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Abstract. Dunkl operators associated with finite reflection groups generate a

commutative algebra of differential-difference operators. There exists a unique

linear operator called intertwining operator which intertwines between this
algebra and the algebra of standard differential operators. There also exists a

generalization of the Fourier transform in this context called Dunkl transform.

In this paper, we determine an integral expression for the Dunkl kernel,
which is the integral kernel of the Dunkl transform, for all dihedral groups.

We also determine an integral expression for the intertwining operator in the
case of dihedral groups, based on observations valid for all reflection groups. As

a special case, we recover the result of [Xu, Intertwining operators associated

to dihedral groups. Constr. Approx. 2019]. Crucial in our approach is a
systematic use of the link between both integral kernels and the simplex in a

suitable high dimensional space.
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1. Introduction

Dunkl operators are differential-difference operators that generalize the standard
partial derivatives. They are constructed using a finite reflection group and a
parameter function on the orbits of this group on its root system. They were
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initially introduced by Charles Dunkl in [18], where he showed that, surprisingly,
these operators still commute. Dunkl operators have found a variety of applications
in mathematics and mathematical physics. They motivate the study of double affine
Hecke algebras and Cherednik algebras. They are used in the study of probabilistic
processes and are crucial for the integration of quantum many body problems of
Calogero-Moser-Sutherland type. They have also made a lasting impact in the
study of orthogonal polynomials and special functions in one and several variables.
Apart from the seminal book [26], several excellent reviews are currently available
on this topic. We refer the reader to e.g. [22, 33] and to [3] for a most recent state
of the art.

The theory of Dunkl operators is further developed using two key ingredients.
The first is the Dunkl transform, which is a generalization of the Fourier trans-
form which now maps coordinate multiplication to the action of Dunkl operators
and vice versa. It was introduced in [23] and further studied in [9], where the
author showed the boundedness and analyticity of the associated integral kernel
called Dunkl kernel, and obtained the Plancherel theorem. Various special cases
of Paley-Wiener type theorems for the Dunkl transform were obtained in [10] and
multiplier theorems were investigated in e.g. [8, 27]. The Dunkl transform was
further generalized in [5], based on observations made in [4].

The second important operator is the intertwining operator V . This operator is
a linear and homogeneous isomorphism on the space of polynomials that maps the
standard partial derivatives to the Dunkl operators. It is abstractly proven that
the intertwining operator can be represented as an integral operator [34]. This is
important if one wants to extend the intertwining property to larger function spaces.
Also, for certain parameter values it behaves singularly, which were determined in
[25].

From an abstract point of view, several satisfactory results are known about both
the Dunkl transform and the intertwining operator, as mentioned above. However,
it has remained a major problem for thirty years to develop explicit formulas of
the Dunkl kernel and the intertwining operator for concrete choices of the finite
reflection group. We describe and list the known results. In the one dimensional
case, both the Dunkl kernel and the intertwining operator are explicitly known,
see [24, 33]. For the reflection groups of type An the action of the intertwining
operator on polynomials is determined in [19] and given as a highly complicated
integral for n = 2 in [18]. An integral expression for the intertwining operator
for the group B2 was obtained in [17]. For dihedral groups, acting in the plane,
the current state of the art is as follows. For polynomials, explicit formulas giving
V (zkz̄`) as complicated sums of monomials are given in [21], but no integral formula
is provided. Using a Laplace transform technique and knowledge on the Poisson
kernel obtained in [16], an explicit and concise expression was obtained for the
Dunkl transform in the Laplace domain in [7]. A series expression for the Dunkl
kernel was given in [12]. Recently, for a restricted class of functions and restrictions
on the parameter function, an integral expression was given for the intertwining
operator in [37] using an integral over the simplex.

This lack of explicit formulas has seriously hindered the further development of
harmonic analysis for Dunkl operators. The situation is better for the generalized
Bessel function, which is a symmetrized version of the Dunkl kernel using the
action of the reflection group. For the root systems An, a complicated integral
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recurrence formula for the generalized Bessel function was obtained in [1]. An
explicit expression is derived in [36] for the intertwining operator in the symmetrized
setting. For the dihedral case, a series expression for the generalized Bessel function
was given in [15] and closed formulas were subsequently obtained for some specific
parameters there. An explicit expression in the Laplace domain for the generalized
Bessel function was obtained in [7], using the same Laplace transform technique as
for Dunkl dihedral kernel. Recently, a Laplace type expression for the generalized
Bessel function for even dihedral groups with one variable specified is given in [14].

The aim of the present paper is to give a complete description in the case of
dihedral groups of the Dunkl kernel, the generalized Bessel function and the inter-
twining operator. For the Dunkl kernel, we obtain an expression in terms of the
second class of Humbert functions (see Theorem 4.15, 4.18 ) or, alternatively, as an
integral over the simplex (Theorem 4.15). This is achieved by inverting the Laplace
domain expression obtained in [7]. For the intertwining operator and its inverse, we
first determine an integral expression which is new to our knowledge, linking it to
the classical Fourier transform and the Dunkl kernel. This is achieved in Theorems
3.2 and 3.10, and the formula is valid for arbitrary reflection groups. Using the
explicit formula for the Dunkl kernel in the dihedral case, we can subsequently give
explicit expressions for the intertwining operator in that case. As expected, our
formulas specialise to those given in [37].

The paper is organized as follows. In Section 2, we briefly introduce the basics
of Dunkl theory and the second class of Humbert functions. In Section 3, we give
a general integral expression for the intertwining operator and its inverse. Section
4 is devoted to the dihedral case. We give the explicit formulas for the generalized
Bessel function, Dunkl kernel and the intertwining operator. A new proof of Xu’s
result of [37] can be found at the end of this section. We end with conclusions and
a list of notations used in Section 4.

2. Preliminaries

2.1. Basics of Dunkl theory. Let G be a finite reflection group with a fixed
positive root system R+. A multiplicity function κ : R → C on the root system R
is a G-invariant function, i.e. κ(α) = κ(h ·α) for all h ∈ G. For ξ ∈ Rm, the Dunkl
operator Tξ on Rm associated with the group G and the multiplicity function κ(α)
is defined by

Tξ(κ)f(x) = ∂ξf(x) +
∑
α∈R+

κ(α)〈α, ξ〉f(x)− f(σαx)

〈α, x〉
, x ∈ Rm

where 〈·, ·〉 is the canonical Euclidean inner product in Rm and σαx := x −
2〈x, α〉α/||α||2 is a reflection. In the sequel, we write Tj in place of Tej (κ) where
ej , j = 1, · · · ,m is a vector of the standard basis of Rm. The Dunkl Laplacian ∆κ

is then defined by ∆κ =
∑m
j=1 T

2
j .

Let P denote the polynomials on Rm and Pn the homogeneous polynomials of
degree n. The Dunkl operators {Tj} generate a commutative algebra of differential-
difference operators on P . Each Ti is homogeneous of degree −1. For p, q ∈ P, the
Fischer bilinear form

[p, q]κ := (p(T )q)(0)

was introduced in [26]. Here p(T ) is the differential-difference operator obtained by
replacing xj in p by Tj . The Macdonald identity [32] also has a useful generalization
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in the Dunkl setting as follows:

[p, q]κ = c−1
κ

∫
Rm

(
e−∆κ/2p(x)

)(
e−∆κ/2q(x)

)
e−|x|

2/2ωκ(x)dx

where the weight function is

ωκ(x) =
∏
α∈R+

|〈α, x〉|2κ(α)

and cκ is the Macdonald-Mehta-Selberg constant, i.e.

cκ =

∫
Rm

e−|x|
2/2ωκ(x)dx.

The Dunkl kernel Eκ(x, y) is the joint eigenfunction of all the Tj ,

TjEκ(x, y) = yjEκ(x, y), j = 1, . . . ,m(1)

and satisfies Eκ(0, y) = 1. When κ = 0, it reduces to the ordinary exponential
function e〈x,y〉. Choosing an orthonomal basis {ϕν , ν ∈ ZN+} of P with respect to
the Fischer inner product, the Dunkl kernel can be expressed as

Eκ(x, y) =
∑
ν∈ZN+

ϕν(x)ϕν(y)(2)

for all x, y ∈ Rm. We further introduce the generalized Bessel function defined as
the symmetric version of the Dunkl kernel by

Jκ(x, y) =
1

|G|
∑
g∈G

Eκ(x, g · y).

The Dunkl transform is defined using the joint eigenfunction Eκ(x, y) and the
weight function ωκ(x) by

Fκf(y) := c−1
κ

∫
Rm

Eκ(−ix, y)f(x)ωκ(x)dx (y ∈ Rm).

When κ = 0, the Dunkl transform reduces to the ordinary Fourier transform F , i.e.

