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In this paper, we continue our investigations giving
the characterization of weights for two-weight Hardy
inequalities to hold on general metric measure spaces
possessing polar decompositions. Since there may
be no differentiable structure on such spaces, the
inequalities are given in the integral form in the spirit
of Hardy’s original inequality. This is a continuation
of our paper (Ruzhansky & Verma 2018. Proc. R.
Soc. A 475, 20180310 (doi:10.1098/rspa.2018.0310))
where we treated the case p <g. Here the remaining
range p > ¢ is considered, namely, 0 <g<p, 1 <p <
oo. We give several examples of the obtained results,
finding conditions on the weights for integral Hardy
inequalities on homogeneous groups, as well as
on hyperbolic spaces and on more general Cartan—
Hadamard manifolds. As in the first part of this paper,
we do not need to impose doubling conditions on the
metric.

1. Introduction

After the Hardy inequality was proved by Hardy in [1], a
large amount of literature is available on this inequality.
The integral inequality of the type

<J: <fo(t) dt)q u(x) dx>1/q <C <be”(x)v(x) dx>1/P

a a
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is well known with 2 and b real numbers satisfying —oo <a <b < oo, and p, g real parameters
satisfying 0 <g<o0o, 1 <p <oo. The problem of characterizing the weights u and v in this
inequality has been investigated by many authors. There are too many references to give an entire
overview here, so we refer to only a few: [2-14] and references therein. We can also refer to the
recent open access book [15] devoted to Hardy, Rellich and other inequalities in the setting of
nilpotent Lie groups. For inequalities of different types, see [16-20].

In our previous paper [21], for the case 1 < p < g < oo, we characterized the weights 1 and v for
the Hardy inequalities (1.1) to hold on general metric measure spaces with polar decompositions.
In this paper, complementary to [21], we consider the weight characterizations for the case

O<g<p, l<p<oo.

The setting of these papers is rather general, and we consider polarizable metric measure
spaces. These are metric spaces (X, d) with a Borel measure dx allowing for the following polar
decomposition at a € X: we assume that there is a locally integrable function A € Lllo . such that for
allf e LY(X) we have

J f(x)dx:JOOJ f(r, w)A(r, w) dew, dr, (1.2)
X 0 Jx,

where (7, w) — a as r — 0. Here the sets X, = {x € G:d(x,a) =} C X are equipped with measures,
which we denote by dew;.

The polar decomposition (1.2) is a rather general condition in the sense that we allow the
function X to be dependent on the full variable x = (7, w). In the examples described below, in the
presence of the differential structure, the function A(r, w) can appear naturally as the Jacobian of
the polar change of variables. However, since we do not assume that X must have a differentiable
structure, we impose (1.2) as a condition on metric and measure.

In our previous paper [21], we gave several important examples of polarizable metric spaces.
Let us briefly recapture them here:

(I) On the Euclidean space R", we can take A(r, w) = 71, and more generally, we have (1.2)
on all homogeneous groups with A(r, w) = *@~1, where Q is the homogeneous dimension
of the group. We can also refer to Folland & Stein [22] and Fischer & Ruzhansky [23] for
details of such groups.

(I) Hyperbolic spaces H" with A(r, w) = (sinh 7)1, or more general symmetric spaces of non-
compact type.

(IIT) Cartan-Hadamard manifolds, that is, complete, simply connected Riemannian manifolds
with non-positive sectional curvature. In this case, A(p, w) depends on both variables p
and w. We refer to §3c for this example, and to [21] for more details on A(p, ®) in this case.

(IV) Arbitrary complete Riemannian manifolds M: let C(p) denote the cut locus of a point
p € M, which we may fix. Let us denote by M,, the tangent space to M at p, and by | - | the
Riemannian length. We also denote D), := M\C(p) and S(p; r) := {x € My, : |x| = r}. Then for
any integrable function f on M we have the polar decomposition

+o0
| rav=| " ar| Flexp 1) VE03) @) 13)
M 0 r=1S(p;r)ND,

for some function ,/g on Dy, where 18 (p,r) N Dy is the subset of S, obtained by dividing
each of the elements of S(p,r) N Dy by r, and S, :=S(p;1). The measure du,(&) is the
Riemannian measure on Sy induced by the Euclidean Lebesgue measure on M;,. We refer
to Chavel [24, formula II1.3.5, p. 123], Li [25, ch. 4] and Chow et al. [26, ch. 1, para. 12] for
more information on this decomposition.

