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Abstract

Wavelet theory has disentangled numerous complexities, including those pertinent to tran-
sient and steady-state responses of systems, when Laplace and Fourier transforms face
insoluble obstacles. Reactive linear components (e.g. inductors and capacitors) are typically
handled in the frequency plane. Non-linear (e.g. diodes) or time-variant components (e.g.
switches) are conventionally simulated in the time plane (e.g. a diode via its I–V charac-
teristic) and are considered open or short circuits in AC analyses (e.g. in circuit simulation
software). Although translating circuits in an alternative plane, such as the Haar wavelet
plane, significantly simplifies the process, a wide integration of wavelets into instruments
and education is not yet realised; an underlying reason is the considerate complexity of
applying wavelet theory to circuits and signals. The aim of this paper is to bridge this gap,
providing a new user-friendly, Laplace-alike approach, utilising measurement-based mod-
els and the Haar wavelet. The Haar wavelet transform and a numerical method for the
inverse Laplace transform which uses the Haar operational matrix are applied, to calculate
the total current of a non-linear, time-variant system, that is the total current of a voltage
source which powers a non-linear, time-variant load.

1 INTRODUCTION

The Fourier transform, its discrete time equivalent, the dis-
crete Fourier transform and the fast Fourier transform (FFT)
algorithm have long been indispensable tools for science and
engineering. Since the conception of the FFT by Carl Friedrich
Gauss in 1805 and Jean Baptiste Joseph Fourier in 1822, as
described in a history report regarding the FFT by Heideman
et al. [1], they have been widely used to simplify differen-
tial equations. Two of the most common applications are the
steady-state spectrum of output signals and the impedance of
linear, time-invariant (LTI) circuits. The Laplace transform, as a
generalisation of the Fourier transform, is used to additionally
incorporate the transient state of outputs and systems. In reality,
however, no system exists that is either linear or time-invariant.
Macroscopically, all materials are slowly advancing towards a
thermodynamic equilibrium, deteriorating with time. Moreover,
all systems have a wide span of variables that affect them such
as temperature, mechanical stress and electromagnetic fields. A
system can only resemble an LTI system.
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Often a non-linear behaviour of a system becomes too sig-
nificant to disregard. Simplifications such as the small signal
approximation in amplifiers theory are often useful, because the
Fourier and Laplace transforms cannot typically be applied if a
non-linear equation is needed to describe the system.

When a system is time-variant (e.g. switched capacitor), the
differential equations needed to describe it are too difficult to
handle in the time plane. Transformation to the s-plane offers
a solution to a limited extent, as the inverse Laplace of such a
system usually becomes too intricate to solve and only numerical
methods can be used to determine its output.

Since its inception by Alfréd Haar in 1909, wavelet theory
has been invaluable in physics (e.g. used for transmission line
theory in lumped and distributed-parameter systems by Chen
and Hsiao [2]) but also in various aspects of technology with
applications such as groundbreaking compression algorithms
as reported by Jain and Pankanti [3] to identify fingerprints
automatically, in an attempt to compress and scan through the
overwhelming fingerprints database of the Federal Bureau of
Investigation (USA). The Haar wavelet has moreover been used
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to calculate the inverse Laplace transform as conceptualised by
Wu et al. [4], various examples of which are also shown by
Aznam et al. [5]. Furthermore, it has been proven to efficiently
handle non-linear circuit analysis as shown by Ohkubo et al.
[6], Nakabayashi et al. [7], Sliwinski [8] and even time-variant
systems as shown by Hsiao et al. [9–11]. It is noted that even
though the Haar wavelet possesses many favourable proper-
ties, mainly based on its binary 0–1 simplicity being a square
wave, research on wavelets also includes other wavelet types.
The fast wavelet collocation method, as presented by Zhou
and Chen [12, 13], can be applied in a variety of wavelet types,
one of the most common wavelets being the Walsh wavelet
as shown in Ref. [14], and delivers comparable results to the
more common Fourier transform, as reported by Strang [15].
The aforementioned key publications span several decades and
are indicative of the progress velocity in this field of research.
Even though being an important tool for science, engineering
and technology, the initial complexity of using it for practical
applications can possibly explain the reluctance of it, replacing
or overwhelming the conventional methods for circuit analysis
such as the Fourier and Laplace transforms. It is notable that
due to the nature of the methods involving wavelet transforms,
which handle a variety of matrices and vectors, even a small
mistake, such a wrong index, is enough to cause a completely
erratic calculation. This can be caused either by wrong or unam-
biguous descriptions (e.g. not defining exactly all variables and
symbols).

