
Pass/fail prediction in programming courses

Charlotte Van Petegem, Louise Deconinck, Dieter Mourisse,
Rien Maertens, Niko Strijbol, Bart Dhoedt,

Bram De Wever, Peter Dawyndt & Bart Mesuere

2022-06-07

Abstract

We present a privacy-friendly early-detection framework to identify students at risk of
failing in introductory programming courses at university. The framework was validated for
two different courses with annual editions taken by higher education students (N=2 080) and
was found to be highly accurate and robust against variation in course structures, teaching
and learning styles, programming exercises, and classification algorithms. By using inter-
pretable machine learning techniques, the framework also provides insight into what aspects
of practising programming skills promote or inhibit learning or have no or minor effect on the
learning process. Findings showed that the framework was capable of predicting students’
future success already early on in the semester.

1 Introduction

A lot of educational opportunities are missed by keeping assessment separate from learning (Black
& Wiliam, 1998; Wiliam, 2011). Educational technology can bridge this divide by providing
real-time data and feedback to help students learn better, teachers teach better, and education
systems become more effective (OECD, 2021). Earlier research demonstrated that the adoption
of interactive platforms may lead to better learning outcomes (Khalifa & Lam, 2002) and allows
to collect rich data on student behaviour throughout the learning process in non-evasive ways.
Effectively using such data to extract knowledge and further improve the underlying processes,
which is called educational data mining (Baker & Yacef, 2009), is increasingly explored as a way
to enhance learning and educational processes (Dutt et al., 2017).

About one third of the students enrolled in introductory programming courses fail (Bennedsen
& Caspersen, 2007; Watson & Li, 2014). Such high failure rates are problematic in light of low
enrolment numbers and high industrial demand for software engineering and data science profiles
(Watson & Li, 2014). To remedy this situation, it is important to have detection systems for
monitoring at-risk students, understand why they are failing, and develop preventive strategies.
Ideally, detection happens early on in the learning process to leave room for timely feedback and
interventions that can help students increase their chances of passing a course.

Previous approaches for predicting performance on examinations either take into account prior
knowledge such as educational history and socio-economic background of students or require ex-
tensive tracking of student behaviour. Extensive behaviour tracking may directly impact the
learning process itself. Rountree et al. (2004) used decision trees to find that the chance of failure
strongly correlates with a combination of academic background, mathematical background, age,
year of study, and expectation of a grade other than “A”. They conclude that students with a
skewed view on workload and content are more likely to fail. Kovacic (2012) used data mining
techniques and logistic regression on enrolment data to conclude that ethnicity and curriculum
are the most important factors for predicting student success. They were able to predict success
with 60% accuracy. Livieris et al. (2019) use semi-supervised machine learning to predict student
outcomes with 80% accuracy using prior academic history. Xing & Du (2019) achieve accuracies

1



up to 95% when using deep learning to predict performance in MOOCs, though their dataset was
very imbalanced. Asif et al. (2017) combine examination results from the last two years in high
school and the first two years in higher education to predict student performance in the remaining
two years of their academic study program. They used data from one cohort to train models and
from another cohort to test that the accuracy of their predictions is about 80%. This evaluates
their models in a similar scenario in which they could be applied in practice.

A downside of the previous studies is that collecting uniform and complete data on student
enrolment, educational history and socio-economic background is impractical for use in educa-
tional practice. Data collection is time-consuming and the data itself can be considered privacy
sensitive. Usability of predictive models therefore not only depends on their accuracy, but also
on their dependency on findable, accessible, interoperable and reusable data (Wilkinson et al.,
2016). Predictions based on educational history and socio-economic background also raise ethical
concerns. Such background information definitely does not explain everything and lowers the per-
ceived fairness of predictions (Binns et al., 2018; Grgić-Hlača et al., 2018). A student can also not
change their background, so these items are not actionable for any corrective intervention.

It might be more convenient and acceptable if predictive models are restricted to data collected
on student behaviour during the learning process of a single course. An example of such an
approach comes from Vihavainen (2013), using snapshots of source code written by students to
capture their work attitude. Students are actively monitored while writing source code and a
snapshot is taken automatically each time they edit a document. These snapshots undergo static
and dynamic analysis to detect good practises and code smells, which are fed as features to a
nonparametric Bayesian network classifier whose pass/fail predictions are 78% accurate by the
end of the semester. In a follow-up study they applied the same data and classifier to accurately
predict learning outcomes for the same student cohort in another course (Vihavainen et al., 2013).
In this case, their predictions were 98.1% accurate, although sample size was rather small. While
this procedure does not rely on external background information, it has the drawback that data
collection is more invasive and directly intervenes with the learning process. Students can’t work
in their preferred programming environment and have to agree with extensive behaviour tracking.

Approaches that are not using machine learning also exist. Feldman et al. (2019) try to answer
the question “Am I on the right track?” on the level of individual exercises, by checking if the
student’s current progress can be used as a base to synthesise a correct program. However, there
is no clear way to transform this type of approach into an estimation of success on examinations.
Honour (1986) found significant (p < 0.05) correlations between students’ college grades, the
number of hours worked, the number of high school mathematics classes and the students’ grades
for an introductory programming course. Goold & Rimmer (2000) also looked at learning style
(surveyed using LSI2) as a factor in addition to demographics, academic ability, problem-solving
ability and indicators of personal motivation. The regressions in their study account for 42 to 65
percent of the variation in cohort performances.

In this manuscript, we present an alternative framework (Figure 1) to predict if students
will pass or fail a course within the same context of learning to code. The method only relies on
submission behaviour for programming exercises to make accurate predictions and does not require
any prior knowledge or intrusive behaviour tracking. Interpretability of the resulting models was
an important design goal to enable further investigation on learning habits. We also focused on
early detection of at-risk students, because predictive models are only effective for the cohort
under investigation if remedial actions can be started long before students take their final exam.

The manuscript starts with a description of how data is collected, what metadata is used and
which machine learning methods have been evaluated to make pass/fail predictions. We evaluated
the same models and features in multiple courses to test their robustness against differences in
teaching styles and student backgrounds. The results are discussed from a methodological and
educational perspective with a focus on i) accuracy (What machine learning algorithms yield
the best predictions?), ii) early detection (Can we already make accurate predictions early on
in the semester?), and iii) interpretability (Are resulting models clear about which features are
important? Can we explain why certain features are identified as important? How self-evident are
important features?).

