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Abstract

The speed meter concept has been identified as a technique that can potentially provide laser-
interferometric measurements at a sensitivity level which surpasses the standard quantum limit (SQL)
over a broad frequency range. As with other sub-SQL measurement techniques, losses play a central
role in speed meter interferometers and they ultimately determine the quantum noise limited
sensitivity that can be achieved. So far in the literature, the quantum noise limited sensitivity has only
been derived for lossless or lossy cases using certain approximations (for instance that the arm cavity
round trip loss is small compared to the arm cavity mirror transmission). In this article we present a
generalized, analytical treatment of losses in speed meters that allows accurate calculation of the
quantum noise limited sensitivity of Sagnac speed meters with arm cavities. In addition, our analysis
allows us to take into account potential imperfections in the interferometer such as an asymmetric
beam splitter or differences of the reflectivities of the two arm cavity input mirrors. Finally, we use the
examples of the proof-of-concept Sagnac speed meter currently under construction in Glasgow and a
potential implementation of a Sagnac speed meter in the Einstein Telescope to illustrate how our
findings affect Sagnac speed meters with metre- and kilometre-long baselines.

1. Introduction

The sensitivity of state-of-the-art laser-interferometric gravitational wave detectors, such as the Advanced LIGO
detector [1] currently being commissioned, will be limited over most frequencies in its detection band by so-
called quantum noise. Quantum noise comprises of two components: sensing noise (photon shot noise) at high
frequencies and back-action noise (photon radiation pressure noise) at low frequencies. One strategy for
significant quantum noise reduction is to replace conventional position meters in these interferometers with a
speed meter [2]. This allows, at least partially, the evasion of back-action noise and therefore provides the
possibility of broadband sub-standard quantum limit (SQL) measurements [3].

The first implementation of a laser-interferometric speed meter was based on a Michelson interferometer
employing an additional sloshing cavity in its output port [4—6]. In 2003, it was then shown by Chen thata
Sagnac interferometer has inherent speed meter characteristics [7]. This article also included the first analytical
treatment of the achievable suppression of back-action noise in a Sagnac speed meter, but did not include
treatment of any effects arising from optical losses. Although the loss analysis in Michelson-based sloshing speed
meters was done in [6], the first treatment of loss for a Sagnac speed meter was undertaken by Danilishin [8]. In
the same article a new concept for a realization of a Sagnac speed meter based on polarization optics was
suggested.

In the context of the Einstein Telescope (ET) design [9, 10], the analytical analysis of losses in speed meter
interferometers was extended to Sagnac interferometers employing arm cavities as well as recycling techniques
[11] and it was shown using theoretical analyses that speed meter interferometers can significantly outperform
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Figure 1. Simplified optical layout of a proof-of-concept speed meter interferometer with ring arm cavities that is being built in the
University of Glasgow and that we will base our treatment of quantum noise on. Counterclockwise and clockwise beams as well as
corresponding vacuum fields are denoted by blue (dashed) and red arrows, respectively.

traditional Michelson interferometers in terms of quantum noise [12, 13]. Additional work has shown that it is
possible to implement a dc-readout technique [14, 15] based on polarization Sagnac interferometers [16].
Recently, the potential benefit of Sagnac speed meters for Advanced LIGO upgrades has been analysed and has
also shown to be significant [17, 18].

While there has been significant effort over the past ten years to study aspects of speed meter configurations
from a theoretical point of view, so far the performance of the speed meter concept has not been demonstrated in
an experiment. Therefore, we recently started to set up a Sagnac speed meter proof-of-concept experiment, that
aims to demonstrate the reduction of back-action noise provided by the speed meter [19].

In this article we further advance the quantum noise models for Sagnac speed meters, firstly by including
treatment for asymmetries in the interferometer (such as an asymmetric beam splitter (BS) or arm cavity input-
coupling mirrors with different reflectivities), and secondly by providing a more general treatment of losses.
Furthermore, the losses do not rely on certain approximations, such as that arm cavity losses are much smaller
than the input mirror transmission, an approximation made by all previous models.

In section 2 we lay out the theoretical background, framework and the details of our novel quantum noise
model. Weillustrate in section 3 the effects of interferometer asymmetries using two examples of vastly different
arm lengths, from the metre-scale Glasgow Sagnac speed meter proof-of-concept experiment to the potential
speed meter implementation for the 10 km long ET on the other hand. We conclude with a summary and
outlook in section 4.

2. Analytical analysis of quantum noise in an imperfect and asymmetric Sagnac speed
meter

In this section, we calculate quantum noise limited sensitivity (or more accurately its spectral density) for an
imbalanced Sagnac interferometer featuring arm cavities, as shown in figure 1. This layout is chosen for a reason
that it replicates the main design features of a proof-of-concept speed meter interferometer under construction
at the University of Glasgow [19]. The most profound deviation of this setup from a large scale GW
interferometer is that it has parallel arms, while the latter has orthogonal ones. However, we keep denoting the
arms and all pertaining elements with the same letters N and E (meaning ‘north’- and ‘east’-bound arms,
respectively) for compatibility with the earlier works [3, 7, 8].

The main purpose of this section is to show what impact different imperfections have on the realistic Sagnac
speed meter’s ability to suppress quantum back-action noise if compared to Michelson interferometers. In
particular, we study how the deviation of the BS ratio from the ideal 50%/50% changes quantum noise. As well,
the effect of non-identical arm cavities is considered. We study also the effect of optical loss in the elements of the
core optics.

Consider first the underlying principle that makes Sagnac interferometer a speed meter. Indeed, visiting
consequently both arms (see blue (dashed) and red arrows in figure 1), two counter propagating light beams are
reflected sequentially from both arm cavities thereby acquiring phase shifts proportional to the sum of arms
length variations Axy g () = (xé\%ﬁ (t) — xl%\ff (t)) (hereinafter I(E)TM stands for input (end) test mass) of
each of the cavities taken with time delay equal to average single cavity storage time Tyem:

Spp  Axy (1) +AxE<t+Tarm), (1)
O x Axg(t) +AxN(t+ rarm). (2)

After recombining at the beamsplitter and photo detection the output signal turns out to be proportional to the
phase difference of the clockwise (R) and the counter clockwise (L) propagating light beams:
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Opp — 6¢; [AxN(t) - AxN(t + rm)] - [AxE(t) - AxE<t + rm)]
x Axyn () — Axg(t) + O(Tarm) (3)

that, for frequencies <z, is proportional to relative rate of the interferometer arms length variation, i.e. their
relative speed.

