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Abstract
The speedmeter concept has been identified as a technique that can potentially provide laser-
interferometricmeasurements at a sensitivity level which surpasses the standard quantum limit (SQL)
over a broad frequency range. Aswith other sub-SQLmeasurement techniques, losses play a central
role in speedmeter interferometers and they ultimately determine the quantumnoise limited
sensitivity that can be achieved. So far in the literature, the quantumnoise limited sensitivity has only
been derived for lossless or lossy cases using certain approximations (for instance that the arm cavity
round trip loss is small compared to the arm cavitymirror transmission). In this article we present a
generalized, analytical treatment of losses in speedmeters that allows accurate calculation of the
quantumnoise limited sensitivity of Sagnac speedmeters with arm cavities. In addition, our analysis
allows us to take into account potential imperfections in the interferometer such as an asymmetric
beam splitter or differences of the reflectivities of the two arm cavity inputmirrors. Finally, we use the
examples of the proof-of-concept Sagnac speedmeter currently under construction inGlasgow and a
potential implementation of a Sagnac speedmeter in the Einstein Telescope to illustrate how our
findings affect Sagnac speedmeters withmetre- and kilometre-long baselines.

1. Introduction

The sensitivity of state-of-the-art laser-interferometric gravitational wave detectors, such as the Advanced LIGO
detector [1] currently being commissioned, will be limited overmost frequencies in its detection band by so-
called quantumnoise. Quantumnoise comprises of two components: sensing noise (photon shot noise) at high
frequencies and back-action noise (photon radiation pressure noise) at low frequencies. One strategy for
significant quantumnoise reduction is to replace conventional positionmeters in these interferometers with a
speedmeter [2]. This allows, at least partially, the evasion of back-action noise and therefore provides the
possibility of broadband sub-standard quantum limit (SQL)measurements [3].

Thefirst implementation of a laser-interferometric speedmeter was based on aMichelson interferometer
employing an additional sloshing cavity in its output port [4–6]. In 2003, it was then shown byChen that a
Sagnac interferometer has inherent speedmeter characteristics [7]. This article also included the first analytical
treatment of the achievable suppression of back-action noise in a Sagnac speedmeter, but did not include
treatment of any effects arising fromoptical losses. Although the loss analysis inMichelson-based sloshing speed
meters was done in [6], the first treatment of loss for a Sagnac speedmeter was undertaken byDanilishin [8]. In
the same article a new concept for a realization of a Sagnac speedmeter based on polarization optics was
suggested.

In the context of the Einstein Telescope (ET) design [9, 10], the analytical analysis of losses in speedmeter
interferometers was extended to Sagnac interferometers employing arm cavities as well as recycling techniques
[11] and it was shownusing theoretical analyses that speedmeter interferometers can significantly outperform

OPEN ACCESS

RECEIVED

9December 2014

REVISED

19 February 2015

ACCEPTED FOR PUBLICATION

13March 2015

PUBLISHED

16April 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/17/4/043031
mailto:Stefan.Danilishin@ligo.org
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/4/043031&domain=pdf&date_stamp=2015-04-16
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/4/043031&domain=pdf&date_stamp=2015-04-16
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


traditionalMichelson interferometers in terms of quantumnoise [12, 13]. Additional work has shown that it is
possible to implement a dc-readout technique [14, 15] based on polarization Sagnac interferometers [16].
Recently, the potential benefit of Sagnac speedmeters for Advanced LIGOupgrades has been analysed and has
also shown to be significant [17, 18].

While there has been significant effort over the past ten years to study aspects of speedmeter configurations
from a theoretical point of view, so far the performance of the speedmeter concept has not been demonstrated in
an experiment. Therefore, we recently started to set up a Sagnac speedmeter proof-of-concept experiment, that
aims to demonstrate the reduction of back-action noise provided by the speedmeter [19].

In this article we further advance the quantumnoisemodels for Sagnac speedmeters,firstly by including
treatment for asymmetries in the interferometer (such as an asymmetric beam splitter (BS) or arm cavity input-
couplingmirrors with different reflectivities), and secondly by providing amore general treatment of losses.
Furthermore, the losses do not rely on certain approximations, such as that arm cavity losses aremuch smaller
than the inputmirror transmission, an approximationmade by all previousmodels.

In section 2we lay out the theoretical background, framework and the details of our novel quantumnoise
model.We illustrate in section 3 the effects of interferometer asymmetries using two examples of vastly different
arm lengths, from themetre-scale Glasgow Sagnac speedmeter proof-of-concept experiment to the potential
speedmeter implementation for the 10 km long ETon the other hand.We concludewith a summary and
outlook in section 4.

2. Analytical analysis of quantumnoise in an imperfect and asymmetric Sagnac speed
meter

In this section, we calculate quantumnoise limited sensitivity (ormore accurately its spectral density) for an
imbalanced Sagnac interferometer featuring arm cavities, as shown infigure 1. This layout is chosen for a reason
that it replicates themain design features of a proof-of-concept speedmeter interferometer under construction
at theUniversity of Glasgow [19]. Themost profound deviation of this setup froma large scaleGW
interferometer is that it has parallel arms, while the latter has orthogonal ones. However, we keep denoting the
arms and all pertaining elements with the same lettersN andE (meaning ‘north’- and ‘east’-bound arms,
respectively) for compatibility with the earlier works [3, 7, 8].

Themain purpose of this section is to showwhat impact different imperfections have on the realistic Sagnac
speedmeter’s ability to suppress quantumback-action noise if compared toMichelson interferometers. In
particular, we study how the deviation of the BS ratio from the ideal 50%/50% changes quantumnoise. Aswell,
the effect of non-identical arm cavities is considered.We study also the effect of optical loss in the elements of the
core optics.

Consider first the underlying principle thatmakes Sagnac interferometer a speedmeter. Indeed, visiting
consequently both arms (see blue (dashed) and red arrows infigure 1), two counter propagating light beams are
reflected sequentially fromboth arm cavities thereby acquiring phase shifts proportional to the sumof arms
length variations Δ ≡ −x t x t x t( ) ( ( ) ( ))N E

N E N E
, ETM

,
ITM

, (hereinafter I(E)TM stands for input (end) testmass) of
each of the cavities takenwith time delay equal to average single cavity storage time τarm:

δϕ Δ Δ τ∝ + +( )x t x t( ) , (1)R N E arm

δϕ Δ Δ τ∝ + +( )x t x t( ) . (2)L E N arm

After recombining at the beamsplitter and photo detection the output signal turns out to be proportional to the
phase difference of the clockwise (R) and the counter clockwise (L) propagating light beams:

Figure 1. Simplified optical layout of a proof-of-concept speedmeter interferometer with ring arm cavities that is being built in the
University ofGlasgow and that wewill base our treatment of quantumnoise on. Counterclockwise and clockwise beams aswell as
corresponding vacuum fields are denoted by blue (dashed) and red arrows, respectively.
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δϕ δϕ Δ Δ τ Δ Δ τ

Δ Δ τ

− ∝ − + − − +

∝ − +
( ) ( )x t x t x t x t

x t x t O

( ) ( )

˙ ( ) ˙ ( ) ( ) (3)

R L N N E E

N E

arm arm

arm

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

that, for frequencies τ≪ −
arm

1 , is proportional to relative rate of the interferometer arms length variation, i.e. their
relative speed.

