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In this work we establish sharp kernel conditions ensuring that the corresponding 
integral operators belong to Schatten-von Neumann classes. The conditions are given 
in terms of the spectral properties of operators acting on the kernel. As applications 
we establish several criteria in terms of different types of differential operators and 
their spectral asymptotics in different settings: compact manifolds, operators on 
lattices, domains in Rn of finite measure, and conditions for operators on Rn given 
in terms of anharmonic oscillators. We also give examples in the settings of compact 
sub-Riemannian manifolds, contact manifolds, strictly pseudo-convex CR manifolds, 
and (sub-)Laplacians on compact Lie groups.
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r é s u m é

Nous établissons dans cet article des critères optimaux sur des noyaux pour 
assurer que les opérateurs integraux correspondants appartiennent à une classe de 
Schatten-von Neumann. Les critères sont donnés en terms de propriétés espectrales 
d’opérateurs agissant sur le noyau. Comme une application nous obtenons des 
critères en terms de different types d’opératurs differentiels et leur asymptotique 
espectrale dans different cadres : variétés compactes, opérateurs sur des reticles, 
domaines dans Rn de measure finie, et des conditions pour opérateurs sur Rn

en terms d’oscillateurs anharmoniques. Nos donnos aussi quelques examples dans 
le cadre de variétés sous-riemanniene compactes, variétés de contact, variétés CR 
strictement pseudoconvexes, et sous-laplaciens sur groupes de Lie compacts.

© 2021 The Authors. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Let (Ωj , Mj , μj) (j = 1, 2) be measure spaces respectively endowed with a σ-finite measure μj on a σ-
algebra Mj of subsets of Ωj . We denote L2(μj) := L2(Ωj , μj) the complex Hilbert space of square integrable 
functions on Ωj . In this paper we give sharp sufficient conditions on integral kernels K = K(x, y) in order 
to ensure that the corresponding integral operators

Tf(x) =
ˆ

Ω1

K(x, y)f(y)dμ1(y) (1.1)

from L2(μ1) into L2(μ2) belong to different Schatten-von Neumann classes and in particular to the trace 
class when (Ω1, M1, μ1) = (Ω2, M2, μ2). When Ω = Ω1 = Ω2 possesses a Borel topological structure a trace 
formula in terms of the diagonal of the kernel can be deduced. If additionally Ω has a smooth manifold 
structure some sharp sufficient conditions on integral kernels K(x, y) for Schatten-von Neumann classes can 
be formulated in terms of the regularity of a certain order in either x or y, or both, and in terms of decay 
conditions at infinity.

To briefly explain the approach of this paper, we can summarise it as follows:

If we know spectral properties of an operator E and we know how it acts on the integral kernel of an 
integral operator T , we can draw conclusions about the spectral properties of T .

More specifically, let (E2)x and (E1)y be operators acting on x and y variables, respectively, and suppose 
we know that

(E2)x(E1)yK ∈ L2(μ2 ⊗ μ1), (1.2)

or, more generally, belongs to mixed Lebesgue spaces. In this paper we give spectral conditions on E2 and E1
ensuring that the integral operator T in (1.1) belongs to the Schatten-von Neumann class Sr(L2(μ1), L2(μ2)), 
0 < r < ∞. Such spectral conditions on E2 and E1 will be given:

• in terms of membership of their inverses in Schatten-von Neumann classes;
• or in terms of their spectral asymptotics,

i.e. conditions that can be verified in practice. As an application we present several tests in terms of different 
types of operators in different settings. While the knowledge of the spectral asymptotics of an operator E
implies also the Schatten-von Neumann properties for its inverse, the advantage of knowing the spectral 
asymptotics will be in a possibility to obtain refined properties of the decay of the singular numbers of the 
integral operator T .
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The problem of finding such criteria on different kinds of domains is classical and has been much studied, 
e.g. the paper [1] by Birman and Solomyak is a good introduction to the subject. In particular, it is well 
known that the smoothness of the kernel is related to the behaviour of the singular numbers. In a recent 
paper [2] the authors have established sufficient sharp kernel conditions for operators on L2(M) for a 
compact manifold M .

In order to obtain criteria for general Schatten-von Neumann classes we will use the well-known method 
of factorisation introduced by Gohberg and Krein (cf. [3, Chap. 3, Section 10]). Some applications of this 
method have been developed by O’Brien in [4] and in [5] for applications to trace formulae of Schrödinger 
operators. The factorisation method has also been applied by the authors in [2] in order to obtain Sobolev 
regularity conditions for kernels on closed manifolds. The main result of [2] has been recently applied in [6]
for the study of the distribution of eigenvalues for the double layer potential on flat curves and its relation 
with isoperimetrical inequalities.

There is an extensive literature on Schatten-von Neumann properties for specific integral operators. 
A characterisation of the membership in Schatten-von Neumann classes for Hardy operators has been 
established by Nowak in [7]. Lower bounds for the Schatten-von Neumann norms for Volterra integral 
operators have been obtained in [8], [9]. Schatten-von Neumann classes of pseudo-differential operators in 
the setting of the Weyl-Hörmander calculus have been considered in [10], [11], [12] and for anharmonic 
oscillators in [13]. Schatten-von Neumann classes on compact Lie groups and s-nuclear operators on Lp

spaces from the point of view of symbols have been respectively studied by the authors in [14] and [15].
In the subsequent part of the present paper we establish a characterisation of Schatten-von Neumann 

classes for operators from L2(μ1) into L2(μ2) for general integral operators on general measure spaces.
The role of the smoothness of the kernel in the investigation of Schatten-von Neumann properties can be 

illustrated with the following example. In his classical book [16, Prop 3.5, page 174] Mitsuo Sugiura gives a 
trace class criterion for integral operators on L2(T 1) with C2-kernels. More precisely, the theorem asserts 
that every kernel in C2(T 2) begets a trace class operator on L2(T 1): if K(θ, φ) is a C2-function on T 2, then 
the integral operator L on L2(T 1) defined by

(Lf)(θ) =
2πˆ

0

K(θ, φ)f(φ)dφ, (1.3)

is trace class and has the trace

Tr(L) =
2πˆ

0

K(θ, θ)dθ. (1.4)

The proof of this result relies on the connection between the absolute convergence of Fourier coefficients of 
the kernel and the trace class property (traceability) of the corresponding operator. This result has been 
extended by the authors under sharp smoothness assumptions to the setting of compact manifolds in [2]. 
The authors have weakened the known assumptions on the kernel for the operator to be trace class and for 
the trace formula (1.4) to hold. The present paper significantly extends the main results contained in [2] in 
different ways.

To formulate the notions more precisely, let H1, H2 be complex Hilbert spaces and let T : H1 → H2
be a compact operator. Then T ∗T : H1 → H1 is compact, self-adjoint, and non-negative. Hence, we can 
define the absolute value of T by the equality |T | = (T ∗T ) 1

2 : H1 → H1. Let (ψk)k be an orthonormal basis 
for H1 consisting of eigenvectors of |T |, and let sk(T ) be the eigenvalue corresponding to the eigenvector 
ψk, k = 1, 2, . . . . The numbers s1(T ) ≥ s2(T ) ≥ · · · ≥ sn(T ) ≥ · · · ≥ 0, are called the singular values of 
T : H1 → H2. If 0 < p < ∞ and the sequence of singular values is �p-summable, then T is said to belong to 
the Schatten-von Neumann class Sp(H1, H2). If 1 ≤ p < ∞, a norm is associated to Sp(H1, H2) by
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‖T‖Sp
:=

( ∞∑
k=1

(sk(T ))p
) 1

p

.

If 1 ≤ p < ∞ the class Sp(H1, H2) becomes a Banach space endowed with the norm ‖T‖Sp
. If p = ∞ we 

define S∞(H1, H2) to be the class of compact operators from H1 into H2 endowed with the operator norm 
‖T‖S∞ := ‖T‖op. In the case 0 < p < 1 the quantity ‖T‖Sp

only defines a quasinorm, and Sp(H1, H2) is 
also complete. If H1 = H2 = H we will simply write Sp(H, H) = Sp(H).

The Schatten-von Neumann classes are nested, with

Sp ⊂ Sq, if 0 < p < q ≤ ∞, (1.5)

and satisfy the important multiplication property (cf. [17], [18], [3])

SqSp ⊂ Sr, (1.6)

where

1
r

= 1
p

+ 1
q
, 0 < p < q ≤ ∞. (1.7)

The inclusion (1.6) should be understood in the following sense: If B ∈ Sp(H, H1) and A ∈ Sq(H1, H2) then 
AB ∈ Sr(H, H2) provided that (1.7) holds. Moreover, one has

‖AB‖Sr(H,H2) ≤ ‖A‖Sq(H1,H2)‖B‖Sp(H,H1). (1.8)

The inequality (1.8) can be obtained from Theorem 7.8 (c) of [17], and a diagonalisation argument for A
and B.

A relationship between the singular values sn(T ) and the eigenvalues λn(T ) in the case H = H1 = H2
for an operator T ∈ S∞(H) was established by Hermann Weyl (cf. [19]):

∞∑
n=1

|λn(T )|p ≤
∞∑

n=1
sn(T )p, p > 0.