A methodology is presented, using the Haar wavelet, which
can be applied not only in linear but also in both non-linear
and time-variant systems. It utilises the same principles as the
Laplace transform in the case of impedance and additionally
applies to common non-linear and time-variant components.
The Haar wavelet transform is effectively masked and presented
in such a way that it seemingly resembles the Laplace transform
which is the norm in the case of combining reactive linear com-
ponents and sinusoidal signals. This way, the process of utilising
the benefits of the Haar wavelet becomes significantly uncom-
plicated, as almost all principles of the Laplace transform of
linear components can be utilised. Moreover, load modelling
using direct measurements is performed in order to demon-
strate all the steps from measurement up to simulation for
non-linear components such as diodes. Consequently, it demon-
strates a way in which education and also scientific instruments,
such as network analysers, could advance from the LTI theory to
a more generalised concept, by accurately including non-linear
and time-variant elements.

The presented step-by-step approach provides an essential
connection between measurements and simulation. Ιt presents
the scenario of simulating a circuit which includes components
the user has previously measured and modelled, as is the case in
this work. Specifically, a switched user-defined diode in parallel
with a user-defined linear load are powered by a voltage source.
Current–voltage and impedance measurement-based models
are created in order to showcase the possibility of creating and
simulating user-defined models. Three versions of this circuit
are simulated, using different diodes. First, direct measurements

FIGURE 1 The circuit simulated using the Haar wavelet transform

on diodes and a linear load are performed in order to investigate
their exact properties. Second, their characteristics are modelled.
Third, the input and all modelled characteristics are combined
in the Haar plane in the hypothetical scenario of each diode
being in series with an ideal switch (Figure 1). Finally, the inverse
Haar transform is performed to calculate the output of the sys-
tem; in this case, the total current of the ideal voltage source.
In theory, a voltage source will always have a series impedance.
In the presented example, however, as the source represents a
hypothetical voltage measurement at the input of a load, and
not an actual voltage source, a series impedance is not nec-
essary. The usefulness and simplicity of this approach in load
modelling are showcased, effectively circumventing the intri-
cacies of forward and inverse linear transforms of non-linear,
time-variant systems. The state of the art for the most part con-
sists of various theoretical concepts and potential applications,
but wide range implementation in commercial products (e.g.
network analysers and oscilloscopes) or education remains yet
a slowly progressing aspect. Indicative recent advances are in
applications such as digital audio signal processing [16], reac-
tive elements circuit analysis [17], time-variant circuits [18, 19],
fault detection in linear circuits [20] and promising theoreti-
cal analyses such as the work by Ratas et al. [21] for solving
non-linear boundary values. Finally, a more complete summary
of wavelet types and transforms as well as modern concepts
and applications can be found in works such as the book by
Akujuobi [22].

2 METHODS

2.1 Haar wavelet matrices and vectors

The key element in the use of the Haar wavelet and its opera-
tional matrix, the Haar wavelet matrix (H), is that it only needs
to be calculated once, as shown in Ref. [5], or loaded from a
pre-existing library. Even though the calculation of H is time-
consuming for a processor, the time for loading it from a library
is insignificant. For example, calculating a 1024× 1024 H matrix
(e.g. on PTC Mathcad) takes hours, but loading it from a data
file and using it in calculations such as matrix multiplication or
summation takes only a fraction of a second. It is noted that
the number of time points used (N) for the representation of
a time signal determines the dimensions of the N × N square
matrix H. All forward and inversion operations can then use
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ROUMELIOTIS ET AL. 391

this matrix, significantly reducing the calculation process time
as compared to solving a system in the time plane using inte-
grals and differential equations. Depending on the size of N and
the time length of the simulation (τ), assuming that it starts on
t0 = 0, the block pulse operational matrix (F) and the gener-
alised Haar operational matrix (Q) are defined. The exact same
definitions for H, F and Q as in Ref. [5] are used. For N = 4 and
τ = 1, the matrices H, F, Q and the corresponding time vector
(t) are as follows:

H =

⎡⎢⎢⎢⎢⎢⎣

1∕2 1∕2 1∕2 1∕2

1∕2 1∕2 −1∕2 −1∕2

1∕
√

2 −1∕
√

2 0 0

0 0 1∕
√

2 −1∕
√

2

⎤⎥⎥⎥⎥⎥⎦
, (1)

F =
𝜏

8
.

