detectors on embedded systems where post-processing steps
such as non-maximum suppression can be a bottleneck, the impact of the anchors used in the detection head is
becoming increasingly more important. In this work, we show that many anchors in the object detection head
can be removed without any loss in accuracy. With additional retraining, anchor pruning can even lead to
improved accuracy. Extensive experiments on SSD and MS COCO show that the detection head can be made
up to 44% more efficient while simultaneously increasing accuracy. Further experiments on RetinaNet and
PASCAL VOC show the general effectiveness of our approach. We also introduce ‘overanchorized’ models that
can be used together with anchor pruning to eliminate hyperparameters related to the initial shape of anchors.
Code and models are available at https://github.com/Mxbonn/anchor_pruning.
Object detection is one of the most widely studied tasks in computer
ision. It requires not only predicting the class but also the exact
ocation of each object in an image. Object detection models are mainly
ategorized into two categories based on whether detection happens
n one or two stages. Two-stage networks (Cai and Vasconcelos, 2018;
irshick, 2015; Ren et al., 2015), first run a regional proposal network

RPN) that produces class-agnostic candidate object locations. These
roposals are then used as input for a second stage where the proposed
bject regions are classified and the location of the object is refined.
ne-stage networks (Lin et al., 2017b; Liu et al., 2016; Redmon and
arhadi, 2017; Sermanet et al., 2013; Tan et al., 2020) use a single
onvolutional neural network with a predefined set of default anchors
i.e. an anchor associates a predefined size and aspect ratio to each pixel
t a feature map) of which the classes and location offsets are directly
redicted. While two-stage networks are generally the most accurate,
ne-stage detectors tend to be more resource-efficient and are often the
nly choice to run in real-time on resource-constrained devices, such as
obile platforms (Huang et al., 2017).

Many studies aimed at creating more efficient models for object
etection have been carried out in recent years. Most have achieved it
hrough slimmer backbone networks (e.g. MobileNet in SSDLite Sandler
t al., 2018) or compression techniques such as weight pruning and
uantization (Deng et al., 2020; Liu et al., 2018). And while there
as been some work on anchor-free detectors (Law and Deng, 2018;
ian et al., 2019), most mainstream single-shot detectors still use the

∗ Corresponding author.
E-mail address: maxim.bonnaerens@ugent.be (M. Bonnaerens).

same anchor-based approach (Lin et al., 2017b; Redmon and Farhadi,
2018; Tan et al., 2020). As computational complexity in the backbone
network keeps shrinking, the importance of an efficient object detection
head, in which anchors are used to predict potential objects, increases.
The influence of these anchors on the computational cost of the object
detector is twofold. Firstly, the number of anchors an object detector
uses directly influences the size of the convolutional layers in the head
of the detection model. Secondly, all bounding boxes produced by
those anchors need to go through a non-maximum suppression (NMS)
post-processing step to determine the final detected objects. Previous
studies on the speed/accuracy trade-off for object detectors have shown
that for small models, i.e. the ones typically used in an embedded
context, ‘‘NMS can take up the bulk of the running time’’ (Huang et al.,
2017). While the exact running time of the post processing step depends
strongly on the used hardware, systematic assessments (Verucchi et al.,
2020; Cai et al., 2019) have shown that the number of detections com-
ing out of an object detection network has a non-negligible influence on
the end-to-end inference time. Whereas traditional backbone pruning
techniques only influence part of the model inference time, anchor
pruning can reduce the running time of both the model inference and
the post-processing step.

In this paper we introduce a novel anchor pruning technique and
evaluate its effect on the accuracy and efficiency of one-stage anchor-
based object detection models. The main contributions of this work
include:
ttps://doi.org/10.1016/j.cviu.2022.103445
eceived 19 July 2021; Received in revised form 25 February 2022; Accepted 10 M
vailable online 20 May 2022
077-3142/© 2022 The Author(s). Published by Elsevier Inc. This is an open acces
http://creativecommons.org/licenses/by/4.0/).
ay 2022

s article under the CC BY license

https://doi.org/10.1016/j.cviu.2022.103445
http://www.elsevier.com/locate/cviu
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2022.103445&domain=pdf
https://github.com/Mxbonn/anchor_pruning
mailto:maxim.bonnaerens@ugent.be
https://doi.org/10.1016/j.cviu.2022.103445
http://creativecommons.org/licenses/by/4.0/

M. Bonnaerens, M. Freiberger and J. Dambre Computer Vision and Image Understanding 221 (2022) 103445

m
c
d
s

b
r
b
m

s
t
t

n
d
t
a
d

1

1

m
d
a
g
a
s
s
i
(
e

t
f
c
R
f

(1) We propose an anchor pruning search algorithm that deter-
ines which key anchors to remove and identifies several anchor

onfigurations on the accuracy/resources Pareto front, allowing model
evelopers to trade accuracy for performance when resources are con-
trained.

(2) We show that the accuracy of the proposed pruned models can
e further improved through fine-tuning or retraining from scratch. By
emoving well-chosen anchors and retraining, it is possible to achieve
oth better efficiency and accuracy compared to the unpruned baseline
odel.

(3) We introduce the concept of an ‘overanchorized’ model. By
tarting our proposed anchor pruning approach on an object detector
hat has many closely overlapping anchors, we show that we can avoid
uning hyperparameters related to the initial shape of the anchors.

(4) We extensively benchmark our approach on the SSD and Reti-
aNet object detectors on both the MS COCO and PASCAL VOC
atasets. The results strongly demonstrate that pruning anchors and re-
raining can reduce the resource costs of an object detector significantly
nd that our method generalizes to different anchor-based single shot
etectors.