Ff(y) :=
1

(2π)m/2

∫
Rm

e−i〈x,y〉f(x)dx.

The definition of Dunkl transform is motivated by the following proposition (Propo-
sition 7.7.2 in [26]) which will also be used in the following section.

Proposition 2.1. Let p be a polynomial on Rm and v(y) =
∑m
j=1 y

2
j for y ∈ Cm,

then

c−1
κ

∫
Rm

[
e−∆κ/2p(x)

]
Eκ(x, y)e−|x|

2/2ωκ(x)dx = ev(y)/2p(y).

There exists an unique linear and homogenous isomorphism on P which satisfies
Vκ1 = 1 and intertwines the ordinary partial differential operators and the Dunkl
operators,

TjVκ = Vκ∂j , j = 1, 2, . . . ,m.(3)

The operator Vκ is called the Dunkl intertwining operator in the literature. The
explicit representation of this operator is only known so far for some special cases,
e.g. the group Z2 and root system A2, B2, see [20, 26] and [3] for a recent review.
We list the rank one case, which is frequently used in this paper.



THE DUNKL KERNEL AND INTERTWINING OPERATOR FOR DIHEDRAL GROUPS 5

Example 2.2. For k > 0, the intertwining operator in the rank one case is

Vk(p)(x) =
Γ(k + 1/2)

Γ(1/2)Γ(k)

∫ 1

−1

p(xt)(1− t)k−1(1 + t)kdt.(4)

Using the intertwining operator, the Dunkl kernel is expressed as

Eκ(x, y) = Vκ

(
e〈·,y〉

)
(x).

Throughout this paper, we only consider real multiplicity functions with κ ≥ 0.

2.2. Humbert function of several variables. There are many ways to define
hypergeometric functions of several variables. In this subsection, we introduce the
second Humbert function of m variables

Φ
(m)
2 (β1, . . . , βm; γ;x1, . . . , xm) :=

∑
j1,...,jm≥0

(β1)j1 · · · (βm)jm
(γ)j1+···+jm

xj11
j1!
· · · x

jm
m

jm!

which is one of the confluent Lauricella hypergeometric series, see [29] (Chapter 2,
2.1.1.2, page 42).

When γ−
∑m
j=1 βj and each βj , j = 1, 2, . . . ,m is a positive number, the hyper-

geometric function Φ
(m)
2 admits the following integral representation

Φ
(m)
2 (β1, . . . , βm; γ;x1, . . . , xm)(5)

= C
(γ)
β

∫
Tm

e
∑m
j=1 xjtj

1−
m∑
j=1

tj

γ−
∑m
j=1 βj−1

m∏
j=1

t
βj−1
j dt1 . . . dtm

where

C
(γ)
β =

Γ(γ)

Γ(γ −
∑m
j=1 βj)

∏m
j=1 Γ(βj)

and Tm is the open unit simplex in Rm given by

Tm =

(t1, . . . , tm) : tj > 0, j = 1, . . . ,m,

m∑
j=1

tj < 1

 .

See [6, 31] for more details on this integral expression.
Moreover, Section 4.24, formula (5) in [28] shows that the Laplace transform in

the variable t of Φ
(m)
2 is given by

L(tγ−1Φ
(m)
2 (β1, . . . , βm; γ;λ1t, . . . , λmt))(6)

=
Γ(γ)

sγ

(
1− λ1

s

)−β1

· · ·
(

1− λm
s

)−βm
with Re γ,Re s > 0,Reλj , j = 1, · · · ,m.

3. New formulas for the intertwining operator and its inverse

In this section, we give an integral expression of Vκ in terms of the Dunkl kernel
which will be used to derive the explicit expression for the dihedral groups in
subsequent sections. We first formulate the following lemma using the ordinary
Fourier transform. Note that the notation e−∆(y)/2p(iy) used in the following means
acting with the operator e−∆(y)/2 on the complex valued polynomial p(iy).
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Lemma 3.1. For any y, z ∈ Rm, let p(z) be a polynomial. Then we have

e−∆(y)/2p(−iy) =
1

(2π)m/2

∫
Rm

e−i〈x,y〉e−|x|
2/2p(x)e|y|

2/2dx,

e−∆(y)/2Eκ(iy, z) =
1

(2π)m/2

∫
Rm

e−i〈x,y〉e−|x|
2/2Eκ(−x, z)e|y|

2/2dx,(7)

where ∆(y) is the usual Laplace operator ∆ =
∑m
j=1 ∂

2
j acting on the variable y.

Proof. Let κ = 0 in Proposition 2.1, then one has∫
Rm

(
e−∆(y)/2p(−iy)

)
ei〈x,y〉e−|y|

2/2dy = (2π)m/2e−|x|
2/2p(x).

Acting with the ordinary Fourier transform F on both sides leads to the first identity
in the present theorem,(

e−∆(y)/2p(−iy)

)
e−|y|

2/2 =
1

(2π)m/2

∫
Rm

e−i〈x,y〉e−|x|
2/2p(x)dx.

For the second part, we first give the following estimation,∣∣∣e−∆(y)/2Eκ(iy, z)
∣∣∣ =

∣∣∣Vκ (e−∆(y)/2ei〈y,·〉
)

(z)
∣∣∣

=
∣∣∣Vκ (e|·|2/2ei〈y,·〉) (z)

∣∣∣
≤ e|z|

2/2(8)

where the last inequality is by
∣∣∣e|x|2/2ei〈y,x〉∣∣∣ ≤ e|x|2/2 and the Bochner-type repre-

sentation of the intertwining operator proved in [34]. Using the above estimation
(8) and the dominated convergence theorem, the second equality in the theorem is
obtained by replacing p with the Dunkl kernel in the first equality. �

By the Fischer inner product, we give a general formula for the intertwining
operator, which reveals the relationship between the Dunkl kernel and the inter-
twining operator. In principle, once the Dunkl kernel is known, our theorem yields
the integral expression for the intertwining operator.

Theorem 3.2. Let p be a polynomial and K(iy, z) := e−∆(y)/2Eκ(iy, z), then for
any z ∈ Rm, the intertwining operator Vκ satisfies

Vκ(p)(z) =
1

(2π)m/2

∫
Rm

K(iy, z)F
(
p(·)e−|·|

2/2
)

(y)dy

=
1

(2π)m/2

∫
Rm
F
(
e−|·|

2/2Eκ(·,−z)
)

(y)F
(
e−|·|

2/2p(·)
)

(y)e|y|
2/2dy.(9)

Proof. It is well known that the exponential function e〈y,z〉 is the reproducing kernel
of the polynomials with respect to the classical Fischer inner product, denoted by
[·, ·]0, corresponding to the multiplicity function κ(α) = 0. More precisely, with the
Macdonald identity, we have

p(z) =
[
p(y), e〈y,z〉

]
0

=
1

(2π)m/2

∫
Rm

(
e−∆(y)/2p(y)

)(
e−∆(y)/2e〈y,z〉

)
e−|y|

2/2dy.
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By complexification, we have

p(z) =
[
p(−iy), ei〈y,z〉

]
0

=
1

(2π)m/2

∫
Rm

(
e−∆(y)/2p(−iy)

)(
e−∆(y)/2ei〈y,z〉

)
e−|y|

2/2dy.(10)

Applying Vκ on both sides of (10) with respect to z, it follows that

Vκ(p)(z)

=
1

(2π)m/2

∫
Rm

(
e−∆(y)/2p(−iy)

)
Vκ

(
e−∆(y)/2ei〈y,·〉

)
(z)e−|y|

2/2dy

=
1

(2π)m/2

∫
Rm

(
e−∆(y)/2p(−iy)

)(
e−∆(y)/2Eκ(iy, z)

)
e−|y|

2/2dy.(11)

Now, putting the integral expression (7) in (11), leads to

Vκ(p)(z) =
1

(2π)m/2

∫
Rm

K(iy, z)F
(
e−|x|

2/2p(x)
)
dy.

The second identity in (9) follows from the expression (7). �

Remark 3.3. It is known that for any polynomial p(x), the function F
(
e−|x|

2/2p(x)
)

is in the Schwarz space. Furthermore, by the estimation

|K(iy, z)| =
∣∣∣Vκ (e−∆(y)/2ei〈y,·〉

)
(z)
∣∣∣ ≤ e|z|2/2,

the integral in (9) makes sense.

Remark 3.4. At the moment, it is not clear to the authors if the above expression
(3.2) can be rewritten as a Rösler type integral [34]

Vκ(p)(z) =

∫
Rm

p(x)dµz(x).

For a polynomial which is invariant under G, i.e. p(g · z) = p(z), for all g ∈ G,
the reproducing kernel under the ordinary Fischer inner product is given by

1

|G|
∑
g∈G

e〈x,g·y〉.