Note also that the optical paths of the two beams are absolutely identical irrespective of the difference in
length of the two arms, if looked at on a time scale longer than τarm. Therefore, a Sagnac interferometer naturally
keeps its output port dark at dc frequencies. It is only the dynamical change of the arms lengths faster than τarm

that leads to a non-zero signal at the output photodetector.
We start the analysis of the schemewith choosing the proper notations for the optical fields on key elements

of the interferometer. Unlike inMichelson interferometer, in Sagnac interferometers all photons pass through
both arm cavities before recombiningwith a counter-propagating beam at the BS. At the same time, the two light
beams hit the cavity simultaneously, one coming directly from the BS and the other one, that has just left the
other arm. In notations of Chen’s paper [7], quadrature operators of light entering and leaving the arm can be
markedwith two indices I J, e.g. ac

IJ, where I stands for the either of two beams, L orR, and J stands for the either
of two arms ( =J E N, ). HereRmarks the light beam that first enters North arm and then travels the
interferometer in the right direction (clockwise), and Lmarks the beam travelling the interferometer in the
opposite (counterclockwise) direction after entering the interferometer through the East arm.

2.1. Two-photon formalism for quantized light
Quantumnoise in interferometers originates from the quantumnature of light [20].Wewill use the so called
two-photon formalism of Caves and Schumaker [21, 22] to describe quantized light and its quantum fluctuations
in themost convenientmanner for optomechanical displacement sensors, of whichGW interferometers,
including the Sagnac speedmeter,make an important class.

Themonochromatic electromagnetic wavewith a central frequency ω π λ= c20 0 and λ0 its wavelength, can
be characterized by its electric field strain. At an arbitrary point of space, characterized by the coordinate vector

= x y zr { , , }, its space-time dependence can bewritten as:

 ω ω= + + +( ) ( )E t u A a t t A a t tr rˆ ( , ) ( ) ˆ ( ) cos ˆ ( ) sin , (4)c c s s0 0 0
⎡⎣ ⎤⎦

where  π ω=  c4 ( )0 0 with  the cross-section area of the light beam. Factor u r( )describes the spatial
structure of the lightfield thatmay be quite peculiar. For our analysis, this factor is irrelevant as it does not
influence quantumnoise spectrum.Here we separated sine and cosine quadrature amplitudes in a classical
(denoted by capital letters, Ac s, ) and quantum fluctuation (small capped letters, a tˆ ( )c s, ) parts, to track their
propagation through the interferometer separately. Hence, the dynamics of the lightfield in the interferometer is
reduced to the transformation of the two-dimensional quadrature vectors:

= =
A

A

a

a
A a, and ˆ

ˆ

ˆ
. (5)

c

s

c

s

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Usually, the analysis of light in linear optical devices is performed in Fourier domain. For the noise
quadrature amplitudes it is done straightforwardly using the Fourier transform:

∫ Ω
π

Ω= Ω
−∞

∞
−a t aˆ ( )

d

2
ˆ ( )e , (6)c s c s

t
, ,

i

where Ω ω ω= − 0 stands for the offset from the carrier frequency ω0. In the followingwewill use only the
Fourier picture and omit the argumentΩ for convenience and clearer presentation.

2.2. Input–output relations for a linear optomechanical device
Anoptomechanical device can be characterized by a transformation that themechanicalmotion of its parts
imprints on the light passing through, or reflected from it. A Sagnac interferometer is a clear example of the
optomechanical sensor. To calculate its quantumnoisewe need tofind how the inputfluctuations of the light,
characterized by quadrature amplitudes = a aâ { ˆ , ˆ }c s

in in in T, get transformed by the interferometer into the

output quadratures, = b bb̂ { ˆ , ˆ }c s
out out out T. This task can be conveniently solved using a transfermatrix, or

input–output (I/O) relations approach in the Fourier domain that can bewritten in general form as:

= + x xb a Rˆ · ˆ , (7)x
out in

SQL
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where

Ω Ω
Ω Ω

≡
T T

T T

( ) ( )

( ) ( )
(8)

cc cs

sc ss

⎡
⎣⎢

⎤
⎦⎥

is the optical transfermatrix of the interferometer

Ω
Ω

≡
R

R
R

( )

( )
(9)x

x c

x s

,

,

⎡
⎣⎢

⎤
⎦⎥

is an optical response of the interferometer on amirror displacement with spectrum Ωx ( ), and

Ω
= 

x
M

2
(10)SQL 2

is the free-mass amplitude spectral density (ASD) of the SQL in terms ofmirror displacement for an
interferometer with the effectivemechanical displacementmodemassM.

The output signal of the interferometer is usually contained in a photocurrent of a photodetector, or, if a

more advanced readout technique is used, the difference current of a balanced homodyne detector, ζî
out

that is
proportional to the output light quadrature with the homodyne angle ζ:

ζ ζ
ζ
ζ

∝ + ≡ ≡ζ ζ ζbi b b H Hˆ ˆ cos ˆ sin · ˆ,
cos
sin

. (11)c s
out out out T

⎡
⎣⎢

⎤
⎦⎥

The corresponding quantumnoise spectral density in the desired units, e.g. in units of displacement, can be
obtained from the above using the following simple rule:

Ω = ζ ζ

ζ

−
  

S x
H H

H R
( )

· · · ·

·
, (12)x a

x

SQL
2

T in †

T 2

where a
in is the spectral densitymatrix of the incident light, whose components are defined as:

πδ Ω Ω Ω Ω Ω Ω Ω− ′ ≡ ′ + ′ ( ) ( )a a a a2 ( ) ( )
1

2
in ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) in , (13)a ij i j j i,

in in in † in † in

where ∣ 〉in is the quantum state of the light injected into the dark port of the interferometer and =i j c s( , ) ( , )
(see section 3.3 in [3] formore details).

2.3.Quantumnoise in a real lossy interferometer
The procedure described above is idealized because it neither takes into account optical losses and the associated
additional quantumnoise, nor the asymmetry present in any real balanced scheme. In order to take those factors
into account it is necessary to (i) consider arms of the interferometer separately and (ii) take into account optical
loss in all elements of the scheme and add the corresponding incoherent noise terms into the inputs of the
interferometer input–output (I/O) relations.