. Related work

.1. Model scaling

Many real-world object detection applications run on systems where
odel size and inference speed are highly constrained. The object
etection networks used in such systems are not selected based on
bsolute state-of-the-art accuracy but on the best possible performance
iven these constraints. To this end, many model scaling techniques
re applied to scale a model towards a certain size or speed, where the
ize is determined by the number of parameters in the network and the
peed by the number of floating point operations. In object detection, it
s common to downscale the model by changing the backbone network
e.g. from VGG Simonyan and Zisserman, 2014 to MobileNet Sandler
t al., 2018), by reducing the input resolution (e.g. from 512 × 512 to

300 × 300 in SSD Liu et al., 2016), by reducing the number of layers
(e.g. from 50 to 18 in ResNet He et al., 2016) or a combination of
these (Tan et al., 2020). To further trim the computational cost in those
models, techniques such as pruning (Liu et al., 2018) and quantization
(Zhou et al., 2017) are often used, possibly in combination with knowl-
edge distillation (Hinton et al., 2015) to recover any lost accuracy.
Earlier pruning techniques focused on removing individual weights or
connections, but in recent years, the trend has shifted towards more
structural pruning at the level of filters or even entire layers. Compared
to pruning many individual weights, structural pruning does not need
specialized hardware or libraries to benefit from the sparsity.

However, none of the above scaling techniques are specific to object
detection. We will show in Section 2 that our proposed method of
pruning anchors is an effective way to downscale the computational
complexity of the object detection head. It is orthogonal to the previ-
ously mentioned scaling methods, meaning that they can be combined
to achieve better compression results.

1.2. Anchor-based

Anchor-based one-stage detectors are convolutional object detection
models that consist in most cases of three parts. The backbone network
is an off-the-shelf convolutional network, trained originally for image
classification, that extracts features for detecting objects. On top of this
backbone, most object detection models have a middle part, the neck,
hat adds more layers after the backbone to produce better adapted
eatures. In SSD (Liu et al., 2016) the neck consists of additional
onvolutional feature layers, while in more recent networks such as
etinaNet (Lin et al., 2017b) and EfficientDet (Tan et al., 2020) some

orm of Feature Pyramid Network (FPN) (Lin et al., 2017a) is used,
2

that has additional lateral connections with the backbone. The final
part is the object detection head which includes a classifier and regressor
to predict classes and exact locations of the objects in the image. The
detection head is applied to several feature layers which can come from
both the backbone and the neck.

Anchor-based detectors associate some predefined anchors, some-
times also named default bounding boxes or priors, to each feature
layer to which the detection head is attached. These anchor-associated
feature layers are what we will from now on refer to as feature maps.
Usually, the anchors are defined in terms of size and aspect ratio. The
classifier and regressor in the detection head output the class scores and
the 4 offsets relative to the predefined anchor shape for each pixel in a
feature map. While many papers claim that an increase in the number
of anchors leads to an increase in accuracy (Li et al., 2019; Liu et al.,
2016), we will show in Section 3 that this does not always hold and
that too many anchors can lead to a decrease in accuracy.

1.3. Anchor-free

Some one-stage detectors use a different approach. The first ver-
sion of YOLO predicted the coordinates of bounding boxes directly
using fully connected layers (Redmon et al., 2016), the latest versions
have however also switched to using anchors. More recently proposed
anchor-free detectors have deliberately moved away from using an-
chors. CornerNet (Law and Deng, 2018) for example, detects corners
of an object and groups multiple predictions together to produce a
final bounding box. One of the reasons of existence for FCOS (Tian
et al., 2019), another anchor-free object detector, is that anchor shapes
need to be carefully tuned. While anchor-free methods are growing in
popularity and show promising results, their alternatives to anchors
often mean that the detections made in the object detection head are
fixed and cannot be downscaled to trade accuracy for performance. We
believe that anchor-based solutions are still relevant as they are widely
used and as demonstrated in EfficientDet (Tan et al., 2020), are able to
achieve state-of-the art results in both accuracy and efficiency.

1.4. Anchor shape optimization

One of the reasons to use an anchor-free approach is that the
number of anchors and their predefined shapes can be seen as hyper-
parameters that need to be carefully tuned. As stated earlier, anchors
are usually defined in terms of size (or scale) and aspect ratio. The
optimal aspect ratios depend strongly on the domain in which the
object detector is applied. For face recognition square aspect ratios
will be important (Zhang et al., 2017) while for text detection such
as in license plate recognition wider aspect ratios like 1 ∶ 5 need to be
included (Liao et al., 2018).

The optimal scales for the anchors in each layer, not only depend on
the domain (i.e. the distribution of the size of the objects) but also on
the receptive field and the stride of the associated feature map. The
theoretical receptive field indicates which pixels in the input image
affect the value of a pixel in the feature map. However as shown in
Luo et al. (2016), the effective input region that has a non-negligible
impact on this feature map value is only a fraction of the theoretical
receptive field. The stride of the feature map determines the interval at
which anchors are placed. For example, in SSD the stride size of the first
anchor-associated feature map is 8 pixels, indicating that the anchors
produces a bounding box every 8 pixels on the input image.

To reduce the importance of the initial anchor shapes, RefineDet
(Zhang et al., 2018) proposes a one-stage object detector with an
additional module to refine anchor locations, alleviating the negative
effects of suboptimal anchor shapes. Other approaches such as Guided
Anchoring (Wang et al., 2019) and MetaAnchor (Yang et al., 2018)
remove the need for hand-picked anchors all together by including ad-
ditional components that generate the anchors. However, this requires
extra resources and results in a larger model and longer inference time.

M. Bonnaerens, M. Freiberger and J. Dambre Computer Vision and Image Understanding 221 (2022) 103445

𝐻
i
o
𝐶
r
p
a

i
i
t
t

f
a
T
a
p
f
t
4
m
s
t
h
r
a
n
T
b

More recent approaches dynamically learn the anchors during training,
which increases training time but has no influence on the model size
and inference time. FreeAnchor (Zhang et al., 2019) and MAL (Ke et al.,
2020) start from a bag of candidate anchors and learn which ones
are optimal, Anchor Box Optimization (Zhong et al., 2020) adapts the
loss and changes the anchor shapes during back-propagation. These
approaches optimize the anchor shape initialization but still leave
the number of anchors as a hyperparameter. While these approaches
benefit from anchor selection during training, this also means that
any modification to the numbers of anchors requires retraining the
network, making it infeasible to use such methods to efficiently explore
accuracy/performance trade-offs. In comparison our proposed pruning
method can obtain an accuracy without any need for re-training or fine-
tuning. Only when a pruned configuration is selected does our method
require fine-tuning or retraining.