We will apply (1.6) for factorising our operators T in the form T = AB with A ∈ Sq and B ∈ Sp, and 
from this we deduce that T ∈ Sr. We refer the reader to [17, Chapter 7] for more details on the Schatten-von 
Neumann classes for operators acting on different Hilbert spaces H1, H2. Standard references for the special 
case H1 = H2 are [3], [20], [18], [21]. If H = H1 = H2 and T ∈ S1(H) then T is said to be in the trace class
S1. Let T : H → H be an operator in S1(H) and let (φk)k be any orthonormal basis for H. Then, the series 
∞∑
k=1

(Tφk, φk) is absolutely convergent and the sum is independent of the choice of the orthonormal basis 

(φk)k. Thus, we can define the trace Tr(T ) of any linear operator T : H → H in S1 by

Tr(T ) :=
∞∑
k=1

(Tφk, φk),

where {φk : k = 1, 2, . . . } is any orthonormal basis for H. If the singular values are square-summable T is 
called a Hilbert-Schmidt operator. It is clear that every trace class operator is a Hilbert-Schmidt operator. 
A nice basic introduction to the study of the trace class is contained in the book [22] by Peter Lax.

If Hj = L2(Ωj , Mj , μj) (j = 1, 2), it is well known that T is a Hilbert-Schmidt operator from 
L2(Ω1, M1, μ1) into L2(Ω2, M2, μ2) if and only if T can be represented by an integral kernel K = K(x, y) ∈
L2(Ω2 × Ω1, μ2 ⊗ μ1).
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We note that in view of (1.5) the condition K ∈ L2(Ω2 × Ω1) implies that T ∈ Sp for all p ≥ 2. The 
situation for Schatten-von Neumann classes Sp for p > 2 is indeed simpler and, in fact, similar to that of 
p = 2. In particular, B. Russo has proved in [23] that for μ1 = μ2 = μ on Ω: If 1 < p < 2, 1

p + 1
p′ = 1 and 

K ∈ L2(Ω × Ω) then for the corresponding integral operator T one has

‖T‖Sp′ ≤ (‖K‖p,p′‖K∗‖p,p′)
1
2 , (1.9)

where ‖ · ‖p,q denotes the mixed-norm:

‖K‖p,q =

⎛⎜⎝ˆ

Ω

⎛⎝ˆ

Ω

|K(x, y)|pdμ(x)

⎞⎠
q
p

dμ(y)

⎞⎟⎠
1
q

, (1.10)

and K∗(x, y) = K(y, x). The condition K ∈ L2(Ω ×Ω) in the above statement can be removed, see Goffeng 
[24]. Namely, even without such assumption, (1.9) still holds as long as its right hand side is finite. See also 
the discussion of such topics around [25, Theorem 2.3].

For p < 2, the situation is much more subtle, and the Schatten-von Neumann class Sp(L2(μ1), L2(μ2))
cannot be characterised as in the case p = 2 by a property analogous to the square integrability of integral 
kernels. This is a crucial fact that we now briefly describe. A classical result of Carleman [26] from 1916 gives 
the construction of a periodic continuous function κ(x) =

∞∑
k=−∞

cke
2πikx for which the Fourier coefficients 

ck satisfy

∞∑
k=−∞

|ck|p = ∞ for any p < 2. (1.11)

Now, using this and considering the normal operator

Tf = f ∗ κ (1.12)

acting on L2(T 1) one obtains that the sequence (ck)k forms a complete system of eigenvalues of this operator 
corresponding to the complete orthonormal system

φk(x) = e2πikx, Tφk = ckφk.

The system φk is also complete for T ∗, T ∗φk = ckφk, so that the singular values of T are given by sk(T ) =
|ck|, and hence by (1.11) we have

∞∑
k=−∞

sk(T )p = ∞ for any p < 2.

In other words, in contrast to the case of the class S2 of Hilbert-Schmidt operators which is characterised 
by the square integrability of the kernel, Carleman’s result shows that below the index p = 2 the class of 
kernels generating operators in the Schatten-von Neumann class Sp cannot be characterised by criteria of 
the type

¨
|F (K(x, y))|dxdy < ∞,
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for any continuous function F since the kernel K(x, y) = κ(x − y) of the operator T in (1.12) satisfies any 
kind of integral condition of such form due to the boundedness of κ.

This example demonstrates the relevance of obtaining criteria for operators to belong to Schatten-von 
Neumann classes for p < 2 and, in particular, motivates the results in this paper. Among other things, we 
may also note that the continuity of the kernel (as in the above example) also does not guarantee that the 
operator would belong to any of the Schatten-von Neumann classes Sp with p < 2. Therefore, it is natural to 
ask what regularity imposed on the kernel would guarantee such inclusions (for example, the C2 condition 
in Sugiura’s result mentioned earlier does imply the traceability on T 1). Thus, these questions will be the 
main interest of the present paper.

The main result for operators to belong to Schatten-von Neumann classes Sp for 0 < p < 2, is given 
in Theorem 2.2. In this work we allow singularities in the kernel so that the formula (1.4) would need to 
be modified in order for the integral over the diagonal to make sense. In such case, in order to calculate 
the trace of an integral operator using a non-continuous kernel along the diagonal, one idea is to average it 
to obtain an integrable function. Such an averaging process has been introduced by Weidmann [27] in the 
Euclidean setting, and applied by Brislawn in [28], [29] for integral operators on L2(Rn) and on L2(Ω, M, μ), 
respectively, where Ω is a second countable topological space endowed with a σ-finite Borel measure. The 
corresponding extensions to the Lp setting have been established in [30] and [31]. The L2 regularity of such 
an averaging process is a consequence of the L2-boundedness of the martingale maximal function. Denoting 
by K̃(x, x) the pointwise values of this averaging process, Brislawn [29] proved the following formula for a 
trace class operator T on L2(μ), for the extension to Lp see [30]:

Tr(T ) =
ˆ

Ω

K̃(x, x)dμ(x). (1.13)

In Section 2 we establish our criteria for Schatten-von Neumann classes on measure spaces, and the 
special case of the trace class is treated in Section 3. For this, we briefly recall the definition of the averaging 
process involved in formula (1.13). In Section 4 we present further criteria in terms of operators for which 
the distribution of eigenvalues is known in terms of the asymptotics of the eigenvalue counting functions. 
In Section 5 we give applications of the obtained conditions in different settings.

The authors would like to thank Alberto Parmeggiani for a discussion.

2. Schatten-von Neumann classes on L2-spaces

In this section we present our results in the setting of L2-spaces which is not restrictive in terms of the 
general theory of Hilbert spaces. Before stating our first result, we point out that a look at the proof of the 
trace formula (1.4) in [16, Prop 3.5] shows that statement can be already improved in the following way:

Proposition 2.1. Let Δ = ∂2

∂θ2 + ∂2

∂φ2 be the Laplacian on T 2. Let K(θ, φ) be a measurable function on T 2

and suppose that there exists an integer q > 1 such that Δ
q
2K ∈ L2(T 1 ×T 1). Then the integral operator L

on L2(T 1) defined by

(Lf)(θ) =
2πˆ

0

K(θ, φ)f(φ)dφ,

is trace class and has the trace

Tr(L) =
2πˆ
K̃(θ, θ)dθ,
0
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where K̃ stands for the averaging process described in Section 3.

We observe that for K ∈ L2(μ2 ⊗ μ1), we have

‖K‖2
L2(μ2⊗μ1) =

ˆ

Ω2×Ω1

|K(x, y)|2dμ2(x)μ1(y) =
ˆ

Ω1

⎛⎝ ˆ

Ω2

|K(x, y)|2dμ2(x)

⎞⎠ dμ1(y),

or we can also write

K ∈ L2(μ2 ⊗ μ1) ⇐⇒ K ∈ L2
y(μ1, L

2
x(μ2)).

In particular, this also means that Ky defined by Ky(x) = K(x, y) is well-defined for almost every y ∈ Ω1
as a function in L2

x(μ2). For an operator E from L2(μ1) into L2(μ1) we will use the notation ExK(x, y)
to emphasize that the operator E is acting on the x-variable. Analogously, we will also use the notation 
EyK(x, y) for an operator E from L2(μ2) into L2(μ2) acting on the y-variable.

In this paper we will only consider linear operators. We will now give our main criteria for Schatten-von 
Neumann classes where we note that we do not have to assume the operators E1, E2 to be self-adjoint 
nor bounded, i.e. they are considered to be densely defined without further explanations. For a densely 
defined operator E on a Hilbert, it is well known that, E has a bounded inverse if and only if E is closed 
and bijective. Henceforth, an invertible operator is understood as an operator with bounded inverse. An 
unbounded operator is understood as a densely defined operator.

Theorem 2.2. Let (Ωj , Mj , μj) (j = 1, 2) be σ-finite measure spaces. Let Ej (j = 1, 2) be unbounded invertible 
operators on L2(μj) such that E−1

j ∈ Spj
(L2(μj)) for some pj > 0. Let K ∈ L2(μ2 ⊗ μ1) and let T be the 

integral operator from L2(μ1) to L2(μ2) defined by

(Tf)(x) =
ˆ

Ω1

K(x, y)f(y)dμ1(y).

Then the following holds:

(i) If (E2)x(E1)yK ∈ L2(μ2⊗μ1), then T belongs to the Schatten-von Neumann classes Sr(L2(μ1), L2(μ2))
for all 0 < r < ∞ such that

1
r
≤ 1

2 + 1
p1

+ 1
p2

.