Therefore, the intertwining operator acting on invariant polynomials could be ob-
tained as

Vκ(p)(z) = Vκ

p(·), 1

|G|
∑
g∈G

e〈·,g·y〉


0

 (z).

Following the proof of Theorem 3.2, we obtain the expression of the intertwin-
ing operator on the invariant polynomials by replacing the Dunkl kernel with the
generalized Bessel function.

Corollary 1. Let p be a G-invariant polynomial. Then for any z ∈ Rm, the
intertwining operator Vκ satisfies

Vκ(p)(z) =
1

(2π)m/2

∫
Rm
F
(
e−|·|

2/2Jκ(·,−z)
)

(y)F
(
e−|·|

2/2p(·)
)

(y)e|y|
2/2dy.
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In the following, we show independently that the integral expression given in (9)
actually intertwines the usual partial derivatives and the Dunkl operator, i.e. the
relations (3). We use the notation [A,B] := AB − BA for the commutator of two
operators A,B. The following lemma from [33] will help to verify these relations.

Lemma 3.5. [33] For j = 1, . . . ,m, we have

[yj ,∆κ/2] = −Tj ;[
yj , e

−∆κ/2
]

= Tje
−∆κ/2.

Theorem 3.6. For any polynomial p, the integral operator

Vκ(p)(z) =
1

(2π)m/2

∫
Rm

K(iy, z)F
(
p(·)e−|·|

2/2
)

(y)dy

satisfies the relations

Vκ∂j = TjVκ, j = 1, . . . ,m.

Proof. By direct computation, we have

Vκ(∂jp)(z)

=
1

(2π)m/2

∫
Rm

K(iy, z)F
(

(∂jp)(·)e−|·|
2/2
)

(y)dy

=
1

(2π)m/2

∫
Rm

K(iy, z)F
(
∂j(p(x)e−|x|

2/2) + xjp(x)e−|x|
2/2
)

(y)dy

=
1

(2π)m/2

∫
Rm

K(iy, z)i(yj + ∂yj )F
(
p(x)e−|x|

2/2
)

(y)dy

=
1

(2π)m/2

∫
Rm

(
i(yj − ∂yj )K(iy, z)

)
F
(
p(x)e−|x|

2/2
)

(y)dy

=
1

(2π)m/2

∫
Rm

(
e−∆(y)/2 (iyjEκ(iy, z))

)
F
(
p(x)e−|x|

2/2
)

(y)dy

= TjVκ(p)(z)

where we have used Lemma 3.5 in the fifth equality and the relation (1) in the last
step. �

In the following, we compute some special cases using the integral expression (9).
The explicit expressions for the intertwining operator associated to some special
root systems are reobtained.

Example 3.7. When κα = 0, expression (9) reduces to

Vκ(p)(z) =
1

(2π)m/2

∫
Rm

K(iy, z)F
(
p(x)e−|x|

2/2
)

(y)dy

=
1

(2π)m/2

∫
Rm

ei〈y,z〉e|z|
2/2F

(
p(x)e−|x|

2/2
)

(y)dy

= e|z|
2/2F−1

(
F
(
p(x)e−|x|

2/2
))

(z)

= p(z)

This coincides with the result that for κα = 0 the intertwining operator is the
identity operator.
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Example 3.8. (Rank 1 case) For the rank one case with k > 0, the Dunkl kernel
is explicitly known as

Ek(iy, z) =
Γ(k + 1/2)

Γ(1/2)Γ(k)

∫ 1

−1

eityz(1− t)k−1(1 + t)kdt.

It follows that

e−∆(y)/2Ek(iy, z) =
Γ(k + 1/2)

Γ(1/2)Γ(k)

∫ 1

−1

eityzet
2z2/2(1− t)k−1(1 + t)kdt.

Now, we have

Vk(p)(z) =
Γ(k + 1/2)

(2π)1/2Γ(1/2)Γ(k)

∫
R

(
e−∆(y)/2p(−iy)

)
e−|y|

2/2

×
∫ 1

−1

eityzet
2z2/2(1− t)k−1(1 + t)kdtdy

=
Γ(k + 1/2)

(2π)1/2Γ(1/2)Γ(k)

∫ 1

−1

(∫
R

(
e−∆(y)/2p(−iy)

)
e−|y|

2/2eityzdy

)
×et

2z2/2(1− t)k−1(1 + t)kdt

=
Γ(k + 1/2)

Γ(1/2)Γ(k)

∫ 1

−1

p(tz)(1− t)k−1(1 + t)kdt

where we have used Proposition 2.1 again in the last equality.

Example 3.9. (Root system B2) When γ = κ1 + κ2 > 1/2, the generalized Bessel
function of type B2 (i.e. the dihedral group I4) admits the following Laplace-type
integral representation:

Jκ(iy, z) =

∫
R2

ei〈y,x〉Hk(x, z)dz

where Hk(x, z) is a positive function with explicit expression, see [2]. It follows
that

e−∆(y)/2Jκ(iy, z) =

∫
R2

ei〈y,x〉e|x|
2/2Hk(x, z)dz.

Now, for the root system B2 and p(z) a I4-invariant polynomial, which means that
p(g · z) = p(z) for g ∈ I4, we have

Vκ(p)(z)

=
1

2π

∫
R2

(
e−∆(y)/2p(−iy)

)(
e−∆(y)/2Jκ(iy, z)

)
e−|y|

2/2dy

=
1

2π

∫
R2

(
e−∆(y)/2p(−iy)

)(∫
R2

e−∆(y)/2ei〈y,x〉Hk(x, z)dz

)
e−|y|

2/2dy

=
1

2π

∫
R2

[∫
R2

(
e−∆(y)/2p(−iy)

)(
e−∆(y)/2ei〈y,x〉

)
e−|y|

2/2dy

]
Hk(x, z)dz

=

∫
R2

p(x)Hk(x, z)dz.

In general, whenever a Laplace-type representation of the generalized Bessel func-
tion is obtained, it is possible to obtain the intertwining operator by the method
described in this example.
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While the precise structure of the Dunkl intertwining operator has been unknown
for a long time, the formal inverse of this operator is easy to get, see [26]. This
operator can be expressed as

V −1
κ (p)(x) = exp

 m∑
j=1

xjT
(y)
j

 p(y)

∣∣∣∣
y=0

=
[
e〈x,y〉, p(y)

]
κ

and satisfies the following relation

V −1
κ Tj = ∂jV

−1
κ , j = 1, 2, . . . ,m.

The integral expression of V −1
κ can be obtained similarly as in Theorem 3.2. We

omit the proof here.

Theorem 3.10. Let p(z) be a polynomial. Denote

L(iy, z) := e−∆κ,y/2ei〈y,z〉 = c−1
κ

∫
Rm

Eκ(−ix, y)e−〈x,z〉e−|x|
2/2e|y|

2/2ωκ(x)dx.

Then the inverse of the intertwining operator V −1
κ satisfies

V −1
κ (p)(z) = c−1

κ

∫
Rm

L(iy, z)Fκ
(
p(·)e−|·|

2/2
)

(y)ωκ(y)dy

where Fκ is the Dunkl transform.

Theorem 3.11. For any polynomial p(x), the integral operator V −1
κ satisfies

V −1
κ Tj = ∂jV

−1
κ , j = 1, . . . ,m.

Proof. Since e−|x|
2/2 is G-invariant, we have by direct computation,

Tj(p(x)e−|x|
2/2) = Tj(p)e

−|x|2/2 + p(x)Tj(e
−|x|2/2).(12)

Now, the intertwining relations are verified as follows

V −1
κ (Tjp)(z)

= c−1
κ

∫
Rm

L(iy, z)Fκ
(

(Tjp)(·)e−|·|
2/2
)

(y)ωκ(y)dy

= c−1
κ

∫
Rm

L(iy, z)Fκ
(
Tj(p(x)e−|x|

2/2) + xjp(x)e−|x|
2/2
)

(y)ωκ(y)dy

= c−1
κ

∫
Rm

L(iy, z)i(yj + Tyj )Fκ
(
p(x)e−|x|

2/2
)

(y)ωκ(y)dy

= c−1
κ

∫
Rm

[
i(yj − Tyj )L(iy, z)

]
Fκ
(
p(x)e−|x|

2/2
)

(y)ωκ(y)dy

= c−1
κ

∫
Rm

[
e−∆κ,y/2

(
iyje

〈iy,z〉
)]
Fκ
(
p(x)e−|x|

2/2
)

(y)ωκ(y)dy

= ∂zjV
−1
κ (p)(z),

where we have used formula (12) in the second line and Lemma 3.5 for the fifth
equality. �
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4. The case of dihedral groups

The dihedral group Ik is the group of symmetries of the regular k−gon. We use
complex coordinates z = x1 + ix2 and identify R2 with C. Each reflection σj in

Ik is given by z → zeij2π/k, 0 ≤ j ≤ 2k − 1. In this section, we will consider the
explicit expressions for the Dunkl kernel and the intertwining operator associated
to the dihedral groups. These can be achieved mainly due to the reduction method,
i.e. the general Ik case can be reduced to the explicitly known cases Z2 and Z2

2,
see Section 7.6 in [26]. In turn, the reduction determines the representations of the
formulas. As we will see, the Dunkl kernel and the generalized Bessel function are
expressed as the compositions of two integrals. One is the Weyl fractional integral (
the intertwining operator associated to the group Z2) and the other one corresponds
to the reduction.