Our anchor pruning approach is compatible with these previous
anchor shape optimization methods as it does not change the shapes of
the initial anchors but rather removes the redundant or least important
anchors. Models that have optimized anchor shapes can be used as a
baseline from which to start anchor pruning.

2. Anchor pruning

In this section, we propose an efficient way to explore different an-
chor configurations through pruning. We first demonstrate why pruning
anchors is a sensible strategy. Next, we present a search algorithm to
determine which anchors to remove for different resource constraints.
The result is a sequence of anchor configurations that form a Pareto
front in the accuracy/performance design space. This allows model de-
signers to trade-off between accuracy and performance when selecting
their final model.

2.1. Redundant anchors

In a one-stage anchor-based object detector, the total number of
predicted bounding boxes per image is 𝑁 =

∑𝑘
𝑖=1 𝑁𝑖 =

∑𝑘
𝑖=1(𝐴𝑖 ×

𝑖 × 𝑊𝑖), where 𝐻𝑖 and 𝑊𝑖 are the size of the feature maps, and 𝐴𝑖
s the number of anchors, for 𝑘 different feature map layers. In some
bject detection architectures 𝑁 also depends on the number of classes

but since most recent models separate class-agnostic bounding box
egression from the object classification, we do not include it here. Our
roposed technique can be trivially extended to handle class-specific
nchors.

When ∀𝑖, 𝑗 ∈ 1,… , 𝑘 ∶ 𝐴𝑖 = 𝐴𝑗 and 𝐻𝑖+1 = 𝐻𝑖∕2, 𝑊𝑖+1 = 𝑊𝑖∕2, as
s common in single stage detectors where the feature maps are often
n a pyramid structure, then 𝑁1 ≈

3𝑁
4 . This means that the majority of

he predicted bounding boxes come from the anchors associated with
he first feature map.

Table 1 shows the relation between the number of anchors per
eature map layer and the total number of bounding boxes as well
s the accuracy on the COCO dataset for different SSD300 models.
he first row shows the results when using the 6 anchors per layer
s defined in the scales and aspect ratios section of the original SSD
aper (Liu et al., 2016). The second row shows the results for the
inal SSD300 version reported in the experimental results section of
he original paper where the number of anchors is reduced from 6 to

in the first and last two layers. While the original paper does not
otivate why some layers have only 4 instead of 6 anchors, it can be

een from the results in the table that the choice likely comes from
he observation that 6 anchors in the first layer offer less accuracy at a
igher computational cost. The last row in Table 1 shows that further
educing the number of anchors in that first layer could have improved
ccuracy and efficiency even more. As we argued earlier, the optimal
umber of anchors is a hyperparameter that requires careful tuning.
his example also indicates that more anchors do not always mean
etter accuracy, as will be further shown in Section 3.
3

Table 1
Relation between the number of anchors per layer 𝐴𝑖 and the total number of bounding
boxes 𝑁 in SSD300. The number of anchors 𝐴1 in the first feature map layer have the
largest influence on 𝑁 . It can be seen that reducing this number has a positive influence
on both the mean average precision (mAP) and the number of bounding boxes.
{𝐴1 , 𝐴2 , 𝐴3 , 𝐴4 , 𝐴5 , 𝐴6} 𝑁 COCO mAP

{6, 6, 6, 6, 6, 6} 11 640 25.6
{4, 6, 6, 6, 4, 4}a 8732 25.7
{2, 6, 6, 6, 4, 4} 5844 25.8

aMarks the original configuration of SSD300 (Liu et al., 2016).

Fig. 1. The distribution of the shape of bounding boxes for each anchor in the first
two layers of SSD300 on MS COCO. The markers correspond to the default shape of
each anchor, and the matching colored region to the final bounding boxes produced
by that anchor. Plotted on the side are the marginal distributions of the width and
height.

Analysis of the bounding boxes predicted by each anchor, shows
that different anchors can predict similar bounding box shapes. For
example, an object with a ground truth bounding box of aspect ratio
1 ∶ 1.5 could be predicted by a 1 ∶ 1 anchor and a 1 ∶ 2 anchor.
Fig. 1, shows the distribution of the predicted bounding boxes for each
anchor in the first two layers of SSD300 on the MS COCO dataset.
It can be observed that certain anchors produce bounding boxes that
are almost completely covered by predictions of neighboring anchors,
which intuitively explains why it is possible to drop certain anchors
without loss of performance.

2.2. Optimal anchor search

Unlike methods such as magnitude-based pruning of convolutional
filters (Li et al., 2016), we not only have to decide how much to prune
but also what to prune. Anchors that produce bounding boxes that
are largely covered by neighboring anchors are more optimal to prune
than those producing unique shapes. The number of possible anchor
subsets that result from pruning a model is equal to |()| = 2||

where  is the set of all anchors in the unpruned model and ()
stands for the power set of . Models such as SSD and RetinaNet have
30 and 45 anchors respectively, which makes it infeasible to evaluate
all combinations. We therefore introduce a greedy search algorithm to
efficiently explore the search space. This procedure is summarized in
Algorithm 1.

Our anchor pruning algorithm starts from a fully (pre-)trained

model 𝑀 with anchor configuration  = . The algorithm iterates over

M. Bonnaerens, M. Freiberger and J. Dambre Computer Vision and Image Understanding 221 (2022) 103445

1
1
1
1
1

a
a
c

m
c
i
s
p

s
s
c
n

n
A
c
a
i
l
o
s
a
o
r
a

a
t
H
o
R

e
T
a
C
o
f
d

Algorithm 1 Anchor Pruning Search
Input: Fully trained model 𝑀 with anchors 
Output: Pareto Frontier 𝑃

1: Set 𝑆 ← {} and 𝑃 ← {}
2: while 𝑆 ≠ ∅ do
3: Select a configuration  from 𝑆 to explore
4: for each anchor 𝑎𝑖 ∈  do
5: 𝑖 =  ⧵ 𝑎𝑖
6: accuracy𝑖 = Accuracy of 𝑀 , keeping only

predictions produced by anchors in 𝑖
7: cost𝑖 = Resource cost of 𝑀 with anchors in 𝑖
8: Compare accuracy𝑖 and cost𝑖 to

accuracy𝑗 and cost𝑗 from all 𝑗 ∈ 𝑃
9: if 𝑖 is Pareto Optimal in 𝑃 then
0: Add 𝑖 to 𝑃 and 𝑆
1: end if
2: Remove any 𝑖 that is no longer optimal from 𝑃
3: end for
4: end while

an adapting set of unexplored anchor configurations 𝑆 and constructs a
set of Pareto-efficient anchor configurations 𝑃 . Starting from 𝑆 = {}
nd 𝑃 = {}, we take an unexplored configuration  ( ⊆ ) from 𝑆
t each iteration until 𝑆 = ∅. From anchor configuration  we evaluate
onfigurations 1,… ,𝑛, where 𝑖 =  ⧵ 𝑎𝑖, with anchor 𝑎𝑖 ∈ .