In this paper, as usual, we will write A~ B to indicate that the expressions A and B are
equivalent.
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2. Main results

Let d be the metric on X. We denote by B(g, r) the corresponding balls with respect to d, centred at
a € X and having radius r, namely,

B(a,r):={x e X:d(x,a) <r}.
To simplify the notation, for all arguments, we fix some point a € X, and then we will denote
|x|a = d(ﬁ, x).

The main result of this paper is to characterize the weights 1 and v for which the corresponding
Hardy inequality holds on X. For X=R, such result has been proved by Sinnamon & Stepanov
[27]. For an alternative approach to these estimates in the case 1 <g <p < co we refer to [28,
theorem 1.13]. Now, we formulate one of our main results.

Theorem 2.1. Suppose 0 <q<p, 1 <p<ooand 1/r=1/q—1/p. Let X be a metric measure space
with a polar decomposition at a. Let u, v > 0 be measurable and positive a.e in X such that u € LY(X\{a})
1-p 271
and v 7P e Ly (X).
Then the inequality

(Lg (Jsm,ma) rwidy )q”(x) dx>1/q = C{ JX FEPu(x) dX}l/p 1)

holds for all measurable functions f : X — C if and only if

r/p , r/p 1/r
Ay = (J (J u(y) dy) <J v () dy) u(x) dx) < 00.
X NIX\B(@,|x]a) B(a,|xla)

Moreover, the smallest constant C for which (2.1) holds satisfies

1/r
)V gl (1 - g) Ay <C< <§) PPy UIE .

Before proving the above theorem, we will need to prove several auxiliary facts. Throughout
this paper, we will use the following notations:

e =| u(y)dy, 22)
X\B(,|xla)
V(x) = v (y) dy, (2.3)
B(a,|x]a)
=" | a0, do,dr, 24
~ t !
VO=| | 20007 (0,01 d0, dr, 2.5)
o) = | 4o, )t ) do, 26)
and Vl(p):Lr Mo, o P (p,0)do,. (2.7)

p

Lemma 2.2. Let us denote
, , 1/r
A= { J U(x)va (xpw' = (x) dx} .
X

Then
AL = ( q ) AT 2.8)
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Proof. Using integration by parts, we have
AL = J UP(x)v'/? (x)u(x) dx
X

_ ro PV (U () dt
0

00 00 rp
=L ( | ul(p)dp) T (DU (5 dt

t

_ r/ r/p/ 9\’ r/p’ LAY A
=~V (o) + (1) U0V ”(0)+(r)(p,)
x J U4 v v = (x) dx
X

= (i) J U)yvra (! (x) dx
P/ Jx

()
p/ 17
completing the proof. [ ]

Lemma 2.3. Suppose that o, B and y are non-negative functions and y is a radial non-decreasing
function of | - la. If [\ p(a, i) @ @) AY = [0\ pa, 1) BY) dy for all x, then [ ya < [ vB.

Proof. Let us denote
@)= | 10,0)atr,0)dor,
X,

pr(r) = J A, 0)B(r, ) doy

and y(r) =y ),

for |x|, =r. Given that J‘X\B(a,| @) dy = IX\ B(a,Ixl,) B(Y) Ay, changing to polar coordinates, we get

| amars|” poan

|x]a [x]a

Using [27, lemma 2.1] which says if &, 8, y are non-negative functions and y is non-decreasing,
and if ["a(y)dy < [7° B(y) dy for all x, then [° ya < [ yB. Therefore,

J ¥ (ar(x) dxzj 5 (Peer (1) drsj (L) dr:J y (x)B(x) dx,
X 0 0 X
completing the proof. [ |