⎡⎢⎢⎢⎢⎢⎣

1 2 2 2

0 1 2 2

0 0 1 2

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
, (2)

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1∕2 −1∕4 −1∕
(

8
√

2
)

−1∕
(

8
√

2
)

1∕4 0 −1∕
(

8
√

2
)

1∕
(

8
√

2
)

1∕
(

8
√

2
)

1∕
(

8
√

2
)

0 0

1∕
(

8
√

2
)

−1∕
(

8
√

2
)

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

and

t =

⎡⎢⎢⎢⎢⎢⎣

0

0.25

0.5

0.75

⎤⎥⎥⎥⎥⎥⎦
. (4)

Any forward (VH) or inverse Haar wavelet transform (VIH)
of a given vector V is conveniently performed by the following
equations:

VH = H ⋅V (5)

and

VI H = H (−1) ⋅V . (6)

In order to benefit from the useful properties and logic of
the Laplace transform for linear components, which uses the
variable s, a similar variable matrix (S) is created which is the

inverse of Q. For N = 4 and τ = 1 it is

S = Q−1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 4 ⋅
√

2 4 ⋅
√

2

0 0 4 ⋅
√

2 −4 ⋅
√

2

−4 ⋅
√

2 −4 ⋅
√

2 16 32

−4 ⋅
√

2 4 ⋅
√

2 0 16

⎤⎥⎥⎥⎥⎥⎥⎦
.

(7)

This matrix can be conveniently used to represent the
impedance of an inductor (ZL) or a capacitor (ZC) as

ZL = S ⋅ L (8)

and

ZC =
1

S ⋅C
(9)

where L and C are the values of the inductor and capacitor,
respectively. The impedance of a resistor (ZR) uses the identity
matrix Im as it is invariant of S. For N = 4 and a resistor of value
R,

Im =

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
(10)

and

ZR = Im ⋅ R. (11)

The resistance of a time-variant load (RD), such as a resis-
tor whose value is time-variant, can also be represented by a
Haar plane impedance matrix [6], by converting the vector into
a diagonal square matrix. It is noted that an impedance matrix in
this context does not have to simulate a linear component, that
is even though the property of impedance can only be defined
for linear components, other non-linear or time-variant com-
ponents can still be represented by what is denoted here as an
impedance matrix. This characterisation is given here only to
resemble the concept of impedance, in the context of using this
matrix in the Haar plane, in a similar way to how the impedance
of a linear component would be handled in the Laplace plane.
For N = 4 and a vector r which defines the value of the
resistance in every time point,

r =

⎡⎢⎢⎢⎢⎢⎣

R0

R1

R2

R3

⎤⎥⎥⎥⎥⎥⎦
(12)
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392 ROUMELIOTIS ET AL.

diag (r ) =

⎡⎢⎢⎢⎢⎢⎣

R0 0 0 0

0 R1 0 0

0 0 R2 0

0 0 0 R3

⎤⎥⎥⎥⎥⎥⎦
(13)

and

rd = H ⋅ diag (r ) ⋅ H T (14)

where T denotes matrix transposition. The matrix created by
Equation (14) can also be used to approximate the resistance of
a non-linear component such as a diode or a switch by defining
their resistance at each time point, as performed on Ref. [6]. In
this case, as the voltage is known at the terminals of each diode,
the I–V of each diode can be used to calculate its resistance at
each time point (as shown in Section 2.4).

2.2 A simulated circuit using
measurement-based models

In order to demonstrate the simulation described earlier, the
schematic shown in Figure 1 is simulated. The necessary prop-
erties of a braking resistor and three diodes were defined using
direct measurements and then modelled. The braking resistor
is a 20-kW, 20-Ω resistance (article reference 6SE7023-2ES87-
2DC0). The diodes used are an ROHM RFN20NS3S (D3), an
ROHM RFN20NS4S (D4) and an ROHM RFN20NS6S (D6).

The simulated circuit consists of a sinusoidal voltage source,
three switched power diodes which act as non-linear time-
variant loads and a braking resistor which acts as a linear
impedance load. The combination of the analogue signal of the
voltage source with the ON/OFF digital signals which direct
the switches results in a mixed signal circuit. The source has an
amplitude of 0.7 V and a frequency of 50 kHz (fs). All of the
diodes have a maximum rms rating of 20 A. The manufacturer
states a threshold voltage range of 1.1 to 1.35 V for D3, 1.3 to
1.55 V for D4 and 1.25 to 1.55 V for D6. The aim of comparing
different diodes is to show the current differences when apply-
ing different non-linear loads and whether a difference between
the datasheets and measurements can be noticed or not and
consequently creating a user-defined instead of a pre-existing
model. As a diode is not time-variant in principle, to make the
total load that the voltage source feeds time-variant, a switch-
ing scheme is created. The simulated switches are automatically
operated, having only one diode switched per case examined,
whereas all other switches remain off.