2



Figure 1: Step-by-step process of the proposed pass/fail prediction framework for programming
courses: 1) Collect metadata from student submissions during successive course editions. 2) Align
course editions by identifying corresponding time points and calculating snapshots at these time
points. A snapshot measures student performance only from metadata available in the course
edition at the time the snapshot was taken. 3) Train a machine learning model on snapshot
data from previous course editions and predict which students will likely pass or fail the current
course edition by applying the model on a snapshot of the current edition. 4) Infer what learning
behaviour has a positive or negative learning effect by interpreting feature weights of the machine
learning model. Teachers can use insights from both steps 3 and 4 to take actions in their teaching
practice.

3



course academic students series exercises mandatory submitted attempts pass rate
year exercises solutions

A 2016-2017 322 10 60 yes 167 675 9.56 60.86%
A 2017-2018 249 10 60 yes 125 920 9.19 61.44%
A 2018-2019 307 10 60 yes 176 535 10.29 65.14%
B 2016-2017 372 20 138 no 371 891 9.10 56.72%
B 2017-2018 393 20 187 no 407 696 7.31 60.81%
B 2018-2019 437 20 201 no 421 461 6.26 62.47%

Table 1: Statistics for course editions included in this study. The courses are taken by different
student cohorts at different faculties and differ in structure, lecturers and teaching assistants. A
series is a collection of exercises typically handled in one week/lab session. The number of attempts
is the average number of solutions submitted by a student per exercise they worked on (i.e., for
which the student submitted at least one solution in the course edition).

2 Materials and methods

2.1 Course structures

This study uses data from two introductory programming courses (referenced as course A and
course B) collected during 3 editions of each course in academic years 2016-2017, 2017-2018 and
2018-2019. Both courses run once per academic year across a 12-week semester (September-
December). They have separate lecturers and teaching assistants, and are taken by students of
different faculties. The courses have their own structure, but each edition of a course follows the
same structure. Table 1 summarises some statistics on the course editions included in this study.

Course A is subdivided into two successive instructional units that each cover five programming
topics — one topic per week — followed by an evaluation about all topics covered in the unit.
Students must solve six programming exercises on each topic before a deadline one week later.
Submitted solutions for these mandatory exercises are automatically evaluated and considered
correct if they pass all unit tests for the exercise. Failing to submit a correct solution for a
mandatory exercise has a small impact on the score for the evaluation at the end of the unit. The
final exam at the end of the semester evaluates all topics covered in the entire course. Students
need to solve new programming exercises during evaluations (2 exercises) and exams (3 exercises),
where the teaching staff manually evaluates and grades submitted solutions based on correctness,
programming style used, choice made between the use of different programming techniques, and
the overall quality of the solution. Each edition of the course is taken by about 300 students.

Course B has 20 lab sessions across the semester, with evaluations after the 10th and 17th lab
session and a final exam at the end of the semester. Each lab session comes with a set of exercises
and has an indicative deadline for submitting solutions. However, these exercises are not taken
into account when computing the final score for the course, so students are completely free to work
on exercises as a way to practice their coding skills. Students need to solve new programming
exercises during evaluations (3 exercises) and exams (4 exercises). Solutions submitted during
evaluations are automatically graded based on the number of passed unit tests for the exercise.
Solutions submitted during exams are manually graded in the same way as for course A. Each
edition of the course is taken by about 400 students.

We opted to use two different courses that are structured quite differently to make sure our
framework is generally applicable in other courses where the same behavioural data can be collec-
ted.

2.2 Learning environment

Both courses use the same in-house online learning environment. This online learning environment
promotes active learning through problem solving (Prince, 2004). Each course edition has its own

4



Figure 2: Student view of a module in the online learning environment from which we collected
our data, showing two series of six exercises in the learning path of course A. Each series has its
own deadline. The status column shows a global status for each exercise based on the last solution
submitted. The class progress column visualises global status for each exercise for all students
subscribed in the course. Icons on the left show a global status for each exercise based on the last
submission submitted before the series deadline.

module, with a learning path that groups exercises in separate series (Figure 2). Course A has one
series per covered programming topic (10 series in total) and course B has one series per lab session
(20 series in total). A submission deadline is set for each series. The learning environment is also
used to take tests and exams, within series that are only accessible for participating students.

Throughout a course edition, students can continuously submit solutions for programming
exercises and immediately receive feedback upon each submission, even during tests and exams.
This rich feedback is automatically generated by an online judge and unit tests linked to each
exercise (Wasik et al., 2018). Guided by that feedback, students can track potential errors in their
code, remedy them and submit an updated solution. A more detailed description of the process
that students go through when solving programming exercises in the online learning environment
can be found in supplementary material. There is no restriction on the number of solutions
that can be submitted per exercise, and students can continue to submit solutions after a series
deadline. All submitted solutions are stored, but only the last submission before the deadline is
taken into account to determine the status (and grade) of an exercise for a student. One of the
effects of active learning, triggered by exercises with deadlines and automated feedback, is that
most learning happens during the semester as can be seen on the heatmap in Figure 3.

5



Figure 3: Heatmap showing the distribution per day of all 176 535 solutions submitted during the
2018-2019 edition of course A. The darker the colour, the more submissions were made on that day.
A lighter blue means there are few submissions on that day. A light grey square means that no
submissions were made that day. Weekly lab sessions for different groups on Monday afternoon,
Friday morning and Friday afternoon, where we can see darker squares. Weekly deadlines for
mandatory exercises were on Tuesdays at 22:00. There were four exam sessions for different
groups in January. There is little activity in the exam periods, except for days where there was
an exam. The course is not taught in the second semester, so there is very little activity there.
Two exam sessions were organised in August and September granting an extra chance to students
who failed on their exam in January.

2.3 Submission data

We exported data from the learning environment on all solutions submitted by students during each
course edition included in the study. Each solution has a submission timestamp with precision
down to the second and is linked to a course edition, series in the learning path, exercise and
student. We did not use the actual source code submitted by students, but did use the status
describing the global assessment made by the learning environment: correct, wrong, compilation
error, runtime error, time limit exceeded, memory limit exceeded, or output limit exceeded.

Comparison of student behaviour between different editions of the same course is enabled by
computing snapshots for each edition at series deadlines. Because course editions follow the same
structure, we can align their series and compare snapshots for corresponding series. Corresponding
snapshots represent student performance at intermediate points during the semester and their
chronology also allows longitudinal analysis within the semester. Course A has snapshots for the
five series of the first unit (labelled S1-S5), a snapshot for the evaluation of the first unit (labelled
E1), snapshots for the five series of the second unit (labelled S6-S10), a snapshot for the evaluation
of the second unit (labelled E2) and a snapshot for the exam (labelled E3). Course B has snapshots
for the first ten lab sessions (labelled S1-S10), a snapshot for the first evaluation (labelled E1),
snapshots for the next series of seven lab sessions (labelled S11-S17), a snapshot for the second
evaluation (labelled E2), snapshots for the last three lab sessions (S18-S20) and a snapshot for the
exam (labelled E3).