Proposition 2.4. Suppose that u,b and F are non-negative functions with F non-decreasing such that
fX\B(H,‘x‘a) b(y) dy < oo for all x #a and [ b(x)dx=o00. If0 <q <p < oo, F is radial in |x|q, and 1/r =
1/q9 —1/p, then

1/q
(J Fl(x)u(x) dx)
X
r/q —r/q 1/r
s(r/p)l/f(J ( | u(y)dy) (J b(y)dy) b(x)dx)
X X\B(a,|x[q) X\B(a,|x]q)

1/p
X <J F’”(x)b(x)dx) .
X
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Proof. Let us denote
ue=| u(y) dy,
X\B(a,|xla)
B = | b(y) dy,
X\B(a,|xla)
B)=[ [ 206, 00000,0)de
t Jz,

Bilo)= | 406, 0)b(p,0) o

3

and E(t)=F(x), for|x|,=t.

Applying Holder’s inequality with indices g/r and q/p, we get

1/q
(J Fi(x)u(x) dx)
X

alr
=<J (J U’/”@)B*’/"(y)b(wdy) Fi(x)
5 \JB(@,xl,)
- 1/q
g (JB( , ‘)W” )B~"1)b(y) dy) u(x)dx)
AT alr
~(]," ([, & omae) o
() 4/ 1/g
X (Jo P (p)B~""1(p)B1(p) dp) Uq(t) dt)
AT arr
~(]," (], & omae) o
ST ~q/r
x (JO /P (p)B~"/9(p)B1 () dp>
Y
s LR () dt) 9

o £ B —p/r
< (J Fp(t)( | @@ om0 dp)
0 0

I (ﬂ 07 (0)B~11(p)B1 (o) dp) L () dt)m

0

1/p
x Uy () dt) .

On interchanging the order of integration and using r/p + 1 =r/q, the first factor becomes

0 B 19 1/r
( jo U’/”m)B—W(p)Bl(p)( | u1<t)dt) dp)

o

o0 - - 1/7
_ ( JO U’/Q(p)B—W(mm(p)dp)

N ( Jx ( JX\B(ﬂ,lxl,,) ") dy) ! ( L{\B(u,\x\ﬂ) e dy) _r/qb(x) dx) 1/7'

To complete the proof we apply lemma 2.3 to the second factor. We take

a(x) =

(IB(,,,|X|“) P (y)B~"1(y)b(y) dy) P/ u(x), B(x) = (r/p)’/"b(x), and y (x) = FP(x) in lemma 2.3. As y is
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non-decreasing by assumption, it remains to check that

a(y)dy < J By dy,

JX\B(u,lxla) X\B(a,|x1a)

for all x. Since (fé U'/P(p)B~"/9(p)B1(p) dp) P/ and U are non-increasing,

j a(y) dy
X\B(a,|x]q)

00 t 5 —p/r
-| (Lump)B—*/q(p)Bl(p)dp) Uy (o) dit

o0

‘Xla,_, - —P/r
| ur/ﬂ(p)B-’/%p)Bl(p)dp) |~ woar
0

< [x]a
< (JOH B"11(p)B1 (o) dp)

(I

(

—p/r 00
U*1(|x|a)J Uy (t)dt

xla

—p/r

0
= ( (g) Bfr/P(x)) o = L{\B(a,lxl,;) By) dy.

Finally, by using lemma 2.3 we get

1/9
(J F"(x)u(x)dx)
X
r/ —r/ 1/r
5<J (J u(y)dy> q(J b(y)dy) qb(x)dX>
X NJX\B(a,|x]0) X\B(a,|x]a)

1/p
x (J (r/p)P/"FP (x)b(x) dx)
X

r/q —r/q 1/r
=(r/p>1/f(J (J u(y)dy) (J b(y)dy) b(x)dx)
X X\B(a,|x]q) X\B(a,|xs)
1/p
x (J F”(x)b(x)dx) ,
X

which completes the proof.

