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Generalized Gamma-Laguerre Polynomial Chaos
to Model Random Bending of Wearable Antennas

Hendrik Rogier, Senior Member, IEEE

Abstract—A novel generalized Gamma-Laguerre polynomial
chaos expansion is proposed to account for the effect of random
variations in lower-bounded design parameters on antenna per-
formance. After fitting a shifted generalized Gamma distribution
to data sets of such random variables, a predistorted polynomial
chaos expansion is generated based on a set of orthogonal gener-
alized Laguerre polynomials. The new statistical methodology is
applied to assess the random change in resonance frequency when
bending a wearable antenna around different parts of the human
body, such as a leg, an arm and a head. For different data sets, an
excellent statistical fit is found to both the estimated probability
density function of the bending radius and the resulting statistical
distribution of the resonance frequency, while requiring up to 480
times fewer sample evaluations.

Index Terms—Microstrip antennas, Random variables, Statis-
tical analysis, flexible electronics, textile antennas

I. INTRODUCTION

Current-generation antenna systems suffer from significant
variability, due to fabrication tolerances, and uncertainty, due
to variable and adverse deployment conditions [1]–[4]. Im-
portant random changes in geometry and material properties
are encountered both in high-end applications [5], due to
operating frequencies beyond 6 GHz and corresponding small
features, and in Internet-of-Things systems [6], given the cheap
fabrication techniques and harsh operating environments.

Frequently, random variations in design parameters such
as amplitude, permittivity and bending radius, are lower-
bounded because of mathematical, physical or practical rea-
sons. Statistical variations induced by such variables are often
inaccurately modeled by distributions in the Wiener-Askey
generalized polynomial chaos (gPoC) [7]. The generation
of a custom set of orthogonal polynomials for a dedicated
gPoC expansion requires time-consuming and ill-conditioned
Gram–Schmidt [8] or Modified Chebyshev [9]–[11] algo-
rithms.

This letter fits a shifted generalized Gamma distribu-
tion [12]–[14] to such design parameters. After predistorting
the random variable, a gPoC expansion is constructed based
on a set of orthogonal generalized Laguerre polynomials [15,
p. 892]. The new scheme is applied to assess the random
change in resonance frequency when bending a wearable
antenna [16]–[21] around different parts of the human body.
The statistical variations in bending radius due to different
body morphologies are described by fitting shifted generalized
Gamma distributions to different data sets and then processing
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them through a well-established cylindrical bending model for
textile antennas [22]. An excellent statistical fit is obtained for
both the estimated probability density function (PDF) of the
bending radius and for the resulting statistical distribution of
the resonance frequency, compared to a, much slower, Monte
Carlo procedure and to existing gPoC procedures. Even for
a bimodal distribution of the bending radius, when consider-
ing a population consisting of both adults and children, an
outstanding fit is found based on a mixture of generalized
Gamma distributions, applied as input random variables.

As an alternative to time-consuming Monte-Carlo analysis,
several efficient statistical methods were recently proposed to
account for variability and uncertainty in electronic circuit and
antenna design, focussing on improving the gPoC expansion’s
effectiveness for a large number of normally [23]–[28] or uni-
formly [23], [29]–[31] distributed random variables. Moreover,
dedicated sets of orthogonal polynomials were generated to
improve the gPoC’s efficiency [10], [11] or to truncate the
Gaussian distribution [9], [32]. Yet, less attention was paid
to achieving a better fit between the measured variations’
histogram and the gPoC’s input random variables’ distribution.

Section II outlines the non-intrusive generalized Gamma-
Laguerre polynomial chaos, applied in Section III to assess
resonance frequency shifts due to cylindrical bending of textile
antennas. Section IV studies wearable antenna deployment on
different body parts of a representative subset of the military
and civilian population. The variations in measured body
morphologies, according to these data sets, are first fitted to an
Amoroso distribution, which is then transformed in the bent
antenna’s resonance frequency’s distribution.