On the other hand, the dihedral group Ik is generated by the rotation z → zei2π/k

and the reflection z → z. The action of the rotations and reflection can be seen
from the formula, see Theorem 4.8 and Theorem 4.18. The positivity and bounds
of the Dunkl kernel and generalized Bessel function will be seen directly from the
formulas as well.

4.1. The generalized Bessel function. It was proved in [15] that the generalized
Bessel function can be expressed as a symmetric beta integral of an infinite series.
Let z = |z|eiφ1 , w = |w|eiφ2 and ξu,v(φ1, φ2) = v cos(φ1) cos(φ2) +u sin(φ1) sin(φ2),
then we have the following expression.

Theorem 4.1. [15] For the dihedral group I2k, k ≥ 2 and non-negative multiplicity
function κ = (α, β), the generalized Bessel function is given by

Jκ(z, w) =
1

2

∫ 1

−1

∫ 1

−1

(
f2k,α+β(|zw|, ξu,v(kφ1, kφ2), 1)(13)

+f2k,α+β(|zw|,−ξu,v(kφ1, kφ2), 1)

)
dνα(u)dνβ(v)

where f2k,λ(b, ξ, t) is the infinite series

f2k,λ(b, ξ, t) = Γ(kλ+ 1)

(
2

b

)kλ ∞∑
j=0

(j + λ)

λ
Ik(j+λ)(bt)C

(λ)
j (ξ)

with C
(λ)
j (ξ) the Gegenbauer polynomial and Ik(b) the modified Bessel function of

the first kind, i.e.

Iν(b) =

∞∑
n=0

(b/2)2n+ν

n!Γ(n+ ν + 1)
, b ∈ R

as well as the symmetric beta measure

dνα(u) =
Γ(α+ 1/2)√

πΓ(α)
(1− u2)α−1du.

The series f2k,λ(b, ξ, t) admits a closed form in the Laplace domain as studied
in our previous paper [7]. By the inverse Laplace transform, it is realized that

f2k,λ(b, ξ, t) is in fact a Humbert Φ
(m)
2 function, see [7] formula (19). Later, this

was proved more generally in [13] using a different method. We summarize the
results and present a more compact expression using derivatives in the Laplace
domain in the following lemma.
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Lemma 4.2. For k ≥ 2, the Laplace transform of f2k,λ(b, ξ, t) with respect to t is
given by

L[f2k,λ(b, ξ, ·)](s) = Γ(kλ+ 1)
2kλ

S

(S + s)k − (s− S)k

((S + s)k − 2bkξ + (s− S)k)λ+1

= −Γ(kλ)2kλ
d

ds

(
1

((S + s)k − 2bkξ + (s− S)k)λ

)
,(14)

where S =
√
s2 − b2. Moreover, we have

f2k,λ(b, ξ, 1) = Φ
(k)
2 (λ, . . . , λ; kλ; b0, . . . , bk−1)(15)

= eb0Φ
(k−1)
2 (λ, . . . , λ; kλ; b1 − b0, . . . , bk−1 − b0)

where bj = b cos ((q − 2jπ)/k), j = 0, . . . , k − 1 in which q = arccos(ξ).

Remark 4.3. The denominator (S + s)k − 2bkξ + (s− S)k is a polynomial in s and
satisfies the factorization

(S + s)k − 2bkξ + (s− S)k = 2k
k−1∏
l=0

(
s− b cos

(
q − 2πl

k

))
.(16)

Formula (15) follows from the Laplace transform formula (6) and the above factor-
ization (16).

Remark 4.4. The first identity in (15) looks more symmetric than the second one.
However, it is not possible to get an integral expression for f2k,λ(b, ξ, t) directly

from the integral representation (5) of Φ
(m)
2 , due to the the validity of the conditions

there. This is not a problem for the second identity.

Combining the Humbert function expression of f2k,λ(b, ξ, 1) in (15) and the inte-

gral expression (5) for the function Φ
(m)
2 , we have the following integral expression

of the generalized Bessel function. From this integral expression, it is directly seen
that the generalized Bessel function Jκ(x, y) is positive and that the complexified
generalized Bessel function Jκ(ix, y) is bounded by 1.

Theorem 4.5. For k ≥ 2, the generalized Bessel function associated to the dihedral
group I2k is given by

Jκ(z, w) =
Γ(k(α+ β))

2Γ(α+ β)k

∫ 1

−1

∫ 1

−1

∫
Tk−1

(
e
∑k−1
j=0 a

+
j tj + e

∑k−1
j=0 a

−
j tj
)

×
k−1∏
j=0

tα+β−1
j dt1 . . . dtk−1dν

α(u)dνβ(v)(17)

where a+
j = |zw| cos

(
qu,v(kφ1,kφ2)−2jπ

k

)
, a−j = |zw| cos

(
π−qu,v(kφ1,kφ2)−2jπ

k

)
, j =

0, . . . , k − 1, qu,v(φ1, φ2) = arccos(ξu,v(φ1, φ2)) and t0 = 1−
∑k−1
j=1 tj.

Remark 4.6. The integral over the simplex in (17) is the integral expression of
f2k,α+β(|zw|, ξu,v(kφ1, kφ2), 1). Although many variables a±j appear, it is a function

in the variables ξu,v(kφ1, kφ2) and |zw| by its series expansion, see also a direct
verification in [13]. This further implies that Jκ(z, w) is a function in the variables

|zw|, Re(zk)Re(wk)
|zw|k and Im(zk)Im(wk)

|zw|k .
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It is known that the generalized Bessel function is the reproducing kernel of the
invariant polynomials under [·, ·]κ. By the series expansion of Jκ(z, w), we obtain
the following integral expressions for the reproducing kernels.

Corollary 2. Let pn(z) be a homogenous polynomial of degree n invariant under
the action of I2k, k ≥ 2, i.e. pn(z) = pn(g ·z), for any g ∈ I2k. Then the reproducing
kernel for pn(z) is given by

J (n)
κ (z, w)

=
Γ(k(α+ β))

2Γ(n+ 1)Γ(α+ β)k

∫ 1

−1

∫ 1

−1

∫
Tk−1

k−1∑
j=0

a+
j tj

n

+

k−1∑
j=0

a−j tj

n
×
k−1∏
j=0

tα+β−1
j dt1 . . . dtk−1dν

α(u)dνβ(v),

and satisfies pn(z) =
[
pn(w),J (n)

κ (z, w)
]
κ
.

Remark 4.7. The polynomials invariant under the group Ik form an algebra. This

algebra is generated by |z|2 and zk+zk

2 (the Chevalley generators). As a linear
space, the dimension of the invariant polynomials of degree n can be determined
by Molien’s generating function, see [30].

The integral expression (17) looks quite complicated, however, it reflects how
the dihedral group I2k acts. Due to nature of the reduction method, it will be
seen in the following theorem that the expression is a composition of two operators,
corresponding to the reflection and rotations in dihedral groups. Alternatively, by
this expression, it is seen that Jκ(z, w) is I2k invariant.

Theorem 4.8. The generalized Bessel function Jκ(z, w) associated to I2k, k ≥ 2
is given by

Jκ(z, w) =

∫ 1

−1

∫ 1

−1

J(w, |z|, s1v, s2u)dνα(u)dνβ(v)(18)

with s1 = cos(kφ1), s2 = sin(kφ1) and

J(w, |z|, s1, s2) = cκ,k

∫
Tk−1

(
e〈w,z

∑k−1
j=0 e

−i2jπ/ktj〉 + e〈w,z
∑k−1
j=0 e

i(2j−1)π/ktj〉
)

×
k−1∏
j=0

tα+β−1
j dt1 . . . dtk−1

where t0 = 1−
∑k−1
j=1 tj and cκ,k = Γ(k(α+β))

2Γ(α+β)k
.