Note also that the optical paths of the two beams are absolutely identical irrespective of the difference in
length of the two arms, if looked at on a time scale longer than 7,,m,. Therefore, a Sagnac interferometer naturally
keeps its output port dark at dc frequencies. It is only the dynamical change of the arms lengths faster than 7,
thatleads to a non-zero signal at the output photodetector.

We start the analysis of the scheme with choosing the proper notations for the optical fields on key elements
of the interferometer. Unlike in Michelson interferometer, in Sagnac interferometers all photons pass through
both arm cavities before recombining with a counter-propagating beam at the BS. At the same time, the two light
beams hit the cavity simultaneously, one coming directly from the BS and the other one, that has just left the
other arm. In notations of Chen’s paper [7], quadrature operators of light entering and leaving the arm can be
marked with two indices I ], e.g. ag ,where I stands for the either of two beams, L or R, and J stands for the either
oftwoarms (J = E, N). Here R marks the light beam that first enters North arm and then travels the
interferometer in the right direction (clockwise), and L marks the beam travelling the interferometer in the
opposite (counterclockwise) direction after entering the interferometer through the East arm.

2.1. Two-photon formalism for quantized light
Quantum noise in interferometers originates from the quantum nature of light [20]. We will use the so called
two-photon formalism of Caves and Schumaker [21, 22] to describe quantized light and its quantum fluctuations
in the most convenient manner for optomechanical displacement sensors, of which GW interferometers,
including the Sagnac speed meter, make an important class.

The monochromatic electromagnetic wave with a central frequency wo = 27c/Ao and A its wavelength, can
be characterized by its electric field strain. At an arbitrary point of space, characterized by the coordinate vector
r = {x, y, z}, its space-time dependence can be written as:

E(r, t) = :S'Ou(r)[(Ac + dc(t))cos wot + (AS + &S(t))sin a)ot], (4)

where &) = /4n/iwy/(Ac) with A the cross-section area of the light beam. Factor u (r) describes the spatial
structure of the light field that may be quite peculiar. For our analysis, this factor is irrelevant as it does not
influence quantum noise spectrum. Here we separated sine and cosine quadrature amplitudes in a classical
(denoted by capital letters, A ;) and quantum fluctuation (small capped letters, 4, ; (¢)) parts, to track their
propagation through the interferometer separately. Hence, the dynamics of the light field in the interferometer is
reduced to the transformation of the two-dimensional quadrature vectors:

A_ AC d A &C 5
=l Al and a= ol (5)

Usually, the analysis of light in linear optical devices is performed in Fourier domain. For the noise
quadrature amplitudes it is done straightforwardly using the Fourier transform:

. © dQ ., =
is ) = [~ i@, ©)
- 27

where 2 = @ — o, stands for the offset from the carrier frequency . In the following we will use only the
Fourier picture and omit the argument £2 for convenience and clearer presentation.

2.2. Input—output relations for a linear optomechanical device

An optomechanical device can be characterized by a transformation that the mechanical motion of its parts
imprints on the light passing through, or reflected from it. A Sagnac interferometer is a clear example of the
optomechanical sensor. To calculate its quantum noise we need to find how the input fluctuations of the light,

characterized by quadrature amplitudes a™ = {4/", 4"} T, get transformed by the interferometer into the
A out Aout out . . . .
output quadratures, b” = {b. , b, }*.This task can be conveniently solved using a transfer matrix, or

input—output (I/O) relations approach in the Fourier domain that can be written in general form as:

A out

b =T-a"+ R.x /xSQL) (7)
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where
T (2) T (L2
1= | %@ L) ®)
T (Q) Ts(2)
is the optical transfer matrix of the interferometer
Ry (£2)
R.=| " )
Rx,s (Q)
is an optical response of the interferometer on a mirror displacement with spectrum x (£2), and
27
XsoL = (10)
T M2

is the free-mass amplitude spectral density (ASD) of the SQL in terms of mirror displacement for an
interferometer with the effective mechanical displacement mode mass M.

The output signal of the interferometer is usually contained in a photocurrent of a photodetector, or, ifa
more advanced readout technique is used, the difference current of a balanced homodyne detector, i ;ut thatis
proportional to the output light quadrature with the homodyne angle ¢:

sout A out Aout | A COoS {
ip b, cos + b SlnCEHE-b, ng[sin{,’]' (11)

The corresponding quantum noise spectral density in the desired units, e.g. in units of displacement, can be
obtained from the above using the following simple rule:

Hf-T-S"- 7' H,

$(Q) = x5 —, (12)
Hf - R,
where SI" is the spectral density matrix of the incident light, whose components are defined as:
7\ Qin 1. A in A in A\ A in AN\ 2 in .
228 (2 ~ Q)875(2) = —(in| 4" (@) (af@)) + (af @) a(@)lin), (13)

where |in) is the quantum state of the light injected into the dark port of the interferometer and (i, j) = (¢, s)
(see section 3.3 in [3] for more details).

2.3. Quantum noise in a real lossy interferometer

The procedure described above is idealized because it neither takes into account optical losses and the associated
additional quantum noise, nor the asymmetry present in any real balanced scheme. In order to take those factors
into account it is necessary to (i) consider arms of the interferometer separately and (ii) take into account optical
loss in all elements of the scheme and add the corresponding incoherent noise terms into the inputs of the
interferometer input-output (I/O) relations.