II. THEORY

The lower-bounded, four-parameter, shifted generalized
Gamma distribution [12], also denoted Amoroso [13], [14] and
Stacy-Mihram distribution, encompasses as special cases more
than 50 distinct distributions. Therefore, consider a real, lower
bounded, design parameter X , randomly varying according to
this distribution with PDF

PX(x) =
|γ|

βΓ(α)

(
x− µ

β

)αγ−1

e−(
x−µ
β )

γ

, x > µ,

= 0, x ≤ µ, (1)

with α > 0 and γ real shape parameters, β a positive
real scale parameter, and µ a real location parameter as
the distribution’s lower bound. Given a sample set, these
parameters are estimated [33], [34] by either maximizing
the log-likelihood function [35, p. 227] [36], matching the



IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 2

cumulants, the raw, central or factorial moments [37, pp 2092–
2098]. First, transform the design parameter X , according to
[35, p. 69, Section 2.4.2], to a new random variable

Y =

(
X − µ

β

)γ

, (2)

now distributed according to the standard Gamma distribution

PY (y) =
1

Γ(α)
yα−1e−y, y > 0,

= 0, y ≤ 0. (3)

Its gPoC expansion leverages the orthonormal set of general-
ized Laguerre polynomials [15, p. 892]
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which are orthogonal with respect to (3). Hence, to determine
the statistics of an antenna figure of merit’s random parameter
Z, approximate Z = F (Y ) = F

[(
X−µ
β

)γ]
= f(X) by the

predistorted polynomial expansion [7] of order P

Z(X) ≈ FP (Y (X)) =

P∑
n=0

zXn Lα−1
n

[(
X − µ

β

)γ]
, (5)

converging exponentially according to the Cameron-Martin
theorem for P → ∞. To determine the unknown expansion
coefficients zXn , apply spectral projection, yielding

zXn = E[Z(y)Lα−1
n (y)] =

∫ +∞

y=0

F (y)Lα−1
n (y)dPY (y) (6)

=

∫ +∞

x=µ

f(x)Lα−1
n

[(
x− µ

β

)γ]
dPX(x). (7)

Now approximate the integral in (6) by the N -point Gauss-
generalized-Laguerre quadrature rule

zXn ≈
N∑
i=1

wiF (yi)L
α−1
n (yi), n = 0, 1, . . . , P ; (8)

its quadrature points yi being the N zeros of Lα−1
N (y) in

[0,+∞], determined by the Golub-Welsch [38] algorithm via
the recursion relation of the generalized Laguerre polynomials,
with wi the corresponding weights. Note that one can directly
discretize (7) by the N -point quadrature rule

zXn ≈
N∑
i=1

wif(xi)L
α−1
n

[(
xi − µ

β

)γ]
, n = 0, 1, . . . , P ;

(9)

with xi = µ+βy
1
γ

i the quadrature points in the random design
variable X . Hence, the zXn are found after evaluating Z =
f (X) for N realizations of the random variable X at the
quadrature points xi. The moments of the output distribution
PZ are computed as

E[g(z)] =

∫
ΩZ

g(z)dPZ(z)

=

∫ ∞

x=µ

g(f(x))dPX(x) ≈
N∑
i=1

wig [f(xi)] , (10)

for an arbitrary function g(z).
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Fig. 1. Wearable antenna subject to cylindrical bending: top (left) and side
(right) views.

III. APPLICATION: CYLINDRICAL BENDING OF
WEARABLE ANTENNAS

To showcase the new approach, we apply the method to
evaluate cylindrical bending of wearable antennas following
the model of [22], comparing to results previously obtained
in [9]. For a flexible rectangular patch antenna of length
Lp and width Wp, on a textile substrate of thickness h
and permittivity ϵr, the shift in resonance frequency due to
cylindrical bending in the direction of the patch width Wp

with curvature radius R (Fig. 1) is found by solving

J ′
kϕ
(kρR)Y ′

kϕ
(kρ(R+ h)) = J ′

kϕ
(kρ(R+ h))Y ′

kϕ
(kρR),

(11)
with kϕ = mπ

β , kz = nπ
Lp

, and kρ =
√
k2 − k2z . The angle β

is derived from W = β (R+ hd), with d = 0.5 for perfectly
stretchable patches and d = 1 for completely non-stretchable
patches. Substrate compression is accounted for by setting
ϵr,comp = ϵr,flat

(
1 + η h[mm](d−0.5)

R[m]

)
, with η a substrate-

dependent empirical parameter, determined by measurements.
For non-magnetic substrates, the resonance frequency fr of the
bent patch follows from k = 2πfr

√
µ0ϵ0ϵr,comp. Alternatively,

the antenna may be bent along Lp, but, for conciseness, we
only discuss bending along the width Wp, which gives rise to
the largest variation in resonance frequency.

IV. RESULTS

TABLE I
PARAMETERS OF THE SHIFTED GENERALIZED GAMMA DISTRIBUTIONS

FITTED TO DIFFERENT DATA SETS. CRAMÉR-VON MISES TEST STATISTIC
T = NSAMPLESω2 AS A MEASURE FOR THE DISTANCE BETWEEN CDFS OF

THE DATA SET AND THE FITTED DISTRIBUTION.