2.3 Impedance measurement and
modelling of the braking resistor

On the braking resistor, first impedance measurements were
conducted in order to additionally create a realistic user-defined
linear load. The impedance measurements performed using a

FIGURE 2 Impedance magnitude measurement (red) and fitting (blue)
for the braking resistor

FIGURE 3 Impedance phase measurement (red) and fitting (blue) for the
braking resistor

Hioki IM3536 LCR instrument are shown in Figure 2. A set-
ting of 1 VAC (rms) was used for this frequency sweep. Thermal
stability was assured, as this voltage was not large enough to
noticeably change the temperature of the load. It is noted that
the braking resistor has heat sinks incorporated in its structure.
Subsequently, the impedance of the braking resistor was sim-
ulated using a resistor of value rb = 20.2 Ω in series with an
inductor of value Lb = 132 µH, as shown in Figure 1, in order
to model the impedance measurement. The impedance magni-
tude and phase measurements as well as their respective fitting
curves are shown in Figures 2 and 3.
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ROUMELIOTIS ET AL. 393

FIGURE 4 The circuit used in order to obtain the I–V measurements for
D3, D4 and D6

Second, using the LCR instrument in 1 VDC, the same value
of 20.2Ω was confirmed for 0 Hz (DC). This measurement was
performed in order to verify its DC resistance.

Third, an additional impedance test measurement on the
braking resistor was performed in order to verify its linearity
at higher voltages and potentially temperatures. The network
voltage was used as a source which can provide high currents,
nominally 230-VAC rms, 50 Hz, maximum 16-A rms. The net-
work voltage was measured with a FLUKE 117 multimeter.
Finally, using a Tektronix TCP305A current probe, powered by
an ROHDE and SCHWARZ RT-ZA13 power supply, the cur-
rent was measured. Dividing rms voltage by rms current, the
same value of 20.2Ω was confirmed. Thermal stability here was
assured by the fact that the time needed for this measurement
was only 1 s approximately. The calculated value of 20.2 Ω is
in agreement with the impedance measurement of the LCR at
50 Hz.

Comparing the results of the three measurements, the sta-
bility and thus the linearity of the impedance of the braking
resistor is indicated, in the range of 1 V (LCR voltage ampli-
tude) to 325 V (network voltage amplitude) and 0–300 Hz.
This comparison was performed as a precautionary test in order
to exclude a highly non-linear load which would contradict its
use as a linear load and to linearly adjust the current of the
I–V measurements, as explained in Section 2.4. Other resis-
tive loads, including incandescent lamps, were rejected as this
comparison method proved them to be non-linear; their non-
linearity, having different resistance at 50 Hz when comparing
between 1 VAC (LCR at 50 Hz) and 230 VAC (network volt-
age), is assumed to mainly have been an effect of their rapidly
increasing temperature.

2.4 I–V measurements and modelling of the
power diodes

A second circuit incorporating the aforementioned components
was manufactured, in order to measure the characteristics of the
diodes and the braking resistor. On the three diodes, current–
voltage (I–V) measurements on forward bias were performed.
The I–Vs were obtained by using the components in a config-
uration as shown in Figure 4. It is noted that this configuration
was used only for the I–V measurements, and it is not the sim-
ulated circuit that was previously shown in Figure 1. For each

FIGURE 5 I–V measurements of diodes D3 (red), D4 (grey) and D6
(blue). ‘Dual line’ visible in D6 measurement as an effect of temperature

I–V, the switch of the diode under test was manually closed,
whereas the others remained open.