This leads to an expansion of the number of inputs of the interferometer for, e.g., in alossy system for each
particular loss point one has to introduce a corresponding vacuum noise field according to the fluctuation—
dissipation theorem [23]. So, if one has a system with N input fields, a }“,
the corresponding expression for the quantum noise spectral density will be just a trivial sum of spectral densities
of the individual noise sources:

and M loss-associated noise fields, 7y,

N M
MH TSP T Hy + ) HL NN - H
j=1 k=1

HE - R.f |

5°(@) = xéy (1

where Sl; are (single-sided) spectral density matrices for all independent inputs, and we accounted for the

special shape of a vacuum state spectral density matrix of the loss-associated vacuum fields, Sﬁ; = l—identity
matrix (see, e.g. section 3.2.1 of [3]).

2.4. Input—output relations for a symmetric lossless Sagnac interferometer

Before doing a full analysis of a lossy imperfect Sagnac interferometer, let us recall briefly the derivation of 1/O-
relations for alossless Sagnac interferometer as is done in Chen’s paper [7] and keeping to his notations as
described above:
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bl = en @, (15)

arm

. V2x
T Ny Tl (16)

XsQL

by = eziﬁarm([z)[ all — KU gl zcgmacn]

with I indicating the beam propagating in opposite direction with respectto [,i.e. R = Land L = R,and

x; = xf™ — x/™ s the signal-induced arm elongation’. Here we introduce the optomechanical coupling

coefficients, K for each beam separately. This notation helps us later on to account for asymmetries in the

interferometer. For the definition of K

arm

we follow the Kimble et al paper [24]:

291] 4 PU
U= B with @ = S (17)
QZ (yarm + Qz) /’larmCL
Q
P = arctan —, (18)

yar m

where y, .. = cTirm/(4L) is the arm cavity half-banwidth, P7 stands for optical power circulating in the arm in
one direction, i.e. in the R-beam, or in the L-beam, and 4, = 2MrrmMerm/(Mirm + 2Mery ) is the effective
mass of the arm.

Now it is straightforward to derive full I/O-relations for a lossless symmetric Sagnac interferometer. In this
case, the optomechanical coupling coefficients are the same for all beams, i.e. K2 = KCyrm. Then, using
junction equations for the fields at the BS:

p+i p—i b - b
4RN 4 LE — A -
afN = , atf=2—n 6= —vo—" (19)
V2 V2 V2
as well as continuity relations between the beams that leave one arm and enter the other:
aff =", v = p, (20)
one obtains:
y . 1 3 o 1., x
(zf = o2ifly _x (1) lf +| pr eifag , (21)
Os 38 i sag XsqL
with the coupling constant Ky, defined as:
: 46t,m
Ky = 8Kam sin® f, = ﬁ, (22)
(2 +72n)
and phase shift:
T
ﬂsag = ﬂarm + 5 (23)

Here we define the differential mechanical mode of the interferometer as x_ = xy — xg (the common mode s
defined by analogyas x; = xy + xg).
The noise transfer matrix and signal response vector for this case have a particularly concise form:

T=—e? b0 R = ¢/ 0 (24)
= — sag , = sag .
Ky 1 2K g

Therefore one gets the following simple expression for the spectral density of the quantum noise limited
sensitivity of the zero-area Sagnac interferometer (it is the same for all tuned interferometers with a balanced
homodyne readout of quadrature b and a vacuum state at the dark port, save to the expression for ) :

2
xSZQL [ICSag — cot Zj] +1
2 Ksag

§- =

(25)

Note that the factor +/2 in front of the arm mechanical mode coordinate x; in equation (16) is due to the difference between the effective
mass of thearm, g, and that of the whole interferometer M = /2, that enters the expression for xsqr. in equation (10).
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2.5. Asymmetric BS
The main asymmetry one can think of in a Sagnac interferometer is the non-perfect splitting ratio of the main BS
resulting in an imbalance of the power in the two light beams propagating in opposite directions. As our analysis
demonstrates below, this imbalance leads to a dramatic increase of the residual radiation pressure noise,
amounting to a steeper rise of the quantum noise towards lower frequencies, S{? o f~°, than that ofa
Michelson interferometer.

In order to account for this asymmetry in our quantum noise calculations let us define the BS symmetry
offset, 77, through the BS power reflectivity, Rgs, and transmissivity, Tgs, as:

147 1—n
Rps = \/EBS, VIss = TBS- (26)

Then the Sagnac I/O-relations with an asymmetric BS read (see figure 3 for field operator notations):

6_ I;LN _ ~RE ) BLN I;RE . I; +I; ) I;LN _ I;RE
\/— BS \/5 > q \/— BS «/5 >
v P HI p—i SLE _ 13—1

+ Hpgg———> a4 -7
V2 NG 7z BSJ’

Using these expressions one can immediately see that the classical amplitudes of the two beams, leaving the
BS, are uneven, i.e. ARN = P (1 + ny) / V2 and AE = P (1 — 1) / J2 (Pis a classical amplitude of pump
field, p, and we assume no classical component for the field entering through the dark port, I =0). Therefore,
the same is true for the intracavity fields and thereby for the optomechanical coupling factors K., which can
now be written as:

2 2
KN, = KR = K (14 1gs) > Kby = KA, = Kaem (1= 15 ) (27)

which indicates the imbalance in the radiation pressure force responsible for the effect we are describing in this
subsection.
The I/O-relations for the Sagnac interferometer with an asymmetric BS can be written as:

0= -ﬂ—?SYm'BSi + —H—;SYm‘BSIA) + R_x_ /xSQL + Rox, /xSQL’ (28)

where the quantum noise transfer matrices read:

1 0
Hqsym.BSZ 1 — 2 eZi[jSag ,
1 (1 =) [ K, + ngsksga] 1
1 0

-[I—asym,BS =2 eZiﬁsag 1
p T 2 (0 g Jres (34 ) K| 1

and where we define the new phase shift, B> and the symmetric and asymmetric components of the
optomechanical coupling as:

86
Kty = o ST gy = —— (29)
(72, +2?)
80y°
]C;iém = 4K.arm COSZ ﬂarm = ¢ (30)
Q? (}/arm + QZ)

and f,, = 2f,,, + z[2.
Quite expectedly, an asymmetry of the BS results in the common mode (x.), signal showing up at the output
port on a par with the differential mode. The two response functions for the cARM and the dARM signal read:

— oifa 2 0
R =1+ n3,) /zzc:;g[l],
R, = 2pgethon 20 [(1)] (31)

Itis now straightforward to the calculate spectral density of quantum noise in units of JARM displacement,
using equation (12):




10P Publishing

NewJ. Phys. 17 (2015) 043031 S L Danilishin et al

O ITM;
Ledgn b
o |-
GRE bLE

€rr
TE

Figure 2. Schematic of a Sagnac ring arm cavity with marked input and output fields. The ‘east’ arm cavity is chosen for definiteness.

a> — €RBs

Figure 3. Schematic of a lossy beamsplitter and its I/O-relations and fields.