It is important to stress that a snapshot of a course edition measures student performance only
using the information available at the time the snapshot was taken. As a result, the snapshot
does not take into account submissions after its timestamp. The learning behaviour of a student
is expressed as a set of features extracted from the raw submission data. We identified different
types of features (see appendix A) that indirectly quantify certain behavioural aspects of students
practicing their programming skills. When and how long do students work on their exercises? Can
students correctly solve an exercise and how much feedback do they need to accomplish this? What
kinds of mistakes do students make while solving programming exercises? Do students further
optimise the quality of their solution after it passes all unit tests, based on automated feedback
or publication of sample solutions? Note that there is no one-on-one relationship between these
behavioural aspects and feature types. Some aspects will be covered by multiple feature types,
and some feature types incorporate multiple behavioural aspects. We will therefore need to take
into account possible dependencies between feature types while making predictions.

A feature type essentially makes one observation per student per series. Each feature type
thus results in multiple features: one for each series in the course (excluding series for evaluations

6



and exams). In addition, the snapshot also contains a feature for the average of each feature
type across all series. We do not use observations per individual exercise, as the actual exercises
might differ between course editions. Snapshots taken at the deadline of an evaluation or later,
also contain the score a student obtained for the evaluation. These features of the snapshot can
be used to predict whether a student will finally pass/fail the course. In addition, the snapshot
also contains a label indicating whether the student passed or failed that is used during training
and testing of classification algorithms. Students that did not take part in the final examination,
automatically fail the course.

Since course B has no hard deadlines, we left out deadline-related features from its snapshots
(first dl, last dl and nr dl; see appendix A). To investigate the impact of deadline-related
features, we also made predictions for course A that ignore these features.

2.4 Classification algorithms

We evaluated four classification algorithms to make pass/fail predictions from student beha-
viour: stochastic gradient descent (Ferguson, 1982), logistic regression (Kleinbaum, 1994), sup-
port vector machines (Cortes & Vapnik, 1995), and random forests (Svetnik et al., 2003). We
used implementations of these algorithms from scikit-learn (Pedregosa et al., 2011) and optim-
ised model parameters for each algorithm by cross-validated grid-search over a parameter grid
(sklearn.model selection.GridSearchCV).

Readers unfamiliar with machine learning can think of these specific algorithms as black boxes,
but we briefly explain the basic principles of classification for their understanding. Supervised
learning algorithms use a dataset that contains both inputs and desired outputs to build a model
that can be used to predict the output associated with new inputs. The dataset used to build the
model is called the training set and consists of training examples, with each example represented
as an array of input values (feature vector). Classification is a specific case of supervised learning
where the outputs are restricted to a limited set of values (labels), in contrast to for example
all possible numerical values with a range. Classification algorithms are validated by splitting
a dataset of labelled feature vectors into a training set and a test set, building a model from
the training set, and evaluating the accuracy of its predictions on the test set. Keeping training
and test data separate is crucial to avoid bias during validation. A standard method to make
unbiased predictions for all examples in a dataset is k-fold cross-validation: partition the dataset
in k subsets and then perform k experiments that each take one subset for evaluation and the
other k-1 subsets for training the model.

Pass/fail prediction is a binary classification problem with two possible outputs: passing or
failing a course. We evaluated the accuracy of the predictions for each snapshot and each classi-
fication algorithm with three different types of training sets. As we have data from three editions
of each course, the largest possible training set to make predictions for the snapshot of a course
edition combines the corresponding snapshots from the two remaining course editions. We also
made predictions for a snapshot using each of its corresponding snapshots as individual training
sets to see if we can still make accurate predictions based on data from only one other course edi-
tion. Finally, we also made predictions for a snapshot using 5-fold cross-validation to compare the
quality of predictions based on data from the same or another cohort of students. Note that the
latter strategy is not applicable to make predictions in practice, because we will not have pass/fail
results as training labels while taking snapshots during the semester. To make predictions for a
snapshot, we can in practice rely only on corresponding snapshots from previous course editions.
However, because we can assume that different editions of the same course yield independent data,
we also used snapshots from future course editions in our experiments.

There are many metrics that can be used to evaluate how accurately a classifier predicted which
students will pass or fail the course from the data in a given snapshot. Predicting a student will pass
the course is called a positive prediction, and predicting they will fail the course is called a negative
prediction. Predictions that correspond with the actual outcome are called true predictions, and
predictions that differ from the actual outcome are called false predictions. This results in four
possible combinations of predictions: true positives (TP), true negatives (TN), false positives

7



(FP) and false negatives (FN). Two standard accuracy metrics used in information retrieval are
precision (TP/(TP+FP)) and recall (TP/(TP+FN)). The latter is also called sensitivity if used
in combination with specificity (TN/(TN+FP)).

Many studies for pass/fail prediction use accuracy ((TP+TN)/(TP+TN+FP+FN)) as a single
performance metric. However, this can yield misleading results. For example, let’s take a dummy
classifier that always “predicts” students will pass, no matter what. This is clearly a bad classifier,
but it will nonetheless have an accuracy of 75% for a course where 75% of the students pass. In
our study, we will therefore use two more complex metrics that take these effects into account:
balanced accuracy and F1-score. Balanced accuracy is the average of sensitivity and specificity.
The F1-score is the harmonic mean of precision and recall. If we go back to our example, the
optimistic classifier that consistently predicts that all students will pass the course and thus fails
to identify any failing student will have a balanced accuracy of 50% and an F1-score of 75%. Under
the same circumstances, a pessimistic classifier that consistently predicts that all students will fail
the course has a balanced accuracy of 50% and an F1-score of 0%.

2.5 Pass/fail predictions

In summary, Figure 1 outlines the entire flow of the proposed pass/fail prediction framework. It
starts by extracting metadata for all submissions students made so far within a course (timestamp,
status, student, exercise, series) and collecting their marks on intermediate tests and final exams
(step 1). In practice, applying the framework on a student cohort in the current course edition
only requires submission metadata and pass/fail outcomes from student cohorts in previous course
editions. Successive course editions are then aligned by identifying fixed time points throughout
the course where predictions are made, for example at submission deadlines, intermediate tests
or final exams (step 2). We conducted a longitudinal study to evaluate the accuracy of pass/fail
predictions at successive stages of a course (step 3). This is done by extracting features from the
raw submission metadata of one or more course editions and training machine learning models
that can identify at-risk students during other course editions. Our scripts that implement this
framework are provided as supplementary material. Teachers can also interpret the behaviour of
students in their class by analysing the feature weights of the machine learning models (step 4).