Proposition 2.5. Suppose 1 < p < oo and w is a non-negative function satisfying

O<J w(y)dy<oo,Vx;éa,J w(x) dx = oo.
B(a,|x1a) X

(Lg < J'B(u,\x\n)f(y) dy)p ( J'B(u,\x\n) ) dy) _pw(x) dx) N

<p([ o) "

Then

for all measurable functions f > 0.

Proof. Let us denote: f1(p) = sz Xp,0)f (p,0)do,, wi(p) = sz Xp,o)w(p,o)do,.

(2.9)

(2.10)
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Consider the left-hand side of (2.10) and change it into polar coordinates, to get

(Li (JB<a,|x\a>f(y) dy>p ( Js(u,mn) v > T dr )1/”
~(J, tfl(p)d" ' th(p)dp T "
(I (L) (]

0 0
Now, let us use [27, proposition 2.3] which says that if 1 < p < oo and w is a non-negative function
satisfying
X [e ¢}
0< J w(y)dy < oo, Vx>0, J w(x) dx = oo,
0 0
then

[ ) a) (| t w(p)dp) dt)l/p <p( [ rowtro dt)l/p.

0 0 0

(I, (

By using Holder’s inequality to the indices 1/p and 1/p/, the Lh.s. of (2.10) can be estimated by

<p/( | Arert o dt)l/p

) p 1-p 1/p
p’(J (J At, 0)f(t,0) dat) (J A(t,a)w(t,a)dat> dt)
0 2/ E;‘

V(J (J ”bay““ﬁwkwm“”””dm>p<J MaamwAndm> de p
0 \Ux 5

p—-1

IA

;/(J:O (Jz A, 0)fP(t,0)w P dat> (L At o) PPt o) dat>

I-p \Up
X (J At o)w(t, o) dm) dt)
X

4 ( Eo L At 0)fP(t, o) P (t, 0)doy dt)

1/p

1/p
=p’(J P! P (x) dx) ,
X

completing the proof. |
Now, we prove our theorem 2.1.

Proof. Set w=v'"?". Suppose that inequality (2.1) holds for all f >0 and let uy and wy be L
functions such that 0 < g < u and 0 < wy < w. We denote

io(e)=| 1o, 0l 0) do,

P

and

Go(p) = | o w)n(p, ) do.

P

Let us apply inequality (2.1) to the function

r/pq r/pq
£ = (j uo(®) dy) (J W) dy) wolx).
X\B(a,|x]q) B(a,|xl,)

After changing to polar coordinates and using

r 1 1 1 1 1 1 r
o= DG 0D
(pg) pqg ot p q q9 p) P9
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we have

r/pq
Mp, w)uo(p, @) dp dwp>

s 020= [ 200 ([7,

t r/pq
x (J [ 2o 000,000, ) it o) dton
0

P

Ixla r/pq gt r/pg
| (J MO(P)dP> (J wo(ﬂ)dp> o(t)dt
0 0
r/pa plxle ot 1l
( 0(p) dp> | (jwoo))dp) o(t) dt
[x]a 0 0
r/pq s oplxla r/p'q
( )( Mo(p)dp> ( | fvo(ﬁ)dp)
|x]q 0
, r/pq r/p'q
~(") ([, mwar) (] wwar)
X\B(a,\x|a) B(”:'Mn)

Observe that w = v 7 implies that v = w/1=P) = !~ since

P

1 o 1

Aoy T Aoy T ap -y "

We then have

r'q r/p r/p’ 1/9
(LY (], wow) ([ wwa) wwa)
X\B(a,|xa) B(a,|xl)
q 1/q
(L ()
B(a,|x])

1/p
C J FP)w= ’”(x)dx)
X

IA

’

7/ 7/ 1/

[, (] o) ) q(J () dy qw@(x)wlﬂ’(x)dx) '
x \Jx\BG, \x\) B(a,IxI.)

r/q r/q 1/p

)d d F )

JX(J'X\B(a\x\) ]/) <J'B(a,\x\a)w0(y) y) WO(X)WO (x)

7/ r/q 1/

| (J dy) q(J wo(]/)d]/> "0 dx) ’
X \JX\B(a, \X\) B(a,|x]a)

r/p r/p' 1/p

| ("’ )( )( Mo(y)dy> (J wo(y)d]/> uo(x)dx)

x\ 7 X\B(a,|x],) B(a,Ix1,)