2

2 2
xSQL I - ’7]35 2 2
X_ _ sag sag  _
Sasym. BS — ZIC:;% 1+ ’7]325 1+ [Ksym + nBSICaSym cot C]

2

2Mps 1 2 2 ’

o (1 + [5[(1 3 ) K5, + (3 4 ns ) K | - cot g] . (32)
+ 7

Despite relative complexity of this formula, the origin of predicted steep rise of the quantum noise at low
frequencies can be easily seen through. It directly follows from behaviour of K3, and K3, atlow frequencies

Q < - Since K38, (2 — 0) o const, Kof,, (2 = 0) o 27and xgqL  £272, the terms responsible for

asym
o 027 rise are those proportional to (Kim »* o £7*inside the braces. Together with xszQL x Q7 2itgives the
predicted behaviour.

2.6. Losses in the arm cavities
The next important source of imperfection in a Sagnac interferometer is optical loss in the arm cavities.

Each arm cavity of the Sagnac interferometer can be considered as a Fabry—Pérot-type ring cavity with
movable mirrors as shown in figure 2 . To account for losses in the arms we have to introduce additional vacuum
fields in accordance with the fluctuation—dissipation theorem [23]. For all practical purposes it is sufficient to
model it by attributing an additional transmissivity to the end mirrors (ETMs), Tjoss. In this case, the general
structure of the I/O-relations will remain similar to equations (15) and (17), but with additional vacuum noise
fields originating from loss:

XJ

cal + NI al 4l al + NI oA+ RE,—, (33)

IS4 7
b =T arm,r.p. X
SQL

arm
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I

where @7 and T2, ,

stand for for vacuum field entering the arm cavity through the ITM and its transfer matrix,
ﬂim,r.p,, represents a part of the full transfer matrix resulting from radiation pressure created by the counter
propagating light beam, #” and NZ__ stand for the loss-associated vacuum field entering the arm cavity through
the ETM and its transfer matrix, Nﬂm)r_p. is the radiation pressure component of the latter, while R” is the cavity
response to the mirror displacement. Entry points of all participating vacuum fields are shown schematically in
figure 2.

Optical loss in the Sagnac interferometer manifests itself in two ways that conspire to undermine the
radiation pressure suppression effect of the speed meter. Firstly, the power of the light beam when it leaves the
first arm cavity towards the second cavity is reduced by a factor €, = Tioss/ (Titm + Tioss )> and therefore the
radiation pressure force it creates in the second cavity is less than that in the first one. As a result, the perfect
subtraction of radiation pressure forces becomes impossible. Secondly, the additional uncorrelated vacuum
noise that accompanies the light beam at its second reflection of the arm cavity, right before the recombination at
the BS, creates an uncompensated radiation pressure force akin to that of a Michelson interferometer. These two
effects together are responsible for the rise of the quantum noise at the low frequencies.

In order to distinguish the symmetricloss effect from the effect of imbalance, it is reasonable to represent the
cavity mirror parameters as a sum of symmetric and anti-symmetric components in the following way:

7 Tirm + Tiim N E
Ty = Trm £ 6Tirm/2,  © Tiom = -5 0Trrm = Trrm — Titme

T can be represented in a similar way. Then one can represent all the arm-related imperfections in terms of
four parameters, namely:

Tirm + Tioss
(i) averagebandwidth, y, = M;

4L
ey e c(6Tirm + 6T,
(i) itsimbalance &y = M;
4L
cee . . . _ ’I—iOSS
(iii) average fractional loss of photons per round trip per cavity, €xym = ——————;
’IiTM + Tioss
. . . 5’IIOSS
(iv) and associated imbalance d¢,py ~ ————.
TiTM + Tioss

Another common feature of these imperfections, confirmed by numerical estimates based on general
treatment outlined in appendix A is that their impact is noticeable only at frequencies well below the arm cavity
bandwidth, i.e. for 2 « y,,,.. Keeping this in mind and using the introduced parameters, one can rewrite
optomechanical coupling factors for the arms, defined in (17) as (we set 17 = 0 here for simplicity and to isolate
the effect of the arms from that of the BS):

1) de 1)
]Cgrl;]n=lcarm 1__}/_ﬂ_earm 1__}/ > (34a)
}/arm 2 yarm
10} o¢ o)
KE = Kumd 1 + 2L 4 Zam earm(l + —y] , (34b)
yarm 2 yarm
1 o oe.
]CgrEm =Kimy 1 - L/ €arm| 2 — r + ﬂ) + eazrm > (34¢)
Yarm yarm 2
o 1) o€
CN = ot 1+ 2L em[z + L —‘“) +el b (34d)
yarm }/arm 2

One can see that the effect of symmetric loss on the optomechanical interaction (6y = d€,, = 0) is reduced to
the multiplication of the loss-free KL by (1 — €, ) in the first passage of the beam through the arm cavity (RN
and LEbeams), and by (1 — €,y )? in the second passage (RE and LN beams), which is expectable. The phase
shift 4 isalso modified by loss and asymmetry via ya]r — Va]r (1 + €4rm % S€4m/2), but the increment is a
second order correction ~O (€3rm€2/¥,,,, ) and therefore omitted.