This leads to an expansion of the number of inputs of the interferometer for, e.g., in a lossy system for each
particular loss point one has to introduce a corresponding vacuumnoise field according to the fluctuation–
dissipation theorem [23]. So, if one has a systemwithN input fields, â j

in, andM loss-associated noise fields, n̂k,
the corresponding expression for the quantumnoise spectral density will be just a trivial sumof spectral densities
of the individual noise sources:

∑ ∑
Ω =

+ζ ζ ζ ζ

ζ

= =

    

S x

H H H H

H R
( )

· · · · · · ·

·
, (14)x j

N

j a j

k

M

k k

x

SQL
2 1

T in †

1

T †

T 2

j

where a
in

j
are (single-sided) spectral densitymatrices for all independent inputs, andwe accounted for the

special shape of a vacuum state spectral densitymatrix of the loss-associated vacuumfields, = n
in

k
—identity

matrix (see, e.g. section 3.2.1 of [3]).

2.4. Input–output relations for a symmetric lossless Sagnac interferometer
Before doing a full analysis of a lossy imperfect Sagnac interferometer, let us recall briefly the derivation of I/O-
relations for a lossless Sagnac interferometer as is done inChen’s paper [7] and keeping to his notations as
described above:
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= β Ωb ae , (15)c
IJ

c
IJ2i ( )arm

 



= − −

+

β Ω

β Ω

b e a a a

x

x
e 2

2
(16)

s
IJ i

s
IJ IJ

c
IJ IJ

c
IJ

IJ J

2 ( )
arm arm

¯ ¯

i ( )
arm

SQL

arm

arm

⎡⎣ ⎤⎦

with Ī indicating the beampropagating in opposite directionwith respect to I, i.e. =R L¯ and =L R¯ , and
= −x x xJ J J

ETM ITM is the signal-induced arm elongation3.Herewe introduce the optomechanical coupling

coefficients, IJ
arm, for each beam separately. This notation helps us later on to account for asymmetries in the

interferometer. For the definition of IJ
arm we follow theKimble et al paper [24]:

 Θ γ

Ω γ Ω
Θ

ω
μ

=
+

=
( )

P

cL

2
, with

4
, (17)IJ

IJ
IJ c

IJ

arm
arm

2
arm
2 2

0

arm

β Ω
γ

= arctan , (18)arm
arm

where γ = cT L(4 )arm ITM is the arm cavity half-banwidth, Pc
IJ stands for optical power circulating in the arm in

one direction, i.e. in theR-beam, or in the L-beam, and μ = +M M M M2 ( 2 )arm ITM ETM ITM ETM is the effective
mass of the arm.

Now it is straightforward to derive full I/O-relations for a lossless symmetric Sagnac interferometer. In this
case, the optomechanical coupling coefficients are the same for all beams, i.e.  ≡IJ

arm arm. Then, using
junction equations for the fields at the BS:

=
+

=
−

= −
a

p i
a

p i
o

b b
ˆ

ˆ ˆ

2
, ˆ

ˆ ˆ

2
, ˆ

ˆ ˆ

2
, (19)RN LE

LN RE

aswell as continuity relations between the beams that leave one arm and enter the other:

= =a b a bˆ ˆ , ˆ ˆ , (20)RE RN LN LE

one obtains:

 = − +β β −o

o

i

i

x

x

ˆ

ˆ
e

1 0
1

ˆ

ˆ

0

2 e , (21)
c

s

c

s

2i

sag sag

i

SQL

sag sag

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

with the coupling constant sag defined as:

  β
Θγ

Ω γ
= =

+( )
8 sin

4
, (22)sag arm

2
arm

arm

2
arm
2 2

and phase shift:

β β π= +2
2

. (23)sag arm

Herewe define the differentialmechanicalmode of the interferometer as = −−x x xN E (the commonmode is
defined by analogy as = ++x x xN E).

The noise transfermatrix and signal response vector for this case have a particularly concise form:

 = − − =β β Re
1 0

1 , e
0

2 . (24)2i

sag

i

sag
sag sag

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Therefore one gets the following simple expression for the spectral density of the quantumnoise limited
sensitivity of the zero-area Sagnac interferometer (it is the same for all tuned interferometers with a balanced
homodyne readout of quadrature ζb and a vacuum state at the dark port, save to the expression for ) :




ζ
=

− +
−S

x

2

cot 1
. (25)x SQL

2
sag

2

sag

⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦ ⎫
⎬⎪
⎭⎪

3
Note that the factor 2 in front of the armmechanicalmode coordinate xJ in equation (16) is due to the difference between the effective

mass of the arm, μarm, and that of the whole interferometer μ=M 2arm , that enters the expression for xSQL in equation (10).
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2.5. Asymmetric BS
Themain asymmetry one can think of in a Sagnac interferometer is the non-perfect splitting ratio of themain BS
resulting in an imbalance of the power in the two light beams propagating in opposite directions. As our analysis
demonstrates below, this imbalance leads to a dramatic increase of the residual radiation pressure noise,
amounting to a steeper rise of the quantumnoise towards lower frequencies, ∝ −S fx

r.p. 6, than that of a
Michelson interferometer.

In order to account for this asymmetry in our quantumnoise calculations let us define the BS symmetry
offset, ηBS, through the BS power reflectivity, RBS, and transmissivity,TBS, as:

η η
=

+
=

−
R T

1

2
,

1

2
. (26)BS

BS
BS

BS

Then the Sagnac I/O-relations with an asymmetric BS read (see figure 3 for field operator notations):

η η

η η

= − + + = + − −

=
+

+
−

=
−

−
+

o
b b b b

q
b b b b

a
p i p i

a
p i p i

ˆ
ˆ ˆ

2

ˆ ˆ

2
, ˆ

ˆ ˆ

2

ˆ ˆ

2
,

ˆ
ˆ ˆ

2

ˆ ˆ

2
, ˆ

ˆ ˆ

2

ˆ ˆ

2
,

LN RE LN RE LN RE LN RE

RN LE

BS BS

BS BS

Using these expressions one can immediately see that the classical amplitudes of the two beams, leaving the
BS, are uneven, i.e. η= +A P (1 ) 2RN

BS and η= −A P (1 ) 2LE
BS (P is a classical amplitude of pump

field , p̂, andwe assume no classical component for thefield entering through the dark port, I=0). Therefore,
the same is true for the intracavity fields and thereby for the optomechanical coupling factors IJ

arm, which can
nowbewritten as:

     η η= = + = = −( ) ( )1 , 1 , (27)RN RE LE LN
arm arm arm BS

2
arm arm arm BS

2

which indicates the imbalance in the radiation pressure force responsible for the effect we are describing in this
subsection.