N\ 1/p r/p r/p 1/p
—C (P ) ( J (J () dy) (J wo(y)dy> (%) dx) ,
1 x \Jx\B@,x1) B xls)

where the second last equality is integration by parts. Since 1o and wy are in L' and are positive,
the integral on the right-hand side is finite. Therefore, we have

’ 1/p r/p r/p 1/r
pq q
— — d d d C.
( r >(P’> (L& (JX\B(u,\x\H) Ho() y) (J'B(u,\x\,l) () y) “) x) =

Approximating # and w by increasing sequence of L! functions, using

() (R)"-mreni (@ -wsin (o) - o3

C

IA
@)

I
0

C

I
(
(
(
(
(
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and applying the monotone convergence theorem, we conclude that

o (1-8) e

Suppose now that Ay <oo and, for the moment, that (2.9) holds for w. Set V(x)=
J‘B(a,\x\a) w(y) dy and apply proposition 2.4 with b= V7w and F(x) = fB(ﬂ,IXIn)f(y) dy. Let us denote

_ t
V=] | 00w, dods,

P

Vito)= | 4o 0Yulp,0)do,

P

and ()= | 4o, Vutp, ) doy.
Also,
J b(y)dy < oo,
X\B(a,|x]4)
since

J b(y)dy = J VP (yw(y)dy = J VP (p)Vi(p)dp = (3) VP (1x)a).
X\B(@, xla X\B(@, Ix1,) I¥la p

The conclusion of proposition 2.4 becomes

q 1/q
([L(].. sow)uma)
XN JB(a,lx]0)
1/r r/q
= (g> <L§ (L{\B(a,lxl,,) u(]/) dy)

—r/q 1/r
V() dy) V@) dx)

X
X\B(ll [xla)

p 1/p
( ( o O dy) VP () dx)

7 1/r r/q 0o _ -r/q _ 1/r
(5) ( ( ul(t)dt) (J V*P(t)vl(ndt) V*P<p)v1<p)dp>
o

P 1/p
x (J (J f) dy) V7P (x)w(x) dx) .
X N\ JB(a,x]q)

Using f:o Ve OV dt= @’ /p)f/'l_p (s) in the first factor and applying proposition 2.5 to the
second factor, we reach the inequality

<J (JB(Q e )f(y) dy>q”(x)dx>l/q

(g) ( )Wp’(f( J:oul(ndt)r/q‘?(p)@1>f/ﬂ7p(p>v1(p>dp)l/r

1/p
x fP(x)v(x) dx)

X
AT 1/q oo " s e e 0
<5) ( ) (o( th t)dt) (L Vl(f)df> Vl(p)dp)
1/p

x (L{f”(x)v(x) dx)

X
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() () saromo)
() ()5 rom)”

- (;) " ([ rommar) "

In the fourth last equality, we used ((r(p —1))/q)—p=r(p—1)/9—(@p/r)=r((p—1)/q9—
((p — 9))/p9) =r/q" and in the second last equality, we used lemma 2.2.

To establish sufficiency for general w, we fix positive functions # and w. If w=0 almost
everywhere on some ball B(g, |x|;) then translating u, w on the left will reduce the problem to the
one in which this does not occur. (If w =0 almost everywhere on X, sufficiency holds trivially.)

We therefore assume that 0 < J w(y) dy, for all x #a. For each n > 0, set u; = ux(p(,n) and
B(a,|xla)
Wy = min(w, ) + x(x\B(,n))- Then wy, clearly satisfies (2.9), so from previous arguments we have

(. <J8<a,|xmf (y) dy>q”n(x) dx)l/ '
E C< b (r o dt) ’ ( l ﬁ’”“’““) W o) dp)m ( [, 7owirw dy)l/p,

P 0
forallf > 0. Here c = (r/q)"/"(p')}/¥ p!/P . If we take f = g min(w, n)'/¥' X(B(a,n)) and use the definitions
of u, and wy, the inequality becomes

