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We use the formalism of strange correlators to construct a critical classical lattice model in two
dimensions with the Haagerup fusion category H3 as input data. We present compelling numerical
evidence in the form of finite entanglement scaling to support a Haagerup conformal field theory (CFT)
with central charge c ¼ 2. Generalized twisted CFT spectra are numerically obtained through exact
diagonalization of the transfer matrix, and the conformal towers are separated in the spectra through their
identification with the topological sectors. It is further argued that our model can be obtained through an
orbifold procedure from a larger lattice model with input ZðH3Þ, which is the simplest modular tensor
category that does not admit an algebraic construction. This provides a counterexample for the conjecture
that all rational CFT can be constructed from standard methods.
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Introduction.—Conformal field theory (CFT) plays a
central role throughout the natural sciences, from string
theory, to the standard model of fundamental physics,
through to the effective description of many body systems
at criticality [1,2]. As a consequence, the study of CFTs has
been an extremely active and vibrant research area since
their introduction [3]. Fortunately, the rich symmetries
exhibited by CFTs, particularly in 1þ 1 dimensions, have
enabled dramatic progress in the study of their properties
and their classification. A prominent role here is played by
rational CFTs (RCFT), which supply a rich family of
atomic building blocks for general CFTs. These models
are highly constrained and, since the inception of CFT,
there has been optimism for their classification [4,5].
Considerable progress toward this goal has been achieved.
More specifically, it was shown that the underlying math-
ematical framework of 2D RCFTs is a modular tensor
category (MTC) [6] by establishing a holographic map
between 3D topological field theory and 2D CFT.
Conversely, it is unknown whether one can construct a
CFT based on any modular tensor category and moreover, if
standard CFT constructions, such as orbifolds, cosets, and
simple-current extensions, can produce all RCFTs when
applied to the catalogue of basic rational theories [4,5,7,8].
The conjecture that all RCFTs can be produced via

standard constructions has always been perhaps too bold
as there are a variety of potential counterexamples. One
particularly exotic candidate which has risen to recent
prominence is a putative (R)CFTwhose chiral modular data
would be realized by the quantum double DH3 [or the
Drinfeld center ZðH3Þ] of the Haagerup fusion category
H3 [7,9]. This fusion category arose in the mathematical

theory of subfactors [10] and has, so far, only been
constructed via baroque combinatorial methods [11–13].
The first serious efforts to produce a Haagerup (R)CFT

commenced with the work of Jones, who exploited ideas
from tensor networks to directly build CFT-like continuum
theories from fusion category data [14–16]. While this
initial idea was ultimately unsuccessful [16,17], it did open
the door to the application of the Haagerup case to the well-
known anyon chains [18–20] and to a host of recently
developed methods [21–24], in particular a research pro-
gram targeting the systematic construction of full CFTs
from topological modular data. This program is built on the
premise that an arbitrary CFT may be microscopically
realized via the strange correlator [22,25,26] applied to
different tensor network representations [24] of Levin-Wen
string-net models [27–29]. This idea is attractive for a
variety of reasons: (1) it provides a systematic way to build
the geometric correlation data of a CFT from the purely
topological modular data, (2) it supplies a clear and direct
realization of the symmetries of the CFT via matrix product
operators (MPO), and (3) it enables the direct application of
tensor-network methods to study the resulting critical
lattice model and enables the selection of topological
sectors in a systematic way. The program is essentially a
lattice implementation of the description of the topological
aspects of 2D RCFTs in terms of MTCs and their
representations, as described in a series of detailed papers
by Fuchs, Fröhlich, Runkel, and Schweigert [30–32].
In this Letter we report on a critical classical lattice

model, obtained via the strange-correlator construction
applied to a string-net tensor network with the H3 fusion
category data as input. The argumentation can be
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summarized into three different parts: (i) we give numerical
evidence that this statistical mechanics model is associated
to a CFT with central charge c ¼ 2; (ii) we argue that this
lattice model can equally be obtained from a string-net
model based on the monoidal center ZðH3Þ by an orbifold
procedure; and (iii) we further speculate that this CFT, in
turn, can be obtained from the conjectured Haagerup (R)
CFT (which is understood to have central charge divisible
by 8) by a coset construction. We apply a complementary
portfolio of numerical methods, including anyonic infinite
variational tensor network methods and a general numerical
method for selecting topological sectors in critical lattice
models with input data of potentially nonbraided fusion
categories. This method generalizes the special case of
modular input categories discussed in Ref. [33].
A strange correlator for the H3 fusion category.—We

construct a two-dimensional lattice model starting from
generalized projected entangled pair state (PEPS) repre-
sentations of string-net ground states as described in
Ref. [24]. The construction requires two fusion categories
C and D and a ðC;DÞ-bimodule category M. In the
remainder of this Letter, we will use the convention that
C labels the symmetries, D is the input of the string-net
construction, and M labels the virtual degrees of freedom
of the tensor network. We can build the generalized string-
net ground state on a honeycomb lattice using the following
trivalent PEPS tensors:

ð1Þ

where 3F (3F) is the (inverse) module associator ofM as a
right D module category with fA;B;Cg ∈ M and
fα; β; γg ∈ D. For our model we will make the choice
C ¼ M ¼ D ¼ H3 with H3 the G ¼ Z3 Haagerup-Izumi
category [7,34]. This choice coincides with the original
PEPS representation for string-net ground states [35,36], in
which case 3F ¼ F is a unitary solution of the pentagon
equation, and the fusion multiplicities are trivial [34,37,38].
H3 has six simple objects f1; α; α�g (we will call type-1)
and fρ; αρ; α�ρg (we will call type-ρ), with nontrivial fusion
rules α3 ¼ 1,

αρ ¼ α ⊗ ρ; α�ρ ¼ α� ⊗ ρ

ρ ⊗ α ¼ α�ρ; ρ ⊗ α� ¼ αρ ð2Þ

and ρ ⊗ ρ ¼ 1 ⊕ ρ ⊕ αρ ⊕ α�ρ. The other fusion rules of
the form type-ρ ⊗ type-ρ can be obtained from Eq. (2). The
fusion rules admit a Fibonacci grading between the type-1
and the type-ρ objects: type-ρ ⊗ type-ρ ¼ ftype-1g ⊕
ftype-ρg. The corresponding quantum dimensions are

dtype−1 ¼ 1 and dtype-ρ ¼ ð3þ ffiffiffiffiffi
13

p
=2Þ. The PEPS tensors

have virtual MPO symmetries [36], i.e., stringlike operators
that can be freely pulled through the lattice without any
action on the physical indices (a ∈ C ¼ H3):

ð3Þ

For diagrammatic convenience, we have omitted the triple
line notation and will keep doing so going forward. In the
next step, we choose a strange correlator [22] by fixing the
physical indices (greek letters) of the ground state to ρ,
obtaining a lattice partition function where the degrees of
freedom are the loops of the original PEPS. The resulting
partition function will inherit the virtual MPO symmetries
of the PEPS, which become the lattice manifestation of the
continuum CFT topological defects. The result of the
strange correlator choice is a hard constraint between
neighbouring plaquettes, not allowing any two adjacent
plaquettes both labeled by type-one objects. The situation is
very similar as in the case of the hard hexagon model
[22,39]. The adjacency rules for neighboring plaquettes can
be diagramatically shown as a Dynkin diagram (Fig. 1).
Note that some of the Boltzmann weights of the model
[originating from Eq. (1)] are negative, but that every
configuration on a torus has a positive contribution to the
partition function.
Besides the internal Z3 symmetry generated by α, the

model has an extra Z3 sublattice symmetry. This can be
seen in the maximally occupied configuration (see Fig. 1)
[39]. As a consequence of the sublattice symmetry, we have
to define the transfer matrix of the model on a ring of length
L ¼ 3n; n ∈ Z. Choosing L ≠ 3n amounts to introducing a
nontrivial twist. The Z3 sublattice symmetry is generated
by shifting the lattice by one site and becomes an invertible
topological defect line of the CFT in the continuum limit.
The topological sectors of the model are given by the

Drinfeld center ZðH3Þ, which has twelve simple objects,
labeled by ðZ;ΩÞ, where Z is an object inH3 andΩ the half

FIG. 1. The partition function of the model on the hexagonal
lattice in a maximally occupied configuration. There are three
maximally occupied configurations as indicated by the three
different sublattices. The adjacency rules of neighboring particles
can be shown by the corresponding Dynkin diagram.
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braiding. If we write Z in the basis of simple objects, we
can label the twelve objects as in Table I, using a similar
labeling as in Refs. [7,40].
Numerical results.—We have performed variational uni-

form matrix product state (VUMPS) simulations [41]
for the MPS fixed point of the transfer matrix in the
thermodynamic limit for increasing bond dimension. The
algorithm explicitly preserves the anyonic H3 symmetry,
allowing for higher bond dimensions than standard meth-
ods [33,42–44]. As the entanglement entropy in an infinite
chain diverges with increasing MPS bond dimension,
approximating the critical point, it scales as S ¼
ðc=6ÞlogðξÞ [45–50], with ξ the MPS correlation length.
The result is shown in Fig. 2 up to ξ ≈ 150 and strongly
indicates a critical theory with central charge c ¼ 2.
Secondly, we have performed exact diagonalization

with anyonic symmetry on the transfer matrix with periodic
boundary conditions [43]. The method, for modular tensor
categories, is explained in great detail in Refs. [51–53]. It
consists of writing states as an anyonic fusion tree, such
that the action of the transfer matrix on these states can be
computed using F moves. We then solve the following
eigenvalue problem (illustrated here for a ring of six sites):