Evaluating a configuration  means evaluating the accuracy of the
odel 𝑀 when only using the predictions made by anchors 𝑎𝑖 ∈ . This

an be done in an efficient way by initially storing all predicted bound-
ng boxes from 𝑀 , i.e. before any are discarded by post-processing steps
uch as NMS, and to re-evaluate by only keeping the bounding boxes
roduced by anchors 𝑎𝑖 in the configuration . This avoids the costly

process of running all validation inputs through an adapted model for
each new configuration. The evaluation of the accuracy metric should
be done on a validation set to avoid overfitting the anchor configura-
tions on the test set. As stated before, we are not just interested in the
highest accuracy but in the accuracy/resources trade-off. This requires
evaluating an accuracy metric (e.g. mean average precision (mAP), F-
core, etc.) and a resource metric (e.g. inference speed, FLOPs, model
ize, number of predicted bounding boxes, etc.). Resource metrics that
an be calculated such as FLOPs should be preferred above metrics that
eed to be experimentally measured such as inference speed.

A configuration is Pareto-optimal or Pareto-efficient when no other
ode that uses fewer or equal resources achieves higher accuracy.
t any point during the search phase, 𝑃 stores the Pareto-optimal
onfigurations that have been evaluated thus far. To achieve this, the
ccuracy and resource cost of 𝑖 are compared to all 𝑗 ∈ 𝑃 , if 𝑖
s Pareto optimal in 𝑃 we add 𝑖 to 𝑃 and 𝑆, and any 𝑗 that is no
onger Pareto optimal is removed from 𝑃 . To speedup the running time
f the search algorithm, one could also add an accuracy threshold 𝜃
uch that 𝑖 is only added to 𝑃 and 𝑆 if it is Pareto Optimal in 𝑃
nd 𝚊𝚌𝚌𝚞𝚛𝚊𝚌𝚢𝑖 ≥ 𝜃. This is often useful in practice when we are
nly interested in accuracy/resources trade-offs as long as the accuracy
emains acceptable. Once 𝑆 is empty, 𝑃 contains all Pareto-efficient
nchor configurations.

Because the search is greedy, 𝑃 might contain configurations that
re suboptimal solutions as the algorithm may miss anchor combina-
ions that would arise from further pruning discarded configurations.
owever, as we will show in Section 3, our method significantly
utperforms random pruning and the default pruning approach from
etinaNet.
 c

4

Table 2
The number of FLOPs for different one-stage object detectors, along with the percentage
of the FLOPs that take place in the head of the network. FLOPs are calculated for an
input resolution of 300 × 300.

Model FLOPs FLOPs(%) head

SSD 34.4B 12.3%
RetinaNet 21.7B 57.6%
MobileNetV3-Small-SSDLite 0.2B 37.5%

3. Experiments

3.1. Setup

Our proposed anchor pruning is rather general and can be applied
to any anchor-based one-stage object detector. We demonstrate our
results primarily on SSD300 (Liu et al., 2016), one of the most used and
influential one-stage object detectors. SSD uses a VGG16 backbone, a
pyramid of convolutional feature maps in the neck, and a head with a
3×3×(𝐴𝑖×(𝐶𝑙𝑎𝑠𝑠𝑒𝑠+4)) convolution on top of each of the 6 feature maps.
Each feature map has anchors of a fixed scale and with aspect ratios of
{1, 2, 12 , 3,

1
3 } and an additional anchor with aspect ratio 1 but a larger

scale (which we will refer to as 1+), resulting in 6 anchors per layer.
However for the first and the two last feature maps, the anchors with
aspect ratios 3 and 1

3 are removed, resulting in a total of 30 anchors.
While SSD is no longer a state-of-the-art object detection model, as

many alternatives that are both more accurate and more efficient have
been developed since its publication, the fundamental structure of the
Single-Shot-Detector remains used in most recent object detectors.

Table 2 shows the FLOPs (multiply-adds) of different object detec-
tion models along with how many of those FLOPs are in the detection
head. It can be seen that the relative importance of the head has
increased as backbones got more efficient in more recent object detec-
tors. Given the growing focus on resource-efficient models, we expect
this trend to continue. We will show in Section 3.6 that our method
generalizes well to these more recent anchor-based one-staged object
detectors.

As stated in the introduction, the running time of an object detection
model in an embedded context is often dominated by the running time
of the post processing steps, which is directly related to the number
of bounding boxes produced by the network. In systems where this
post-processing bottleneck is not present, the running time will be
directly related to the FLOPs of the model, and as our approach is
backbone independent we only report on those FLOPs in the head.
In the remainder of this work we report the resource cost as FLOPs
in the head of the network or as the number of bounding boxes it
produces. Compared to reporting latency which is very implementation
and hardware dependent, we believe that our reported metrics allow
model designers to better estimate the accuracy/resource trade-offs that
are possible for their platform.

We evaluate pruning anchors of the SSD model on the MS COCO
2017 detection dataset (Lin et al., 2014). Before pruning, the SSD model
is trained on train2017 using SGD for 120 epochs with a learning
rate of 10−3, which is decreased to 10−4 on epoch 80 and to 10−5 on
poch 110, with a weight decay of 5 × 10−4 and a momentum of 0.9.
he input images are resized to 300 × 300 and all data augmentations
s described in Liu et al. (2016) are used. The accuracy metric used for
OCO is the mean average precision (mAP) evaluated at intersection-
ver-union (IoU) thresholds evenly distributed between 0.5 and 0.95,
or the resource metric we use the number of FLOPs in the object
etection head. Our anchor pruning search, uses val2017 to evaluate

andidate anchor configurations.