Data set
NHANES 2011 ANSUR-II 2012 Heinz

Arm radius Head radius Thigh radius
Child Adult Female Male Adult

Nsamples 2476 7223 1986 4082 507
α 75.61 8.35 13.98 29.87 52.24
β 32.2 km 5.21 mm 2.00 mm 4.18 mm 16.0 µm
γ -0.293 1.215 1.304 1.859 0.533
µ 1.51 cm 2.19 cm 7.43 cm 6.55 cm 6.33 cm
T 0.191 0.324 0.298 0.202 0.0419

We now validate the new gPoC framework by considering
bending of textile antenna prototypes 2 and 4, previously
investigated in [9]. Prototype 2 (Lp = 81.2 mm, Wp =
69.25 mm, yf = 16 mm, h = 2 mm, ϵr = 1.75, η = 1589
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Fig. 2. Prototype 4 textile 2.45GHz antenna on the arm of a representative
part of the American population: (a) Histogram and fitted PDF of arm radius
of children (brown) and adults (blue) in the NHANES 2011 data set. (b)
Histogram of antenna resonance frequency for the complete data set and
PDF obtained as a mixture of PDFs for children and adults generated by
the Gamma-Laguerre gPoC model.

and d = 1), implemented in non-stretchable copper foil on an
aramid fabric substrate, exhibits a sharp resonance peak close
to the 1.57 GHz GPS band. Prototype 4 (Lp = 52.5 mm,
Wp = 43.7 mm, yf = 11 mm, h = 2.7 mm, ϵr = 1.715,
η = 1472 and d = 1), fabricated in copper foil on a cotton
substrate, resonates in the vicinity of the 2.45 GHz ISM band.
Let us first deploy prototype 2 on the head of a soldier and
consider the distribution of the head radius of female and male
military personnel from the ANSUR-II 2012 data set [39].
Next, let us bend prototype 4 around the arm of a member of
the general population, according to the distribution of the arm
radius of children (persons smaller than 1.40 m or lighter than
40 kg) and adults listed in the NHANES 2011 database [40].
Finally, let us bend prototype 4 along the thigh of a population
of 247 men and 260 women in their twenties and thirties, with
their thigh girths listed in the Heinz data set [41].

In a first step, we fit shifted generalized Gamma distribu-
tions to the different data sets. The parameters of the PDF
(1) of the curvature radius R, found by maximizing the
log-likelihood function, are listed in Table I. To verify the
goodness of fit, also the Cramér-von Mises test statistic [42]
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(b)

Fig. 3. Prototype 4 textile 2.45GHz antenna on the thigh of 247 men and 260
women, primarily in their twenties and thirties: (a) Histogram and fitted PDF
of thigh radius (blue). (b) Histogram of antenna resonance frequency for the
Heinz data set and PDF generated by Gamma-Laguerre gPoC model, orders
3 (Cramér-von Mises statistic T = 0.0404) and 9 (T = 0.0419).

T = Nsamplesω
2 is provided as a measure for the distance ω2

between the CDFs of the data sets and the fitted distributions,
with Nsamples the number of samples in each data set. Com-
pared to fitting a truncated Gaussian distribution, as in [9],
which yields T = 2.68 when applied to the NHANES data set
of adults (defined as persons taller than 1.40 m and heavier
than 40 kg), excellent fits are obtained here for all data sets,
as is confirmed by visual inspection of the histograms and
fitted PDFs in Figs. 2(a), 3(a) and 4(a). Moreover, remark
that an inverted generalized Gamma distribution (γ < 0)
was obtained for the children’s NHANES data set, which can
only be approximated very poorly (T = 8.82) by a truncated
Gaussian distribution.

In a second step, the framework described in Section II
is applied to determine the distribution of the resonance
frequency, when the antenna prototypes are subject to bending,
following the model outlined in Section III. A polynomial
model of order P = 9 is constructed, based on N = 15
quadrature points yi corresponding to the zeros of Lα−1

N (y),
shown by the markers in Figs. 2(a), 3(a) and 4(a). Figs. 2(b),
3(b), and 4(b) demonstrate that the resulting PDFs of the
resonance frequency correspond very well to the histograms
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TABLE II
MOMENTS OF THE RESONANCE FREQUENCY DISTRIBUTION DERIVED FROM THE DATA SET AND THE GPOC EXPANSIONS. CRAMÉR-VON MISES TEST
STATISTIC T = NSAMPLESω2 AS A MEASURE FOR THE DISTANCE BETWEEN(∗) CDFS OF ARM RADIUS DERIVED FROM THE ORIGINAL DATA SET AND

FITTED GENERALIZED GAMMA DISTRIBUTION, AND BETWEEN CDFS OF THE RESONANCE FREQUENCY DISTRIBUTION DERIVED FROM THE DATA SET
AND FROM THE GPOC EXPANSIONS.