The I/O-relations for the Sagnac interferometer with an asymmetric BS can bewritten as:

= + + +− − + + o i p x x x xR Rˆ ˆ ˆ , (28)i p
asym.BS asym.BS

SQL SQL

where the quantumnoise transfermatrices read:

 

 

η η

η η η

= − − +

= − + + +

β

β





( )

( ) ( )

1 e
1 0

1
,

2 e
1 0

1

2
1 3 3 1

i

p

asym.BS
BS
2 2i

sym
sag

BS
2

asym
sag

asym.BS
BS

2i

BS
2

sym
sag

BS
2

asym
sag

sag

sag

⎡
⎣
⎢⎢ ⎡⎣ ⎤⎦

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢ ⎡⎣ ⎤⎦

⎤

⎦
⎥⎥

andwherewe define the new phase shift, βsag , and the symmetric and asymmetric components of the

optomechanical coupling as:

  β
Θγ

γ Ω
= =

+( )
4 sin

8
, (29)sym

sag
arm

2
arm

arm

arm
2 2 2

  β
Θγ

Ω γ Ω
= =

+( )
4 cos

8
, (30)asym

sag
arm

2
arm

arm
3

2
arm
2 2 2

and β β π= +2 2sag arm .

Quite expectedly, an asymmetry of the BS results in the commonmode ( +x ), signal showing up at the output
port on a parwith the differentialmode. The two response functions for the cARMand the dARMsignal read:





η

η

= +

=

β

β

−

+

( )R

R

e 1 2 0
1

,

2 e 2 0
1

. (31)

i
BS
2

sym
sag

BS
2i

asym
sag

sag

arm

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

It is now straightforward to the calculate spectral density of quantumnoise in units of dARMdisplacement,
using equation (12):
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Despite relative complexity of this formula, the origin of predicted steep rise of the quantumnoise at low
frequencies can be easily seen through. It directly follows frombehaviour of asym

sag and sym
sag at low frequencies

Ω γ≪ arm. Since  Ω → ∝( 0) constsym
sag ,  Ω Ω→ ∝ −( 0)asym

sag 2 and Ω∝ −xSQL
2 2, the terms responsible for

Ω∝ −6 rise are those proportional to  Ω∝ −( )ssym
sag 2 4 inside the braces. Togetherwith Ω∝ −xSQL

2 2 it gives the
predicted behaviour.

2.6. Losses in the arm cavities
The next important source of imperfection in a Sagnac interferometer is optical loss in the arm cavities.

Each arm cavity of the Sagnac interferometer can be considered as a Fabry–Pérot-type ring cavity with
movablemirrors as shown infigure 2 . To account for losses in the armswe have to introduce additional vacuum
fields in accordance with thefluctuation–dissipation theorem [23]. For all practical purposes it is sufficient to
model it by attributing an additional transmissivity to the endmirrors (ETMs),Tloss. In this case, the general
structure of the I/O-relations will remain similar to equations (15) and (17), butwith additional vacuumnoise
fields originating from loss:

= + + + +   b a n a n
x

x
Rˆ · ˆ · ˆ · ˆ · ˆ , (33)

IJ IJ IJ IJ IJ IJ IJ IJ
IJ

IJ J
arm arm arm,r.p.

¯ ¯
arm,r.p.
¯

¯ arm
SQL

Figure 2. Schematic of a Sagnac ring arm cavity withmarked input and outputfields. The ‘east’ arm cavity is chosen for definiteness.

Figure 3. Schematic of a lossy beamsplitter and its I/O-relations and fields.
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where âIJ and  IJ
arm stand for for vacuum field entering the arm cavity through the ITMand its transfermatrix,

 IJ
arm,r.p.
¯

, represents a part of the full transfermatrix resulting from radiation pressure created by the counter

propagating light beam, n̂IJ and IJ
arm stand for the loss-associated vacuum field entering the arm cavity through

the ETMand its transfermatrix, IJ
arm,r.p.
¯

is the radiation pressure component of the latter, while RIJ is the cavity
response to themirror displacement. Entry points of all participating vacuumfields are shown schematically in
figure 2.

Optical loss in the Sagnac interferometermanifests itself in twoways that conspire to undermine the
radiation pressure suppression effect of the speedmeter. Firstly, the power of the light beamwhen it leaves the
first arm cavity towards the second cavity is reduced by a factor ϵ = +T T T( )arm loss ITM loss , and therefore the
radiation pressure force it creates in the second cavity is less than that in the first one. As a result, the perfect
subtraction of radiation pressure forces becomes impossible. Secondly, the additional uncorrelated vacuum
noise that accompanies the light beam at its second reflection of the arm cavity, right before the recombination at
the BS, creates an uncompensated radiation pressure force akin to that of aMichelson interferometer. These two
effects together are responsible for the rise of the quantumnoise at the low frequencies.

In order to distinguish the symmetric loss effect from the effect of imbalance, it is reasonable to represent the
cavitymirror parameters as a sumof symmetric and anti-symmetric components in the followingway:

δ δ= ± ⇔ =
+

= −T T T T
T T

T T T2,
2

, .J
N E

N E
ITM ITM ITM ITM

ITM ITM
ITM ITM ITM

T J
loss can be represented in a similar way. Then one can represent all the arm-related imperfections in terms of

four parameters, namely:

(i) average bandwidth, γ =
+c T T

L

( )

4arm
ITM loss

;

(ii) its imbalance δγ
δ δ

=
+c T T

L

( )

4
ITM loss ;

(iii) average fractional loss of photons per round trip per cavity, ϵ =
+

T

T T
arm

loss

ITM loss
;

(iv) and associated imbalance δϵ
δ

≃
+

T

T T
arm

loss

ITM loss

.

Another common feature of these imperfections, confirmed by numerical estimates based on general
treatment outlined in appendix A is that their impact is noticeable only at frequencies well below the arm cavity
bandwidth, i.e. for Ω γ≪ arm. Keeping this inmind and using the introduced parameters, one can rewrite
optomechanical coupling factors for the arms, defined in (17) as (we set η = 0BS here for simplicity and to isolate
the effect of the arms from that of the BS):

  δγ
γ

δϵ
ϵ δγ

γ
= − − − − a1

2
1 , (34 )RN

arm arm
arm

arm
arm

arm

⎪

⎪
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⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

  δγ
γ

δϵ
ϵ δγ

γ
= + + − + b1

2
1 , (34 )LE

arm arm
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⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

  δγ
γ

ϵ δγ
γ

δϵ
ϵ= − − − + + c1 2

2
, (34 )RE

arm arm
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arm

arm
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2⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

  δγ
γ

ϵ δγ
γ

δϵ
ϵ= + − + − + d1 2

2
. (34 )LN

arm arm
arm

arm
arm

arm
arm
2⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

One can see that the effect of symmetric loss on the optomechanical interaction (δγ δϵ= = 0arm ) is reduced to
themultiplication of the loss-free  by ϵ−(1 )arm in thefirst passage of the beam through the arm cavity (RN
and LE beams), and by ϵ−(1 )arm

2 in the second passage (RE and LN beams), which is expectable. The phase
shift βarm is alsomodified by loss and asymmetry via γ γ ϵ δϵ→ + ±(1 2)J J

arm arm arm arm , but the increment is a
second order correction  ϵ Ω γ∼ ( )arm arm and therefore omitted.