M. Bonnaerens, M. Freiberger and J. Dambre Computer Vision and Image Understanding 221 (2022) 103445

i
a
C

3

c
o
m
t
f
F
l
r
n
a
i
i
a
c

t
C
u
t
a
t
w

Table 3
Results on COCO test-dev2017 from the evaluation server for different anchor configurations of SSD. The models are ordered in decreasing
number of bounding boxes and FLOPs. AP.5:.95 is the COCO mAP, AR the average precision and subscripts S/M/L correspond to small, medium
and large objects. The superscripts2,3,4,5 refer to the subsection of Section 3 where the details of the relevant experiments can be found.
Model (SSD variant) AP.5:.95 AP50 AP75 APS APM APL ARS ARM ARL FLOPs

head
BBoxes

SSD baseline 25.7 44.0 26.6 7.1 27.1 41.6 11.2 39.9 57.6 4231M 8732
SSD {1, 2, 1

2
, 1+}4 25.5 43.7 26.2 7.3 26.6 40.8 11.6 39.6 56.5 3577M 7760

SSD {1, 1+}4,5 25.0 43.3 25.5 7.2 25.6 39.6 12.7 39.0 56.1 1788M 3880

Configuration-A pruned2,3 25.6 43.9 26.5 7.1 27.1 41.2 11.2 39.8 57.2 3607M 7814
Configuration-A fine-tuned3 25.7 44.0 26.6 7.2 27.2 41.3 11.3 39.7 57.3 3607M 7814
Configuration-A retrained3 25.5 44.0 26.3 7.6 27.2 40.4 11.8 39.8 56.4 3607M 7814

Configuration-B retrained3,4 25.8 44.5 26.5 6.8 27.2 41.2 12.0 40.1 57.3 2476M 4926
Configuration-C retrained3,4,5 25.4 44.3 25.7 6.5 25.7 41.6 12.5 38.2 58.0 1628M 3121
Configuration-D retrained3 23.1 41.5 23.1 3.7 22.6 41.4 7.3 35.4 58.0 774M 1291

Pruned Layer-wise4 25.0 43.6 25.5 7.5 26.5 38.1 13.0 39.3 54.8 1788M 3880

Overanchorized5 25.8 43.5 27.0 6.6 28.4 42.1 9.7 40.7 59.1 6673M 13 584
Pruned Overanchorized5 25.3 44.0 25.7 6.5 25.6 42.1 12.3 37.4 58.8 1620M 3080
a

3.2. Pruning

Fig. 2 shows the Pareto frontier of pruned anchor configurations as
obtained by our search algorithm, representing points at which fewer
FLOPs can only be achieved by sacrificing accuracy. We also highlight
the original unpruned model and plot the results of configurations
achieved when pruning anchors randomly. As can be seen in the figure,
our method outperforms random pruning for all FLOPs, indicating our
effectiveness in pruning anchors that are redundant or that lead to
minimal accuracy loss. For pruned models that have a large reduction
in FLOPs and therefore require more anchors to be pruned, selecting the
right anchors can be the difference between a model with acceptable
accuracy and a model that is no longer usable because the accuracy
dropped too much. Note that the wider gaps on the 𝑥-axis between
anchor configurations in the Pareto frontier are due to pruned anchors
that have a large influence on the number of FLOPs, such as anchors
in the first layer of the head.

The most accurate configuration produced by our search algorithm,
which we will refer to as Configuration-A pruned, is able to reduce
the number of FLOPs in the detection head by 15% without losing
any accuracy on the val2017 dataset. Table 3 shows the accuracy
n more detail on the test-dev2017 dataset, indicating that the
ccuracy degraded slightly for large objects. This is not surprising as
onfiguration-A pruned 5 of the 8 largest anchors.

.3. Fine-tuning versus retraining

Most pruning techniques fine-tune the model after pruning to re-
over part of the lost accuracy. In this section, we show the impact
f fine-tuning after pruning anchors and compare it to retraining the
odel from scratch with the new anchor configuration. When fine-

uning we train for 10 additional epochs with a learning rate of 10−5,
or retraining we use the same settings as described in Section 3.1.
ig. 3 shows the effect of fine-tuning and retraining on four high-
ighted configurations. As illustrated in the figure, fine-tuning does
ecover some of the lost performance during pruning. However, for all
odes except Configuration-A, retraining the configuration from scratch
chieves much higher accuracy. As more anchors get pruned, such as
n Configuration-D, the difference between fine-tuning and retraining
ncreases. The Pareto frontier produced by Algorithm 1 can be seen
s a lower bound for the accuracy that can be achieved for those
onfigurations after fine-tuning or retraining.

On the val2017 dataset there are now multiple configurations
hat match the unpruned baseline accuracy: Configuration-A pruned,
onfiguration-A fine-tuned and Configuration-B retrained. Further eval-
ation on the test-dev2017 dataset, as shown in Table 3, indicates
hat Configuration-A fine-tuned is able to restore the lost performance
s reported in the previous section and Configuration-B retrained is able
o reduce the FLOPs and the number of bounding boxes by around 43%

hile even slightly improving accuracy.