Moreover,

‖T‖Sr
≤ ‖E−1

1 ‖Sp1
‖E−1

2 ‖Sp2
‖(E2)x(E1)yK‖L2(μ2⊗μ1). (2.1)

(ii) If (E2)xK ∈ L2(μ2 ⊗μ1), then T belongs to the Schatten-von Neumann classes Sr(L2(μ1), L2(μ2)) for 
all 0 < r < ∞ such that

1
r
≤ 1

2 + 1
p2

.

Moreover,

‖T‖Sr
≤ ‖E−1

2 ‖Sp
‖(E2)xK‖L2(μ2⊗μ1). (2.2)
2
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(iii) If (E1)yK ∈ L2(μ2 ⊗μ1), then T belongs to the Schatten-von Neumann classes Sr(L2(μ1), L2(μ2)) for 
all 0 < r < ∞ such that

1
r
≤ 1

2 + 1
p1

.

Moreover,

‖T‖Sr
≤ ‖E−1

1 ‖Sp1
‖(E1)yK‖L2(μ2⊗μ1). (2.3)

Remark 2.3. The condition that K ∈ L2(μ2 ⊗ μ1) in Theorem 2.2 is not restrictive. Indeed, conditions for 
T ∈ Sr(L2(μ1), L2(μ2)) for r > 2 do not require regularity of K and are given, for example, in (1.9). The 
case 0 < r < 2 is much more subtle (as the classes become smaller), but if T ∈ Sr(L2(μ1), L2(μ2)) for 
0 < r < 2 then, in particular, T is a Hilbert-Schmidt operator, and hence the condition K ∈ L2(μ2 ⊗ μ1) is 
actually necessary.

The statement of Theorem 2.2 covers precisely the case 0 < r < 2. Indeed, for example in Part (i), we 
have r = 2p1p2

p1p2+2(p1+p2) and hence we have 0 < r < 2 since in general 0 < p1, p2 < ∞. Thus, Theorem 2.2
provides a sufficient condition for Schatten-von Neumann classes Sr for 0 < r < 2.

Proof of Theorem 2.2. (i) For the sake of simplicity, sometimes we will abbreviate the notation also in 
integrals by writing E1 = (E1)y and E2 = (E2)x.

We now consider the operator A with kernel

A(x, y) = (E2)x(E1)yK ∈ L2(μ2 ⊗ μ1).

One can see that

A = E2 ◦ T ◦ E∗
1 . (2.4)

Since A ∈ S2(L2(μ1), L2(μ2)) and using the fact that (E∗
1)−1 ∈ Sp1(L2(μ1)) if and only if E−1

1 ∈ Sp1 with 
equal norms, we obtain

T = E−1
2 ◦A ◦ (E∗

1 )−1 ∈ Sp2 ◦ S2 ◦ Sp1 ⊂ Sr,

provided

1
r
≤ 1

2 + 1
p1

+ 1
p2

,

by (1.7).
Moreover, for the estimation of the Schatten-von Neumann norm ‖T‖Sr

, according to (1.8) we obtain:

‖T‖Sr
= ‖E−1

2 ◦A ◦ (E∗
1 )−1‖Sr

≤ ‖E−1
1 ‖Sp1

‖E−1
2 ‖Sp2

‖(E2)x(E1)yK‖L2(μ2⊗μ1),

and this concludes the proof of (i).
(ii) Just consider E2 in the proof of (i).
(iii) Just consider E1 in the proof of (i). �
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Remark 2.4.

(i) In the general setting of a separable Hilbert spaces H one can construct operators E satisfying the 
assumptions in the above theorem. Let 0 < p < ∞ and (sn)n a sequence in �p, with sn > 0 for all n. 
Let {φn : n = 1, 2, . . . } be an orthonormal basis of H.
We define

D := {f ∈ H :
∞∑

n=1
|(f, φn)H |2s2p

n < +∞}.

Since Span({φn : n = 1, 2, . . . }) ⊂ D, then D is dense in H. We define Eφn = s−p
n φn. By using Cauchy-

Schwarz inequality, we can see that E can be extended to D by Ef =
∞∑

n=1
(f, φn)Hspnφn. It is clear that 

E has a bounded inverse determined by E−1φn = spnφn and E−1 ∈ Sp(H). We also note that since 
limn s

p
n = 0, we have limn s

−p
n = +∞ and the operator E is not bounded.

In more specific cases, we will consider more concrete operators for the applications.
(ii) We point out that a converse statement also holds for the multiplication property (1.6) (cf. [17, Theorem 

7.9]): Let 0 < p, q, r < ∞ and T ∈ Sr(H, H2) with

1
r

= 1
p

+ 1
q
. (2.5)

Then there exist operators B ∈ Sp(H, H1) and A ∈ Sq(H1, H2) (with some Hilbert space H1) for which 
T = AB; the operators A, B can be chosen such that ‖T‖Sr(H,H2) = ‖A‖Sq(H1,H2)‖B‖Sp(H,H1).

Remark 2.5. Under conditions of Theorem 2.2, in the proof of its Part (i) the main point was to obtain the 
factorisation

T = E−1
2 A(E∗

1 )−1, (2.6)

where A : L2(μ1) → L2(μ2) is the integral operator with the integral kernel A(x, y) = E2E1K(x, y). This 
factorisation has other consequences. For example, the combination of (2.6), the condition (1.9) and the 
multiplication property imply the following extension of Theorem 2.2 in the case μ1 = μ2 = μ on Ω, where 
we will denote by Lq′(Ω, Lq(Ω)) the space defined by the mixed norm (1.10), that is, by

‖K‖Lq′ (Ω,Lq(Ω)) =

⎛⎜⎜⎝ˆ

Ω

⎛⎝ˆ

Ω

|K(x, y)|qdμ(x)

⎞⎠
q′
q

dμ(y)

⎞⎟⎟⎠
1
q′

< ∞. (2.7)

We also use the notation K∗(x, y) := K(y, x).

Corollary 2.6. Let (Ω, M, μ) be a σ-finite measure space. Let T be a bounded integral operator on L2(Ω), 
defined by

(Tf)(x) =
ˆ

Ω

K(x, y)f(y)dμ(y).

Let 1 < q ≤ 2 and 1 + 1
′ = 1. Then the following holds:
q q
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(i) Let E1, E2 be unbounded invertible operators on L2(Ω) such that E−1
j ∈ Spj

(L2(Ω)) for some pj > 0, 
(j = 1, 2). If (E2)x(E1)yK and ((E2)x(E1)yK)∗ ∈ Lq′(Ω, Lq(Ω)), then T belongs to the Schatten-von 
Neumann classes Sr(L2(Ω)) for all 0 < r < ∞ such that

1
r
≤ 1

q′
+ 1

p1
+ 1

p2
.

Moreover,

‖T‖Sr
≤ ‖E−1

1 ‖Sp1
‖E−1

2 ‖Sp2

(
‖(E2)x(E1)yK‖Lq′ (Ω,Lq(Ω))‖((E2)x(E1)yK)∗‖Lq′ (Ω,Lq(Ω))

) 1
2
. (2.8)

(ii) Let E be an unbounded invertible operator on L2(Ω) such that E−1 ∈ Sp(L2(Ω)) for some p > 0. If 
ExK, (ExK)∗ ∈ Lq′(Ω, Lq(Ω)) or EyK, (EyK)∗ ∈ Lq′(Ω, Lq(Ω)), then T belongs to the Schatten-von 
Neumann classes Sr(L2(Ω)) for all 0 < r < ∞ such that

1
r
≤ 1

q′
+ 1

p
.

Moreover, respectively one has

‖T‖Sr
≤ ‖E−1‖Sp

(
‖ExK‖Lq′ (Ω,Lq(Ω))‖(ExK)∗‖Lq′ (Ω,Lq(Ω))

) 1
2
, (2.9)

or

‖T‖Sr
≤ ‖E−1‖Sp

(
‖EyK‖Lq′ (Ω,Lq(Ω))‖(EyK)∗‖Lq′ (Ω,Lq(Ω))

) 1
2
, (2.10)

respectively.

Since L2(Ω, L2(Ω)) = L2(Ω × Ω), Corollary 2.6 indeed is an extension of Theorem 2.2 in the case of 
operators acting on the same space L2(Ω).

Remark 2.7. We note that following the remarks after (1.10) we do not need to assume in Corollary 2.6 that 
K ∈ L2(Ω ×Ω). Consequently, compared with the sufficient condition (1.9) by Russo and with Theorem 2.2, 
the Schatten-von Neumann class index in Corollary 2.6 can be larger than 2. Indeed, compared with the 
argument in Remark 2.3, the condition on r in Corollary 2.6 becomes 0 < r < p1p2

p1+p2
in Part (i) and 0 < r < p

in Part (ii), respectively. Therefore, even for Schatten-von Neumann classes Sr with r > 2, Corollary 2.6
extends the sufficient condition (1.9) by Russo in the following sense: For an integral operator to belong to 
the Schatten-von Neumann classes Sr with r > 2, the ‘size’ condition (1.9) can be relaxed if we know that 
the integral kernel of an integral operator has additional ‘regularity’ properties.

3. Trace class operators and their traces

In this section we consider the important case of the trace class operators. We start by deducing a 
corollary of Theorem 2.2 in this special case. In order to establish a formula for the trace we will require 
an additional topological structure on Ω. We will now briefly recall the averaging process which is required 
for the study of trace formulae for kernels with discontinuities along the diagonal. We start by defining the 
martingale maximal function. Let (Ω, M, μ) be a σ-finite measure space and let {Mj}j be a sequence of 
sub-σ-algebras such that



J. Delgado, M. Ruzhansky / J. Math. Pures Appl. 154 (2021) 1–29 11
Mj ⊂ Mj+1 and M =
⋃
j

Mj .