Inserting these expressions into equations (A.19) for the transfermatrices of lossy arms and then into (A.20),
one gets the I/O-relations for lossy arms of the form shown in equation (33). Using symmetric BS relations (refer
to equations (19) and (20)), one canfinally obtain the I/O-relations for a Sagnac interferometer with loss in the
arms and get the expression for the spectral density, which is rather involved.However, the general structure of it
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can be represented as follows:





ϵ ϵ

δϵ
δγδϵ

γ
δγ

γ
δϵ δγ γ

= + …

+ + …
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⎞
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⎭⎪

where −Sx stands for the lossless Sagnac interferometer quantumnoise spectral density of equation (25) and
both, Lsym and Lasym, are linear functions. As one can see, the influence of loss in general is dictated by the factor
arm in front of the bracket which rises as Ω1 2 at low frequencies and combinedwith Ω∝x 1/SQL

2 2 gives exactly
theMichelson-like raise of quantumnoise at low frequencies.

Asymmetries in the arms have a second-order influence, as indicated by the powers of the arguments of
Lasym. In contrast symmetric loss has afirst-order contribution to the total quantumnoise of a Sagnac
interferometer. These trends are demonstrated infigure 4, and the detailed behaviour of quantumnoise as a
function of symmetric loss, ϵarm, is shown infigure 5 . The influence of asymmetry of the ITM transmissivities,
or δγ γarm, is shown infigure 7. The asymmetric loss, δϵarm, has a similarly weak impact.

2.7. General treatment of quantumnoise of asymmetric Sagnac interferometer
For proper treatment of quantumnoise in an asymmetric Sagnac, we need to specify the I/O-relations for a lossy
BSwith arbitrary splitting ratio. The scheme of such a devicewith all the input and output fields is shown in
figure 3, and the relations between them read:

′ = − +o b bR T aˆ ˆ ˆ , (36 )
RE LN

BS BS

′ = +d b bT R bˆ ˆ ˆ , (36 )
RE LN

BS BS

= ′ + ′a i cT R cˆ ˆ ˆ , (36 )RN
BS BS

= − ′ + ′a i cR T dˆ ˆ ˆ . (36 )LE
BS BS

Optical loss can be included in the above I/O-relations following a standard procedure of complementing
the lossless element with two virtual splitters of transmissivity ϵ−1 BS and reflectivity ϵBS, with the latter
standing for average photon loss due to absorption in the BS (see figure 3 for notations). This allows for
additional incoherent vacuumfields associatedwith the loss to be included in the description as per fluctuation–
dissipation theorem [23]. As a result, we get the full I/O-relations for a lossy BS in the following form:

ϵ ϵ= − − + +( )o b b mR T aˆ 1 ˆ ˆ ˆ , (37 )
RE LN

oBS BS BS BS

Figure 4. Spectral density plots for a table-top Sagnac interferometer with parameters given in table 1.Herewe demonstrate what
impact different imperfections have on the quantumnoise sensitivity of the interferometer. All plots are drawn for phase quadrature
readout, i.e. for homodyne angle ζ π= 2. IdealMichelson interferometer parametersmatch those of the corresponding ideal Sagnac
interferometer, shown in the same plot.
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Figure 5.Quantumnoise limited sensitivity of theGlasgow Sagnac speedmeter proof of concept experiment (left) and a low frequency
ET Sagnac interferometer (right) for symmetric losses in the two ring cavities in the arms IdealMichelson interferometer parameters
match those of the corresponding ideal Sagnac interferometer, shown in the same plot.

Figure 6.Quantumnoise limited sensitivity of theGlasgow Sagnac speedmeter proof-of-concept experiment (left) and a low
frequency ET Sagnac interferometer (right) for an asymmetric beam splitter. IdealMichelson interferometer parametersmatch those
of the corresponding ideal Sagnac interferometer, shown in the same plot. (Note that all traces apart from the ones labelled ‘ideal’, are
calculatedwith symmetric arm cavity losses of 25 ppm.)

Figure 7.Quantumnoise limited sensitivity of the ET Sagnac interferometer in case of asymmetric reflectivities of the ITMs. Left panel
shows the influence of this asymmetrywhen there is no excess laser noise and pump laser is considered ideal. Right panel demonstrates
the impact this asymmetrymakes in presence of excess laser noise amounting to ten times the vacuum level in power in both, the
amplitude and the phase quadratures. IdealMichelson interferometer parametersmatch those of the corresponding ideal Sagnac
interferometer, shown in the same plot. (Note that all traces apart from the ones labelled ‘ideal’, are calculatedwith symmetric arm
cavity losses of 25 ppm.)
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ϵ ϵ= − + +( )d b b mT R bˆ 1 ˆ ˆ ˆ , (37 )
RE LN

dBS BS BS BS

ϵ ϵ ϵ ϵ= − + + − +( ) ( )a i m c mT R cˆ 1 ˆ ˆ 1 ˆ ˆ , (37 )RN
i cBS BS BS BS BS BS

ϵ ϵ ϵ ϵ= − − + + − +( ) ( )a i m c mR T dˆ 1 ˆ ˆ 1 ˆ ˆ . (37 )LE
i cBS BS BS BS BS BS

One can check that substitutions ϵ′ → −R R(1 )BS BS BS and ϵ′ → −T T(1 )BS BS BS lead to amore traditional form
of the I/O-relationswhere ϵ′ + ′ + =R T 1BS BS BS , while themeaning remains unchanged.