(J B(a,n) (J B(a,|xla) 84 min(w, " dy>qu(x) dx) B = C( J : (J : u(t) dt) !
«( |/ min, n))”p/mp) dp)l/r(jxgr’(y) dy)w,

for all non-negative g. We let n — oo, apply the monotone convergence theorem and substitute
fw=1P" for g to get the desired inequality and complete the proof. |

3. Applications and examples

In this section, we present several examples of applications of our results to characterize the
weights u and v in several settings: homogeneous groups, hyperbolic spaces and more general
Cartan—-Hadamard manifolds.

(a) Homogeneous groups

Let X =G be a homogeneous group in the sense of Folland & Stein [22]; see also an up-to-date
exposition in [15,23]. Here condition (1.2) is always satisfied with function A(r, w) = Q-1 with Q
being the homogeneous dimension of the group.

Without loss of generality, let us fix 2 = 0 to be the identity element of the group G. To simplify
the notation further, we denote x|, by |x|. We note that this is consistent with the notation for the
quasi-norm | - | on a homogeneous group G.

Let us consider an example of the power weights

)l iffx <1

— v|B
=V ifps1 v(x) = |x|".

u(x)

0610120 :LLb ¥ 205§ 20d edsyjeumol/bioBuysiigndiaaposiefos
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Then by theorem 2.1 the inequality

(/. (wa ) dy)qu) dx)l/q =c( ], vorue dx)w

holds for 0 < g <p, 1 <p < oo, if and only if
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which is finite for
r r
2 +Q<0,1-p)+Q>0,(n +Q)§ +(B(1 —P’)+Q)?+a1 +0Q>0,

which means

v
>0,
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p/
sincewe haver/p+1=r(1/p+1/r)=r(1/p+1/q9—1/p)=r1/q.
Now, consider the other part

0 s oo r/p s oot r/p'
J (J paz+Q—1dp> (J pﬁ(l—p’H—Q—ldp) ptQ-1 gy
1

t 0
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which is finite for
r , r
0t2+Q<0,/3(1—P’)+Q>0,(<¥2+Q)E+(ﬂ(1—P)+Q)I7+a2+Q<0,

or for

a2+Q<o,ﬂ<1—p/>+Q>o,<az+Q>§+<ﬁ<1—p’)+Q>r§ <0.

Summarizing that we get the following.

Corollary 3.1. Let G be a homogeneous group of homogeneous dimension Q, and we equip it with a
quasi-norm | - |. Let0 <q<p, 1 <p<oo,1/r=1/q9—1/p,and let o1, ap, B € R. Assume that a1 + Q #

0. Let

[x[*rif x| <1

—IxIP
|x|a2 U(‘|x| Z 1 U(x) - |x| .

u(x) =
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Then the inequality

(L;, (JB@W o) dy)% d">w < C{ J, v dx}l/p 52)

holds for all measurable functions f : G — C if and only if the parameters satisfy the following conditions:
x+Q<0, B1-p)+Q>0, (1 +Qr/g+BA—-p)+Qr/p'>0, (2+Qr/q+(BA-p)+
Qr/p' <0.

It is interesting to note that in view of the last two conditions, it is not possible to have Hardy
inequality (3.2) with weights u and v in (3.1) with a1 =ap. This is why we consider different
powers a1, ap in this example. This is different from the case p < g which was considered as an
application in [21].

The case a1 + Q =0 can be treated in a similar way:.

(b) Hyperbolic spaces

Let H" denote the hyperbolic space of dimension 7. In this case, condition (1.2) is always satisfied
with A(r, w) = (sinh 7). Let a € H", and let us fix the weights

()z{(sinh|x|g)°‘1 <1~ (sinh ).