In order to define conditional expectations we assume that μ is σ-finite on each Mj . In that case, if 
f ∈ Lp(μ), then E(f |Mn) exists. We say that a sequence {fj}j of functions on Ω is a martingale if each fj
is Mj-measurable and

E(fj |Mk) = fk for k < j. (3.1)

In order to obtain a generalisation of the Hardy-Littlewood maximal function we consider the particular 
case of martingales generated by a single M-measurable function f . The martingale maximal function is 
defined by

Mf(x) := sup
j

E(|f | |Mj)(x). (3.2)

This martingale can be defined, in particular, when the σ-algebra M is countably generated and it will allow 
to study the trace by mean of an averaging process on the diagonal of the kernel. However, this process is 
most effective for the computations in the case of a σ-algebra of Borel sets for a second countable topological 
space. Henceforth we will assume that Ω is a second countable topological space, M is the σ-algebra of 
Borel sets and μ is a σ-finite Borel measure. For our purposes in the study of the kernel the sequence of 
σ-algebras is constructed from a corresponding increasing sequence of partitions Pj × Pj of Ω × Ω.

Now, for each (x, y) ∈ Ω ×Ω there is a unique Cj(x) ×Cj(y) ∈ Pj×Pj containing (x, y). Those sets Cj(x)
replace the cubes in Rn in the definition of the classical Hardy-Littlewood maximal function. We refer to 
Doob [32] for more details on the martingale maximal function and its properties.

We denote by A(2)
j the averaging operators on Ω × Ω: Let K ∈ L1

loc(μ ⊗ μ), then the averaging A(2)
j is 

defined μ ⊗ μ-almost everywhere (cf. [29]) by

A
(2)
j K(x, y) := 1

μ(Cj(x))μ(Cj(y))

ˆ

Cj(x)

ˆ

Cj(y)

K(s, t)dμ(t)dμ(s). (3.3)

The averaging process will be applied to the kernels K(x, y) of our operators. As a consequence of the 
fundamental properties of the martingale maximal function it can be deduced that

K̃(x, y) := lim
j→∞

A
(2)
j K(x, y) (3.4)

is defined almost everywhere and that it agrees with K(x, y) in the points of continuity. We observe that if 
K(x, y) is the integral kernel of a trace class operator, then K(x, y) is, in particular, square integrable on 
Ω ×Ω. A classical example with a discontinuous kernel is the Volterra operator V on L2(I) where I = [0, 1]. 
Its kernel is given by

K(x, y) =
{

1 ; y ≤ x,

0 ; x < y.

By averaging on cubes one can see that K̃(x, x) = 1
2 for 0 < x < 1. However, it is well known that its 

singular values are sn = 2(π(2n + 1))−1, hence V is not a trace class operator.
In the sequel in this section, we can always assume that K ∈ L2(μ ⊗μ) since it is not restrictive because 

the trace class is included in the Hilbert-Schmidt class, and the square integrability of the kernel is then a 
necessary condition.

As usual, we are using the notation L2(μ) ≡ L2(Ω).
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Corollary 3.1. Let (Ω, M, μ) be a measure space endowed with a σ-finite measure μ. Let Ej (j = 1, 2) be 
unbounded invertible operators on L2(Ω) such that E−1

j ∈ Spj
(L2(Ω)) for some pj > 0. Let K ∈ L2(Ω × Ω)

and let T be the integral operator from L2(Ω) to L2(Ω) defined by

(Tf)(x) =
ˆ

Ω

K(x, y)f(y)dμ(y).

Let 1 < q ≤ 2 and 1
q + 1

q′ = 1.

(i) If (E2)x(E1)yK and ((E2)x(E1)yK)∗ ∈ Lq′(Ω, Lq(Ω)), then T belongs to the trace class S1(L2(μ))
provided that

1 ≤ 1
q′

+ 1
p1

+ 1
p2

.

Moreover, we have

‖T‖S1 ≤ ‖E−1
1 ‖Sp1

‖E−1
2 ‖Sp2

(
‖(E2)x(E1)yK‖Lq′ (Ω,Lq(Ω))‖((E2)x(E1)yK)∗‖Lq′ (Ω,Lq(Ω))

) 1
2
. (3.5)

In particular, if (E2)x(E1)yK ∈ L2(Ω × Ω), then T belongs to the trace class S1(L2(Ω)) provided that 
1
2 = 1

p1
+ 1

p2
.

(ii) Let E be an unbounded invertible operator on L2(Ω) such that E−1 ∈ Sp(L2(Ω)) for some p > 0. 
If ExK, (ExK)∗ ∈ Lq′(Ω, Lq(Ω)) or EyK, (EyK)∗ ∈ Lq′(Ω, Lq(Ω)), then T belongs to the trace class 
S1(L2(μ)) provided that

1 ≤ 1
q′

+ 1
p
.

Moreover, respectively one has

‖T‖S1 ≤ ‖E−1‖Sp

(
‖ExK‖Lq′ (Ω,Lq(Ω))‖(ExK)∗‖Lq′ (Ω,Lq(Ω))

) 1
2
, (3.6)

or

‖T‖S1 ≤ ‖E−1‖Sp

(
‖EyK‖Lq′ (Ω,Lq(Ω))‖(EyK)∗‖Lq′ (Ω,Lq(Ω))

) 1
2
. (3.7)

In particular, if E is an unbounded invertible operator on L2(Ω) such that E−1 ∈ S2(L2(Ω)) and either 
EyK ∈ L2(Ω × Ω) or ExK ∈ L2(Ω × Ω), then T belongs to the trace class S1(L2(Ω)).

(iii) Moreover, assume additionally that Ω is a second countable topological space and (Ω, M, μ) is a measure 
space endowed with a σ-finite Borel measure μ. Then under any of the assumptions (i) or (ii), the 
operator T is trace class on L2(μ) and its trace is given by

Tr(T ) =
ˆ

Ω

K̃(x, x)dμ(x). (3.8)

In particular, if K is continuous on the diagonal one has

Tr(T ) =
ˆ

K(x, x)dμ(x). (3.9)

Ω
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Proof. By taking r = 1 in the corresponding assumptions in Corollary 2.6 one can deduce (i) and (ii). For 
(iii) the fact that T is trace class follows from the corresponding assumption (i) or (ii), and the trace formula 
comes from (1.13), with K̃ given by (3.4). The last part, follows since K̃ agrees with K in the points of 
continuity. �
Remark 3.2.

(a) Combining the statement of Part (iii) of Corollary 3.1 with the celebrated Lidskii formula [33] we can 
extend the trace formula (3.8) in Part (iii) by

Tr(T ) =
ˆ

Ω

K̃(x, x)dμ(x) =
∑
j

λj , (3.10)

where λj are the eigenvalues of the operator T counted with multiplicities.
(b) The additional assumption on Ω to be a second countable topological space is only required in order 

to obtain the additional formula (3.9). This requirement is enough general for the applications we will 
consider in this work.

(c) If Ω is a second topological space and K ∈ L2(μ ⊗ μ) we have K̃(x, y) = K(x, y) for the points of 
continuity of K. Hence any continuous kernel on the diagonal provides an example where this limit 
can be obtained just as the pointwise value K(x, x). An example of relevance in spectral geometry is 
provided in Remark 5.2 (b) with the kernel of the double layer potential for a C2 bounded region Ω
in R2. Indeed, it is known from two dimensional potential theory that this kernel is continuous and 
K(x, x) = −1

2κ(x) where κ(x) is the curvature of ∂Ω at x.

4. Conditions in terms of spectral asymptotics

The typical application of the results above may come from the observation that knowing the spectral 
asymptotics of E1 and E2 implies conclusions about the membership in Schatten-von Neumann classes for 
their inverses. However, in the case when the spectral asymptotics of operators E1 and E2 are available, the 
spectral conclusions for the integral operators can be sharpened further in terms of the decay rates of their 
singular numbers.

As further examples, in Section 5 we will consider different kinds of domains and operators to test the 
membership in the Schatten-von Neumann classes.

The following conditions are based on the knowledge of the behaviour of the eigenvalue counting function 
of the operators E1, E2. We recall that for a self-adjoint operator E with discrete spectrum {λj}j its 
eigenvalue counting function is defined by

N(λ) := #{j : λj ≤ λ},

where λj ’s are counted with their respective multiplicities. The conditions that we will impose can be 
effectively verified as we will show in the subsequent subsections.

Theorem 4.1. Let (Ωi, Mi, μi) (i = 1, 2) be σ-finite measure spaces. For each i = 1, 2, let Ei be an essentially 
self-adjoint operator on L2(μi) such that the spectrum of its closure consists of a sequence of discrete and 
strictly positive eigenvalues 0 < λ1,i ≤ λ2,i ≤ · · · , whose eigenvectors are a basis of L2(μi). Assume that for 
the eigenvalue counting function Ni(λ) of Ei (i = 1, 2) there exist constants Ci, pi > 0 such that

Ni(λ) ≤ Ci(1 + λ)pi for all λ > 0. (4.1)
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Let K ∈ L2(μ2 ⊗ μ1) and let T be the integral operator from L2(μ1) to L2(μ2) defined by

(Tf)(x) =
ˆ

Ω1

K(x, y)f(y)dμ1(y).