Using these relations and the expressions for transfermatrices and response functions of a lossy arm cavity,
derived in appendix A, we can calculate I/O-relations for a full Sagnac interferometer in the form:

∑ ∑= + + + +
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Using this expression one can finally arrive at the general formula for quantumnoise spectral density:

∑ ∑

Ω = +

+ +

ζ
ζ ζ

ζ ζ ζ ζ

−

= =
=

    

   

{

( )

( ) ( )

( )

S
x

H R
H H

H H H H

( )
·

· · · · ·

· · · · · · . (39)

x i
i

i p p

I L R

IJ IJ

k i p

k k

SQL
2

T
sag

2

T
sag

in
sag

†
sag sag

†

,

T
sag sag

†

,

T
sag sag

†

J N E,

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬⎪

⎭⎪

3. Influence on the performance of a small and a large scale speedmeter

In this sectionwe present potential applications for themodel developed in the previous section.We chose two
specific Sagnac speedmeter interferometer configurations as examples: themetre-scale experiment currently
under construction atGlasgow and a large-scale configurationwith parameters suitable for implementation as
the low frequency interferometer [25] as part of the planned ETobservatory. Both examples are based on Sagnac
interferometers employing ring cavities in the arms and a homodyne readout. Neither configuration discussed
here contains recycling techniques or squeezed light injection.

Worth noting also is that all the plots presented herein are drawn in assumption that wemeasure a phase
quadrature of the outgoing light. This is by nomeans an optimal regime for the speedmeter in terms of
surpassing the SQL (see e.g. section 6.2 of [3]), andmuch better sub-SQL sensitivity can be achievedwith
optimally tuned readout phase of Sagnac interferometer. Themain goal of this paper is to demonstrate that even
with imperfections, the Sagnac interferometer has significant advantage over theMichelson interferometer at
low frequencies. To facilitate the reader in getting thismessage, we placed in all sensitivity plots in this article the
sensitivity curves of an ideal (lossless and symmetric)Michelson interferometers with parameters equivalent to
the corresponding ideal Sagnac interferometers as a yardstick.

TheGlasgow Sagnac speedmeter aims to demonstrate the back action reduction of a speedmeter compared
to aMichelson interferometer with similar parameters. A detailed description of the experimental set up can be
found in [19]. Themost important parameters of this configuration are listed in the central columnof table 1.

The parameters under consideration for the ET low frequency (ET-LF) interferometer were primarily taken
from themost recent sensitivity study at the time ofwriting [10]. Since this design includes power recycling
whereas theGlasgow speedmeter experiment does not, the input power for ET-LF has been increased from3.00
to 45.73W to account for the lack of power recycling cavity gain. This changemaintains the intended circulating
cavity power of 18 kW.Additionally, tomaintain the frequency at which the interferometer ismost sensitive, the
transmissivity of the cavity inputmirrors has been altered from7000 to 10 000 ppm. This recovers in ourmodel
the frequency at which the ET-LF interferometer is intended to bemost sensitive. A list of parameters relevant to
themodel is shown for our ET-LF Sagnac interferometer in the right hand columnof table 1.

Figure 5 shows how symmetric losses, i.e. losses that are identical in both ring cavities, degrade the quantum
noise limited sensitivity of our two example configurations. The black traces represent perfectly balanced optical
configurationswith no losses in the interferometer arms. The remaining traces indicate symmetric losses in the
range from15 to 100 ppm4. As has been described in the previous section, themain effect of the losses in the arm
cavities shows up as an increased level of quantumnoise at low frequencies, which features a 1/f 2 slope. Overall,

4
In real interferometers, the actual value of round-trip loss depends strongly on the length of the cavities. Longer cavities are known to be

more lossy than the shorter ones (see [18, 26]).Here, however, we use the same value for both the short- and the long-base interferometers in
order tomake a fair comparison between them andmake the effect of arm length on the impact of imperfectionsmore profound.
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the loss-driven increase of the quantumnoise limited sensitivity ismuch stronger for theGlasgow speedmeter
than it is for the ET-LF speedmeter. This can be understood by considering the fact that theGlasgow speed
meter possesses arm cavity finesse approximately 20 times higher than those of the ET-LF Sagnac configuration.
Despite similar round trip loss, the total loss experienced in the short Glasgow speedmeter arm cavities is
therefore about 20 times higher than for that of the low frequency ET interferometer.

It should be noted that the quantumnoisewith losses for the short Glasgow speedmeter cannot be calculated
accurately using the approximation that the arm cavity round trip losses are small compared to the inputmirror
transmission. Doing sowould strongly underestimate the effect of the losses. It is therefore crucial that all
quantumnoise calculations for theGlasgow speedmeter experiment fully account for losses (without relying on
approximations), as we have done in the analysis presented in this article.

Figure 6 shows the influence of an imbalance in the reflection to transmission ratio of themain
interferometer’s BS. Please note that the coloured traces represent configurationswith nominal arm cavity losses
(i.e. 25 ppm) and different levels of BS imbalance, while for reference the black traces indicate the case of no
losses and perfectly balanced transmission and reflection. For a BS imbalance of the order 0.1%wefind that the
slope of the quantumnoise at low frequencies approaches a 1/f 3 slope, as was discussed and explained earlier in
this article.

Atfirst glance itmight seem that the ET speedmeter tends to bemore susceptible to BS imbalance than the
Glasgow speedmeter (by comparing the separation of the red and dark blue traces). However, in reality this
difference only originates from the fact that for a perfectly balanced system the quantumnoise of theGlasgow
speedmeter is already degradedmuchmore from the 25 ppm round trip loss than the quantumnoise of the ET
interferometer. If we compare the quantumnoisewith BS imbalance (blue traces) to the case of no losses
combinedwith perfect BS balance (black traces), then the overall quantumnoise degradation looks similar for
the two example configurations. This can be intuitively understood by considering that a BS imbalance causes a
reduction in the cancellation of quantumnoise, which is independent of the arm cavityfinesse.

Finally, figure 7 illustrates the effect of imbalance of the reflectivities of the two inputmirrors combinedwith
the effect of laser noise. Both plots are based on the ET configurationwith asymmetric arm cavity inputmirror
reflectivities. However, the left plot assumes an ideal laser, i.e. the laser output is limited by vacuumnoise, while
in the right hand plot the presence of excess noise of ten times the vacuum is assumed be present in both
quadratures on the laser. As can be seen from this comparison the excess laser noise significantly increases the
effect of the imbalances in the interferometer configuration5.

4. Summary

In this article we have developed for the first time an analytical analysis that can accurately predict the quantum
noise limited sensitivity of Sagnac speedmeter interferometers featuring arm cavities. In particular, ourmodels
do not reply on the common assumption that the arm cavity round trip loss is small compared to the arm cavity
inputmirror transmission.

We have illustrated the results of our analysis by applying themodel to two different speedmeter
configurations on very different length scales.Wefind that for theGlasgow speedmeter proof-of-concept
experiment, symmetric arm cavity losses and BS imbalance have the strongest influence on the achievable
quantumnoise level, while inputmirror imbalances seem to be not too critical. In contrast, wefind that for a

Table 1.Key parameters used tomodel the quantum-noise limited sensi-
tivity of theGlasgow Sagnac speedmeter proof of principle experiment
and a large scale ET-LF like Sagnac configuration.