(sinh |x|;)*2 if [x| >1

We note that A is equivalent to

’

1,01 00 rp s oot ’ p
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0 \J¢ 1 .
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o0 o0 r/p t ) r/p
Ginn L [ Zpsinh gyt ) (| inhpp 0, )
1 t 0

x (sinh )2+ =1 4t

In the first part, forap +n—1<0and (1 —p') +n >0,

/

1 1 00 r/p ¢ / g
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x (sinh )1+ =1 g
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0

t 1 0
x (t)a1+n71 dr

J'l ( 1 potn (exp 1)az+n—1 >V/P

a1+n_a1+n ap+n—1

/

0
(O Ny
P —p)+n '

which is finite for

(@ ay+n=0,(B(1—p")+n)r/p +a1+n>0,
(b) a1 +1n <0, (01 +n)r/p+BA—=p)+n)yr/p +01+n>0.

However, we can note that in (a), if a1 + 7 >0, then the second condition is automatically
satisfied under our assumption (1 —p’) + n > 0.
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In the second part, forap +n—1<0,

o0 9] r/p t : }’/p/
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which is finite for
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P " I
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which is the same as

(0 +n—T1)r N (ﬂ(l—p)j—n—l)r -
q p
Corollary 3.2. Let H'" be the hyperbolic space, a € H", and let |x|, denote the hyperbolic distance from
xtoa. Let0<g<p,1<p<oo,1/r=1/9—1/p,and let a1, 02, B € R. Assume that oy +n #0. Let

_J(sinh|x|)*  if x| <1
"= {(sinh el iff] > 1

0.

v(x) = (sinh [x|,)".

Then the inequality

(], <JB(a,|x|,.) ) dy)qu(ao dx)w <c| [ veorue dx}l/p

holds for all measurable functions f:H" — C if and only if the parameters satisfy the following
conditions: oy +n—1<0, 1 —p)+n>0, (1 +n)r/g+ (BA—=p)+n)yr/p >0, (ea +n—1)r/q+
BA=p)+n—-1Dr/p <.

(c) Cartan—Hadamard manifolds

Let (M,g) be a Cartan-Hadamard manifold. This means that M is a complete and simply
connected Riemannian manifold with non-positive sectional curvature, that is, the sectional
curvature of M satisfies Kp; <0 along each (plane) section at each point of M. Then condition
(1.2) is automatically satisfied by taking A(p, ) = J(p, w) "1, where J(p, w) is the density function
on M (e.g. [29,30]).

Let us fix a point 2 € M and denote by p(x) = d(x, a) the geodesic distance from x to a on M. The
exponential map exp,, : T,M — M is a diffeomorphism (e.g. [30]). Let us assume that the sectional
curvature Kp; is constant, in which case it is known that the function J(t, ) depends only on t.
More precisely, let us denote Ky; = —b for b > 0. Then we have J(f,w)=1 if b=0, and J(t,w) =
(sinh v/bt//bt)* "1 for b> 0 (e.g. [31]). In the case b =0, then let us take the weights

0= {(Sinh e o1 v =(sinhir)

(sinh |x])®  if [x| > 1

Then inequality (2.1) holds for0 < g <p,1 <p <oo,1/r=1/q — 1/p, if and only if

1 1 00
Ay ~ J J pa1+;1—1 d,O + J pa2+n—1dp
0 t 1
00 19 r/p t r/p 1r
+J (J pa2+n—1 dp) (J pﬁ(l—p’)+n_1 dp) ta2+n—1 dt) <00,
1 t 0

Pt ry
(J pﬂ(l—p’)+n—1dp) tot1+n—1 dt
0

0610120 :LLb ¥ 205§ 20d edsyjeumol/bioBuysiigndiaaposiefos



Downloaded from https://royal societypublishing.org/ on 12 July 2022

which is finite if and only if conditions of corollary 3.1 hold with Q = n (which is natural since the
curvature is zero).
When b > 0, let

(sinh x/Elxl,z)O[1 if x| <1
u(x) = a v(x) = (sinh «/I;|x|u)’3.
(sinh vblx|s) > if x| > 1

Then inequality (2.1) holds for0 < g <p, 1 <p < oo, 1/r=1/q — 1/p, if and only if A; is finite. We
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which has the same conditions for finiteness as the case of the hyperbolic space in corollary 3.2
(which is also natural since it is the negative constant curvature case).
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