Proof. Note that the series f2k,λ(b, ξ, 1) is a function in variables b and ξ. Hence,
the function J(w, |z|, s1, s2) is a function in the variables |zw| and ξ1,1(kφ1, kφ2).
The integrand

J(w, |z|, s1v, s2u) =
1

2
[f2k,λ(|zw|, ξu,v(kφ1, kφ2), 1)

+ f2k,λ(|zw|,−ξu,v(kφ1, kφ2), 1)]
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is a function in the variables |zw| and ξu,v(kφ1, kφ2). The latter one can be obtained
by replacing ξ1,1(kφ1, kφ2) in the former one by

ξu,v(kφ1, kφ2) = v cos(kφ1) cos(kφ2) + u sin(kφ1) sin(kφ2).

This fact and expressions (13) and (17) lead to the first identity.
In the following, we simplify the function

J(w, |z|, s1, s2) =
1

2
(f2k,λ(|z||w|, ξ1,1(kφ1, kφ2), 1)

+f2k,λ(|z||w|,−ξ1,1(kφ1, kφ2), 1)).

It is seen that

q1,1(kφ1, kφ2) = arccos(ξ1,1(kφ1, kφ2))

= arccos(cos(kφ1) cos(kφ2) + sin(kφ1) sin(kφ2))

= k(φ1 − φ2).

This yields that

a+
j = |zw| cos

(
q1,1(kφ1, kφ2)− 2jπ

k

)
= |zw| cos

(
(φ1 − φ2)− 2jπ

k

)
,

a−j = |zw| cos

(
π − 2jπ − q1,1(kφ1, kφ2)

k

)
= |zw| cos

(
π − 2jπ

k
− (φ1 − φ2)

)
.

In other words, we have

a+
j = Re(wzej2iπ/k) = 〈w, ze−i2jπ/k〉,

a−j = Re(wzei(2j−1)π/k) =
〈
w, zei(2j−1)π/k

〉
,

where 〈z, w〉 = Re(zw) denote the usual Euclidean inner product for z, w ∈ C ∼= R2.
Hence for this special case u = v = 1, the integrand of (17) becomes

e
∑k−1
j=0 a

+
j tj + e

∑k−1
j=0 a

−
j tj(19)

= e〈w,z
∑k−1
j=0 e

−i2jπ/ktj〉 + e〈w,z
∑k−1
j=0 e

i(2j−1)π/ktj〉.

The second formula is obtained. �

At the end of this subsection, we express a±j by Cartesian coordinates instead

of the polar coordinates expression (19). We denote ( k
√
z)j , 0 ≤ j ≤ k − 1 the k

different k-th roots of z.

Theorem 4.9. For k ≥ 2, the generalized Bessel function associated to the dihedral
group I2k is given by

Jκ(z, w) =
Γ(k(α+ β))

2Γ(α+ β)k

∫ 1

−1

∫ 1

−1

∫
Tk−1

hu,v,t0,...,tk−1
(z, w)

×
k−1∏
j=0

tα+β−1
j dt1 . . . dtk−1dν

α(u)dνβ(v)

where

hu,v,t0,...,tk−1
(z, w)
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= exp

k−1∑
j=0

tjRe

(
k

√
Re(z̃kwk) + i

√
|zw|2k − (Re(z̃kwk))2

)
j


+exp

k−1∑
j=0

tjRe

(
k

√
−Re(z̃kwk) + i

√
|zw|2k − (Re(z̃kwk))2

)
j


here z̃k = vRe(zk) +uiIm(zk), t0 = 1−

∑k−1
j=1 tj and

√
|zw|2k − (Re(z̃kwk))2 is the

positive root.

Proof. We only need to express e
∑k−1
j=0 a

+
j tj + e

∑k−1
j=0 a

−
j tj in the integrand of (17)

by Cartesian coordinates. It reduces to express a±j by z, w instead of the angles

qu,v(kφ1, kφ2). In fact, it is seen that

a+
j = |zw| cos

(
qu,v(kφ1, kφ2)− 2jπ

k

)
, 0 ≤ j ≤ k − 1

are the real part of the k-roots of Re(z̃kwk) + i

√
|zw|2k − (Re(z̃kwk))2 where z̃k =

vRe(zk) + iuIm(zk). Hence, we have

e
∑k−1
j=0 a

+
j tj = exp

k−1∑
j=0

tjRe

(
k

√
Re(z̃kwk) + i

√
|zw|2k − (Re(z̃kwk))2

)
j

 .

The expression for a−j is obtained similarly. �

Remark 4.10. The result will not be changed if we choose

√
|zw|2k − (Re(z̃kwk))2

as the negative square root. When u = v = 1, the k-th roots of Re(z̃kwk) +

i

√
|zw|2k − (Re(z̃kwk))2 becomes

k
√
zkwk. Hence, it reduces to the formula (19)

a+
j = Re

(
k
√
zkwk

)
j

= 〈w, ze−i2jπ/k〉.

However, it is not possible to express aj as an inner product of the form 〈w, g(z)〉
for general u and v.

Remark 4.11. For the odd order dihedral group Ik, the generalized Bessel function
can be obtained from I2k, see [15].

4.2. The Dunkl kernel. In this section, we give two kinds of expressions of the
Dunkl kernel based on the Laplace domain result obtained in [7].

We still identify R2 with the complex plane C, and denote z = |z|eiφ1 , w =
|w|eiφ2 . The Laplace domain result is obtained by introducing an auxiliary variable
in the series expansion of the Dunkl kernel and then taking the Laplace transform.
More precisely, the series is

Eκ(z, w, t) =
2α+βΓ(k(α+ β) + 1)

|zw|k(α+β)

∞∑
j=0

Ij+k(α+β)(|zw|t)Pj
(
Ik; eiφ1 , eiφ2

)
,

where Pj(Ik; eiφ1 , eiφ2) is the reproducing kernel of the Dunkl harmonics of degree
j and Ij is the modified Bessel function of first kind, see [5] for the series expansion
of the general Dunkl kernel. It is proved that the above infinite series admits a
closed expression in the Laplace domain for the dihedral groups.
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Theorem 4.12. [7] For the even dihedral group I2k, the Laplace transform of the
Dunkl kernel Eκ(z, w, t) with respect to t is given by

L(Eκ(z, w, t)) = Γ(k(α+ β) + 1)

∫ 1

−1

∫ 1

−1

fI2k(s, z, w)dµα(u)dµβ(v)

where

fI2k(s, z, w) =
2k(α+β)

(s− Re(zw))

(s+ S)k − 2Re(zkwk) + (s− S)k

((s+ S)k − 2|zw|kξu,v(kφ1, kφ2) + (s− S)k)α+β+1

with S =
√
s2 − |zw|2 and

dµγ(ω) =
Γ(γ + 1/2)

Γ(1/2)Γ(γ)
(1 + ω)(1− ω2)γ−1dω.

Remark 4.13. The substitution of x by ix in the original formula of Theorem 12 in
[7] has been made here. For x, y ∈ R2, the Dunkl kernel studied in [7] is in fact

E(−ix, y) = Vκ[e−i〈·,y〉](x).

However, the Dunkl kernel studied here is

E(x, y) = Vκ[e〈·,y〉](x).

Remark 4.14. The integrand fI2k(s, z, w) can be factored as follows, see Lemma 3
in [7],

fI2k(s, z, w) =
A(s, |zw|, q1,1(kφ1, kφ2))

B(s, z, w)[A(s, |zw|, qu,v(kφ1, kφ2))]α+β+1
,

where B(s, z, w) = s− Re(zw) and

A(s, |zw|, qu,v(kφ1, kφ2)) =

k−1∏
`=0

(
s− |zw| cos

(
qu,v(kφ1, kφ2 + 2π`

k

))
.

Similar to the generalized Bessel function, by the Laplace transform formula (6),
the Dunkl kernel can be expressed using the Humbert function and integrals over
the simplex.

Theorem 4.15. For each dihedral group I2k and non-negative multiplicity function
κ = (α, β), the Dunkl kernel is given by

Eκ(z, w) =

∫ 1

−1

∫ 1

−1

[
hα+β(z, w, u, v) +

21−kΓ(k(α+ β) + 1)

Γ(k(α+ β + 1) + 1)
|zw|k

×ξu−1,v−1(kφ1, kφ2)hα+β+1(z, w, u, v)

]
dµα(u)dµβ(v),

where

hγ(z, w, u, v) = Φ
(k+1)
2 (γ, . . . , γ, 1; kγ + 1; a0, . . . , ak−1, ak)

= eakΦ
(k)
2 (γ, . . . , γ; kγ + 1; a0 − ak, . . . , ak−1 − ak)

with aj = |zw| cos
(
qu,v(kφ1,kφ2)+2πj

k

)
, j = 0, . . . k − 1 and ak = Re (zw). This can

be equivalently expressed as

Eκ(z, w) =
Γ(k(α+ β) + 1)

Γ(α+ β)k

∫ 1

−1

∫ 1

−1

∫
Tk
e
∑k
j=0 ajtjdωα+βdµ

α(u)dµβ(v)
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+
21−kΓ(k(α+ β) + 1)

Γ(α+ β + 1)k

∫ 1

−1

∫ 1

−1

∫
Tk
|zw|kξu−1,v−1(kφ1, kφ2)

×e
∑k
j=0 ajtjdωα+β+1dµ

α(u)dµβ(v)

where tk = 1−
∑k−1
j=0 tj and dων =

∏k−1
j=0 t

ν−1
j dt0 . . . dtk−1.