3 Results and discussion

We evaluated the performance of four classification algorithms for pass/fail predictions in a longit-
udinal sequence of snapshots from course A and B: stochastic gradient descent (Figure 4), logistic
regression (Figure 5), support vector machines (Figure 6), and random forests (Figure 7). For
each classifier, course and snapshot, we evaluated 12 predictions for the following combinations of
training and test sets: train on one edition and test on another edition; train on two editions and
test on the other edition; train and test on one edition using 5-fold cross validation. In addition,
we made predictions for course A using both the full set of features and a reduced feature set that
ignores deadline-related features. We discuss the results in terms of accuracy, potential for early
detection, and interpretability.

3.1 Accuracy

The overall conclusion from the longitudinal analysis is that indirectly measuring how students
practice their coding skills by solving programming exercises (formative assessments) in combin-
ation with directly measuring how they perform on intermediate evaluations (summative assess-
ments), allows us to predict with high accuracy if students will pass or fail a programming course.
The signals to make such predictions seem to be present in the data, as we come to the same
conclusions irrespective of the course, classification algorithm, or performance metric evaluated in
our study. Overall, logistic regression was the best performing classifier for both courses, but the
difference compared to the other classifiers is small.

8



Figure 4: Performance of stochastic gradient descent classifiers for pass/fail predictions in a lon-
gitudinal sequence of snapshots from courses A (all features and reduced set of features) and B,
measured by balanced accuracy and F1-score. Dots represent performance of a single prediction,
with 12 predictions for each group of corresponding snapshots (columns). Solid line connects av-
erages of the performances for each group of corresponding snapshots.

9



Figure 5: Performance of logistic regression classifiers for pass/fail predictions in a longitudinal
sequence of snapshots from courses A (all features and reduced set of features) and B, measured
by balanced accuracy and F1-score. Dots represent performance of a single prediction, with 12
predictions for each group of corresponding snapshots (columns). Solid line connects averages of
the performances for each group of corresponding snapshots.

10



Figure 6: Performance of support vector machine classifiers for pass/fail predictions in a longit-
udinal sequence of snapshots from courses A (all features and reduced set of features) and B,
measured by balanced accuracy and F1-score. Dots represent performance of a single prediction,
with 12 predictions for each group of corresponding snapshots (columns). Solid line connects av-
erages of the performances for each group of corresponding snapshots.

11



Figure 7: Performance of random forest classifiers for pass/fail predictions in a longitudinal se-
quence of snapshots from courses A (all features and reduced set of features) and B, measured
by balanced accuracy and F1-score. Dots represent performance of a single prediction, with 12
predictions for each group of corresponding snapshots (columns). Solid line connects averages of
the performances for each group of corresponding snapshots.

12



When we compare the longitudinal trends of balanced accuracy for the predictions of both
courses, we see that course A starts with a lower balanced accuracy at the first snapshot, but its
accuracy increases faster and is slightly higher at the end of the semester. At the start of the
semester at snapshot S1, course A has an average balanced accuracy between 60% and 65% and
course B around 70%. Nearly halfway through the semester, before the first evaluation, we see an
average balanced accuracy around 70% for course A at snapshot S5 and between 70% and 75%
for course B at snapshot S8. After the first evaluation, we can make predictions with a balanced
accuracy between 75% and 80% for both courses. The predictions for course B stay within this
range for the rest of the semester, but for course A we can consistently make predictions with an
average balanced accuracy of 80% near the end of the semester.

Compared to the accuracy results of Kovacic (2012), we see a 15-20% increase for our balanced
accuracy results. Our balanced accuracy results are similar to the accuracy results of Livieris
et al. (2019), who used semi-supervised machine learning. Asif et al. (2017) achieve an accuracy
of about 80% when using one cohort of training and another cohort for testing, which is again
similar to our balanced accuracy results. All of these studies used prior academic history as the
basis for their methods, which we do not use in our framework. We also see similar results as
compared to Vihavainen (2013) where we don’t have to rely on data collection that interferes with
the learning process. Note that we are comparing the basic accuracy results of prior studies with
the more reliable balanced accuracy results of our framework.

F1-scores follow the same trend as balanced accuracy, but the inclination is even more pro-
nounced because it starts lower and ends higher. It shows another sharp improvement of predictive
performance for both courses when students practice their programming skills in preparation of
the final exam (snapshot E3). This underscores the need to keep organising final summative
assessments as catalysts of learning, even for courses with a strong focus on active learning.

The variation in predictive accuracy for a group of corresponding snapshots is higher for course
A than for course B. This might be explained by the fact that successive editions of course B use
the same set of exercises, supplemented with evaluation and exam exercises from the previous
edition, whereas each edition of course A uses a different selection of exercises.

Predictions made with training sets from the same student cohort (5-fold cross-validation)
perform better than those with training sets from different cohorts (see supplementary material
for details). This is more pronounced for F1-scores than for balanced accuracy but the differences
are small enough so that nothing prevents us from building classification models with historical
data from previous student cohorts to make pass/fail predictions for the current cohort, which is
something that can’t be done in practice with data from the same cohort as pass/fail information is
needed during the training phase. In addition, we found no significant performance differences for
classification models using data from a single course edition or combining data from two course
editions. Given that cohort sizes are large enough, this tells us that accurate predictions can
already be made in practice with historical data from a single course edition. This is also relevant
when the structure of a course changes, because we can only make predictions from historical data
for course editions whose snapshots align.

The need to align snapshots is also the reason why we had to build separate models for courses
A and B since both have differences in course structure. The models, however, were built using the
same set of feature types. Because course B does not work with hard deadlines, deadline-related
feature types could not be computed for its snapshots. This missing data and associated features
had no impact on the performance of the predictions. Deliberately dropping the same feature
types for course A also had no significant effect on the performance of predictions, illustrating
that the training phase is where classification algorithms decide themselves how the individual
features will contribute to the predictions. This frees us from having to determine the importance
of features beforehand, allows us to add new features that might contribute to predictions even if
they correlate with other features, and makes it possible to investigate afterwards how important
individual features are for a given classifier (see section 3.3).

Even though the structure of the courses is quite different, our method achieves high accuracy
results for both courses. The results for course A with reduced features also still gives accurate
results. This indicates that the method should be generalisable to other courses where similar

13



data can be collected, even if the structure is quite different or when some features are impossible
to calculate due to the course structure.