The network voltage was used as a voltage source which can
provide high currents. The braking resistor was put in series
with one diode at a time in order to linearly reduce the forward
bias current. A bridge MB3510 rectifier was inserted to elimi-
nate the high negative voltages that would otherwise occur in
reverse bias. This technique allowed a higher accuracy measure-
ment of the small forward bias voltage drop on the diodes as it
could be directly measured without the need of an attenuation
probe. Furthermore, a heat sink was attached to the bridge rec-
tifier and the diodes under test. The voltage drop of each diode
was measured on Channel 1 of a battery-powered oscilloscope
(PicoScope 5244B). The voltage across the braking resistor was
accessed by a Pico TA057 voltage battery-powered differential
probe at a 200× attenuation setting. The output of the differen-
tial probe was measured on Channel 2 of the oscilloscope. For
a time duration of 50 ms, the continuous voltage measurements
of both channels were captured. The linear impedance of the
braking resistor, verified to be 20.2 Ω, enabled converting its
voltage drop into current. Using this technique, all I–Vs of the
three diodes were obtained, shown in Figure 5.

An additional effort for the thermal stability of the diodes was
made, the I–V measurement lasting less than 1 s. Nevertheless,
some thermal instability is evident in the measurement of D6 in
Figure 5. It has an apparent ‘dual line’ form; of the two visible
blue lines, the left one is at a lower temperature as the threshold
voltage in diodes rises with temperature elevation.

The I–Vs were then custom fitted for the range 0–0.8 V,
using the following equation:

I = m ⋅V p. (15)

The respective m and p factors are shown in Table 1 and the
fitted curves in Figure 6.

Using the I–V measurements, the non-linear resistance of
each diode (RD3, RD4, RD6) as a function of voltage was
calculated as voltage divided by current and is shown in Figure 7.
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394 ROUMELIOTIS ET AL.

TABLE 1 The diodes fitting parameters

Diode M p

D3 15.9 7.81

D4 5.60 6.56

D6 2.16 5.02

FIGURE 6 I–V measurements of diodes D3 (red), D4 (grey) and D6
(blue) and their respective fitting curves in the range 0–0.8 V

FIGURE 7 Resistance of diodes D3 (red), D4 (grey) and D6 (blue) as
calculated using the direct I–V data, and their respective fitted curves

2.5 Time-variant resistance model of the
switched diodes

The circuit of Figure 1 was simulated, using the values of the
remaining parameters shown in Table 2. The simulated diode
resistances in reverse bias are given by Rreverse which was calcu-
lated using the reverse current and the specific reverse voltage
stated on the diodes datasheets. The manufacturer states typi-
cal reverse bias currents of 0.05 µΑ at 350 V for D3, 0.05 µΑ at

TABLE 2 Extra parameters of the simulated circuit

Parameter VALUE

R3reverse 7.0 GΩ
R4reverse 8.6 GΩ
R6reverse 12.0 GΩ
Ron 0 Ω
Roff 1 TΩ
fsw 100 kHz

FIGURE 8 Input voltage (green) and time-variant conductance for the
switched diodes D3 (red), D4 (grey) and D6 (blue)

430 V for D4 and 0.05 µΑ at 600 V for D3. The resulting reverse
bias resistances as well as the resistance of any of the switches
is Ron on their closed state, and Roff on their open state are as
shown in Table 2. The selected switching frequency is 100 kHz
(fsw), double of the simulated input frequency of 50 kHz (fs).

Even though the resistance of a diode is conventionally mod-
elled in the time plane as voltage dependent, according to its
I–V, in the Haar plane, it is easier to model as a time-variant
resistance. Knowing the voltage at a diode’s terminals at each
time point enables the creation of a vector similar to the one
shown in Ref. [12] that gives the resistance at each time point.
The time-variant conductance of each switched diode (diode in
series with switch as shown in Figure 1) and the source voltage
for one period of fs are shown in Figure 8.

The conductance is shown instead of resistance, in order to
demonstrate the forward bias characteristics of the diode, when
the diode is conducting significant current. For example, even
though both for t = 0–5 and 10–15 µs, the switch which is
series with a diode is on, the source voltage is not the same.
This results in a different scheme. At t = 0–10 µs, the diode is
in forward bias, whereas at 10–20 µs, the diode is in reverse bias.
When the switch is off, a voltage divider principle distributes the
voltage between the switch and the diode. For t = 15–20 µs, the
division is simple as both switch and diode act as constant resis-
tances. For t= 5–10 µs, however, the calculation is not so trivial;
as the source voltage is positive, even though the switch is off,
it still has a resistance value (Roff) and thus the voltage division
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ROUMELIOTIS ET AL. 395

has to be made between this and the non-linear resistance of the
diode. This case is typically handled in the time plane graphically
or by numerical iterative process using the concept of a load
line as presented in Ref. [23]. Nevertheless, as the diode current
would be negligible when the switch is off, this considerate dif-
ficulty can be effectively circumvented. The maximum current
and thus the minimum diode resistance for the time frame of
t = 5–10 µs will be for t = 5 µs, when V is at its peak +0.7 V.
Using the load line method [23] for D3, D4 and D6, the respec-
tive currents at t = 5 µs are 0.68, 0.69 and 0.70 pA, respectively,
and their respective resistances are 28.5, 15.6 and 4.66 GΩ. As
these values represent the highest current for t = 5–10 µs, they
were used as an approximation for this time length. The sim-
ulated scheme described earlier is repeated periodically every
20 µs until the end of the simulation time τ = 80 µs.