Proof. We split fI2k(s, z, w) into two parts

fI2k(s, z, w) =
1

B(s, z, w)[A(s, |zw|, qu,v(kφ1, kφ2))]α+β
(20)

+
|zw|kξu−1,v−1(kφ1, kφ2)

2k−1B(s, z, w)[A(s, |zw|, qu,v(kφ1, kφ2))]α+β+1
.

Then the first expression follows from taking the inverse Laplace transform for each

term using the Φ
(m)
2 functions and then putting t = 1.

The second formula is obtained by replacing the Humbert function by its integral
expression (5), which is similar to the integral expression (17) for the generalized
Bessel function. �

Example 4.16. For the dihedral group I2, we have

Eκ(z, w) =

∫ 1

−1

∫ 1

−1

[
hα+β(z, w, u, v) +

|zw|ξu−1,v−1(φ1, φ2)

α+ β + 1

×hα+β+1(z, w, u, v))

]
dµα(u)dµβ(v),

where

hα(z, w, u, v)) = eRe (zw)
∞∑
j=0

(α)j
(α+ 1)j

Aj

j!

in which

A = |zw|((v − 1) cosφ1 cosφ2 + (u− 1) sinφ1 sinφ2).

Direct computation shows that the integrand reduces to e|zw| cos(qu,v(φ1,φ2)). Hence,
the Dunkl kernel for the root system I2 is

Eκ(z, w) =

∫ 1

−1

∫ 1

−1

e|zw|(v cosφ1 cosφ2+u sinφ1 sinφ2)dµα(u)dµβ(v)

which coincides with the known results.

In the following, we derive the second expression for the Dunkl kernel, which is
more compact. We start by rewriting the Laplace domain expression.

Theorem 4.17. For the even dihedral group I2k, the Laplace transform of the
Dunkl kernel Eκ(z, w, t) with respect to t is given by

L(Eκ(z, w, t))

= Γ(k(α+ β) + 1)

∫ 1

−1

∫ 1

−1

1

B(s, z, w)[A(s, |zw|, qu,v(kφ1, kφ2))]α+β

×
[
(1 + u)(1 + v)− 2

α+ β
(αu(1 + v) + βv(1 + u))

]
dνα(u)dνβ(v),
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where B(s, z, w) = s− Re(zw) and

A(s, |zw|, qu,v(kφ1, kφ2)) =

k−1∏
`=0

(
s− |zw| cos

(
qu,v(kφ1, kφ2 + 2π`

k

))
.

Proof. In (20), fI2k(s, z, w) is split into two parts. The second part of (20) satisfies

|zw|kξu−1,v−1(kφ1, kφ2)

B(s, z, w)[A(s, |zw|, qu,v(kφ1, kφ2))]α+β+1

=
|zw|kξu−1,v−1(kφ1, kφ2)

B(s, z, w)
[

1
2k

((S + s)k − 2|zw|kξu,v(kφ1, kφ2) + (s− S)k)
]α+β+1

=
2k−1

α+ β

1

B(s, z, w)

(
(u− 1)

d

du

1

[A(s, |zw|, qu,v(kφ1, kφ2)]α+β

+ (v − 1)
d

dv

1

[A(s, |zw|, qu,v(kφ1, kφ2))]α+β

)
where as before

ξu,v(kφ1, kφ2) = v cos(kφ1) cos(kφ2) + u sin(kφ1) sin(kφ2).

This leads to the following expression for the Dunkl kernel in the Laplace domain

1

Γ(k(α+ β) + 1)
L(Eκ(z, w, t))(21)

=

∫ 1

−1

∫ 1

−1

1

B(s, z, w)[A(s, |zw|, qu,v(kφ1, kφ2))]α+β
dµα(u)dµβ(v)

+
1

α+ β

1

B(s, z, w)

[∫ 1

−1

∫ 1

−1

[
d

du

(
1

[A(s, |zw|, qu,v(kφ1, kφ2))]α+β

)
×(u− 1) +

d

dv

(
1

[A(s, |zw|, qu,v(kφ1, kφ2))]α+β

)
(v − 1)

]
dµα(u)dµβ(v)

]
.

The second integral in (21) is further simplified using integration by parts∫ 1

−1

∫ 1

−1

d

du

(
1

[A(s, |zw|, qu,v(kφ1, kφ2))]α+β

)
(u− 1)dµα(u)dµβ(v)

=

∫ 1

−1

∫ 1

−1

1

[A(s, |zw|, qu,v(kφ1, kφ2))]α+β

(
− d

du
(u− 1)dµα(u)dµβ(v)

)
=
−2αΓ(α+ 1/2)

Γ(1/2)Γ(α)

∫ 1

−1

∫ 1

−1

1

[A(s, |zw|, qu,v(kφ1, kφ2))]α+β
u(1− u2)α−1dudµβ(v).

The third integral is simplified similarly. Collecting all, we obtain the desired
result. �

By the inverse Laplace transform and then setting t = 1, Lemma 4.17 leads to
the following new expression of the Dunkl kernel. The proof is omitted here.

Theorem 4.18. For each dihedral group I2k and positive multiplicity function κ,
the Dunkl kernel is given by

Eκ(z, w) =

∫ 1

−1

∫ 1

−1

[
(1 + u)(1 + v)− 2

α+ β
(αu(1 + v) + βv(1 + u))

]
×hα+β(z, w, u, v)dνα(u)dνβ(v).
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For each odd dihedral group Ik and positive multiplicity function κ, the Dunkl kernel
is

Eκ(z, w) =

∫ 1

−1

hα(z, w, u, 1)(1− u)dνα(u).

In these formulas the expression

hγ(z, w, u, v) = Φ
(k+1)
2 (γ, . . . , γ, 1; kγ + 1; a0, . . . , ak−1, ak)

= eakΦ
(k)
2 (γ, . . . , γ; kγ + 1; a0 − ak, . . . , ak−1 − ak)

is defined in Theorem 4.15.

The integrand hγ(z, w, u, v) in Theorem 4.18 is positive, by its integral expression
over the simplex. In the following, we will show that the measure in the integral is
positive as well. This further implies that the Dunkl kernel satisfies Eκ(z, w) > 0.

Lemma 4.19. For u, v ∈ [−1, 1] and α, β ≥ 0, we have

(1 + u)(1 + v)− 2

α+ β
(αu(1 + v) + βv(1 + u)) ≥ 0.(22)

Proof. When u ≤ 0 and v ≤ 0, the inequality (22) holds obviously. When u ≤ 0
and v ≥ 0, we have −αu(1 + v) ≥ 0 and

(1 + u)(1 + v)− 2β

α+ β
v(1 + u) ≥ (1 + u)

(
2v − 2β

α+ β
v

)
≥ 0.

Therefore, the inequality (22) holds as well. The case when u ≥ 0 and v ≤ 0 is
similar, we will not repeat the proof.

When u ≥ 0 and v ≥ 0, we have 1 + u ≥ 2u and 1 + v ≥ 2v. In this case, we
consider the quotient

2

α+ β

(αu(1 + v) + βv(1 + u))

(1 + u)(1 + v)
=

2α

α+ β

u

1 + u
+

2β

α+ β

v

1 + v
≤ 1

which completes the proof. �

Since the intertwining operator preserves homogeneous polynomials, we obtain
an integral for the reproducing kernel of homogenous polynomials by a series ex-
pansion.

Corollary 3. Denote by Pn the space of homogenous polynomial of degree n. For
dihedral group I2k, the reproducing kernel of Pn is given by

Vκ

(
〈·, w〉n

n!

)
(z) =

Γ(k(α+ β) + 1)

Γ(α+ β)k

∫ 1

−1

∫ 1

−1

∫
Tk

 k∑
j=0

ajtj

n

×
[
(1 + u)(1 + v)− 2

α+ β
(αu(1 + v) + βv(1 + u))

]
dωα+βdν

α(u)dνβ(v).

Similarly, for the odd dihedral group Ik, we have

Vκ

(
〈·, w〉n

n!

)
(z) =

Γ(kα+ 1)

Γ(α)k

∫ 1

−1

∫
Tk

 k∑
j=0

ajtj

n

(1− u)dωα+βdν
α(u)

where aj = |zw| cos
(
qu,v(kφ1,kφ2)+2πj

k

)
, j = 0, . . . k − 1, ak = Re (zw), tk = 1 −∑k−1

j=0 tj and dων =
∏k−1
j=0 t

ν−1
j dt0 . . . dtk−1.
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4.3. The intertwining operator. The expressions of the generalized Bessel func-
tion and the Dunkl kernel together with the result for general root systems, i.e.
Theorem 3.2, lead to integral expressions for the intertwining operator.