5

Fig. 2. Accuracy and FLOPs trade-offs for different optimal anchor configurations
found by our anchor pruning search. The Pareto frontier is highlighted in orange,
the unpruned baseline in blue. Accuracy is measured on the COCO val2017 dataset
and FLOPs indicate the multiply-adds in the detection head. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

3.4. Layer-wise pruning

Experimenting with anchor configuration in the head of an object
detector is not new, but it is normally done before training and in
a symmetric way. Adding or removing anchor shapes is done across
all layers and when the aspect ratio 𝑥 is added/removed, 1

𝑥 is also
added/removed. The original SSD paper does mention two additional
anchor settings compared to the baseline; one where aspect ratios 1
and 1

3 are removed, and one which is further reduced by removing
spect ratios 2, 12 . Just like our retraining approach, these additional

models are trained from scratched rather than created by pruning the
larger baseline. We compare these ‘default’ settings to configurations in
our Pareto frontier that have a comparable number of FLOPs. The SSD
setting where aspect ratios 3, 1

3 are removed has a performance drop
of 0.2% on COCO. In the previous subsection, we already showed that
we can prune much more than that while simultaneously improving
accuracy. The SSD setting with only two square anchors per layer has a
performance drop of 0.7%. Configuration-C retrained has a comparable
number of FLOPs to this setting but only results in 0.3% reduced
accuracy. We also compare to a pruned model where the anchors are
pruned layer by layer until 2 anchors per layer remain. While the layer-
wise pruning configuration keeps other aspect ratios besides 1 ∶ 1,
it does result in comparable accuracy (after retraining) to the last
mentioned SSD setting, indicating the importance of pruning freely over

M. Bonnaerens, M. Freiberger and J. Dambre Computer Vision and Image Understanding 221 (2022) 103445

t
e
3

c
o
m

R
f

Fig. 3. Accuracy of fine-tuning and retraining certain highlighted configurations for SSD on COCO val2017. Fine-tuning improves accuracy after pruning but in most cases,
retraining achieves a much higher accuracy.
all layers as we do in Algorithm 1. The detailed results can be found in
Table 3.

3.5. Overanchorized model

As explained in Section 1, predefined anchors introduce many addi-
tional hyperparameters that require careful tuning. We introduce an
‘overanchorized’ model and define it as an object detection model
that has more anchors than strictly needed. For applications where
computational resources are not constrained, our previous experiments
showed that while more anchors do not always improve accuracy, they
also do not degrade the accuracy significantly. For applications with
constrained-resources we can prune from an overanchorized model
to arrive at an optimized anchor configuration. This also allows our
algorithm to find a suitable set of anchors if no initial anchors with
good performance are known. As an experiment, we defined an over-
anchorized SSD model with 48 anchors (see Fig. 4) and pruned it
to a model where the number FLOPs is below or equal to the SSD
setting with two anchors per layer. Fig. 4 plots the anchors selected
by the pruning step. The detailed results in Table 3 show that pruning
an overanchorized model achieves comparable accuracy to pruning
the original baseline. This suggests that training an overanchorized
object detection model followed by anchor pruning can eliminate ex-
tensive tuning of the anchor shapes, while simultaneously removing the
number of anchors as a hyperparameter.

3.6. RetinaNet

As stated earlier, our approach is general as it can be applied to
different one-stage anchor-based object detectors. In this subsection we
demonstrate that our technique is also successful on more recent object
detectors such as RetinaNet. The default configuration of RetinaNet
uses 9 anchors in each layer by combining 3 scales and 3 aspect ratios
{ 1
2 , 1, 2}. As shown earlier in Table 2, unlike most object detectors,
he majority of FLOPs in this model take place in the head. The
xplanation for this is that whereas the head in SSD directly does a
×3×(𝐴𝑖×(𝐶𝑙𝑎𝑠𝑠𝑒𝑠+4)) convolution, RetinaNet first applies 4 additional

3 × 3 × 256 convolutional layers. Another difference with SSD is that
these prediction layers in the detection head are reused on all feature
maps. To account for these differences, we apply the following changes
to Algorithm 1: Configuration  generates 𝑖 by either removing a
ertain anchor configuration on each layer or by removing all anchors
f a certain layer (as the prediction layers are shared, this practically
eans not applying the head on a certain feature map).

An important side effect of the additional convolutional layers in the
etinaNet head, is that the decision not to apply the head to a certain

eature map has a large influence on the number of FLOPs but not
6

Fig. 4. Anchor shapes for the ‘overanchorized’ SSD model and the anchors that remain
after pruning. The overanchorized model has 48 anchors that produce 13,584 bounding
boxes and achieves 25.8 mAP on COCO. The pruned version only has 14 anchors
producing 3080 bounding boxes and achieves 25.4 mAP.

necessarily on the number of bounding boxes. Because of this property,
we use RetinaNet to show the difference between optimizing for the
number of FLOPs or optimizing the number of bounding boxes. When
optimizing an object detector for a certain use-case, the used hardware
will determine whether the computations in the convolutional layers
or the post-processing steps on the bounding boxes are the most time
consuming. The resulting Pareto frontiers can be found in Fig. 5. The
large jump in FLOPs in both frontiers happens when the head is no
longer applied to the first feature map. The difference is that in the
FLOPs frontier the remaining layers still have 8 anchors left, while in
the bounding boxes frontier there are only 5 anchors left.

Table 4 compares the result of retraining this FLOPs frontier con-
figuration to the baseline and a RetinaNet version with only 1 anchor
in each layer as reported in the original paper. Not only does our
pruned configuration achieve 4.1% better accuracy, it can also reduce
the computational cost of the head by 75% compared to the RetinaNet
(s3a3) baseline and by 68% compared to RetinaNet (s1a1). This means
that our method is able to reduce the FLOPs of the entire RetinaNet
model by 44% while only losing 1.8% accuracy which is 3× better

M. Bonnaerens, M. Freiberger and J. Dambre Computer Vision and Image Understanding 221 (2022) 103445

o
t

c
a
w

p
a
t

M
w
a
0
t
a
f

3

c
p
M
h
2
o
T
o
S
t
m
a
i
o
m

Table 4
Accuracy, FLOPs and inference time for RetinaNet variants on COCO test-dev2017.
Our pruned model can reduce the FLOPs by 75% compared to the baseline (s3a3) while
being much more accurate than the smallest original RetinaNet head (s1a1). Inference
times are measured on an Nvidia GTX 1080.

Model AP.5:.95 FLOPs
head

FLOPs
total

inf time

RetinaNet(s3a3) 36.9 129B 224B 137 ms
RetinaNet(s1a1) 31.0 98B 193B 99 ms
Pruned 33.9 31B 126B 79 ms
Pruned(+retrained) 35.1 31B 126B 79 ms

Fig. 5. Accuracy and number of FLOPs for pruned anchor configurations of RetinaNet
n COCO val2017. The Pareto frontiers are optimized for the number of FLOPs or
he number of bounding boxes.

ompression and 4.1% better accuracy than the default way of scaling
nchors, i.e. RetinaNet(s1a1), which only reduces the FLOPs by 14%
hile also decreasing the accuracy by 5.9%.