Then the following holds:

(i) If (E2)x(E1)yK ∈ L2(μ2 ⊗ μ1), then T belongs to the Schatten-von Neumann class Sr(L2(μ1), L2(μ2))
for all 0 < r < ∞ such that

1
r
<

1
2 + 1

p1
+ 1

p2
,

and (2.1) holds.
Moreover, the sequence of singular values (sk(T ))k satisfies the following estimate for the rate of decay:

sk(T ) = o(k−
(

1
2+ 1

p1
+ 1

p2

)
).

(ii) Let E be an unbounded invertible operator on L2 as above such that its spectrum satisfies (4.1) for 
some p > 0. If either EyK ∈ L2(μ2 ⊗ μ1) or ExK ∈ L2(μ2 ⊗ μ1), then T belongs to the Schatten-von 
Neumann class Sr(L2(μ1), L2(μ2)) for all 0 < r < ∞ such that

1
r
<

1
2 + 1

p
,

and respectively (2.2) or (2.3) holds.
Moreover, the sequence of singular values (sk(T ))k satisfies the following estimate for the rate of decay:

sk(T ) = o(k−
(

1
2+ 1

p

)
).

Proof. (i) We note that the assumptions on Ni for i = 1, 2, imply that

k = N(λk,i) ≤ Ciλ
pi

k,i.

Hence

k
1
pi λ−1

k,i ≤ C ′
i (4.2)

and thus also

∞∑
k=1

λ−qi
ki

< ∞, for all qi > pi. (4.3)

Thus E−1
i is a compact operator and its singular values are sk(E−1

i ) = λ−1
k,i and E−1

i ∈ Sqi(L2(μi)) for all 
qi > pi. Now, for qi > pi the fact that T ∈ Sr(L2(μ1), L2(μ2)) can now be deduced from Theorem 2.2 and

1
2 + 1

q1
+ 1

q2
= 1

r
<

1
2 + 1

p1
+ 1

p2
.

In order to get the estimate for the rate of decay of the singular values we will use the following Fan’s 
inequality (cf. [34], [18]) for the singular values of the composition of two compact operators:



J. Delgado, M. Ruzhansky / J. Math. Pures Appl. 154 (2021) 1–29 15
sk+l−1(BC) ≤ sk(B)sl(C), (4.4)

for all k, l ≥ 1.
We will apply (4.4) to the factorisation T = E−1

2 A(E∗
1 )−1 obtained in the proof of Theorem 2.2. By using 

(4.4) with l + m − 1 instead of l we get

sk+l+m−2(T ) ≤ sk(E−1
2 )sl+m−1(A(E∗

1 )−1) ≤ sk(E−1
2 )sl(A)sm(E−1

1 ),

for k, l, m ≥ 1.
Thus, with k = l = m we obtain

s3k−2(T ) ≤ sk(E−1
2 )sk(A)sk(E−1

1 ).

Hence and by (4.2) we have

∞∑
k=1

k2( 1
p1

+ 1
p2

)s3k−2(T )2 ≤
∞∑
k=1

k
2
p2 sk(E−1

2 )2sk(A)2k
2
p1 sk(E−1

1 )2

≤(C1C2)2
∞∑
k=1

sk(A)2 < ∞.

Since (sk(T ))k is a non-increasing sequence, then s3k(T ), s3k−1(T ) ≤ s3k−2(T ) and

∞∑
k=1

k2( 1
p1

+ 1
p2

)sk(T )2 < ∞.

Therefore

sk(T ) = o(k− 1
τ ),

where τ = (1
2 + 1

p1
+ 1

p2
)−1. This concludes the proof of (i).

The proof of (ii) follows in a similar way by considering the factorisation T = E−1A so we can omit the 
details. �
Remark 4.2. If Ω1 = Ω2 = Ω and μ1 = μ2 = μ, the statement of Theorem 4.1 can be extended by using 
Corollary 2.6 instead of Theorem 2.2. More precisely, assume that E1 and E2 satisfy the assumptions of 
Theorem 4.1. Let 1 < q ≤ 2 and 1

q + 1
q′ = 1. Then the following holds:

(i) If (E2)x(E1)yK and ((E2)x(E1)yK)∗ ∈ Lq′(Ω, Lq(Ω)), then T belongs to the Schatten-von Neumann 
class Sr(L2(Ω)) for all 0 < r < ∞ such that

1
r
<

1
q′

+ 1
p1

+ 1
p2

,

and (2.8) holds.
Moreover, the sequence of singular values (sk(T ))k satisfies the following estimate for the rate of decay:

sk(T ) = o(k−
(

1
q′ +

1
p1

+ 1
p2

)
).
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(ii) Let E be an unbounded invertible operator on L2 as above such that its spectrum satisfies (4.1) for 
some p > 0. If ExK, (ExK)∗ ∈ Lq′(Ω, Lq(Ω)) or EyK, (EyK)∗ ∈ Lq′(Ω, Lq(Ω)), then T belongs to the 
Schatten-von Neumann class Sr(L2(Ω)) for all 0 < r < ∞ such that

1
r
<

1
q′

+ 1
p
,

and respectively (2.9) or (2.10) holds.
Moreover, the sequence of singular values (sk(T ))k satisfies the following estimate for the rate of decay:

sk(T ) = o(k−
(

1
q′ +

1
p

)
).

5. Applications

In this section we will describe several example situations where one can apply the obtained results:

• compact manifolds: taking E1, E2 to be elliptic pseudo-differential operators one obtains conditions in 
terms of the regularity of the kernel;

• lattices: here the regularity of the kernel becomes irrelevant; however, due to non-compactness the 
conditions are formulated in terms of the behaviour of the integral kernel at infinity;

• Rn: for domains which are not necessarily bounded but have finite Lebesgue measure in Section 5.2 we 
obtain conditions still only in terms of the regularity of the kernel;

• Rn: in general, due to non-boundedness the regularity of the kernel by itself is not sufficient to ensure the 
compactness of the operator, and the regularity assumptions should be combined with decay conditions 
at infinity. It is convenient to formulate such conditions in terms of the action of harmonic or anharmonic 
oscillators on the kernel; in particular, it shows that different combinations of regularity and decay may 
ensure the membership in the Schatten-von Neumann classes on Rn;

• sub-Riemannian settings: here is may be natural to formulate the conditions in terms of the operators 
associated to the sub-Riemannian structure (such as the sub-Laplacian). In Section 5.6 we briefly discuss 
the implications for general compact sub-Riemannian manifolds, contact manifolds, strictly pseudo-
convex CR manifolds, and (sub-)Laplacians on compact Lie groups.

Thus, in the following subsections we consider several applications of Theorem 2.2, Corollary 3.1 and 
Theorem 4.1.

In the case when the operators act on the same space we also have natural extensions of the statements 
below by using mixed Lq′(Ω, Lq(Ω)) norms as in Corollary 2.6 and Remark 4.2 instead. For simplicity, we 
mostly restrict to the L2-case since the extensions to the Lq′(Ω, Lq(Ω)) setting are rather straightforward.

5.1. Operators on closed manifolds

In this section we will consider the case of integral operators on a compact manifold without boundary.
Thus, let M be a smooth compact manifold without boundary of dimension n endowed with a volume 

element dx. We denote by Ψν
+e(M) the class of positive elliptic pseudo-differential operators of order ν ∈ R, 

i.e. positive operators which in every coordinate chart are operators in Hörmander classes on Rn with elliptic 
symbols in Sν

1,0, see e.g. [35].
We note that for any positive elliptic operator P ∈ Ψν

+e(M) the standard Sobolev space Hμ(M) defined 
in local coordinates can be characterised as the space of all distributions f ∈ D′(M) such that (I +P )μ

ν f ∈
L2(M).
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Let now M1, M2 be closed manifolds and Pi ∈ Ψνi
+e(Mi) (i = 1, 2) with νi > 0. Consequently, the following 

mixed regularity Sobolev space Hμ2,μ1
x,y (M2 ×M1) of mixed regularity μ1, μ2 ≥ 0, defined by

K ∈ Hμ2,μ1
x,y (M2 ×M1) ⇐⇒ (I + P2)

μ2
ν2
x (I + P1)

μ1
ν1
y K ∈ L2(M2 ×M1), (5.1)

is independent of the choice of operators P1, P2.
The relation between these mixed Sobolev spaces and the standard Sobolev spaces Hμ(M2 ×M1) on the 

manifold M2 ×M1 is given by

Hμ1+μ2(M2 ×M1) ⊂ Hμ2,μ1
x,y (M2 ×M1) ⊂ Hmin(μ1,μ2)(M2 ×M1), (5.2)

for all μ1, μ2 ≥ 0. This can be readily seen by an extension of an argument in [2, Proposition 4.3] where 
this was shown to hold in the case of M1 = M2.

Then we have the following statement. We will write Ei = (I + Pi)
μi
νi for i = 1, 2.