NHANES 2011, Arm radius, child NHANES 2011, Arm radius, adult
Moment/ data set Gamma/Laguerre truncated Gaussian data set Gamma/Laguerre truncated Gaussian
distance Nsamples = 2476 P = 9, N = 15 P = 9, N = 15 Nsamples = 7223 P = 9, N = 15 P = 9, N = 15

mean [GHz] 2.40752 2.40752 2.40752 2.39665 2.39665 2.39663
(−2.6× 10−5%) (+3.3× 10−5%) (+5.6× 10−6%) (−7.6× 10−4%)

std. dev. [MHz] 3.95748 4.02476(+1.6%) 4.68337(+18%) 2.34748 2.34636(−0.05%) 2.44419(+4.1%)
skewness -0.301144 -0.31969(−6.2%) 0.788587(+362%) 0.360644 0.34680(−3.8%) 0.744016(+106%)
kurtosis 3.26279 2.92163(−10%) 3.60091(+10%) 3.04788 3.06015(+0.4%) 3.562234(+17%)

T 0.19128∗ 0.19129 8.81993 0.32431∗ 0.32993 2.67825
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Fig. 4. Prototype 2 textile GPS antenna on the head of a representative part
of the American military: (a) Histogram and fitted PDF of head radius of
female (brown) and male (blue) personnel in the ANSUR-II 2012 data set.
(b) Histograms of antenna resonance frequency and PDFs obtained for female
(Cramér-von Mises statistic T = 0.321 for order 3 and T = 0.298 for order
9) and male soldiers (Cramér-von Mises statistic T = 0.203 for order 3 and
T = 0.202 for order 9), curves shown for order 3.

obtained by processing all data samples using the model in
Section III, while requiring significantly fewer solutions of
(11), being N versus Nsamples. The accuracy of the technique
is also confirmed by the Cramér-von Mises test statistic T
of the output distribution, whose value remains in the same
order of magnitude for the output distribution (compared to
the data sets’ histograms of the resonance frequency) as for

the input distribution (compared to the data sets’ histograms
of the curvature radius), as seen in the last row of Table II and
in the captions of Figs. 3 and 4. Table II further shows that
(10) accurately computes all relevant lowest-order moments
of the resonance frequency distributions. In contrast, for the
NHANES data set, observe that the use of a truncated Gaussian
distribution, as in [9], yields much less accurate approxi-
mations for the corresponding histogram, given the high T -
values and deviations in the calculated lowest-order moments.
In contrast, with the new method a gPoC approximation of
degree P = 3 already provides very accurate results, as seen
in Figs. 2(b) and 3(b), and demonstrated by the T -values of
such an approximation, being only slightly higher than those
for P = 9, proving the quick convergence of the technique.
A final test artificially implements more severe detuning by
bending prototype 4 along the arm. Therefore, the effect of
compression on substrate permittivity is increased by setting
η = 14720, which is a factor 10 larger than measured [22].
For the NHANES adults data set, the PDF of the Gamma-
Laguerre gPoC model of order P = 3 (T = 0.46656) yields a
good fit to the histogram of the antenna resonance frequency,
and the PDF of order P = 9 (T = 0.32802) an excellent
fit. For the NHANES children data set, the Gamma-Laguerre
gPoC model’s PDFs of both orders P = 3 (T = 0.20506) and
P = 9 (T = 0.19123) provide an excellent fit to the histogram
of the antenna resonance frequency.

V. CONCLUSION

Fitting lower-bounded random design variables to an
Amoroso distribution and leveraging generalized Laguerre
polynomials in a subsequent polynomial chaos expansion
yields a highly accurate and efficient statistical design tool,
whose input and output PDFs differ only by a small Cramér-
von Mises distance from the histograms of the complete data
sets while requiring up to 480 times fewer computationally
intensive simulations for the examples considered in this
letter. The method may be easily extended to other appli-
cations subject to lower or upper bounded (β < 0) random
variations. Moreover, the technique may also be applied to
multiple statistically independent Amoroso-distributed random
variables. Yet, special care is needed when correlations exist
between these random inputs. Further research is required to
extend the method to multivariate Gamma [43] and Amoroso
distributions [44], [45].
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