ð4Þ

where the gray lines are fixed to ρ. The eigenvector is
chosen in a specific topological sector ðZ;ΩÞ by fixing the
total charge of the fusion tree to Z and using the half
braiding Ω whenever a crossing is required. These half
braidings can be obtained from the tube algebra idempo-
tents that project on a topological sector in ZðH3Þ:

ð5Þ

We refer to Ref. [54] and the Supplemental Material of
[22] for a detailed discussion around the tube algebra
idempotent decomposition for the toplogical sectors in
terms of the coefficients t. To obtain a full spectrum, the
diagonalization scheme is repeated for every sector ðZ;ΩÞ.
The simple objects in the decomposition of Z ¼ ⨁aa for a
given sector (see Table I) indicate the presence of that
sector in the spectrum of the transfer matrix twisted by the
corresponding topological twists a. The spectra of the
transfer matrix with a trivial (a ¼ 1), α- and ρ-twist on
L ¼ 15 sites are shown in Fig. 3, together with the trivial
sector on L ¼ 18 sites. The numerically obtained ground
state in the trivial sector has a finite-size correction
E0 ∼ fLþ ðπcv=6LÞ [55], where expð−fÞ is the free
energy per site in the thermodynamic limit and v the
characteristic velocity, both of which can be determined by
fitting the ground state energy for several sizes L ¼ 6, 9,
12, 15, 18. We label the spectra with the topological sectors
[elements in ZðH3Þ] (Table I). The conformal spins in each
sector acquire a topological correction shown in Table II.
The torus partition function (twisted in one direction

by a) is of the form Za ≃
P

α;β̄ χαðqÞM̃a
αβ̄
χ̄β̄ðq̄Þ [56] and is

in particular modular invariant for a ¼ 1. Projecting the
spectrum onto a topological sector amounts to breaking
down the partition function into single (or possibly sums)
of sesquilinear character terms [22,26]. The conformal spin
s ¼ hα − hβ (h is the conformal weight) of the lowest lying
eigenvalue in the tower χαχ̄β̄ corresponds to the topological
spin of that sector. Note that the multiplicity of the simple
object one in the sector π2 (see Table I) signals an
exact degeneracy in the 1-twisted spectrum and a corre-
sponding multiplicity in a term of the partition function
(2jχαj2). The partition function is expected to be non-
diagonal (Mαβ ≠ δα;β).
Discussion—Following Ref. [26], a critical lattice

model built from a strange correlator requires two pieces

TABLE I. The twelve simple objects of ZðH3Þ labeled by an
object Z ∈ H3 and a half braiding Ω. The last column is the
corresponding quantum dimension.

ZðH3Þ Z ∈ H3 Ω Dim

id 1 id1 1
μ1;2;3;4;5;6 ρ ⊕ αρ ⊕ α�ρ μ1;2;3;4;5;6 3dρ
π1 1 ⊕ ρ ⊕ αρ ⊕ α�ρ π11 3dρ þ 1

π2 1 ⊕ 1 ⊕ ρ ⊕ αρ ⊕ α�ρ π12 3dρ þ 2

σ1;2;3 α ⊕ α� ⊕ ρ ⊕ αρ ⊕ α�ρ σ1;2;3 3dρ þ 2

FIG. 2. Finite entanglement scaling for the fixed point MPS of
the transfer matrix calculated using VUMPS with explicit H3

anyonic symmetry.
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of categorical data: a choice of fusion category D,
describing the string-net model, and a right D-module
category M, dictating the tensor network representation
of the string-net ground state. In CFT terms, the fusion
category D describes the representations of the chiral
algebra, whereas the module category M roughly cor-
responds to the choice of modular invariant. Nondiagonal
partition functions (Mαβ ≠ δα;β) are constructed by choos-
ing module categories M that differ from D itself.
The topological defects are in turn given by objects in
a category C, which depends on D and M by requiring
that M is an invertible (C,D)-bimodule category. We
refer to Ref. [24] for the details regarding the tensor

network representations of the corresponding string-net
ground states.
In the model described above the choice D ¼ M ¼ H3

was made, but sinceH3 is not modular, it does not directly
capture the chiral algebra of the underlying CFT. Exactly
the same model can be obtained by choosing D ¼ ZðH3Þ
(which is modular) and M ¼ H3 by choosing a suitable
strange correlator. It was recently shown in Ref. [57] that
any strange correlator on a string-net model D1 can be
rewritten as a strange correlator on a string-net model D2,
provided there exists an invertible ðD1;D2Þ-bimodule
category. Taking D1 ¼ H3⊠Hop