Parameter

Glasgow speed

meter ET speedmeter

Power incident on BS 1.7 W 45.73 W

Laserwavelength 1064 nm 1064 nm

Armcavity round trip

length

2.83 m ×2 104 m

ITMmass 0.85 g 211 kg

ETMmass 100 g 211 kg

ITM transmissivity 700 ppm 10 000 ppm

Photodiode efficiency 95% 95%

Beam splitter loss 1000 ppm 1000 ppm

5
The effect shownhere is evenmore profound for a BS imbalance.
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10 km long ET Sagnac interferometer themost significant quantumnoise degradation is caused by BS
imbalances, while symmetric losses and inputmirror imbalance play only aminor role.
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AppendixA.Derivation of input–output relations for imperfect zero-area Sagnac
interferometer

In this section, we present a detailed derivation of I/O-relations for an imperfect Sagnac interferometer and
derive an unabridged expression for the quantumnoise spectral density.We start with the lossy arm cavity
relations, then proceed to the imperfect, lossy BS relations and, finally, derive the expressions for outputfields of
the entire Sagnac interferometer expressed in terms of the input fields.

A.1. Arm cavity input–output relations
The general the I/O-relations of a lossy arm cavity of a Sagnac interferometer can bewritten as follows

= + + + +   b a n a n
x

x
Rˆ · ˆ · ˆ · ˆ · ˆ . (A.1)

IJ IJ IJ IJ IJ IJ IJ IJ
IJ

IJ J
arm arm arm,r.p.

¯ ¯
arm,r.p.
¯

¯ arm
SQL

To calculate radiation pressure contribution to the transfermatrices aswell as to account for effects of cavity
detuning on themirrors’ dynamics, we need to calculate the intracavityfield as a function of the inputfields as
well:

τ
Ω γ γ

γ τ
= + +e a n
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where again =J E N, and τ = L c is the light travel time between the arm cavitymirrors
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In the equantions above ΦIJ stands for phases, the IJ-beam field has at the ITMof the Jth arm cavity. Its choice is
arbitrary and depends on the chosen carrierfield reference phase, sowe can always set it to zero, as it is done in
the second equation. Θ ω μ= P cL4 ( )IJ

p c
IJ J

arm is the normalized power circulating in the Ith arm in the Jth beam,

μ = +M M M M2 ( 2 )J J J J J
arm ITM ETM ITM ETM is an effectivemass of the Jth armwith M J

ITM and M2 J
ETM being the

masses of ITMandETM(note that there are two of them in each cavity), δ ω ω= −J J p is the Jth cavity
resonance frequency, ωJ , detuning from the pump laser frequency ωp, and the cavity half-bandwidths due to

ITMpower transmissivity,T J
ITM, and due to loss,T J

loss, read

γ γ= =
cT

L

cT

L4
,

4
. (A.7)J

J
J

J

ITM
ITM

loss
loss

To calculate the radiation pressure contributionwe need to knowhow themirrorsmove under the radiation
pressure force fromboth beams.Writing down the equations ofmotion for eachmirror and then combining
them in the effective armdegree of freedom xJ, one can get the following expression for the latter in the
frequency domain:
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wherewe assumed the dynamics of the arm to be that of a freemasswith an effectivemass μJ
arm. In principle, it is

always possible to introducemore complicated dynamics into ourmodel by changing the shape of the
mechanical susceptibility functions χ Ω( )J . The radiation pressure forces created by each beam read:



ω ω
Ω

μ Θ Ω γ γ
μ Θ δ

Ω

= = = −

= + −

 

 

( ) e e

a n

F
c

P

c
F K x

x

Eˆ 2 · ˆ
8 1

0
· ˆ ˆ ( )

2 1
0

· ( ) · ˆ ˆ
( )

. (A.9)

IJ p IJ
IJ

p c
IJ

IJ
IJ IJ

J

J IJ
J

J IJ J IJ
J IJ J

J
J

T

2

T

r.p. arm

arm

T

ITM loss
arm

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Here thefirst term, F̂
IJ

r.p., is the purefluctuational force, and the last term, ΩK x( )IJ
Jarm , is the dynamical back-

action termwith ΩK ( )IJ
arm an optical rigidity, which is only relevant for non-zero armdetuning δ J .

Thenwe substitute the expression (A.9) into (A.8) and get the new equation for the cavitymirrors dynamics:

χ Ω= + + − +( )x x F F K K x( ) ˆ ˆ ,J J
J IJ IJ IJ IJ

J
signal

r.p. rp

¯

arm arm
¯⎡

⎣⎢
⎤
⎦⎥

which can be resolved in xJ to give:

χ Ω= + +x x F F( ) ˆ ˆ , (A.10)J J
J IJ IJsignal

new r.p. rp

¯⎡
⎣⎢

⎤
⎦⎥

where the newmodifiedmechanical susceptibility reads:

χ Ω
χ Ω

χ Ω Ω Ω
=

+ +( )K K
( )

( )

1 ( ) ( ) ( )
. (A.11)J

J

J IJ IJnew
arm arm

¯

Note that for cavities tuned to resonance, χ Ω χ Ω=( ) ( )J J
new .

The expressions for  IJ
r.p. and IJ

r.p. are obtained by substituting (A.10) into the following formula,
representing the back-action induced contribution to the outputfield:

Δ =
−

b
x x

x
Rˆ , (A.12)

IJ IJ J J
r.p. arm

signal

SQL

and collecting the coefficients in front of the corresponding lightfield. Therebywe arrive at the following
expressions:

μ χ Θ γ Ω Ω=  2 ( ) · 0 0
1 0

· ( ), (A.13)IJ J J IJ J
J Jr.p. arm new ITM

⎡
⎣⎢

⎤
⎦⎥

μ χ Θ γ γ Ω Ω=  2 ( ) · 0 0
1 0

· ( ). (A.14)IJ J J IJ J J
J Jr.p. arm new ITM loss

⎡
⎣⎢

⎤
⎦⎥

The twofields leaving the interferometer andmixing at the BS are b̂
LN

and b̂
RE
. They can be expressed in

terms of the inputfields, âRN and âLE , as well as of noisefields n̂IJ using continuity conditions:

= =a b a bˆ ˆ , ˆ ˆ . (A.15)LN LE RE RN

Then the general expression for each arm’s I/O-relations read:

= − + − +
− −

       ( ) ( )b f f f aˆ ˆ ˆ ˆ , (A.16 )
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1

r.p. r.p. r.p.
1⎡
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⎤
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= − + − +
− −