3.2 Early detection

Accuracy of predictions systematically increases as we capture more of student behaviour during
the semester. But surprisingly we can already make quite accurate predictions early on in the
semester, long before students take their first evaluation. Because of the steady trend, predictions
for course B at the start of the semester are already reliable enough to serve as input for student
feedback or teacher interventions. It takes some more time to identify at-risk students for course
A, but from week four or five onwards the predictions may also become an instrument to design
remedial actions for this course. Hard deadlines and graded exercises are a strong enforcement
of active learning behaviour on the students of course A, and might disguise somewhat more the
motivation of students to work on their programming skills. This might explain why it takes a bit
longer to properly measure student motivation for course A than for course B.

3.3 Interpretability

So far, we have considered classification models as black boxes in our longitudinal analysis of
pass/fail predictions. However, many machine learning techniques can tell us something about the
contribution of individual features to make the predictions. In the case of our pass/fail predictions,
looking at the importance of feature types and linking them to aspects of practising programming
skills, might give us insights into what kind of behaviour promotes or inhibits learning, or has no
or a minor effect on the learning process. Temporal information can tell us what behaviour makes
a steady contribution to learning or where we see shifts throughout the semester.

This interpretability was a considerable factor in our choice of the classification algorithms we
investigated in this study. Since we identified logistic regression as the best-performing classifier,
we will take a closer look at feature contributions in its models. These models are explained by
the feature weights in the logistic regression equation, so we will express the importance of a
feature as its actual weight in the model. We use a temperature scale when plotting importances:
white for zero importance, a red gradient for positive importance values and a blue gradient for
negative importance values. A feature importance w can be interpreted as follows for logistic
regression models: an increase of the feature value by one standard deviation increases the odds
of passing the course by a factor of ew when all other feature values remain the same (Molnar,
2019). The absolute value of the importance determines the impact the feature has on predictions.
Features with zero importance have no impact because e0 = 1. Features represented with a light
colour have a weak impact and features represented with a dark colour have a strong impact.
As a reference, an importance of 0.7 doubles the odds for passing the course with each standard
deviation increase of the feature value, because e0.7 ∼ 2. The sign of the importance determines
whether the feature promotes or inhibits the odds of passing the course. Features with a positive
importance (red colour) will increase the odds with increasing feature values, and features with a
negative importance (blue colour) will decrease the odds with increasing feature values.

To simulate that we want to make predictions for each course edition included in this study, we
trained logistic regression models with data from the remaining two editions of the same course. A
label “edition 18-19” therefore means that we want to make predictions for the 2018-2019 edition
of a course with a model built from the 2016-2017 and 2017-2018 editions of the course. However,
in this case we are not interested in the predictions themselves, but in the importance of the
features in the models. The importance of all features for each course edition can be found in
the supplementary material. We will restrict our discussion by highlighting the importance of a
selection of feature types for the two courses.

For course A, we look into the evaluation scores (Figure 8) and the feature types correct after 15m

(Figure 9) and wrong (Figure 10). Evaluation scores have a very strong impact on predictions,
and high evaluation scores increase the odds of passing the course. This comes as no surprise, as
both the evaluations and exams are summative assessments that are organised and graded in the

14



Figure 8: Importance of evaluation scores in the logistic regression models for course A (full feature
set). Reds mean that a growth in the feature value for a student increases the odds of passing the
course for that student. The darker the colour the larger this increase will be.

same way. Although the difficulty of evaluation exercises is lower than those of exam exercises,
evaluation scores already are good predictors for exam scores. Also note that these features only
show up in snapshots taken at or after the corresponding evaluation. They have zero impact on
predictions for earlier snapshots, as the information is not available at the time these snapshots
are taken.

The second feature type we want to highlight is correct after 15m: the number of exercises in
a series where the first correct submission was made within fifteen minutes after the first submission
(Figure 9). Note that we can’t directly measure how long students work on an exercise, as they
may write, run and test their solutions on their local machine before their first submission to
the learning platform. Rather, this feature type measures how long it takes students to find and
remedy errors in their code (debugging), after they start getting automatic feedback from the
learning platform.

For exercise series in the first unit of course A (series 1-5), we generally see that the features
have a positive impact (red). This means that students will more likely pass the course if they
are able to quickly remedy errors in their solutions for these exercises. The first and fourth series
are an exception here. The fact that students need more time for the first series might reflect
that learning something new is hard at the beginning, even if the exercises are still relatively easy.
Series 4 of course A covers strings as the first compound data type of Python in combination with
nested loops, where (unnested) loops themselves are covered in series 3. This complex combination
might mean that students generally need more time to debug the exercises in series 4.

For the series of the second unit (series 6-10), we observe two different effects. The impact
of these features is zero for the first few snapshots (grey bottom left corner). This is because
the exercises from these series were not yet published at the time of those snapshots, where all
series of the first unit were available from the start of the semester. For the later snapshots, we
generally see a negative (blue) weight associated with the features. It might seem counterintuitive
and contradicts the explanation given for the series of the first unit. However, the exercises of the
second unit are a lot more complex than those of the first unit. This up to a point that even for
good students it is hard to debug and correctly solve an exercise in only 15 minutes. Students
that need less than 15 minutes at this stage might be bypassing learning by copying solutions from
fellow students instead of solving the exercises themselves. An exception to this pattern are the
few red squares forming a diagonal in the middle of the bottom half. These squares correspond
with exercises that are solved as soon as they become available as opposed to waiting for the
deadline. A possible explanation for these few slightly positive weights is that these exercises are

15



Figure 9: Importance of feature type correct after 15m (the number of exercises in a series
where the first correct submission was made within fifteen minutes after the first submission) in
logistic regression models for course A (full feature set). Reds mean that a growth in the feature
value for a student increases the odds of passing the course for that student. The darker the colour
the larger this increase will be. Blues mean that a growth in the feature value decreases the odds.
The darker the colour the larger this decrease will be.

solved by highly-motivated, top students.
Finally, if we look at the feature type wrong (Figure 10), submitting a lot of submissions with

logical errors mostly has a positive impact on the odds of passing the course. This underscores the
old adage that practice makes perfect, as real learning happens where students learn from their
mistakes. Exceptions to this rule are found for series 2, 3, 9 and 10. The lecturer and teaching
assistants identify the topics covered in series 2 and 9 by far as the easiest topics covered in the
course, and identify the topics covered in series 3, 6 and 10 as the hardest. However, it does not
feel very intuitive that being stuck with logical exercises longer than other students either inhibits
the odds for passing on topics that are extremely hard or easy or promotes the odds on topics with
moderate difficulty. This shows that interpreting the importance of feature types is not always
straightforward.