Inserting these expressions into equations (A.19) for the transfer matrices of lossy arms and then into (A.20),
one gets the I/O-relations for lossy arms of the form shown in equation (33). Using symmetric BS relations (refer
to equations (19) and (20)), one can finally obtain the I/O-relations for a Sagnac interferometer with loss in the

arms and get the expression for the spectral density, which is rather involved. However, the general structure of it

8
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Figure 4. Spectral density plots for a table-top Sagnac interferometer with parameters given in table 1. Here we demonstrate what
impact different imperfections have on the quantum noise sensitivity of the interferometer. All plots are drawn for phase quadrature
readout, i.e. forhomodyne angle { = 7/2.Ideal Michelson interferometer parameters match those of the corresponding ideal Sagnac
interferometer, shown in the same plot.

can be represented as follows:

X 2
SQL 2
X _ QX-
loss — S+ ) arm {Lsym (earm, €arm> )

2 57/6€arm i

3
+ Lugm| 6¢2m, + 0(5ej,m, (61/am) - ) , (35)

yarm yarm

where $*- stands for the lossless Sagnac interferometer quantum noise spectral density of equation (25) and
both, Ly, and L,gym, are linear functions. As one can see, the influence of loss in general is dictated by the factor
KCarm in front of the bracket which rises as 1/£2% at low frequencies and combined with xSZQL o« 1/0? gives exactly
the Michelson-like raise of quantum noise at low frequencies.

Asymmetries in the arms have a second-order influence, as indicated by the powers of the arguments of
Lasym- In contrast symmetric loss has a first-order contribution to the total quantum noise of a Sagnac
interferometer. These trends are demonstrated in figure 4, and the detailed behaviour of quantum noise as a
function of symmetricloss, €, is shown in figure 5 . The influence of asymmetry of the ITM transmissivities,
OF OY /Yyrm» 18 shown in figure 7. The asymmetric loss, 6€arm, has a similarly weak impact.

2.7. General treatment of quantum noise of asymmetric Sagnac interferometer

For proper treatment of quantum noise in an asymmetric Sagnac, we need to specify the I/O-relations for alossy
BS with arbitrary splitting ratio. The scheme of such a device with all the input and output fields is shown in
figure 3, and the relations between them read:

6' = —(Rusb" + (Tpsb", (36a)
&, = /Tps I;RE + /Rgs I;LN, (36b)

a®N = [Tisi’ + Ry, (36¢)
alf = —/Rpss i/ + Tpsc'. (36d)

Optical loss can be included in the above I/O-relations following a standard procedure of complementing
the lossless element with two virtual splitters of transmissivity 1 — epg and reflectivity epg, with the latter
standing for average photon loss due to absorption in the BS (see figure 3 for notations). This allows for
additional incoherent vacuum fields associated with the loss to be included in the description as per fluctuation—
dissipation theorem [23]. As a result, we get the full I/O-relations for alossy BS in the following form:

0= J1 — €es (—,&Rle;RE + 1/Tle;LN ) + ~/€BS"A10) (376!)
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Figure 5. Quantum noise limited sensitivity of the Glasgow Sagnac speed meter proof of concept experiment (left) and a low frequency
ET Sagnac interferometer (right) for symmetric losses in the two ring cavities in the arms Ideal Michelson interferometer parameters
match those of the corresponding ideal Sagnac interferometer, shown in the same plot.
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Figure 6. Quantum noise limited sensitivity of the Glasgow Sagnac speed meter proof-of-concept experiment (left) and alow
frequency ET Sagnac interferometer (right) for an asymmetric beam splitter. Ideal Michelson interferometer parameters match those
of the corresponding ideal Sagnac interferometer, shown in the same plot. (Note that all traces apart from the ones labelled ‘ideal’, are
calculated with symmetric arm cavity losses of 25 ppm.)
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Figure 7. Quantum noise limited sensitivity of the ET Sagnac interferometer in case of asymmetric reflectivities of the ITMs. Left panel
shows the influence of this asymmetry when there is no excess laser noise and pump laser is considered ideal. Right panel demonstrates
the impact this asymmetry makes in presence of excess laser noise amounting to ten times the vacuum level in power in both, the
amplitude and the phase quadratures. Ideal Michelson interferometer parameters match those of the corresponding ideal Sagnac
interferometer, shown in the same plot. (Note that all traces apart from the ones labelled ‘ideal’, are calculated with symmetric arm
cavity losses of 25 ppm.)
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d= 1 —eBS(JEERE+ ,/RBSIQLN) + Jepstita, (37b)
alkN = \/ﬁs(wll - €BS£ + @Th,) + JRgs (1/1 — eps€ + @ﬁ’lc), (37¢)
alt = — Rgs (1/1 - €BS{ + @Th,) + @(1/1 - €Bsé + \/G_Bsfhc) (37d)

One can check that substitutions Ry — (1 — €ps) Rpsand Ty — (1 — €eps) Ts lead to a more traditional form
of the I/O-relations where Ry + Tgs + €ps = 1, while the meaning remains unchanged.

Using these relations and the expressions for transfer matrices and response functions of alossy arm cavity,
derived in appendix A, we can calculate I/O-relations for a full Sagnac interferometer in the form:

A i A A A k A -
6=Tg-i+Thy-p+ D NI -y Y M - rin + REgx, + Rypx_. (38)
I=L,R k=ip
J=N,E

Using this expression one can finally arrive at the general formula for quantum noise spectral density:

2
_ XSQL T i i i \f » O\
st~ [ s (1) 4 vt (1) ] e
¢ sag
T . N g\ T . vk ko

+ Y HE-ND-(ND) H+ YHTME - (ME) - H g (39)
I=L,R k=i,p
J=N,E

3. Influence on the performance of a small and a large scale speed meter

In this section we present potential applications for the model developed in the previous section. We chose two
specific Sagnac speed meter interferometer configurations as examples: the metre-scale experiment currently
under construction at Glasgow and a large-scale configuration with parameters suitable for implementation as
the low frequency interferometer [25] as part of the planned ET observatory. Both examples are based on Sagnac
interferometers employing ring cavities in the arms and a homodyne readout. Neither configuration discussed
here contains recycling techniques or squeezed light injection.