We consider the intertwining operator associated to invariant polynomials first.
Recall that the generalized Bessel function is an integral of the following Humbert
function, see Theorem 4.8,

J(w, |z|, s1v, s2u) =
1

2

(
Φ

(k)
2

(
λ, . . . , λ; kλ; a+

0 , . . . , a
+
k−1

)
+ Φ

(k)
2

(
λ, . . . , λ; kλ; a−0 , . . . , a

−
k−1

))
where s1 = cos(kφ1), s2 = sin(kφ1), a+

j = |zw| cos
(
qu,v(kφ1,kφ2)−2jπ

k

)
, a−j =

|zw| cos
(
π−qu,v(kφ1,kφ2)−2jπ

k

)
, j = 0, . . . , k − 1.

Combining Corollary 1 with Theorem 4.8, then yields,

Theorem 4.20. Let p(x) be a polynomial invariant under the action of I2k, k ≥ 2,
i.e. p(x) = p(g · x), for any g ∈ I2k. Then, the intertwining operator Vκ associated
to I2k and κ = (α, β) is given by

Vκ(p)(z) =

∫ 1

−1

∫ 1

−1

pu,v(z)dν
α(u)dνβ(v)

where

pu,v(z) = [p(w), J(w, |z|, s1v, s2u)]0

=
1

2π

∫
R2

F
(
e−|·|

2/2J(z, ·, u, v)
)

(y)F
(
e−|·|

2/2p(·)
)

(y)e|y|
2/2dy.

This is equivalently expressed as

Vκ(p)(z)

=
Γ(k(α+ β))

2Γ(α+ β)k

∫ 1

−1

∫ 1

−1

∫
Tk−1

[
p(w),

(
e
∑k−1
j=0 a

+
j tj + e

∑k−1
j=0 a

−
j tj
)]

0

×
k−1∏
j=0

tα+β−1
j dt1 . . . dtk−1dν

α(u)dνβ(v)

where a±j is defined in Theorem 4.5.

Example 4.21. For the group I2, denote x = (x1, x2) and y = (y1, y2). By setting
k = 1 in (15), the generalized Bessel function associated to the group I2 is given by

Jκ(x, y) =
1

2

∫ 1

−1

∫ 1

−1

(
evx1y1+ux2y2 + e−(vx1y1+ux2y2)

)
dνα(u)dνβ(v).

By Theorem 4.20, the intertwining operator for the I2-invariant polynomials is given
by

Vκ(p)(x)

=
1

2

∫ 1

−1

∫ 1

−1

[
p(x), evx1y1+ux2y2 + e−(vx1y1+ux2y2)

]
0
dνα(u)dνβ(v)

=
1

2

∫ 1

−1

∫ 1

−1

(p(vx1, ux2) + p(−vx1,−ux2)) dνα(u)dνβ(v)
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=

∫ 1

−1

∫ 1

−1

p(vx1, ux2)dνα(u)dνβ(v)

which coincides with the known results.

We study the intertwining operator for the root system B2 again.

Example 4.22. (Root system B2) For x = (x1, x2), y = (y1, y2) and κ = (α, β), by
setting k = 2 in Theorem 4.8, the generalized Bessel function takes the following
form in Cartesian coordinates, (see also [2], [7], [15])

Jκ(x, y) =

∫ 1

−1

∫ 1

−1

Ĩα+β−1/2

(√
Zx,y(u, v)

2

)
dνα(u)dνβ(v)

where

Ĩν(t) = Γ(ν + 1)

∞∑
n=0

(t/2)2n

n!Γ(n+ ν + 1)

and

Zx,y(u, v) = (x2
1 + x2

2)(y2
1 + y2

2) + u(x2
1 − x2

2)(y2
1 − y2

2) + 4vx1x2y1y2.

In order to obtain the intertwining operator for the invariant polynomials, we only
need to compute pu,v(y) defined in Theorem 4.20, i.e.

pu,v(y) =

[
p(x), Ĩα+β−1/2

(√
Zx,y(u, v)

2

)]
0

.

By the Mehler-Sonine type integral expression of the Bessel function and the re-
producing property of the exponential, we have

pu,v(y)

= cB2

[
p(x),

∫
{t21+t22≤1}

ex1at1+ax2(ct1+bt2)(1− t21 − t22)α+β−3/2dt1dt2

]
0

= cB2

∫
{t21+t22≤1}

p(at1, a(ct1 + bt2))(1− t21 − t22)α+β−3/2dt1dt2

where cB2 = (α+ β − 1/2)/π, a, b and c have been determined explicitly in [2] as

a =

(
y2

1 + y2
2 + u(y2

1 − y2
2)

2

)1/2

,

b =

(
(y2

1 − y2
2)2(1− u2) + 4y2

1y
2
2(1− v2)

)1/2
y2

1 + y2
2 + u(y2

1 − y2
2)

,

c =
2vy1y2

y2
1 + y2

2 + u(y2
1 − y2

2)
.

Hence, for α+β > 1/2 and I4-invariant polynomial p(y), the intertwining operator
associated to B2 is given by

Vκ(p)(y) = cB2

∫ 1

−1

∫ 1

−1

∫
{t21+t22≤1}

p(at1, a(ct1 + bt2))

×(1− t21 − t22)α+β−3/2dt1dt2dν
α(u)dνβ(v).

It is seen that the measure given above is positive, therefore the integral transform
is a positive operator as expected.
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Let us now turn to the general case, which follows by combining Theorem 3.2
with Theorem 4.18.

Theorem 4.23. For polynomials p(z), the intertwining operator Vκ for the dihedral
group I2k is given by

Vκ(p)(z) =

∫ 1

−1

∫ 1

−1

(
(1 + u)(1 + v)− 2

α+ β
(αu(1 + v) + βv(1 + u))

)
×Pα+β(z, u, v)dνα(u)dνβ(v).

The intertwining operator Vκ for the odd dihedral group Ik is given by

Vκ(p)(z) =

∫ 1

−1

Pα(z, u, v)(1− u)dνα(u).

In these formulas, we put

Pγ(z, u, v)) = [p(w), hγ(z, w, u, v)]0

=
1

2π

∫
R2

F
(
e−|·|

2/2hγ(z, ·, u, v)
)

(y)F
(
e−|·|

2/2p(·)
)

(y)e|y|
2/2dy

with

hγ(z, w, u, v) = Φ
(k+1)
2 (γ, . . . , γ, 1; kγ + 1; a0, . . . , ak−1, ak)

defined in Theorem 4.15.

We verify this directly for the group I1.

Example 4.24. Let x = (x1, x2) and y = (y1, y2). For the rank one case, the
intertwining operator is given by

Vκ(p)(x) =

∫ 1

−1

Pα(x, u, v)(1− u)dνα(u)

where

Pγ(x, u, v)) = [p(y), hγ(x, y, u, v)]0

= α

∫ 1

0

[p(y), ex1y1+(1+ut−t)x2y2 ]0t
α−1dt.

Computing the Fischer inner product, the intertwining operator is expressed as

Vκ(p)(x1, x2) = α

∫ 1

−1

∫ 1

0

p(x1, (ut+ 1− t)x2)tα−1dt(1− u)dνα(u)

= α

∫ 1

−1

∫ 1

0

p(x1, (ut+ 1− t)x2)tα−1dtdµα(u)

+α

∫ 1

−1

∫ 1

0

p(x1, (ut+ 1− t)x2)tα−1(−2u)dtdνα(u).

In the following, we only consider the polynomial xn2 , because in the present case the
intertwining operator has no influence on the variable x1. The following equality
holds:

α

∫ 1

−1

∫ 1

0

(ut+ 1− t)ntα−1dt(−2u)dνα(u)(23)
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=

∫ 1

−1

∫ 1

0

n(u− 1)(ut+ 1− t)n−1tαdtdµα(u),

which readily follows by integration by parts in the u variable. Now, with the
equality (23), the intertwining operator for xn2 becomes

Vκ(xn2 ) = α

∫ 1

−1

∫ 1

0

((ut+ 1− t)x2)ntα−1dtdµα(u)(24)

+

∫ 1

−1

∫ 1

0

n(u− 1)x2((ut+ 1− t)x2)n−1tαdtdµα(u).

On the other hand, by direct verification or using integration by parts, we have

α

∫ 1

0

(ut+ 1− t)ntα−1dt+

∫ 1

0

(u− 1)n(ut+ 1− t)n−1tαdt = un.(25)

Hence, combining (24) and (25), we obtain

Vκ(xn2 ) =

∫ 1

−1

(x2u)ndµα(u),

which is the well-known expression.