For course B, we look into the evaluation scores (Figure 11) and the feature types comp error

(Figure 12) and wrong (Figure 13). The importance of evaluation scores is similar as for course
A, although their relative impact on the predictions is slightly lower. The latter might be caused
by automatic grading of evaluation exercises, where exam exercises are graded by hand. The fact
that the second evaluation is scheduled a little bit earlier in the semester than for course A, makes
that pass/fail predictions for course B can also rely earlier on this important feature. However,
we do not see a similar increase of the global performance metrics around the second evaluation
of course B, as we see for the first evaluation.

Learning to code requires mastering two major competences: i) getting familiar with the syntax
rules of a programming language to express the steps for solving a problem in a formal way, so
that the algorithm can be executed by a computer, and ii) problem solving itself. As a result,
we can make a distinction between different kinds of errors in source code. Compilation errors
are mistakes against the syntax of the programming language, whereas logical errors result from

16



Figure 10: Importance of feature type wrong (the number of wrong submissions in a series) in
logistic regression models for course A (full feature set). Reds mean that a growth in the feature
value for a student increases the odds of passing the course for that student. The darker the colour
the larger this increase will be. Blues mean that a growth in the feature value decreases the odds.
The darker the colour the larger this decrease will be

Figure 11: Importance of evaluation scores in the logistic regression models for course B. Reds
mean that a growth in the feature value for a student increases the odds of passing the course for
that student. The darker the colour the larger this increase will be.

17



Figure 12: Importance of feature type comp error (the number of submissions with compilation
errors in a series) in logistic regression models for course B. Reds mean that a growth in the feature
value for a student increases the odds of passing the course for that student. The darker the colour
the larger this increase will be. Blues mean that a growth in the feature value decreases the odds.
The darker the colour the larger this decrease will be.

solving a problem with a wrong algorithm. When comparing the importance of the number of
compilation (Figure 12) and logical errors (Figure 13) students make while practising their coding
skills, we see a clear difference. Making a lot of compilation errors has a negative impact on
the odds for passing the course (blue colour dominates in Figure 12), whereas making a lot of
logical errors makes a positive contribution (red colour dominates in Figure 13). This aligns
with the claim of Edwards et al. (2018) that problem solving is a higher-order learning task in
Bloom’s Taxonomy (analysis and synthesis) than language syntax (knowledge, comprehension,
and application). Students who get stuck longer in the mechanics of a programming language
will more likely fail the course, whereas students who make a lot of logical errors and properly
learn from them will more likely pass the course. So making mistakes is beneficial for learning,
but it depends what kind of mistakes. We also looked at the number of solutions with logical
errors while interpreting feature types for course A. Although we hinted there towards the same
conclusions as for course B, the signals were less consistent. This shows that interpreting feature
importances always needs to take the educational context into account. This can also be seen
in Figure 9, where some weeks contribute positively and some negatively. The reasons for these
differences depend on the content of the course, which requires knowledge of the course contents
to interpret correctly.

4 Conclusions and future work

In this manuscript, we presented a classification framework for predicting if students will likely
pass or fail introductory programming courses. The framework already yields high-accuracy pre-
dictions early on in the semester and is privacy-friendly because it only works with metadata from
programming challenges solved by students while working on their programming skills. Being able
to identify at-risk students early on in the semester opens windows for remedial actions to improve
the overall success rate of students.

We validated the framework by building separate classifiers for two courses because of differ-
ences in course structure, but using the same set of features for training models. The results showed

18



Figure 13: Importance of feature type wrong (the number of submissions with logical errors in a
series) in logistic regression models for course B. Reds mean that a growth in the feature value
for a student increases the odds of passing the course for that student. The darker the colour the
larger this increase will be. Blues mean that a growth in the feature value decreases the odds.
The darker the colour the larger this decrease will be.

that submission metadata from previous student cohorts can be used to make predictions about
the current cohort of students, even if course editions use different sets of exercises or the courses
are structured differently. Making predictions requires aligning snapshots between successive edi-
tions of a course, where students have the same expected progress at corresponding snapshots.
Historical metadata from a single course edition suffices if group sizes are large enough. Different
classification algorithms can be plugged into the framework, but logistic regression resulted in the
best-performing classifiers.

Apart from their application to make pass/fail predictions, an interesting side-effect of classific-
ation models that map indirect measurements of learning behaviour onto mastery of programming
skills is that they allow us to interpret what behavioural aspects contribute to learning to code.
Visualisation of feature importance turned out to be a useful instrument for linking individual
feature types with student behaviour that promotes or inhibits learning. We applied this inter-
pretability to some important feature types that popped up for the two courses included in this
study.

Our study has several strengths and promising implications for future practice and research.
First, we were able to predict success based on historical metadata from earlier cohorts, and we are
already able to do that early on in the semester. In addition to that, the accuracy of our predictions
is similar to those of earlier efforts (Asif et al., 2017; Kovacic, 2012; Vihavainen, 2013) while we
are not using prior academic history or interfering with the students’ usual learning workflows.
However, there are also some limitations and work for the future. While our visualisations of the
features (Figures 9 through 13) are helpful to indicate which features are important at which stage
of the course in view of increasing versus decreasing the odds of passing the course, they may not
be oversimplified and need to be carefully interpreted and placed into context. This is where the
expertise and experience of teachers comes in. These visualisations can be interpreted by teachers
and further contextualised towards the specific course objectives. For example, teachers know the
content and goals of every series of exercises and they can use the information presented in our
visualisations in order to investigate why certain series of exercises are more or less important in
view of passing the course. In addition, they may use the information to further redesign their
course.

19



We can thus conclude that the proposed framework achieves the objectives set for accuracy,
early prediction and interpretability. Having this new framework at hand immediately raises some
follow-up research questions that urge for further exploration: i) Do we inform students about
their odds of passing a course? How and when do we inform students about their performance
in an educationally responsible way? What learning analytics do we use to present predictions to
students, and do we only show results or also explain how the data led to the results? How do
students react to the announcement of their chance at passing the course? How do we ensure that
students are not demotivated? ii) What actions could teachers take upon early insights which
students will likely fail the course? What recommendations could they make to increase the odds
that more students will pass the course? How could interpretations of important behavioural
features be translated into learning analytics that give teachers more insight into how students
learn to code? iii) Can we combine student progress (what programming skills does a student
already have and at what level of mastery), student preferences (what skills does a student wants
to improve on), and intrinsic properties of programming exercises (what skills are needed to solve
an exercise and how difficult is it) into dynamic learning paths that recommend exercises to
optimise the learning effect for individual students?

References

Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate stu-
dents’ performance using educational data mining. Computers & Education, 113 , 177–
194. URL: https://www.sciencedirect.com/science/article/pii/S0360131517301124.
doi:10.1016/j.compedu.2017.05.007.