2.6 Simulation method

Each of these continuous time switched diode resistance curves
(RD3 .switched, RD4 .switched, RD6 .switched), the inverse of which is
shown in Figure 8, was sampled, using 1024 equally distanced
time points for the time length τ, and vectorised, similar to how
time was vectorised in Equation (6). The vectorised input volt-
age (V) was transformed using Equation (5) into the Haar plane
vector VH. The vectorised time plane switched diode resistances
(r3.switched, r4.switched, r6.switched) were transformed into Haar
plane resistance matrices (RH3, RH4, RH6) by using Equation
(14). The impedance of the braking resistor was transformed
into the Haar plane impedance matrix ZHb using Equation (11)
for its resistance and Equation (8) for its inductance resulting in
the following equation:

ZHb = rb ⋅ Im + S ⋅ Lb. (16)

The two latter matrices RH and ZHb were combined as the
loads are in parallel, into a total Haar plane impedance matrix
(ZH), using the following equation:

ZH =
(

RH
−1 + ZHb

−1
)−1

. (17)

The source current was calculated in the Haar plane in a
current vector (IH) using the following equation:

IH =

(
VH

T

ZH

)T

. (18)

The final step was to apply the inverse Haar transform to the
Haar plane current vectors IH3, IH4 and IH6, respectively, using
Equation (6). The result is the time plane current vectors I3tot,
I4tot and I6tot, as shown in Figure 9.

Equations (16)–(18), even though in the Haar plane, were
presented in a manner as to resemble their Laplace-plane equiv-
alents. For Equation (16), it would be exactly the same if Im was
replaced with 1, and S was replaced with the Laplacian variable

FIGURE 9 Input voltage (green) and source current for the three cases of
the switched diodes D3 (red), D4 (grey) and D6 (blue) in parallel with the
braking resistor

s. Moreover, Equation (17) is identical to the one that would be
used in the Laplace plane if two impedances were placed in par-
allel. Finally, Equation (18) is essentially an expression of Ohm’s
law which, if ZH was an impedance, would similarly apply in
the Laplace plane too, calculating current as voltage divided by
impedance.

3 RESULTS

3.1 Simulated currents

Assuming that the inductor is not charged at t= 0 s and that the
input voltage is 0 V for t< 0 s, for N= 1024 and τ= 80 µs (four
periods of the input signal), all signals are presented in Figure 9.

Zooming in on the source current in the case of D6 between
20 and −20 mA, as shown in Figure 11, it is apparent that this
sinusoidal response occurs due to the impedance of the brak-
ing resistor when the switched diode is switched on and in
reverse bias or switched off. Its transient nature exists due to
the inductance of the braking resistor. The source voltage and
all currents were zero for t < 0 s in the simulation. This instan-
taneous start of the sinusoidal input is naturally followed by a
transient behaviour of the inductive current, until a new steady
state is reached. A full period of the source signal has to pass
before its steady-state (Is) peak current is reached as indicated in
Figure 11.

3.2 Comparison of the simulation to
conventional methods

For comparison purposes as the loads are in parallel, the two
currents can be separately calculated and then added. The cur-
rent of D6 is directly calculated in the time plane. For the current
of the braking resistor, the Laplace transform is used, in order
to handle its complex-valued impedance; the current is calcu-
lated in the Laplace plane as voltage (Laplace transform of the
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FIGURE 10 Source current for the case of the braking resistor in parallel
with the switched diode D6 (blue). Calculation using the conventional method
is also depicted (black). Their difference (orange) is magnified here by a factor
of 105 for scaling purposes