Corollary 5.1. Let M1, M2 be closed manifolds of dimensions n1, n2, respectively, and let μ1, μ2 ≥ 0. Let 
K ∈ L2(M2 × M1) be such that K ∈ Hμ2,μ1

x,y (M2 × M1). Then the integral operator T from L2(M1) to 
L2(M2) defined by

(Tf)(x) =
ˆ

M1

K(x, y)f(y)dy,

is in the Schatten-von Neumann classes Sr(L2(M1), L2(M2)) for

1
r
<

1
2 + μ1

n1
+ μ2

n2
. (5.3)

Moreover, its singular numbers satisfy

sj(T ) = o(j−
(

1
2+ μ1

n1
+ μ2

n2

)
). (5.4)

In particular, for M = M1 = M2, n = n1 = n2:

(i) If K ∈ L2(M ×M) is such that K ∈ Hμ(M ×M) for μ > n
2 , then T is trace class on L2(M) and its 

trace is given by (3.8).
(ii) If K ∈ C�1

x C�2
y (M ×M) for some even integers �1, �2 ∈ 2N0 such that �1 + �2 > n

2 , then T is trace class 
on L2(M) and its trace is given by

Tr(T ) =
ˆ

M

K(x, x)dx. (5.5)

Proof. In order to prove that T belongs to Sr(L2(M1), L2(M2)) with r satisfying (5.3) we first recall the 
following fact: if P ∈ Ψν

+e(M) is a positive elliptic pseudo-differential operator of order ν > 0 on a closed 
manifold M of dimension n and 0 < p < ∞ then

(I + P )−α ∈ Sp(L2(M)) if and only if α >
n

pν
, (5.6)

see [2, Proposition 3.3]. Consequently, condition (5.3) follows from Theorem 2.2 with Ej = (I + Pj)
μj
νj for 

any Pj ∈ Ψνj

+e(Mj), (j = 1, 2). Indeed, since (I + P1)
μ1
ν1
y ∈ Sp1 for p1 > n1 and (I + P2)

μ2
ν2
x ∈ Sp2 for 
μ1
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p2 > n2
μ2

, we have that T belongs to Sr(L2(M1), L2(M2)) for r > 0 as in (5.3). The rate of decay (5.4) is 
now a consequence of Theorem 4.1 and the spectral asymptotics for elliptic pseudo-differential operators on 
compact manifolds. Furthermore, Part (i) is obtained by letting r = 1 in (5.3), and Part (ii) follows from 
Part (i) and formula (3.9). �

This corollary refines the results by the authors in [2] where the statement (5.3) was obtained in the 
case M1 = M2. Now this and the refinement of the decay rate in (5.4) have been obtained as corollaries of 
Theorem 2.2 and Theorem 4.1.

Remark 5.2.

(a) We can note that the index n2 in Part (ii) of Corollary 5.1 is in general sharp. For example, for M = Tn

being the torus of even dimension n, there exists a function χ of class C n
2 such that the series of its 

Fourier coefficients diverges (see [36, Ch. VII] or [37]). By considering the convolution kernel K(x, y) =
χ(x − y), the singular values of the operator T given by Tf = f ∗ χ agree with the absolute values of 
the Fourier coefficients of χ. Hence, T /∈ S1(L2(Tn)) but K ∈ C

n
2 (M ×M). Thus, we see that Part (ii) 

of Corollary 5.1 with �1 = 0 and �2 = n
2 is sharp.

This, in turn, justifies the sharpness, in general, for all the results in this paper.
(b) An example that arises in spectral geometry is given by the two dimensional double layer potential. 

Let Ω be a Ck bounded region in R2 with k ≥ 2. Let E(x, y) = 1
π log 1

|x−y| , the double layer potential
K : L2(∂Ω) → L2(∂Ω) is defined as the operator

Kf(x) =
ˆ

∂Ω

∂νyE(x, y)f(y)dS(y),

where ∂νy denotes is the outer normal derivative. The kernel K(x, y) is continuous on ∂Ω × ∂Ω, by 
studying its regularity depending on k as has been applied in [6] and using the results for closed 
manifolds, in this case for ∂Ω one can determine the rate of decay for the eigenvalues of the double layer 
potential from the corresponding membership of the double layer potential to a Schatten-von Neumann 
class. In particular, one can also deduce trace class properties. We refer to [6] for the details on this 
important example.

5.2. Operators on domains with finite measure

In Section 5.1 we considered the case of compact domains. We now discuss the situation when the domains 
may be unbounded but still have finite measure.

Let Ω ⊂ Rn be a measurable set with finite non-zero Lebesgue measure. Let us define

εα,n(z) := cα,n|z|α−n,

with cα,n = 2α−nπ−n/2 Γ(α/2)
Γ((n−α)/2) . Then for 0 < α < n and x ∈ Ω the Riesz potential operator is defined by

(Rα,Ωf)(x) :=
ˆ

Ω

εα,n(x− y)f(y)dy. (5.7)

Such operators arise naturally as Green functions for boundary value problems for fractional Laplacians on 
Rn in view of the relations

(−Δy)α/2εα,n(x− y) = δx. (5.8)
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It was shown in [25, Proposition 2.1] that the operator Rα,Ω is non-negative, that is, all of its eigenvalues 
are non-negative, and satisfies the estimate

λk(Rα,Ω) = sk(Rα,Ω) ≤ C|Ω|αn k−α
n . (5.9)

Indeed, once one shows that the operator Rα,Ω is non-negative, the estimate (5.9) follows by applying an 
estimate of Cwikel [38] to the ‘square root’ of the operator Rα,Ω. The constant C = C(α, n) in (5.9) depends 
only on α and n, and its value can be calculated explicitly, see [25, Remark 2.2]. If Ω is bounded such results 
go back to Birman and Solomyak [39].

As a consequence of (5.9) one readily sees that operators Rα,Ω are compact and satisfy

Rα,Ω ∈ Sp(L2(Ω)) for p >
n

α
. (5.10)

Isoperimetric inequalities for operators Rα,Ω from the point of view of the dependence on Ω were investigated 
in [25].

In view of the relation (5.8) we can write (−ΔΩ)α/2 := R−1
α,Ω.

Applying Theorem 2.2 with Riesz potential operators, we obtain the analogue of Corollary 5.1 in domains 
in Rn with boundaries.

Corollary 5.3. Let Ωi ⊂ Rni , i = (1, 2), be measurable sets with finite non-zero Lebesgue measure and let 
0 < αi < ni. Let K ∈ L2(Ω2 × Ω1) be such that we have (−ΔΩ2)α2/2(−ΔΩ1)α1/2K ∈ L2(Ω2 × Ω1). Then 
the integral operator T from L2(Ω1) to L2(Ω2) defined by

(Tf)(x) =
ˆ

Ω1

K(x, y)f(y)dy,

is in the Schatten classes Sr(L2(Ω1), L2(Ω2)) for

1
r
<

1
2 + α1

n1
+ α2

n2
. (5.11)

Moreover,

‖T‖Sr
≤ ‖(−ΔΩ1)−

α1
2 ‖Sn1

α1
‖(−ΔΩ2)−

α2
2 ‖Sn2

α2
‖(−ΔΩ2)α2/2(−ΔΩ1)α1/2K‖L2(Ω2×Ω1). (5.12)

In particular, for Ω = Ω1 = Ω2, n = n1 = n2:

(i) If K ∈ L2(Ω ×Ω) is such that K ∈ Hα(Ω ×Ω) for α > n
2 , then T is trace class on L2(Ω) and its trace 

is given by (3.8).
(ii) If K ∈ C�1

x C�2
y (Ω × Ω) for some even integers �1, �2 ∈ 2N0 such that �1 + �2 > n

2 , then T is trace class 
on L2(Ω) and its trace is given by

Tr(T ) =
ˆ

Ω

K(x, x)dx. (5.13)

We note that Corollary 5.3 applies to domains that do not have to be bounded but have finite mea-
sure. If the measure of the domain is infinite the regularity of the kernel may not be enough and should 
be complemented by decay conditions at infinity. Such situations will be considered in Section 5.4 and 
Section 5.5.
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Applications of Theorem 4.1 to obtain further refinements on the decay rate of singular numbers of T
are possible, however, the spectral asymptotics required for its use for fractional Laplacians in Ω could in 
general depend on properties of the boundary and boundary conditions, and thus would require further 
assumptions.

5.3. Operators on lattices

In this section we consider operators acting on functions on the integer lattice Zn. Compared to Sec-
tion 5.1, here the decay conditions at infinity are important while the regularity of the kernel becomes 
irrelevant (as regularity of a pointwise defined function on a discrete lattice).

We note that as before, Part (i) of the following statement is a special case of Part (ii) with q = 2, but 
in the case of n = m, i.e. when the integral operator is acting on the same space. It will be useful to employ 
the operator

Eαf(k) := (1 + |k|)αf(k), k ∈ Zn. (5.14)

In cases when there are several variables, we will also write Eα
k for Eα to emphasise that the operator is 

acting in the variable k.

Corollary 5.4. Let n, m ∈ N. Let K : Zn × Zm → C be a function and let T be the operator, bounded from 
�2(Zm) to �2(Zn), defined by

(Tf)(k) =
∑
l∈Zm

K(k, l)f(l).

Then we have the following properties.