4.4. New proof of Xu’s result. In this section, we reobtain the intertwining
operator given in [37]. We start from the odd dihedral group Ik with multiplicity
function α. In this case, the Laplace transform of the Dunkl kernel is given by

1

2kαΓ(kα+ 1)
L(Eκ(z, w, t))(26)

=

∫ 1

−1

(s+ S)k − 2Re(zkwk) + (s− S)k

(s− Re(zw))((s+ S)k − 2|zw|kξu,1(kφ1, kφ2) + (s− S)k)α+1
dµα(u)

where
ξu,v(kφ1, kφ2) = v cos(kφ1) cos(kφ2) + u sin(kφ1) sin(kφ2).

This is obtained by the relations between the Dunkl kernel of Ik and I2k, see also
Theorem 12 in [7].

Denote wp = ei
pπ
k , then wkp = eipπ = cos(pπ), for p = 0, 1, . . . , 2k − 1. Putting

w = wp in formula (26), the Dunkl kernel Eκ(z, wp, t) in the Laplace domain
becomes

L(Eκ(z, ei
pπ
k , t))

= 2kαΓ(kα+ 1)
(s+ S)k − 2Re(zkwk) + (s− S)k

(s− Re(zw))((s+ S)k − 2|zw|kξu,1(kφ1, pπ) + (s− S)k)α+1

= Γ(kα+ 1)
1(

s− |z| cos(φ1 − pπ
k )
)α+1∏k−1

j=1

(
s− |z| cos(φ1 − pπ

k −
2jπ
k )
)α

where the first identity is because

ξu,1(kφ1, pπ) = cos(kφ1) cos(pπ) + u sin(kφ1) sin(pπ) = (−1)p cos(kφ1)

which is independent of u and
∫ 1

−1
dµα(u) = 1. The inverse Laplace transform

immediately shows that the Dunkl kernel in this special case is

Vκ

(
e〈·,wp〉

)
(z) = Eκ(z, wp)(27)

= ea0Φ
(k−1)
2 (α, . . . , α; kα+ 1; a1 − a0, . . . , ak−1 − a0)
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= cα,k

∫
Tk−1

e〈e
ipπ/k,z

∑k−1
j=0 e

−i2jπ/ktj〉tα0

k−1∏
j=1

tα−1
j dt1 . . . dtk−1

where cα,k = Γ(kα+1)
αΓ(α)k

, aj = |z| cos(φ1 − pπ
k −

2πj
k ), j = 0, . . . , k − 1 and t0 =

1−
∑k−1
j=1 tj . This formula also follows from setting w = wp in Theorem 4.18.

It is known that the intertwining operator preserves homogenous polynomials,
i.e. Vκ(Pn) ⊂ Pn where Pn is the space of homogenous polynomials of degree n.
Hence, formula (27) yields

Vκ(〈·, wp〉n)(z)

= cα,k

∫
Tk−1

〈
wp, z

k−1∑
j=0

e−i2jπ/ktj

〉n
tα0

k−1∏
j=1

tα−1
j dt1 . . . dtk−1.

By a limit discussion, it further leads to the intertwining operator for functions of
the form f(〈ei

pπ
k , z〉) as

Vκ

(
f
(
〈·, ei

pπ
k 〉
))

(z)

= cα,k

∫
Tk−1

f

〈ei pπk , z k−1∑
j=0

e−i2jπ/ktj

〉 tα0

k−1∏
j=1

tα−1
j dt1 . . . dtk−1

where t0 = 1 −
∑k−1
j=1 tj and cα,k = Γ(kα+1)

αΓ(α)k
, which is the formula given in [37],

Theorem 1.1.
Based on the above proof, we understand Xu’s formula in the another way, which

is the following corollary.

Corollary 4. For polynomials p(z), the intertwining operator Vκ for the dihedral

group Ik with k odd at the lines z = |z|ei
qπ
k , 0 ≤ q ≤ 2k − 1 is given by

Vκ (p (·))
(
|z|ei

qπ
k

)
= cα,k

∫
Tk−1

p

k−1∑
j=0

|z|ei(q−2j)π/ktj

 tα0

k−1∏
j=1

tα−1
j dt1 . . . dtk−1,

where t0 = 1−
∑k−1
j=1 tj and cα,k = Γ(kα+1)

αΓ(α)k
.

Proof. The same method used for deriving the formula (27) leads to a similar

formula for the Dunkl kernel Eκ
(
|z|ei

qπ
k , w

)
. With this formula, we have

Vκ (p (·))
(
|z|ei

qπ
k

)
=

[
p(w), Eκ

(
|z|ei

qπ
k , w

)]
0

= cα,k

∫
Tk−1

[
p(w), e

〈
w,|z|

∑k−1
j=0 e

i(q−2j)π
k

tj

〉]
0

tα0

k−1∏
j=1

tα−1
j dt1 . . . dtk−1

= cα,k

∫
Tk−1

p

|z| k−1∑
j=0

e
i(q−2j)π

k tj

 tα0

k−1∏
j=1

tα−1
j dt1 . . . dtk−1.

�
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In particular, Corollary 4 offers a way to compute the intertwining action on
polynomial p(z) when Vκ(p(·))(z) is radial.

At the end of this section, we show that the same method leads to a partial and
simple formula for the dihedral group I2k with κ = (α, β) without other difficulties.
In this case, the Weyl fractional integral vanishes as well.

Example 4.25. Consider wp = ei
pπ
k and z = |z|ei

(q+1/2)π
k , p, q = 0, 1, 2, . . . , 2k− 1.

Then we have

ξu,v((q + 1/2)π, pπ) = v cos((q + 1/2)π) cos(pπ) + u sin((q + 1/2)π) sin(pπ) = 0.

In this case, the Dunkl kernel at the line z = |z|ei
(q+1/2)π

k and w = wp is only given
by an integral over the simplex,

Vκ

(
e〈·,wp〉

)
(z) = Eκ (z, wp)

=
Γ(k(α+ β) + 1)

Γ(α+ β)k

∫
Tk−1

e〈e
ipπ/k,z

∑k−1
j=0 e

−i2jπ/ktj〉tα0

k−1∏
j=1

tα−1
j dt1 . . . dtk−1.

The same discussion as in the above shows that for functions f(〈ei
pπ
k , z〉), the

intertwining operator at the line rei
(q+1/2)π

k is given by

Vκ

(
f
(〈
·, ei

pπ
k

〉))(
|z|ei

(q+1/2)π
k

)
=

Γ(k(α+ β) + 1)

Γ(α+ β)k

∫
Tk−1

f

〈ei pπk , |z|ei (q+1/2)π
k

k−1∑
j=0

e−i2jπ/ktj

〉
×tα0

k−1∏
j=1

tα−1
j dt1 . . . dtk−1,

where t0 = 1−
∑k−1
j=1 tj .

Remark 4.26. The same method together with the integral expression of the gen-
eralized Bessel function leads to an integral expression of the intertwining operator
for the Ik invariant polynomials.

Remark 4.27. A similar approach was used to derive the intertwining operator for a
special class of functions for symmetric groups, where again the Humbert functions
appear, see [11].

5. Conclusions

In this paper, an integral expression of the intertwining operator and it inverse is
given for arbitrary reflection groups which is based on the classical Fourier transform
and the Dunkl kernel. For the dihedral case, explicit expressions for the generalized
Bessel function and Dunkl kernel are obtained by inverting the Laplace domain
result of our previous paper [7] using the second class of Humbert functions. With
these explicit formulas, we obtain several integral expressions for the intertwining
operators in the symmetric and the non-symmetric settings. The positivity and the
bound of the Dunkl kernel can be observed directly from our integral expressions.
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List of notations

For the reader’s convenience, we list the notations used in Section 4 below.

z |z|eiφ1

w |w|eiφ2

〈z, w〉 Re(zw)

dνα(u)
Γ(α+ 1/2)√

πΓ(α)
(1− u2)α−1du

dµα(u)
Γ(α+ 1/2)√

πΓ(α)
(1 + u)(1− u2)α−1du

ξu,v(φ1, φ2) v cos(φ1) cos(φ2) + u sin(φ1) sin(φ2)
qu,v(φ1, φ2) arccos(ξu,v(φ1, φ2))

a+
j |zw| cos

(
qu,v(kφ1,kφ2)−2jπ

k

)
, 0 ≤ j ≤ k − 1

a−j |zw| cos

(
π−qu,v(kφ1,kφ2)−2jπ

k

)
, 0 ≤ j ≤ k − 1

ak Re(zw)

aj |zw| cos

(
qu,v(kφ1,kφ2)+2jπ

k

)
, 0 ≤ j ≤ k − 1
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