FIGURE 11 Source current for the case of the braking resistor in parallel
with the switched diode D6 (blue). A transient response, related to the
inductance of the braking resistor, is evident as its steady-state peak Is (orange)
is gradually reached. For comparison, calculation using the conventional
method is also depicted (black)

input voltage) divided by impedance, similar to Equation (18).
Then, the inverse Laplace transform of this current is the cur-
rent of the braking resistor in the time plane. The results shown
in Figure 10 and more focused in Figure 11 depict the con-
formity of the Haar transform to the conventional methods. A
detailed analysis on the accuracy of the Haar wavelet discretisa-
tion method theoretically can be found in Ref. [24]. It is noted
that one of the main reasons why the circuit of Figure 1 was
selected to be simulated was its ability to be simulated both
via the conventional methods and in the way of the presented
method. The source being in parallel with the linear and the
non-linear, time-variant components enabled separating their
calculations in the time and Laplace plane, respectively. For a
more advanced circuit, for example having a source impedance,
it would have been impossible by definition to handle it conven-

tionally and thus compare between this and the conventional
method: The voltage drop across the source impedance would
be a result of the total source current, which in its turn would
depend both on linear and non-linear, time-variant compo-
nents, rendering handling either in the time or Laplace plane
impossible.

Comparing between the conventional and the presented
method for D6 is performed by calculating the difference d

for the source current by Equation (19). It is noted that the
conventional method gives an exact value (iexact) in compari-
son to the presented method that is a numerical approximation
(iapproximated). As shown in Figure 10, the difference between the
approximation and the exact values is remarkably low. Specifi-
cally, the absolute error (absolute of d) has a maximum value of
899 nA, a mean of 436 nA and a median of 481 nA. In compar-
ison between signal and error, the absolute of the maximum of
the source current is more than five orders of magnitude higher,
having a maximum of 377 mA, which compared to the maxi-
mum of the absolute error, reveals a ratio of 415,056/1. These
remarkable error margins depict the closely simulated character
that is shown in Figures 10 and 11:

d = iapproximated − iexact . (19)

It is also noted that the relative errors or per cent errors were
not used as indicators in the error evaluation, because diving the
absolute error with the zero-crossing values of iexact would cause
very high relative and per cent error values around very small
current values, which is not representative of the accuracy of
the method. For example on a hypothetical sinusoidal current
signal of 0.4 A amplitude, a 100% error could mean an approx-
imation value of 2 pA instead of the exact 1 pA; if the same
signal had an error below 0.1% for all values except from −1 to
1 nA, the aforementioned 100% error would be misleading in
that context.

4 DISCUSSION

4.1 Overview

Impedance measurements on linear loads and I–V measure-
ments on diodes were performed and then fitted. The I–V

fittings used were only indicative and any straight-forward inter-
polation between measurement points could also have been
applied in the case of non-linear loads because, as stated in Sec-
tion 2.1, Equation (14) can also be used to approximate the
resistance of a non-linear component. The resistance can conse-
quently be automatically (by a fitting model) or manually defined
at each time point.

Three versions of a circuit consisting of a voltage source
in parallel with a linear impedance and a switched diode were
compared, using three different diodes. The diversity of the
potential uses of the Haar wavelet as an analysis tool of non-
linear, time-variant systems was demonstrated; linear impedance
as well as non-linear, time-variant loads were evidently han-
dled. The key step where linear and non-linear, time-variant
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loads were ultimately combined was in Equation (17), notably
before applying the inverse Haar transform. The source cur-
rent features are depicted in Figures 9 and 11. This method of
using the Haar wavelet transform was shown to be in agreement
with the conventional methods in Section 3.2, as the calculated
points accurately follow the continuous curves, as depicted in
Figures 10 and 11. The difference of the approximation from
the exact values is remarkably low, as shown in Section 3.2 and
depicted in Figure 10, showcasing the capabilities of this method
as an accurate tool for circuit simulation.

4.2 Advantages of the method

The usefulness and simplicity of this approach in load modelling
were showcased as linear, non-linear and time-variant compo-
nents can thus be transformed using the same principles as
the widely known Laplace transform, as shown in Equations
(16)–(18).

The intricacy of a forward and inverse Laplace transform of a
non-linear, time-variant system is effectively circumvented. The
reason is that both the Haar forward and inverse transform are
performed by a simple multiplication as shown in Equations (5)
and (6).

Furthermore, it is presented in a step-by-step approach, how
starting with direct measurements on components, a complete
numerical simulation of circuits using these components can be
obtained.

The Haar wavelet operational matrix is used multiple times
applying Equation (5) or (6) but it only needs to be calculated or
loaded once. This results in reducing significantly the total calcu-
lation time, as the matrix is readily used in simple multiplications
without being calculated again each time.