Worth noting also is that all the plots presented herein are drawn in assumption that we measure a phase
quadrature of the outgoing light. This is by no means an optimal regime for the speed meter in terms of
surpassing the SQL (see e.g. section 6.2 of [3]), and much better sub-SQL sensitivity can be achieved with
optimally tuned readout phase of Sagnac interferometer. The main goal of this paper is to demonstrate that even
with imperfections, the Sagnac interferometer has significant advantage over the Michelson interferometer at
low frequencies. To facilitate the reader in getting this message, we placed in all sensitivity plots in this article the
sensitivity curves of an ideal (lossless and symmetric) Michelson interferometers with parameters equivalent to
the corresponding ideal Sagnac interferometers as a yardstick.

The Glasgow Sagnac speed meter aims to demonstrate the back action reduction of a speed meter compared
to a Michelson interferometer with similar parameters. A detailed description of the experimental set up can be
foundin [19]. The most important parameters of this configuration are listed in the central column of table 1.

The parameters under consideration for the ET low frequency (ET-LF) interferometer were primarily taken
from the most recent sensitivity study at the time of writing [10]. Since this design includes power recycling
whereas the Glasgow speed meter experiment does not, the input power for ET-LF has been increased from 3.00
to45.73 W to account for the lack of power recycling cavity gain. This change maintains the intended circulating
cavity power of 18 kW. Additionally, to maintain the frequency at which the interferometer is most sensitive, the
transmissivity of the cavity input mirrors has been altered from 7000 to 10 000 ppm. This recovers in our model
the frequency at which the ET-LF interferometer is intended to be most sensitive. A list of parameters relevant to
the model is shown for our ET-LF Sagnac interferometer in the right hand column of table 1.

Figure 5 shows how symmetric losses, i.e. losses that are identical in both ring cavities, degrade the quantum
noise limited sensitivity of our two example configurations. The black traces represent perfectly balanced optical
configurations with no losses in the interferometer arms. The remaining traces indicate symmetric losses in the
range from 15 to 100 ppm”. As has been described in the previous section, the main effect of the losses in the arm
cavities shows up as an increased level of quantum noise at low frequencies, which features a 1/f* slope. Overall,

4 . . i L

In real interferometers, the actual value of round-trip loss depends strongly on the length of the cavities. Longer cavities are known to be
more lossy than the shorter ones (see [18,26]). Here, however, we use the same value for both the short- and the long-base interferometers in
order to make a fair comparison between them and make the effect of arm length on the impact of imperfections more profound.
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Table 1. Key parameters used to model the quantum-noise limited sensi-
tivity of the Glasgow Sagnac speed meter proof of principle experiment
and alarge scale ET-LF like Sagnac configuration.

Glasgow speed

Parameter meter ET speed meter
Power incident on BS 1.7W 45.73 W
Laser wavelength 1064 nm 1064 nm
Arm cavity round trip 2.83m 2 x 10*m

length
ITM mass 0.85g 211 kg
ETM mass 100 g 211 kg
ITM transmissivity 700 ppm 10 000 ppm
Photodiode efficiency 95% 95%
Beam splitter loss 1000 ppm 1000 ppm

the loss-driven increase of the quantum noise limited sensitivity is much stronger for the Glasgow speed meter
than itis for the ET-LF speed meter. This can be understood by considering the fact that the Glasgow speed
meter possesses arm cavity finesse approximately 20 times higher than those of the ET-LF Sagnac configuration.
Despite similar round trip loss, the total loss experienced in the short Glasgow speed meter arm cavities is
therefore about 20 times higher than for that of the low frequency ET interferometer.

It should be noted that the quantum noise with losses for the short Glasgow speed meter cannot be calculated
accurately using the approximation that the arm cavity round trip losses are small compared to the input mirror
transmission. Doing so would strongly underestimate the effect of the losses. It is therefore crucial that all
quantum noise calculations for the Glasgow speed meter experiment fully account for losses (without relying on
approximations), as we have done in the analysis presented in this article.

Figure 6 shows the influence of an imbalance in the reflection to transmission ratio of the main
interferometer’s BS. Please note that the coloured traces represent configurations with nominal arm cavity losses
(i.e.25 ppm) and different levels of BS imbalance, while for reference the black traces indicate the case of no
losses and perfectly balanced transmission and reflection. For a BS imbalance of the order 0.1% we find that the
slope of the quantum noise at low frequencies approaches a 1/f” slope, as was discussed and explained earlier in
this article.

At first glance it might seem that the ET speed meter tends to be more susceptible to BS imbalance than the
Glasgow speed meter (by comparing the separation of the red and dark blue traces). However, in reality this
difference only originates from the fact that for a perfectly balanced system the quantum noise of the Glasgow
speed meter is already degraded much more from the 25 ppm round trip loss than the quantum noise of the ET
interferometer. If we compare the quantum noise with BS imbalance (blue traces) to the case of no losses
combined with perfect BS balance (black traces), then the overall quantum noise degradation looks similar for
the two example configurations. This can be intuitively understood by considering that a BS imbalance causes a
reduction in the cancellation of quantum noise, which is independent of the arm cavity finesse.

Finally, figure 7 illustrates the effect of imbalance of the reflectivities of the two input mirrors combined with
the effect of laser noise. Both plots are based on the ET configuration with asymmetric arm cavity input mirror
reflectivities. However, the left plot assumes an ideal laser, i.e. the laser output is limited by vacuum noise, while
in the right hand plot the presence of excess noise of ten times the vacuum is assumed be present in both
quadratures on the laser. As can be seen from this comparison the excess laser noise significantly increases the
effect of the imbalances in the interferometer configuration’.

4. Summary

In this article we have developed for the first time an analytical analysis that can accurately predict the quantum
noise limited sensitivity of Sagnac speed meter interferometers featuring arm cavities. In particular, our models
do not reply on the common assumption that the arm cavity round trip loss is small compared to the arm cavity
input mirror transmission.