These results also illustrate the importance of adapting the anchor
runing search to the object detection architecture; without allowing
n entire layer to be dropped it is impossible to significantly decrease
he number of FLOPs.

The training configurations used for RetinaNet are based on the
MDetection (Chen et al., 2019) RetinaNet baseline configuration
ith ResNet50 backbone and 1× learning rate schedule. All models
re trained using SGD for 12 epochs with an initial learning rate of
.01 which is decreased to 10−3 on epoch 8 and 10−4 on epoch 11,
he weight decay is 10−4 and the momentum 0.9. The input images
re resized to 800 pixels on the shortest side, and random horizontal
lipping is used as data augmentation.

.7. MobileNetV2-SSDLIte

To further demonstrate the generalization of our approach we also
onducted experiments on an SSD object detector with a more com-
act backbone. It is generally assumed that compact models such as
obileNet (Sandler et al., 2018) and ShuffleNet (Hu et al., 2018) are

arder to prune due to their already compact layers (Zhu and Gupta,
017). For anchor pruning we show that the used backbone is not
f importance as the pruning happens in the object detection head.
he only important factor in anchor pruning is the placement of the
riginal anchors. Fig. 6 shows the Pareto Frontiers for MobileNetV2-
SDLite and the original SSD model. Both frontiers follow a similar
rend line, indicating that anchor pruning is backbone agnostic. The
ain difference between the two trend lines is the slightly worse

ccuracy degradation on the left side in the MobileNet frontier. This
s however explained by the fact that MobileNetV2-SSDLite model has
nly 3 anchors in the first layer compared to 4 in the original SSD
odel.
7

Fig. 6. Accuracy and number of FLOPs relative to the unpruned models for
MobileNetV2-SSDLite and the original SSD on COCO val2017. Both frontiers have
a similar trend line, indicating that anchor pruning is backbone agnostic.

3.8. PASCAL VOC

For completeness and to further demonstrate the generalization of
our approach, we also evaluate our approach on the PASCAL VOC
(Everingham et al., 2010) dataset. As is common, we use the combined
datasets of VOC2007 and VOC2012. To reproduce the SSD baseline in
the same way as the original paper, we change the anchor scales to
the values specific for PASCAL VOC as defined in Liu et al. (2016). The
training configuration remains identical to the one used for COCO, with
the exception that it is run for twice as many epochs.

The Pareto frontier for SSD on this dataset can be found in Fig. 7.
The reported mAP is with an IoU threshold of 0.50 as is custom for
evaluating on this dataset. It can be seen that anchor pruning with
retraining can achieve similar mAP as the baseline with more than 50%
FLOPs reduction.

As SSD uses different anchor shape initialization for PASCAL VOC
compared to COCO, we also included an ‘overanchorized’ model that
has the same initial anchors as in the experiments of Section 3.5. For
both PASCAL VOC and COCO pruning from the same ‘overanchorized’
model results in an improvement over the baseline models. This demon-
strates that anchor pruning can not only eliminate the number of
anchors as parameters but also the shapes of the anchors when used
with an ‘overanchorized’ detection head.

Compared to the results on COCO, pruning SSD on PASCAL VOC
shows an additional interesting property; removing certain anchors
immediately improves accuracy, even before fine-tuning or retraining.
This can be explained by looking at the pruned anchors. For example,
the most accurate configuration prunes, among others, all anchors in
the last layer. In SSD the last layer of the head operates on a 1 × 1
feature map while the previous layer operates on a 3 × 3 feature map.
When anchors from both these layers make a prediction about the same
large object, the anchor from the layer with the larger feature map has
more spatial information which can lead to more accurate bounding
box predictions. The example image in Fig. 8 illustrates this: while the
anchor from the last layer is more confident in its prediction, the anchor
from the previous layer is more accurate in predicting the bounding
box shape. Depending on the network structure in the backbone and
neck, removing all anchors on the last feature map may make this
layer obsolete and reduce the computational complexity of the entire
network even further.

4. Conclusion

In this paper, we proposed a novel pruning method for one-stage
anchor-based object detection models: anchor pruning. We show that

M. Bonnaerens, M. Freiberger and J. Dambre Computer Vision and Image Understanding 221 (2022) 103445

f
p
b

Fig. 7. Accuracy and number of FLOPs for anchor pruning configurations in the Pareto
rontiers for the SSD baseline and ‘overanchorized’ model on PASCAL VOC. Note how
runing certain anchors results in improved accuracy compared to the baseline, even
efore any fine-tuning or retraining.

Fig. 8. An example illustrating how predictions made by a large anchor can be more
confident but less accurate (a) than predictions made by a smaller anchor in an earlier
layer (b).

in most object detectors many anchors are redundant and that prun-
ing those anchors followed by a fine-tuning or retraining step can
increase accuracy while simultaneously reducing the computational
cost. Through a simple yet effective search algorithm, we provide a
Pareto frontier of anchor configurations, allowing model designers to
trade accuracy for performance when resources are constrained. We
demonstrate the effects of pruning anchors extensively on the SSD
and RetinaNet object detectors and the MS COCO and PASCAL VOC
datasets. We also show that through pruning an ‘overanchorized’ model
we avoid tuning hyperparameters related to the initial shapes of the
anchors. Given its effectiveness to make object detection models more
efficient, we hope that anchor pruning will become part of the design
process for modern one-stage object detectors.

CRediT authorship contribution statement

Maxim Bonnaerens: Conceptualization, Methodology, Software,
Visualization, Writing – original draft. Matthias Freiberger: Writing
– review & editing. Joni Dambre: Supervision, Conceptualization,
Methodology, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
8

Acknowledgments

This research received funding through the imec.icon project cRE-
AtIve and the Research Foundation Flanders (FWO-Vlaanderen) under
Grant G006718N and 1S47820N.