Baker, R. S. J. d., & Yacef, K. (2009). The State of Educational Data Mining in 2009: A
Review and Future Visions. Journal of Educational Data Mining , 1 , 3–17. URL: https://
jedm.educationaldatamining.org. doi:10.5281/zenodo.3554657. Number: 1.

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory programming. ACM
SIGCSE Bulletin, 39 , 32–36. URL: https://doi.org/10.1145/1272848.1272879. doi:10.
1145/1272848.1272879.

Binns, R., Van Kleek, M., Veale, M., Lyngs, U., Zhao, J., & Shadbolt, N. (2018). ’It’s Reducing a
Human Being to a Percentage’: Perceptions of Justice in Algorithmic Decisions. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems CHI ’18 (pp. 1–14).
New York, NY, USA: Association for Computing Machinery. URL: https://doi.org/10.
1145/3173574.3173951. doi:10.1145/3173574.3173951.

Black, P., & Wiliam, D. (1998). Assessment and Classroom Learning. Assessment in
Education: Principles, Policy & Practice, 5 , 7–74. URL: https://doi.org/10.1080/

0969595980050102. doi:10.1080/0969595980050102. Publisher: Routledge eprint: ht-
tps://doi.org/10.1080/0969595980050102.

Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. In Machine Learning (pp. 273–297).

Dutt, A., Ismail, M. A., & Herawan, T. (2017). A Systematic Review on Educational Data Mining.
IEEE Access, 5 , 15991–16005. doi:10.1109/ACCESS.2017.2654247. Conference Name: IEEE
Access.

Edwards, J. M., Fulton, E. K., Holmes, J. D., Valentin, J. L., Beard, D. V., & Parker, K. R.
(2018). Separation of syntax and problem solving in Introductory Computer Programming. In
2018 IEEE Frontiers in Education Conference (FIE) (pp. 1–5). doi:10.1109/FIE.2018.8658852
iSSN: 2377-634X.

Feldman, M. Q., Wang, Y., Byrd, W. E., Guimbretière, F., & Andersen, E. (2019). Towards
answering &#x201c;Am I on the right track?&#x201d; automatically using program synthesis.

20

https://www.sciencedirect.com/science/article/pii/S0360131517301124
http://dx.doi.org/10.1016/j.compedu.2017.05.007
https://jedm.educationaldatamining.org
https://jedm.educationaldatamining.org
http://dx.doi.org/10.5281/zenodo.3554657
https://doi.org/10.1145/1272848.1272879
http://dx.doi.org/10.1145/1272848.1272879
http://dx.doi.org/10.1145/1272848.1272879
https://doi.org/10.1145/3173574.3173951
https://doi.org/10.1145/3173574.3173951
http://dx.doi.org/10.1145/3173574.3173951
https://doi.org/10.1080/0969595980050102
https://doi.org/10.1080/0969595980050102
http://dx.doi.org/10.1080/0969595980050102
http://dx.doi.org/10.1109/ACCESS.2017.2654247
http://dx.doi.org/10.1109/FIE.2018.8658852


In Proceedings of the 2019 ACM SIGPLAN Symposium on SPLASH-E SPLASH-E 2019 (pp.
13–24). New York, NY, USA: Association for Computing Machinery. URL: https://doi.org/
10.1145/3358711.3361626. doi:10.1145/3358711.3361626.

Ferguson, T. S. (1982). An Inconsistent Maximum Likelihood Estimate. Journal of the Amer-
ican Statistical Association, 77 , 831–834. URL: https://www.tandfonline.com/doi/abs/10.
1080/01621459.1982.10477894. doi:10.1080/01621459.1982.10477894. Publisher: Taylor &
Francis eprint: https://www.tandfonline.com/doi/pdf/10.1080/01621459.1982.10477894.

Goold, A., & Rimmer, R. (2000). Factors affecting performance in first-year computing. ACM
SIGCSE Bulletin, 32 , 39–43. URL: https://doi.org/10.1145/355354.355369. doi:10.1145/
355354.355369.

Grgić-Hlača, N., Zafar, M. B., Gummadi, K. P., & Weller, A. (2018). The Case for Process Fairness
in Learning: Feature Selection for Fair Decision Making. In Symposium on Machine Learning
and the Law (p. 11). Barcelona, Spain.

Honour, W. (1986). Predicting student performance in a beginning computer science class. ACM
SIGCSE Bulletin, . URL: https://dl.acm.org/doi/abs/10.1145/953055.5701. doi:10.
1145/953055.5701. Publisher: ACM PUB27 New York, NY, USA.

Khalifa, M., & Lam, R. (2002). Web-based learning: effects on learning process and outcome. IEEE
Transactions on Education, 45 , 350–356. doi:10.1109/TE.2002.804395. Conference Name:
IEEE Transactions on Education.

Kleinbaum, D. G. (1994). Introduction to Logistic Regression. In D. G. Kleinbaum (Ed.),
Logistic Regression: A Self-Learning Text Statistics in the Health sciences (pp. 1–38). New
York, NY: Springer. URL: https://doi.org/10.1007/978-1-4757-4108-7_1. doi:10.1007/
978-1-4757-4108-7_1.

Kovacic, Z. (2012). Predicting student success by mining enrolment data., . URL: https://
repository.openpolytechnic.ac.nz/handle/11072/1486. Accepted: 2013-04-10T01:20:26Z.

Livieris, I. E., Drakopoulou, K., Tampakas, V. T., Mikropoulos, T. A., & Pintelas, P. (2019).
Predicting Secondary School Students’ Performance Utilizing a Semi-supervised Learning Ap-
proach. Journal of Educational Computing Research, 57 , 448–470. URL: https://doi.org/
10.1177/0735633117752614. doi:10.1177/0735633117752614. Publisher: SAGE Publications
Inc.

Molnar, C. (2019). Interpretable Machine Learning . URL: https://christophm.github.io/
interpretable-ml-book/.

OECD (2021). OECD Digital Education Outlook 2021 . URL: https://www.oecd-ilibrary.org/
content/publication/589b283f-en type: doi:https://doi.org/10.1787/589b283f-en.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12 , 2825–2830. URL: http://jmlr.org/papers/v12/
pedregosa11a.html.

Prince, M. (2004). Does Active Learning Work? A Review of the Research. Journal of En-
gineering Education, 93 , 223–231. URL: https://onlinelibrary.wiley.com/doi/abs/10.

1002/j.2168-9830.2004.tb00809.x. doi:10.1002/j.2168-9830.2004.tb00809.x. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.2168-9830.2004.tb00809.x.