We have illustrated the results of our analysis by applying the model to two different speed meter
configurations on very different length scales. We find that for the Glasgow speed meter proof-of-concept
experiment, symmetric arm cavity losses and BS imbalance have the strongest influence on the achievable
quantum noise level, while input mirror imbalances seem to be not too critical. In contrast, we find that for a

> The effect shown here is even more profound for a BS imbalance.
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10 km long ET Sagnac interferometer the most significant quantum noise degradation is caused by BS
imbalances, while symmetric losses and input mirror imbalance play only a minor role.
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Appendix A. Derivation of input—output relations for imperfect zero-area Sagnac
interferometer

In this section, we present a detailed derivation of I/O-relations for an imperfect Sagnac interferometer and
derive an unabridged expression for the quantum noise spectral density. We start with the lossy arm cavity
relations, then proceed to the imperfect, lossy BS relations and, finally, derive the expressions for output fields of
the entire Sagnac interferometer expressed in terms of the input fields.

A.1. Arm cavity input—output relations
The general the I/O-relations of alossy arm cavity of a Sagnac interferometer can be written as follows

R Y /S I o1 1 . y M
b = Ira]rm ~a’ + Na]rm AV + —Ira{m,r‘p. ~a¥ + Na{m,r.p. “npg+ Ra]rmx . (A.1)
SQL

To calculate radiation pressure contribution to the transfer matrices as well as to account for effects of cavity
detuning on the mirrors’ dynamics, we need to calculate the intracavity field as a function of the input fields as

well:
s 1 , , 1 x]
eV =—01,(Q) - [W/H]TM“U + 1/)/l{)SSnU] + RY. , (A.2)
JT 2 }/I T XsQL
™
where again /] = E, N and 7 = L/c is thelight travel time between the arm cavity mirrors
ngm = 27/I”IFM|L](Q) -0+ 1If.]p.) Ngrm = ZVHZFMngssl](Q) + Nflp (A3)
Here
J J ;
1| Ao Yioss — 142 =0
[L](.Q) — IT™ loss , ]] - , (A4)
D;(9) oy Nirm F Noss — iQ
D) (Q) = (py + 1l — iQ) + 67 A5
1) = (#h + b = 12) + 37, (45)

16w,P7 v/ —sin @ 40y)
RJW(2) = [—— T L(Q) - = () - [0] (A.6)
ul Q% Lc cos Py Q 1

arm

In the equantions above @j; stands for phases, the IJ-beam field has at the ITM of the Jth arm cavity. Its choice is
arbitrary and depends on the chosen carrier field reference phase, so we can always set it to zero, as it is done in
the second equation. ©” = 4w, pY / (,ua]r »cL) is the normalized power circulating in the Ith arm in the Jth beam,
ﬂa]rm = 2M{rn Mo / (M + 2Mpy) is an effective mass of the Jth arm with My, and 2M{ . being the
masses of ITM and ETM (note that there are two of them in each cavity), §; = w; — ®, is the Jth cavity
resonance frequency, @, detuning from the pump laser frequency @), and the cavity half-bandwidths due to

ITM power transmissivity, Tipy, and due to loss, Tj/ ., read

I J
] cTrrm ] _ CTloss

Nm = 4r > Noss = 4L (A7)

To calculate the radiation pressure contribution we need to know how the mirrors move under the radiation
pressure force from both beams. Writing down the equations of motion for each mirror and then combining
them in the effective arm degree of freedom x;, one can get the following expression for the latter in the

frequency domain:
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1
]QZ

arm

Xy = xfigml + %P = xfignal +y/ (Q)[FU + FU], where y/ (Q) = — , (A.8)

where we assumed the dynamics of the arm to be that of a free mass with an effective mass ya]r - Inprinciple, itis
always possible to introduce more complicated dynamics into our model by changing the shape of the
mechanical susceptibility functions y/ (). The radiation pressure forces created by each beam read:

Jiw 87w, P’ 17"
AT P T P 1 A ~l]
=2 () ey = =[] e = - K@

I @l
1T . ] _ MmO
= JZ/Zuafrm@U[O] Ly () - [ vl a? + 7’1(])55"1’] _ wx,, (A9)
J

S/ .
Here the first term, Fr.;.’ is the pure fluctuational force, and the last term, K,/

arm

(£2)xj, is the dynamical back-
action term with K7 (£2) an optical rigidity, which is only relevant for non-zero arm detuning &’.
Then we substitute the expression (A.9) into (A.8) and get the new equation for the cavity mirrors dynamics:

i /A i
xy = el gyl (.Q)I:Fr_p +E, - (K;r’m + K;r’m)x,],
which can be resolved in x; to give:
i Al Al
xp=xpE 4 ) (Q)[E.p. +E, ] (A.10)

where the new modified mechanical susceptibility reads:

(R
K (2) = Q) . (A11)
1+ 2 (@)K (@) + Kl ()
Note that for cavities tuned to resonance, )(njew (2) = ) (2).
The expressions for ﬂ.’p and Nf{p. are obtained by substituting (A.10) into the following formula,
representing the back-action induced contribution to the output field:
.7 Xy — x]signal
Abr.p. = ReIl]rm —> (A.12)
XsQL
and collecting the coefficients in front of the corresponding light field. Thereby we arrive at the following
expressions:
-I]—‘I’]P = 2/la]rm)(n]ev\, @I]JﬁéM[L](‘Q) : I:? 8] : IL](-Q)> (A13)
00
b = 2t O\ 1t Tigs L1 () - [ . 0] Ly(Q). (A14)

. . . LN »RE )
The two fields leaving the interferometer and mixing atthe BSare b~ and b . They can be expressed in
terms of the input fields, 4®N and a'f, as well as of noise fields A" using continuity conditions:

alVv = §, Ak = (A.15)
Then the general expression for each arm’s I/O-relations read:
A LN -1 ARN -1 ALE AIN
B = wggyn[(u A PR T A (I TS AN ] + (A.16a)
N —1 =~ —1 A A
B = wﬁfm[ (S AN v I A (B AR E I fLE] + £, (A.16b)
where
ALN R . . x
£ =T + NJTAN + N AN + RN 2N (A.16¢)
XsQL
ARN R . X x
o= TRYGRY 4 NRN ARN | NIV IN 4 RRNY SN (A.16d)
XsQL
FLE _ TLE fLE o NLE pLE o NRE 4RE L RLE _XE Al6
f = lama + arm™ + r.p.n + armx > ( . 8)
QL
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ARE N . , X
F = WA 4 N N AT+ R (A-16f)
SQL