(i) Assume that for some α, β ≥ 0 we have

‖K‖2
α,β :=

∑
k∈Zn

∑
l∈Zm

(1 + |k|)2α(1 + |l|)2β |K(k, l)|2 < ∞. (5.15)

Then T ∈ Sr(�2(Zm), �2(Zn)) for all 0 < r < ∞ such that

1
r
<

1
2 + α

n
+ β

m
. (5.16)

Moreover,

‖T‖Sr
≤ ‖E−α1‖Sn1

α1
‖E−α2‖Sn2

α2
‖K‖α,β . (5.17)

The sequence of singular values (sj(T ))j satisfies the following estimate for the rate of decay:

sj(T ) = o(j−
(

1
2+α

n+ β
m

)
). (5.18)

In particular, for n = m, if α, β ≥ 0 are such that

α + β >
n

2 ,

then the operator T is trace class on �2(Zn) and its trace is given by
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Tr(T ) =
∑
k∈Zn

K(k, k) =
∑
j

λj , (5.19)

where λj are the eigenvalues of the operator T counted with multiplicities.
(ii) In the case m = n, let 1 < q ≤ 2 and 1

q + 1
q′ = 1. Assume that for some α, β ≥ 0 we have

∑
l∈Zn

(1 + |l|)βq′
( ∑

k∈Zn

(1 + |k|)αq|K(k, l)|q
) q′

q

< ∞ (5.20)

and

∑
k∈Zn

(1 + |k|)αq′
(∑

l∈Zn

(1 + |l|)βq|K(k, l)|q
) q′

q

< ∞. (5.21)

Then T ∈ Sr(�2(Zn)) for all 0 < r < ∞ such that

1
r
<

1
q′

+ α + β

n
. (5.22)

Moreover, the sequence of singular values (sj(T ))j satisfies the following estimate for the rate of decay:

sj(T ) = o(j−
(

1
q′ +

α+β
n

)
). (5.23)

In particular, if α, β ≥ 0 are such that α+β > n
q , then T is trace class on �2(Zn) and its trace is given 

by (5.19).

Proof. Part (i). We observe that the assumption (5.15) of Corollary 5.4 can be formulated as

Eα
kE

β
l K ∈ �2(Zn × Zm). (5.24)

In order to apply Theorem 4.1 we first note that the Kronecker’s delta δk is an eigenfunction of Eα with 
the eigenvalue (1 + |k|)α. Consequently, for α > 0 we have

NEα(λ) = #{k : (1 + |k|)α ≤ λ} � #{k : |k| ≤ λ1/α} = λn/α,

for the operator Eα acting on Zn. Consequently, by Theorem 4.1, Part (i) and condition (5.24) we get that 
T ∈ Sr(�2(Zm), �2(Zn)) provided that

1
r
<

1
2 + 1

m/β
+ 1

n/α
,

implying (5.16) for β, α > 0. Otherwise, (5.16) follows by Part (ii) of Theorem 4.1. The decay rate (5.18) is 
another consequence of Theorem 4.1.

Finally, the trace class condition follows from this by taking r = 1, in view of Corollary 3.1 and Re-
mark 3.2.

Part (ii) follows by the same argument but employing Corollary 2.6 and Remark 4.2 instead. �
We note that integral operators on lattices can be also considered as pseudo-difference operators, which 

is an analogue of pseudo-differential operators on the lattice Zn. Conditions for the membership of such 
operators in Schatten-von Neumann classes in terms of their symbols were given in [40].
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5.4. Conditions in terms of anharmonic oscillators

In Corollary 5.3 we considered the case of domains of Rn of finite measure. We now discuss the case the 
whole space Rn when the regularity of the kernel should be complemented by decay conditions at infinity.

For this, we consider a test with the anharmonic oscillator on L2(Rn), i.e., the operator

Ea = −Δ + |x|a

on L2(Rn) for a > 0. For a = 2, the operator E2 = −Δ + |x|2 is the usual harmonic oscillator.
The study of the harmonic oscillator has been a very active field of research. For the spectral theory of 

non-commutative versions of the harmonic oscillator we refer to the interesting work of Parmeggiani et al.
[41], [42], [43], [44], [45], [46] and [47].

Since for operators on Rn both the regularity and decay of the kernel at infinity are relevant it is natural 
to try to measure these properties of the kernel by the action of harmonic or anharmonic oscillators. The 
tests with anharmonic oscillators appear to be more natural when compared to the harmonic oscillator, 
since the orders of regularity and decay do not have to be the same. Moreover, it is natural to consider their 
fractional powers since the regularity or decay orders do not have to be integers.

Thus, as a consequence of the results of this paper we get the following conditions.

Corollary 5.5. Let Ea = −Δ + |x|a on Rn, Eb = −Δ + |x|b on Rm with a, b > 0. Let K ∈ L2(Rm ×Rn) and 
let T be the integral operator from L2(Rn) to L2(Rm) defined by

(Tf)(x) =
ˆ

Rn

K(x, y)f(y)dy.

(i) Let α, β ≥ 0. If (Eb)βx(Ea)αyK ∈ L2(Rm × Rn), then T belongs to the Schatten-von Neumann class 
Sr(L2(Rn), L2(Rm)) for all 0 < r < ∞ such that

1
r
<

1
2 + α

pa
+ β

pb
,

where pa = n( 1
a + 1

2 ) and pb = m(1
b + 1

2). Moreover,

‖T‖Sr
≤ ‖E−1

a ‖S pa
α

‖E−1
b ‖S pb

β

‖(Eb)βx(Ea)αyK‖L2(Rm×Rn). (5.25)

The sequence of singular values (sk(T ))k satisfies the following estimate for the rate of decay:

sk(T ) = o(k−( 1
2+ α

pa
+ β

pb
)).

(ii) Let α, β ≥ 0. If m = n, (Eb)βx(Ea)αyK ∈ L2(Rn × Rn), and 1
2 < α

pa
+ β

pb
, then T belongs to the trace 

class S1(L2(Rn)) and its trace is given by

Tr(T ) =
ˆ

Rn

K̃(x, x)dx. (5.26)

Proof. The distribution of eigenvalues of Ea and other second order differential operators has been investi-
gated by E. C. Titchmarsh in [48]. In particular, Titchmarsh considered operators of the form −Δ + V (x)
with V (x) → ∞ as |x| → ∞ and V (x) ultimately non-decreasing on every straight line radiating from the 
origin. If N(λ) denotes the number of eigenvalues less than λ, then he showed in [48, Section 17.8] that



J. Delgado, M. Ruzhansky / J. Math. Pures Appl. 154 (2021) 1–29 23
N(λ) ∼ 1
2nπ n

2 Γ(n2 + 1)

ˆ

V <λ

{λ− V (x)}n
2 dx, as λ → ∞.

In particular if V (x) = |x|a we have

ˆ

|x|a<λ

{λ− |x|a}n
2 dx = C

λ
1
aˆ

0

(λ− ra)
n
2 rn−1dr ≤ C

λ
1
aˆ

0

r
na
2 +n−1dr.

Since

λ
1
aˆ

0

r
na
2 +n−1dr = λn( 1

a+ 1
2 )

n( 1
a + 1

2)
.

We obtain

N(λ) ∼ Cλpa as λ → ∞,

where pa = n( 1
a + 1

2 ).
Now, since λ is an eigenvalue of Ea if and only if λα is an eigenvalue of (Ea)α, we obtain

N(Ea)α(λ) = NEa
(λ 1

α ) ≤ Cλ
pa
α , (5.27)

where NP denotes the counting eigenvalue function for the operator P . Then we have

∞∑
k=1

λ−αq
k < ∞, for all q >

pa
α
.

The singular values of (Eα
a )−1 are sk((Eα

a )−1) = λ−α
k and (Eα

a )−1 ∈ Sq(L2(Rn)) for all q > pa

α . In a similar 
way we also have (Eβ

b )−1 ∈ Sq′(L2(Rm)) for all q′ > pb

β .
As a consequence of Theorem 2.2 we obtain

T ∈ Sr(L2(Rn), L2(Rm))

for

1
r
<

1
2 + α

pa
+ β

pb
.

The rate of decay and Part (ii) now follow from Theorem 4.1. �
Example 5.6. Let us give a simple example for Corollary 5.5: let T : L2(Rn) → L2(Rn) be an integral 
operator with kernel K(x, y). Assume that 1 ≤ n ≤ 3 and that ΔxK, (1 + |x|b)K ∈ L2(Rn × Rn). Then T
is a trace class operator provided that b > 2n

4−n .

This statement follows immediately from Part (ii) of Corollary 5.5 by taking α = 0, β = 1, implying that 
T is trace class provided that pb = n(1 + 1 ) < 2.
b 2
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5.5. Higher order anharmonic oscillators

One can also get a number of similar tests based on the estimation of N(λ) for different operators and 
the arguments in Corollary 5.5. Here we will consider different examples of anharmonic oscillators however 
restricting to integer orders of derivatives and weights.

More specifically, let us consider the operator

E = (−Δ)k + |x|2�

on Rn, n ≥ 1, where k, � are integers ≥ 1.
It is well known that such E has a discrete spectrum (see [35]) and it was also shown in [49, Theorem 3.2]

that for large λ the eigenvalue counting function N(λ) is bounded by C
´
a(x,ξ)<λ

dxdξ, where a(x, ξ) is the 

Weyl symbol of the partial differential operator E. By the change of variables ξ = λ1/2kξ′ and x = λ1/2�x′, 
we can estimate for large λ that

N(λ) �
¨

|ξ|2k+|x|2�<λ

dxdξ = λn( 1
2k+ 1

2� )
¨

|ξ′|2k+|x′|2�<1

dx′dξ′ � λn( 1
2k+ 1

2� ). (5.28)

We note that refined estimates for the remainder in the spectral asymptotics for N(λ) were also studied by 
Helffer and Robert in [50, Theorem 6 and Corollary 2.7] in the case k = �, and in [51] for different k and �
in the case n = 1.

Moreover, all the results remain unchanged if we add lower order terms to the operator E.
Consequently, from Theorem 4.1 and arguing similarly as in the proof of Corollary 5.5 we obtain:

Corollary 5.7. Let Ei = (−Δ)ki + |x|2�i be operators on Rni , where ni, ki, �i are integers ≥ 1 for i = 1, 2. 
Let us set pi := n

2 ( 1
ki

+ 1
�i

), i = 1, 2.
Let K ∈ L2(Rn2 ×Rn1) and let T be the integral operator from L2(Rn1) to L2(Rn2) defined by

(Tf)(x) =
ˆ

Rn1

K(x, y)f(y)dy.