       ( ) ( )b f f f bˆ ˆ ˆ ˆ , (A.16 )
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1

r.p. r.p.
1
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where

= + + +  f a n n
x

x
cRˆ ˆ ˆ ˆ , (A.16 )

LN RN RN LN LN RN RN LN N
r.p. arm r.p. arm

SQL

= + + +  f a n n
x

x
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RN RN RN RN RN LN LN RN N
arm arm r.p. arm

SQL

= + + +  f a n n
x

x
eRˆ ˆ ˆ ˆ , (A.16 )

LE LE LE LE LE RE RE LE E
arm arm r.p. arm

SQL
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= + + +  f a n n
x

x
fRˆ ˆ ˆ ˆ . (A.16 )

RE LE LE RE RE LE LE RE E
r.p. arm r.p. arm

SQL

A.1.1. Special case of resonant arms. These bulky relations become significantly simpler as the arm cavities are
set to resonance, i.e. for δ = 0J . Then the radiation pressurematrices defined in (A.13) and (A.14) take the
much simpler form:

 γ

γ
= − = =β β   Re

0 0

0
, , 2 e 0

1
, (A.17)IJ

IJ
IJ

J

J
IJ IJ IJ

r.p.
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ITM
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iJ J

arm arm

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

where optomechanical coupling factor of a lossy arm is defined as:

 Θ γ

Ω γ γ Ω
β Ω

γ γ
=

+ +
=

+( )
, arctan . (A.18)IJ

IJ J

J J

J
J Jarm

ITM

2
ITM loss

2 2
arm

ITM loss
⎡
⎣⎢

⎤
⎦⎥

In this particular case, the radiation pressurematrices  IJ
r.p. and IJ

r.p. are orthogonal to each other,meaning that
any product of them, irrespective of what value the indices I J, have, is zero. Transfermatrices (A.3) become:
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This simplifies the I/O-relations (A.16) substantially:

= + + b f f f aˆ ˆ ˆ ˆ , (A.20 )
LN LN RE RN LE LN

arm r.p.
⎡
⎣⎢

⎤
⎦⎥

= + + b f f f bˆ ˆ ˆ ˆ . (A.20 )
RE RE RN LN LE RE

arm r.p.
⎡
⎣⎢

⎤
⎦⎥

These simplified expressions can be used to estimate the influence of different asymmetries on the Sagnac
interferometer sensitivity. Tomake the final step in the calculation of the spectral density, we need to refer to the
BS relations, which is presented in the next subsection:

A.2. BS input/output relations
The input and output fields of the BS are shown infigure 3. The corresponding input–output relations read:

ϵ ϵ= − − + +( )o b b mR T aˆ 1 ˆ ˆ ˆ , (A.21 )
RE LN

oBS BS BS BS

ϵ ϵ= − + +( )q b b mT R bˆ 1 ˆ ˆ ˆ , (A.21 )
RE LN

pBS BS BS BS

ϵ ϵ ϵ ϵ= − + + − +( ) ( )a i m p mT R cˆ 1 ˆ ˆ 1 ˆ ˆ , (A.21 )RN
i pBS BS BS BS BS BS

ϵ ϵ ϵ ϵ= − − + + − +( ) ( )a i m p mR T dˆ 1 ˆ ˆ 1 ˆ ˆ . (A.21 )LE
i pBS BS BS BS BS BS

We introduced a BS asymmetry offset, α ≪ 1BS , in equation (27). Losses at the BS are accounted for by
introducing the loss factor ϵ ≪ 1BS and corresponding vacuumfields, m̂i p, . Substituting equations (A.21c),
(A.21d) into equations (A.16a), (A.16b) and substituting the result into equation (A.21a), we finally get the full
interferometer I/O relations:

∑ ∑= + + + +
= =

+
+

−
−

=

   o i p n m x xR Rˆ · ˆ · ˆ · ˆ · ˆ . (A.22)i p

I L R

IJ
IJ

k i p

k
ksag sag

,

sag

,

sag sag sag

J N E,

Here i p
sag
, stand for transfermatrices for additional noise associatedwith the BS loss.

Collecting the terms in front of corresponding vacuum fields andmechanical displacement terms, one can
get the unabridged expressions for transfermatrices and represent the I/O relations. These expressions are rather
cumbersome and opaque, though straightforward to derive, sowe omit themhere. The quantumnoise power
spectral density can be then calculated using the general rule (14), which yields:
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∑ ∑

Ω = +

+ +

ζ
ζ ζ

ζ ζ ζ ζ

−

= =
=

    

   

{

( )

( ) ( )

( )

S
x

H R
H H

H H H H

( )
·

· · · · ·

· · · · · · . (A.23)

x i
i

i p p

I L R

IJ IJ

k i p

k k

SQL
2

T
sag

2
T

sag
in

sag
†

sag sag
†

,

T
sag sag

†

,

T
sag sag

†

J N E,

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬⎪
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Herewe normalized quantumnoise to the dARMsignal, as indicated by the denominator, where −Rsag stands for
the interferometer response function to differentialmotion of themirrors.

Appendix B. Laser noise in asymmetric Sagnac interferometer

Themain implication an asymmetry of the interferometer has in regards to the quantumnoise is the leakage of
laser noise to the output port. Our approach allows to account for this effect assuming a simplemodel of laser
noise as an excessfluctuation on top of the quantumuncertainties of the input laser light. If we assume that the
amplitude and phasefluctuations of the carrier light are uncorrelated and characterized by spectral densities

>L 1c and >L 1s , respectively, then the input state of the commonmode lightfield p̂ reads:

=
L

L

0

0
, (B.1)p

c

s

in
⎡
⎣⎢

⎤
⎦⎥

and the general quantumnoise spectral density formula (A.23) shall be slightlymodified to:
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The effect that such laser noise has on the quantumnoise sensitivity is shown infigure B1 . The chosen span of L
values starts at the shot noise level of L=1, which for the 1.7 W laser to be used in theGlasgowprototype Sagnac
interferometer corresponds to the relative intensity noise (RIN)ASDof × − −4.7 10 Hz10 1 2. The upper value of
L=30 corresponds to the level of RIN available for the same 1.7W laserwith reasonable intensity pre-
stabilization, i.e. to the RINASDof ∼ × − −1.4 10 Hz8 1 2.

Figure B1. Spectral density plots for a table-top Sagnac interferometer with parameters given in table 1. The influence of laser noise in
the presence of 1% asymmetry of the beam splitter for different levels of laser noise.We assume fluctuations of two quadratures of
laser light independent and having the same spectral density Lwhich takes the values =L 1, 3, 10, 30 times the vacuum level. Ideal
Michelson interferometer parametersmatch those of the corresponding ideal Sagnac interferometer, shown in the same plot.
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