4.3 Further considerations

It is noted that the choices of fs and fsw are based on three
factors. First, it had to be in the measurable range of the LCR
instrument. Second, it had to demonstrate a transient response
as shown in Figure 11. Third, for fsw, an integer multiple (dou-
ble) of the simulated input frequency fs was chosen, in order for
the transient effects from period to period to be comparable,
as shown in Figure 11. This way, every 5 µs, the state of the
switch which is in series with each diode and alternates between
on and off can be exactly compared for different input voltage
states.

4.4 Importance of the I–V measurements
and custom models

Comparing between measurements and datasheets for the three
diodes, the expected currents at 0.7 V varied significantly.
According to their datasheets, the currents at 0.7 V should be
0.8, 0.3 and 0.3 A, respectively, at room temperature (25◦C) and
2.0, 1.0 and 0.8 A for a temperature of 75◦C. The measured cur-

rents at this voltage were instead 0.98, 0.54 and 0.36 A at a room
temperature of approximately 21◦C.

This considerable difference between what was expected and
what was measured could have been due to internal elevated
temperature, even though the time needed for this measurement
was only 1 s approximately, and a heat sink was attached to the
diodes. It is noted that the internal temperature would have to be
much higher than room temperature, and no indication of such
a phenomenon was observed on the package of the diodes dur-
ing the measurement. Another cause, even though not explicitly
stated in the diodes datasheets, could be the tolerance of the
characteristics of the diodes.

The concept of creating custom models and its application
via the Haar wavelet transform is emphasised as it can greatly
improve the accuracy of a simulated scenario. For example, a
resistor of nominal value 10 Ω and 10% tolerance will by def-
inition have an actual value between 9 and 11 Ω. Accurately
measuring and determining its resistance at for example 9.23 Ω
would significantly increase the accuracy and precision of the
simulated component as opposed to using its nominal value
of 10 Ω. The same principle can be extended to any property
or characteristic of a simulated component as tolerances, even
though not always stated, intrinsically exist. Other factors such
as temperature may also affect the behaviour of any compo-
nent, and thus measuring the component at parameters (e.g.
voltage and current) and conditions (e.g. room temperature) as
close to the ones desired to simulate is significantly valuable in
order to predict the expected circuit performance and possibly
avoid a faulty operation. This can be better achieved by per-
forming measurements on the respective components before
placing them in the final circuit. It is noted that even though
some parameters may not be accurately known (e.g. core com-
ponent temperature at a high DC current), by using the same
or similar parameters as in the simulation (e.g. use same peak
voltage or current at the actual diode I–V measurement as it
will be in the simulated circuit), a higher level of accuracy can be
obtained.

4.5 Suitable potential applications of the
Haar wavelet transform

Utilising most of the already widely used techniques of Fourier
and Laplace transforms, the Haar wavelet transform has great
potential for use in a wide scientific and engineering spec-
trum. Combining this aspect with the addition of non-linear,
time-variant elements, scientific instruments and devices could
considerably benefit. Some examples are network analysers, dig-
ital signal processors and automated control systems, which
could potentially use it to solve non-linear equations previously
impossible.

Finally, this work aspires to be an additional step towards
popularising wavelet theory and particularly the Haar wavelet
transform. Its intrinsic useful properties and key applications
could thus in the future be more integrated into various sectors
of higher education (at e.g. B.Sc. or M.Sc. level). Sectors such
as mathematics, physics, chemistry, materials science, civil and
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electrical engineering are highly suitable for applications of this
method, as they frequently handle differential and non-linear
equations, trying to depict the true nature of signals and systems.

5 CONCLUSION

The Haar wavelet has already proven that it can efficiently
handle solving non-linear and differential equations [2, 25–34]
and is frequently applied in simple circuits and systems [35–45],
so all that remains is that proper applications and methods are
established. An example of circuit simulation method using the
Haar wavelet was demonstrated and evaluated. Custom device
models were created using direct measurements. The intricacies
of this simulation method for the output of a system that
includes linear (resistances), reactive linear (inductances), but
also non-linear (diodes) and time-variant (switches), compo-
nents, were discussed. The approximation error as compared to
the exact output of signal amplitude was found to be more than
five orders of magnitude lower, that is in terms of comparing the
maximum of the absolute of the output signal to the maximum
of the absolute error of its approximation. This level of accuracy
is indicative of the potential of the simulation method in circuits
when calculating integrals for the convolution of all signals
and components of a circuit results in impractical simulation
times.
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