21

https://doi.org/10.1145/3358711.3361626
https://doi.org/10.1145/3358711.3361626
http://dx.doi.org/10.1145/3358711.3361626
https://www.tandfonline.com/doi/abs/10.1080/01621459.1982.10477894
https://www.tandfonline.com/doi/abs/10.1080/01621459.1982.10477894
http://dx.doi.org/10.1080/01621459.1982.10477894
https://doi.org/10.1145/355354.355369
http://dx.doi.org/10.1145/355354.355369
http://dx.doi.org/10.1145/355354.355369
https://dl.acm.org/doi/abs/10.1145/953055.5701
http://dx.doi.org/10.1145/953055.5701
http://dx.doi.org/10.1145/953055.5701
http://dx.doi.org/10.1109/TE.2002.804395
https://doi.org/10.1007/978-1-4757-4108-7_1
http://dx.doi.org/10.1007/978-1-4757-4108-7_1
http://dx.doi.org/10.1007/978-1-4757-4108-7_1
https://repository.openpolytechnic.ac.nz/handle/11072/1486
https://repository.openpolytechnic.ac.nz/handle/11072/1486
https://doi.org/10.1177/0735633117752614
https://doi.org/10.1177/0735633117752614
http://dx.doi.org/10.1177/0735633117752614
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://www.oecd-ilibrary.org/content/publication/589b283f-en
https://www.oecd-ilibrary.org/content/publication/589b283f-en
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2168-9830.2004.tb00809.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2168-9830.2004.tb00809.x
http://dx.doi.org/10.1002/j.2168-9830.2004.tb00809.x


Rountree, N., Rountree, J., Robins, A., & Hannah, R. (2004). Interacting factors that predict
success and failure in a CS1 course. In Working group reports from ITiCSE on Innovation and
technology in computer science education ITiCSE-WGR ’04 (pp. 101–104). New York, NY, USA:
Association for Computing Machinery. URL: https://doi.org/10.1145/1044550.1041669.
doi:10.1145/1044550.1041669.

Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P. (2003). Random
Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling.
Journal of Chemical Information and Computer Sciences, 43 , 1947–1958. URL: https://doi.
org/10.1021/ci034160g. doi:10.1021/ci034160g. Publisher: American Chemical Society.

Vihavainen, A. (2013). Predicting Students’ Performance in an Introductory Programming Course
Using Data from Students’ Own Programming Process. In 2013 IEEE 13th International Con-
ference on Advanced Learning Technologies (pp. 498–499). doi:10.1109/ICALT.2013.161 iSSN:
2161-377X.

Vihavainen, A., Luukkainen, M., & Kurhila, J. (2013). Using students’ programming behavior
to predict success in an introductory mathematics course. In Educational Data Mining 2013 .
Citeseer.

Wasik, S., Antczak, M., Badura, J., Laskowski, A., & Sternal, T. (2018). A Survey on Online
Judge Systems and Their Applications. ACM Computing Surveys, 51 , 3:1–3:34. URL: https:
//doi.org/10.1145/3143560. doi:10.1145/3143560.

Watson, C., & Li, F. W. (2014). Failure rates in introductory programming revisited. In Pro-
ceedings of the 2014 conference on Innovation & technology in computer science education IT-
iCSE ’14 (pp. 39–44). New York, NY, USA: Association for Computing Machinery. URL:
https://doi.org/10.1145/2591708.2591749. doi:10.1145/2591708.2591749.

Wiliam, D. (2011). What is assessment for learning? Studies in Educational Evaluation, 37 ,
3–14. URL: https://www.sciencedirect.com/science/article/pii/S0191491X11000149.
doi:10.1016/j.stueduc.2011.03.001.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A.,
Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes,
A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R.,
Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., ’t Hoen,
P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A.,
Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes,
E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van
Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., &
Mons, B. (2016). The FAIR Guiding Principles for scientific data management and steward-
ship. Scientific Data, 3 , 160018. URL: https://www.nature.com/articles/sdata201618.
doi:10.1038/sdata.2016.18. Bandiera abtest: a Cg type: Nature Research Journals Number:
1 Primary atype: Comments & Opinion Publisher: Nature Publishing Group Subject term:
Publication characteristics;Research data Subject term id: publication-characteristics;research-
data.

Xing, W., & Du, D. (2019). Dropout Prediction in MOOCs: Using Deep Learning for Per-
sonalized Intervention. Journal of Educational Computing Research, 57 , 547–570. URL:
https://doi.org/10.1177/0735633118757015. doi:10.1177/0735633118757015. Publisher:
SAGE Publications Inc.

22

https://doi.org/10.1145/1044550.1041669
http://dx.doi.org/10.1145/1044550.1041669
https://doi.org/10.1021/ci034160g
https://doi.org/10.1021/ci034160g
http://dx.doi.org/10.1021/ci034160g
http://dx.doi.org/10.1109/ICALT.2013.161
https://doi.org/10.1145/3143560
https://doi.org/10.1145/3143560
http://dx.doi.org/10.1145/3143560
https://doi.org/10.1145/2591708.2591749
http://dx.doi.org/10.1145/2591708.2591749
https://www.sciencedirect.com/science/article/pii/S0191491X11000149
http://dx.doi.org/10.1016/j.stueduc.2011.03.001
https://www.nature.com/articles/sdata201618
http://dx.doi.org/10.1038/sdata.2016.18
https://doi.org/10.1177/0735633118757015
http://dx.doi.org/10.1177/0735633118757015


A Feature types

• subm: numbers of submissions by student in series

• nosubm: number of exercises student did not submit any solutions for in series

• first dl: time difference in seconds between student’s first submission in series and deadline
of series

• last dl: time difference in seconds between student’s last submission in series before dead-
line and deadline of series

• nr dl: number of correct submissions in series by student before series’ deadline

• correct: number of correct submissions in series by student

• after correct: number of submissions by student after their first correct submission in the
series

• before correct: number of submissions by student before their first correct submission in
the series

• time series: time difference in seconds between the student’s first and last submission in
the series

• time correct: time difference in seconds between the student’s first submission in the series
and their first correct submission in the series

• wrong: number of submissions by student in series with logical errors

• comp error: number of submissions by student in series with compilation errors

• runtime error: number of submissions by student in series with runtime errors

• correct after 5m: number of exercises where first correct submission by student was made
within five minutes after first submission

• correct after 15m: number of exercises where first correct submission by student was made
within fifteen minutes after first submission

• correct after 2h: number of exercises where first correct submission by student was made
within two hours after first submission

• correct after 24h: number of exercises where first correct submission by student was made
within twenty-four hours after first submission

23


	Introduction
	Materials and methods
	Course structures
	Learning environment
	Submission data
	Classification algorithms
	Pass/fail predictions

	Results and discussion
	Accuracy
	Early detection
	Interpretability

	Conclusions and future work
	Feature types