References

Cai, Z., Vasconcelos, N., 2018. Cascade r-cnn: Delving into high quality object
detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6154–6162.

Cai, L., Zhao, B., Wang, Z., Lin, J., Foo, C.S., Aly, M.S., Chandrasekhar, V., 2019.
MaxpoolNMS: getting rid of NMS bottlenecks in two-stage object detectors. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 9356–9364.

Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J.,
Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y.,
Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C.C., Lin, D., 2019. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155.

Deng, L., Li, G., Han, S., Shi, L., Xie, Y., 2020. Model compression and hardware
acceleration for neural networks: A comprehensive survey. Proc. IEEE 108 (4),
485–532.

Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A., 2010. The pascal
visual object classes (voc) challenge. Int. J. Comput. Vis. 88 (2), 303–338.

Girshick, R., Fast r-cnn. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 1440–1448.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778.

Hinton, G., Vinyals, O., Dean, J., 2015. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531.

Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z.,
Song, Y., Guadarrama, S., et al., 2017. Speed/accuracy trade-offs for modern
convolutional object detectors. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7310–7311.

Ke, W., Zhang, T., Huang, Z., Ye, Q., Liu, J., Huang, D., 2020. Multiple Anchor
Learning for Visual Object Detection. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10206–10215.

Law, H., Deng, J., 2018. Cornernet: Detecting objects as paired keypoints. In:
Proceedings of the European Conference on Computer Vision (ECCV), pp. 734–750.

Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P., 2016. Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710.

Li, S., Yang, L., Huang, J., Hua, X.-S., Zhang, L., 2019. Dynamic anchor feature
selection for single-shot object detection. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 6609–6618.

Liao, M., Shi, B., Bai, X., 2018. Textboxes++: A single-shot oriented scene text detector.
IEEE Trans. Image Process. 27 (8), 3676–3690.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017a. Feature
pyramid networks for object detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2117–2125.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017b. Focal loss for dense object
detection. In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 2980–2988.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L., 2014. Microsoft coco: Common objects in context. In: European
Conference on Computer Vision. Springer, pp. 740–755.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C., 2016.
Ssd: Single shot multibox detector. In: European Conference on Computer Vision.
Springer, pp. 21–37.

Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T., 2018. Rethinking the value of network
pruning. arXiv preprint arXiv:1810.05270.

Luo, W., Li, Y., Urtasun, R., Zemel, R., 2016. Understanding the effective receptive
field in deep convolutional neural networks. In: Advances in Neural Information
Processing Systems. pp. 4898–4906.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788.

Redmon, J., Farhadi, A., 2017. YOLO9000: better, faster, stronger. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271.

Redmon, J., Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards real-time object
detection with region proposal networks. In: Advances in Neural Information
Processing Systems. pp. 91–99.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., Mobilenetv2: Inverted
residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 510–4520.

http://arxiv.org/abs/1906.07155
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb4
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb4
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb4
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb4
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb4
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb5
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb5
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb5
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1608.08710
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb15
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb15
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb15
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb18
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb18
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb18
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb18
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb18
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb19
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb19
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb19
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb19
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb19
http://arxiv.org/abs/1810.05270
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb21
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb21
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb21
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb21
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb21
http://arxiv.org/abs/1804.02767
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb25
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb25
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb25
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb25
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb25

M. Bonnaerens, M. Freiberger and J. Dambre Computer Vision and Image Understanding 221 (2022) 103445
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y., 2013. Overfeat:
Integrated recognition, localization and detection using convolutional networks.
arXiv preprint arXiv:1312.6229.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Tan, M., Pang, R., Le, Q.V., 2020. Efficientdet: Scalable and efficient object detection.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10781–10790.

Tian, Z., Shen, C., Chen, H., He, T., 2019. Fcos: Fully convolutional one-stage object
detection. in: Proceedings of the IEEE International Conference on Computer Vision,
pp. 9627–9636.

Verucchi, M., Brilli, G., Sapienza, D., Verasani, M., Arena, M., Gatti, F., Capotondi, A.,
Cavicchioli, R., Bertogna, M., Solieri, M., 2020. A systematic assessment of
embedded neural networks for object detection. In: 2020 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), Vol. 1.
IEEE, pp. 937–944.

Wang, J., Chen, K., Yang, S., Loy, C.C., Lin, D., 2019. Region proposal by guided
anchoring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2965–2974.
9

Yang, T., Zhang, X., Li, Z., Zhang, W., Sun, J., 2018. Metaanchor: Learning to detect
objects with customized anchors. In: Advances in Neural Information Processing
Systems. pp. 320–330.

Zhang, X., Wan, F., Liu, C., Ji, R., Ye, Q., 2019. Freeanchor: Learning to match anchors
for visual object detection. In: Advances in Neural Information Processing Systems.
pp. 147–155.

Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z., 2018. Single-shot refinement neural
network for object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4203–4212.

Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z., 2017. S3fd: Single shot scale-
invariant face detector. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 192–201.

Zhong, Y., Wang, J., Peng, J., Zhang, L., 2020. Anchor box optimization for object
detection. In: The IEEE Winter Conference on Applications of Computer Vision.
pp. 1286–1294.

Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y., 2017. Incremental network quantization:
Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044.

Zhu, M., Gupta, S., 2017. To prune, or not to prune: exploring the efficacy of pruning
for model compression. arXiv preprint arXiv:1710.01878.

http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb31
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb31
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb31
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb31
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb31
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb31
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb31
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb31
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb31
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb33
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb33
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb33
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb33
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb33
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb34
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb34
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb34
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb34
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb34
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb37
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb37
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb37
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb37
http://refhub.elsevier.com/S1077-3142(22)00060-1/sb37
http://arxiv.org/abs/1702.03044
http://arxiv.org/abs/1710.01878

	Anchor pruning for object detection
	Related work
	Model scaling
	Anchor-based
	Anchor-free
	Anchor shape optimization

	Anchor pruning
	Redundant anchors
	Optimal anchor search

	Experiments
	Setup
	Pruning
	Fine-tuning versus retraining
	Layer-wise pruning
	Overanchorized model
	RetinaNet
	MobileNetV2-SSDLIte
	PASCAL VOC

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