3 and D2 ¼ ZðH3Þ, we
can convert any strange correlator on H3⊠Hop

3 (which
includes strange correlators on H3 as a special case) to
strange correlators on ZðH3Þ.
Assuming the model we consider should indeed be

thought of as a strange correlator on a PEPS with D ¼
ZðH3Þ andM ¼ H3, the corresponding CFTwill not have
a diagonal partition function, as this is only the case when
M ¼ D. This implies that our model can be obtained from
a diagonal one through a (generalized) orbifold construc-
tion [58]. The enlarged model based on D ¼ ZðH3Þ shows
that the symmetries of the model we study are actually
given by C ¼ H3⊠Hop

3 , implying that we did not consider
the full set of topological defects.
We end by noting that the observed central charge of

c ¼ 2 appears to be in contradiction with an underlying
MTC corresponding to ZðH3Þ, which should have c ¼
0 mod 8 [7]. However, this situation is not unfamiliar; for
example, the critical RSOS models as constructed from the
SUð2Þk MTCs (in a certain regime) are not described by a
WZW CFT with central charge 3k=ðkþ 2Þ, but rather by
the minimal models with c < 1, described by cosets of
SUð2Þk WZW models [59]. The fact that the coset MTC
describing the CFT is not required to construct the critical
lattice model can be understood by the fact that the lattice
model does not necessarily have all the topological defect
symmetries of the continuum CFT [60]. This scenario
appears to be quite common, and we speculate that the
model we study here is no different and that the MTCDcoset
of the CFT describing our critical lattice model is a coset
involving the MTC ZðH3Þ and another MTC with c ¼ 6,
e.g.,Dcoset ¼ ZðH3Þ=Dc¼6. The precise nature of this coset
requires a detailed analysis of the spectrum, as well as a
characterization of the possible cosets involving ZðH3Þ.
Conclusion.—We have shown strong numerical evidence

for a Haagerup CFT with central charge c ¼ 2, using the
strange correlator prescription for the Haagerup fusion
category H3. The model admits an interpretation as a

FIG. 3. Spectra for the transfer matrix, twisted with topo-
logical defects one (upper left), α (upper middle), and ρ
(bottom), numerically obtained with anyonic symmetry-
preserving exact diagonalization on L ¼ 15 sites. The eigen-
values are labeled by their corresponding topological sectors
ZðH3Þ according to Table I. Upper right: the identity sector on
L ¼ 18 sites. The first excited states of the vacuum (Δ ¼ 2;
s ¼ −2, 2) are circled in black.

TABLE II. Topological spins of the sectors in ZðH3Þ.

ZðH3Þ id π1 π2 σ1 σ2 σ3 μ1 μ2 μ3 μ4 μ5 μ6

Topological spin 0 0 0 −ð1=3Þ ð1=3Þ 0 ð2=13Þ ð6=13Þ ð5=13Þ −ð5=13Þ −ð6=13Þ −ð2=13Þ
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nondiagonal modular invariant of a CFT with an MTC
corresponding to ZðH3Þ. We argue that the observed central
charge of the critical lattice model can be obtained as a
coset involving ZðH3Þ, although an explicit construction
requires further analysis. Preliminary checks also indicate
that our model is not integrable. Furthermore, it is worth
investigating if similar critical lattice models can be
constructed (and their corresponding CFTs identified),
for the general series of Haagerup-Izumi fusion categories.
Near the completion of this work, we learned that a critical

anyonic chain Hamiltonian for the Haagerup fusion category
H3 was obtained independently [61]. Their numerical
evidence also indicates a central charge c ¼ 2 CFT for this
Hamiltonian. A preliminary check indicates that this
Hamiltonian is not merely the (1þ 1)d quantum analog
of the 2D classical model discussed in this work. We thank
Tzu-Cheng Huang, Ying-Hsuan Lin, Kantaro Ohmori, Yuji
Tachikawa, and Masaki Tezuka for insightful discussions
and for a coordinated submission of our manuscripts.
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