Let α, β ≥ 0 and suppose that (E2)βx(E1)αyK ∈ L2(Rn2×Rn1). Then T belongs to the Schatten-von Neumann 
class Sr(L2(Rn1), L2(Rn2)) for all 0 < r < ∞ such that

1
r
<

1
2 + α

p1
+ β

p2
.

Moreover,

‖T‖Sr
≤ ‖E−α

1 ‖S p1
α

‖E−β
2 ‖S p2

β

‖(E2)βx(E1)αyK‖L2(Rn2×Rn1 ). (5.29)

The sequence of singular values (sj(T ))j satisfies the following estimate for the rate of decay:

sj(T ) = o(j−( 1
2+ α

p1
+ β

p2
)).

Example 5.8. Let us give a simple example for Corollary 5.7: let T : L2(R) → L2(R) be an integral operator 
with kernel K(x, y). Assume that k, l ∈ N and that K, d2k

dx2kK, x2lK ∈ L2(R × R). Then T ∈ Sr(L2(R))
provided that 1 < 1 + 2kl . In particular, under the above assumptions T is always a trace class operator.
r 2 k+l
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This statement follows immediately from Corollary 5.7 by taking α = 0 and β = 1.

Remark 5.9. We would like now to consider the special case of a negative order and negative potential, more 
precisely the case of the hydrogen atom, i.e. an operator of the form H = −Δ − c|x|−1 on R3 with c > 0. 
It is well known that the energy levels are of the form

En = − C

n2

where C is a positive constant. In this case we can take E−1 = H which belongs to the class Sp with p > 1
2 . 

Therefore, one can obtain a similar result to Corollary 5.5 in terms of the operator E with an index p > 1
2 .

5.6. Subelliptic conditions on sub-Riemannian manifolds

In general, once the upper bound for the eigenvalue counting function of a certain operator is obtained, 
it can be used in Theorem 4.1. In particular, in some situations is may be convenient to use operators 
respecting certain geometric structures. Rather general results on the spectral asymptotics for self-adjoint 
subelliptic operators have been obtained by Fefferman and Phong [52,53] as well as for operators with double 
characteristics by Menikoff and Sjöstrand [54], see also an overview on spectral asymptotics for rather general 
hypoelliptic operators by Sjöstrand [55] and more recent extensions by Ponge [56] and Hassannezhad and 
Kokarev [57]. We can also refer to [58] for subelliptic analysis on nilpotent groups and to [59] for the potential 
theory for the sub-Laplacians.

Let us formulate several examples but first we briefly recall a few definitions. Let M be a connected 
closed manifold and let H ⊂ TM be a smooth sub-bundle of the tangent bundle satisfying the Hörmander 
condition. We recall that the sub-bundle H satisfies the Hörmander condition if for any point x ∈ M and 
any local frame {Xi} of H around x, the iterated Lie brackets [Xi, Xj ], [[Xi, Xj ], Xk], [Xi, [...[Xj , Xk]...]]
at x together with the vectors {Xi(x)} span the tangent space TxM . The length of the Lie bracket above 
is understood as the number of vector fields involved. The sub-bundle H is called regular if the dimensions 
of the strata in the stratification of TxM by commutators do not depend on x ∈ M . Let g be a smooth 
metric on H and let Q be the Hausdorff dimension of M with respect to the Carnot-Caratheodory distance 
associated to the sub-Riemannian manifold (M, H, g).

We recall that the eigenvalue counting function of the sub-Laplacian on compact regular sub-Riemannian 
manifolds is estimated by N(λ) ≤ CλQ/2, see e.g. [57]. Consequently, Theorem 4.1 immediately implies:

Corollary 5.10. Let (Mi, Hi, gi) (i = 1, 2) be compact regular sub-Riemannian manifolds and let Δi be the 
sub-Laplacians associated to Hi. Let Qi denote the Hausdorff dimensions of Mi with respect to the respective 
Carnot-Caratheodory distances.

Let K ∈ L2(M2 ×M1) and let T be the integral operator from L2(M1) to L2(M2) defined by

(Tf)(x) =
ˆ

M1

K(x, y)f(y)dy.

Let α, β ≥ 0 and assume that (Δ2)βx(Δ1)αyK ∈ L2(M2×M1). Then T belongs to the Schatten-von Neumann 
class Sr(L2(M1), L2(M2)) for all 0 < r < ∞ such that

1
<

1 + 2α + 2β
.

r 2 Q1 Q2
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Moreover

‖T‖Sr
≤ ‖Δ−α

1 ‖SQ1
2α

‖Δ−β
2 ‖SQ2

2β
‖(Δ2)βx(Δ1)αyK‖L2(M2×M1). (5.30)

The sequence of singular values (sj(T ))j satisfies the following estimate for the rate of decay:

sj(T ) = o(j−( 1
2+ 2α

Q1
+ 2β

Q2
)).

Let us briefly record two examples that are of particular importance: of compact contact manifolds and 
of compact Lie groups.

We recall that a contact manifold is a smooth manifold M of odd dimension 2n +1 equipped with an 1-form 
θ such that θ∧(dθ)n is a volume form on M . The canonically induced bundle Hx := {X ∈ TxM : θ(X) = 0}
is regular and satisfies Hörmander’s condition since 2-form dθ is non-degenerate on H. This will be the 
setting (C1) in the following statement. The setting (C2) concerns sub-Laplacians on compact Lie groups 
in which case the canonical sub-bundle is also regular due to the left-invariance.

Corollary 5.11. Let us consider the following situations:

(C1) Let Ωi be a compact contact metric manifold of dimension 2ni + 1, (i = 1, 2). Let Ei := (I + Δi)αi

for i = 1, 2, where Δi is the canonical positive sub-Laplacian on Ωi. Let pi := ni + 1, i = 1, 2.
(C2) Let Ωi be a compact Lie group with left-invariant positive sub-Laplacian Li, and let Qi be the Hausdorff 

dimension of the induced control distance. Let Ei := (I + Li)αi and let pi := Qi

2 , i = 1, 2.

Let K ∈ L2(Ω2 × Ω1) and let T be the integral operator from L2(Ω1) to L2(Ω2) defined by

(Tf)(x) =
ˆ

Ω1

K(x, y)f(y)dμ1(y).

Let α, β ≥ 0 and suppose that (E2)βx(E1)αyK ∈ L2(Ω2 × Ω1) under the corresponding assumptions either
(C1) or (C2). Then T belongs to the Schatten-von Neumann class Sr(L2(Ω1), L2(Ω2)) for all 0 < r < ∞
such that

1
r
<

1
2 + α1

p1
+ α2

p2
.

Moreover, the sequence of singular values (sj(T ))j satisfies the following estimate for the rate of decay:

sj(T ) = o(j−( 1
2+α1

p1
+α2

p2
)).

Again, Corollary 5.11 is an immediate consequence of Theorem 4.1 and the corresponding spectral asymp-
totics results.

Let us mention two further important special cases of the settings (C1) and (C2) of Corollary 5.11:

(C1) In particular, the result of the setting (C1) also holds with the same indices if any of the manifolds 
Mi is a connected orientable compact strictly pseudo-convex CR manifold of dimension 2n + 1. For 
the required spectral asymptotics see, e.g. [60]. In this case one considers asymptotics for the counting 
function of a sub-Laplacian corresponding to a pseudo-Hermitian structure.

(C2) If Li is not the sub-Laplacian but a Laplacian (Casimir element) on a compact Lie group Ωi of 
dimension ni then we have Qi = ni. In the setting of operators on a compact Lie group G conditions 
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for the membership in Schatten-von Neumann classes were given in [14] also in terms of global matrix 
symbols on G × Ĝ. We can refer to [61,62] for the corresponding analysis and its relations to the 
representation theory of compact Lie groups.

In analogy to (5.1), the above conditions on the kernel can be also formulated in terms of the (mixed) 
Sobolev spaces associated to the sub-Laplacians. The embeddings between these Sobolev spaces and the 
usual ones can be obtained from a suitable S(m, g) calculus when available. However, we can note that 
already for the Sobolev spaces associated to harmonic oscillators, those Sobolev spaces take into account 
also decay properties at infinity, while the usual Sobolev spaces do not. So, one can compare these spaces 
locally (but there terms like |x|2 do not play any role), but globally there may be embeddings only in one 
directions.

Acknowledgements

The authors were supported by the Leverhulme Research Grant RPG-2017-151, by the FWO Odysseus 
1 grant G.0H94.18N: Analysis and Partial Differential Equations, and by the EPSRC grant EP/R003025. 
The first author was also supported by Vic. Inv Universidad del Valle. Grant No. CI-71281. The authors 
would also like to thank anonymous referees for the valuable comments helping to improve the results, the 
presentation of the manuscript and in particular to simplify the proof of Theorem 2.2.

References

[1] M.Š. Birman, M.Z. Solomjak, Estimates for the singular numbers of integral operators, Usp. Mat. Nauk 32 (1(193)) (1977) 
17–84, 271.

[2] J. Delgado, M. Ruzhansky, Schatten classes on compact manifolds: kernel conditions, J. Funct. Anal. 267 (2014) 772–798.
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