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Figure1: A. Hydraulic conductivity �eld in 10-logarithmic base. 
The pumping well (pw) is located at (x, y) = (1000, 500)m and is 
surrounded by 6 injection wells. B. Flow solution. The direction
 of the natural gradient is from West to East.

1. Create the groundwater model for the predictor and target. 
Sequential Gaussian Simulation is used to generate hydraulic 
conductivity (K) �elds. A variogram model de�nes spatial correlation
of the log10 K �eld. Initially, only the log10 K �eld's mean value is 
unknown.

Figure 2: Predictor: breakthrough curves of tracers from each injection well, for
both training and test (single sample) sets. They are all discretised and
interpolated in 200 steps.

Figure 3. A. The chosen test target is in its raw
form. To illustrate the meaningless ordering of
the endpoints output, a few point indexes are
randomly highlighted among the total of 144
particles. B. The test WHPA is implicitly 
represented on a discretised grid. The WHPA 
delineation corresponds to the SD �eld's 
0-contour, which is computed for each cell as
 the closest distance from its centre to the 
boundary. C. Target training set and chosen 
test example.

2. Forward modeling: we use the model to create both the predictor and the target
for our machine learning experiment. (Left: predictor; right: target). The Traveling 
Salesman Algorithm is used to sort the coordinates of each particle endpoint,  and 
the resulting contour is used to compute the signed distance (SD)  �eld of each
target (Figure 3A-B).

Figure 5. A, B, C. Canonical variates bivariate distribution plots for the 4 �rsts pairs
of the training set, and the canonical space projection of the selected test 
predictor and associated test target (see notches). The posterior distribution 
of h computed according to BEL and KDE can be compared on the y marginal plot.
D. Decrease of the canonical correlation coe�cient r with the number of CV pairs 
for the training set.

4. Canonical Correlation Analysis (CCA) transforms the two sets into pairs of 
Canonical Variates (CVs). This is the learning step: to establish a multivariate 
relationship between predictor and target. 

Figure 4. A. The full predictor of the test set is the concatenation of all
breakthrough curves (black curves in Figure 2). PCA with 50 PCs allows to recover
the original curves while smoothing out noise present in the original dataset. 
B. Zero-contour of the test target's original SD compared to the zero-contour of 
the test target's projected SD, which was then back-transformed with its 30 PCs. 
C. Predictor training set and projected test set PCs. D. PCs of the target training 
set's SD and the projected test set's SD. E. Cumulative explained variance for the 
PCs of the predictor training set. F. Cumulative explained variance for the PCs of 
the SD of the target training set.

3. Principal Component Analysis (PCA) is used to aggregate the correlated
variables into a few independent Principal Components (PC's) for both the
 target and the predictor.

Figure 6. BEL-derived posterior predictions for 4 di�erent tests WHPAs. Sub�gure A displays the 
chosen test example associated with Figures 3.

5. To predict the distribution of the unknown WHPA given the trained regression 
model and the observed value, samples are drawn from the posterior distribution 
of the target in canonical space and then back-transformed to the original space.

6. Experimental design: BEL can be used to quantify the amount of information 
delivered by each possible data source, allowing us to make the best injection well
location choice. The Modi�ed Hausdor� distance (MHD) is our metric.

Figure 7. WHPA predictions for each well 1, 2, 3, 4, 5, 6 for the chosen test example.

Figure 9. Boxplots of the standardised MHD 
distance for each well and one fold for a 1000-
sample training dataset and 250-sample test
dataset.

Figure 10. Boxplots of the standardised MHD
distance for all 2 and 3 well combinations on 
a 1000-sample training dataset and a 250-
sample test dataset.

Figure 8. WHPA predictions for multiple-wells combinations, both performed with a training set
of 1000 samples and test set of 250 samples. A. Prediction using wells 1, 3, 4. 
B. Prediction using wells 2, 6.
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