A.1.1. Special case of resonant arms.  These bulky relations become significantly simpler as the arm cavities are
setto resonance, i.e. for 8/ = 0. Then the radiation pressure matrices defined in (A.13) and (A.14) take the
much simpler form:

s [ 0 0 Yo [0
wrf.fp.=e2‘ffm[_,cu 0], N = [ Ri = o] ] (A17)
IT™

arm

where optomechanical coupling factor of a lossy arm is defined as:

I, ]
y _ O v

e 2 ] AT 2’
‘QI:(}/ITM+7/IOSS) +‘Q]

In this particular case, the radiation pressure matrices Tff_jp_ and Nf_lp_ are orthogonal to each other, meaning that
any product of them, irrespective of what value the indices I, J have, is zero. Transfer matrices (A.3) become:

b J J
TTgm=e2iﬁf,mlTarm 0 ] NI = @eziﬁa’,m[ﬁ/arm 0 ] (A.19)

I J J I ]
_Karm Tarm ]/ITM _Karm Narm

/}a]rm = arctan (A.18)

7
J/ITM + yloss

where

J
2Yirm

J J :
Yirn — Ve + 162
Thm(@ =" N (@)= —T
! S +i0Q
7/ITM + 7/loss +

] ] 0’
™ + Yoss +iQ

This simplifies the I/O-relations (A.16) substantially:

ALN ARN ALE ALN
b =Wﬁﬁ’n[11§§.f +f ]+f , (A.200)

B = wffm[fRN + T f] + 7 (A.200)

These simplified expressions can be used to estimate the influence of different asymmetries on the Sagnac
interferometer sensitivity. To make the final step in the calculation of the spectral density, we need to refer to the
BS relations, which is presented in the next subsection:

A.2.BS input/output relations
The input and output fields of the BS are shown in figure 3. The corresponding input—output relations read:

0= J1 — €zs (—JRle;RE + JTle;LN ) + [epst,, (A.21a)
n ~RE ALN N
d= T ens (JTBSb + JRash ) + Jamiy, (A21b)

atN = Tgs <,¢1 - €BSi + \/e_Bsrh,) + /Rgs (1/1 - 63513 + \/6_]351';1},), (A.21¢)
' = — [Rys (T = ensi + Jemsrin;) + Tos (T = ensp + Jemsrity ). (A.21d)

Weintroduced a BS asymmetry offset, ags < 1, in equation (27). Losses at the BS are accounted for by
introducing the loss factor egs < 1and corresponding vacuum fields, #; ,. Substituting equations (A.21c¢),
(A.21d) into equations (A.16a), (A.16b) and substituting the result into equation (A.21a), we finally get the full
interferometer I/O relations:

N i H Iy I N N _

6=Tly-i+Th - p+ Y NI -y Y M - riy + Rigx, + Rypx_. (A.22)
I=L,R k=i,p
J=N.E

Here M;‘fg stand for transfer matrices for additional noise associated with the BS loss.

Collecting the terms in front of corresponding vacuum fields and mechanical displacement terms, one can
get the unabridged expressions for transfer matrices and represent the I/O relations. These expressions are rather
cumbersome and opaque, though straightforward to derive, so we omit them here. The quantum noise power

spectral density can be then calculated using the general rule (14), which yields:
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Glasgow Sagnac Speed Meter
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Figure B1. Spectral density plots for a table-top Sagnac interferometer with parameters given in table 1. The influence of laser noise in
the presence of 1% asymmetry of the beam splitter for different levels of laser noise. We assume fluctuations of two quadratures of
laser light independent and having the same spectral density L which takes the values L = 1, 3, 10, 30 times the vacuum level. Ideal
Michelson interferometer parameters match those of the corresponding ideal Sagnac interferometer, shown in the same plot.

2
XSQL ' i i \f T
§$*(2) = T—_Z{H} : [Téag ’ S;n : (Héag) + T[fag ' (—[rfag) ] : H{
|H§ ' Rsag |
+ Y HD NG (ML) Ho+ Y HD-ML (ML) H (A.23)
¢ sag sag ¢ ¢ sag sag i g
I=LR k=i,p
J=N,E
Here we normalized quantum noise to the JARM signal, as indicated by the denominator, where R, stands for

the interferometer response function to differential motion of the mirrors.

Appendix B. Laser noise in asymmetric Sagnac interferometer

The main implication an asymmetry of the interferometer has in regards to the quantum noise is the leakage of
laser noise to the output port. Our approach allows to account for this effect assuming a simple model of laser
noise as an excess fluctuation on top of the quantum uncertainties of the input laser light. If we assume that the
amplitude and phase fluctuations of the carrier light are uncorrelated and characterized by spectral densities

L. > land L; > 1, respectively, then the input state of the common mode light field p reads:

in LC 0
=1 1] -

and the general quantum noise spectral density formula (A.23) shall be slightly modified to:

2
XsqQL ; i P\ i f
5 (@) = = Z{H}-[w;ag-s;n-(wr;ag) +1rg;g-8}§‘-(1ffag)]'ﬂg
|H - R,
+ T

b Y HE NG (VD) Ho 4+ YHE M- (M) H (B2)
I=L,R k=i,p
J=N,E

The effect that such laser noise has on the quantum noise sensitivity is shown in figure B1 . The chosen span of L
values starts at the shot noise level of L = 1, which for the 1.7 W laser to be used in the Glasgow prototype Sagnac
interferometer corresponds to the relative intensity noise (RIN) ASD of 4.7 x 10~'° Hz~'/2. The upper value of
L =30 corresponds to the level of RIN available for the same 1.7 W laser with reasonable intensity pre-
stabilization, i.e. to the RIN ASD of ~1.4 x 1078 Hz~1/2,
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