

Environmental risk assessment of OMPs in public WWTPs in Flanders, Belgium

Warich Leekitratanapisan¹, Lutgarde Hoebeke² and Karel De Schamphelaere¹

- ¹ Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab)
- ² Flemish Environmental Agency, A. Van de Maelestraat 96, 9320, Erembodegem, Belgium

Introduction

- WWTP effluents are a major source of organic micropollutants (OMPs) in a surface water
- Environmental risk assessment (ERA) is an approach to prioritizing concerned OMPs and WWTP sites
- This study performs ERA using monitoring data of OMPs in Flanders public WWTPs effluents from 2017 to 2021

Method

Monitoring data of OMPs in WWTP effluents

- Over 100 WWTPs sites in Flanders, Belgian and 129 measured OMPs
- Quantified measured environmental concentration (MECs) is used in the analysis (in total 38 OMPs; 40 WWTP sites):

MEC ≥ Method detection limits

OMPs detected ≥ 100 samples and 10 WWTP sites

Effect data

 PNEC – predicted no effect concentration from NORMAN Ecotoxicology Database (https://www.normannetwork.com/nds/ecotox/lowestPnecsIndex.php)

Prioritization of concerned OMPs

Risk characterization

Risk Quotient (RQ) =
$$\frac{MEC (\mu g/L)}{PNEC (\mu g/L)}$$

RQ ≥ 1 indicate environmental risk

Prioritization of public WWTP sites

$$\Sigma RQ_{WWTP} = \sum_{i=1}^{n} RQ95_{i}$$

RQ95_i = RQ at percentile 95; assuming all chemicals in each site act in concentration addition (CA)

Whole effluent testing (WET) of WWTP effluent with $\Sigma RQ > 10$

- Whole effluent testing of WWTP effluent based on OECD201 –
 Freshwater Alga and Cyanobacteria, Growth Inhibition Test with
 Microcystis aeruginosa (96h) and Raphidocelis subcapitata (72h)
- Sample: Aquafin WWTP effluent in Gent (October, 2020)

Results and discussion

Prioritization of concerned OMPs

Figure 1 (A) Top 20 of OMPs detected from 2017-2021 arranged by RQ95 (B) RQ95 of OMPs from different year of monitoring; red dash line indicates RQ = 1

Prioritization of public WWTP sites

Figure 2 Top 20 of WWTP sites with high predicted environmental risk (ΣRQ > 10)

- Pesticides are the dominant group of concerned OMPs
- RQ95 of most PFAS and pharmaceuticals remains constant over the past 5 years, while RQ95 of pesticides decreases
- PFAS and Pharmaceuticals are the main contributors of ΣRQ in most WWTP effluents

WET of high environmental risk WWTP site

Figure 3 Algal growth inhibition of WWTP effluent sample from Gent (2020)

The maximum percent growth inhibition reached 15.5 and 14.8% at the highest test concentration for *Microcystis aeruginosa* and *Raphidocelis subcapitata* respectively

Conclusion

- In this study ERA is still not an early warning sign for OMP in WWTP effluents due to overestimation of environmental risks
- Some OMPs (PFOS, iopromide, and diclofenac) have constant predicted environmental risk throughout 5 years of monitoring
- The predicted environmental risk could provide an additional information for future effect-based monitoring campaigns

Contact

Warich.Leekitratanapisan@UGent.be www.ecotox.ugent.be

in Ghent University

