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Summary

This paper investigates two aspects of the generalized Broyden quasi-Newton method
that have a major impact on its convergence: the initial approximation of the Jacobian
and the presence of non-linearities in the secant conditions.
After reformulating the common representation of generalized Broyden, a straight-
forward interpretation is given. This leads to a natural extension of the method in
which an application-dependent physics-based surrogate model is used as initial
approximation of the (inverse) Jacobian. A carefully chosen surrogate has the poten-
tial to greatly reduce the required number of iterations.
The behavior of generalized Broyden depends strongly on the parameter that deter-
mines how many secant conditions are satisfied by the Jacobian approximation.
Respecting all secant conditions reduces it to Anderson acceleration; a single one to
Broyden’s original method. An analysis demonstrates that these two variants behave
very differently when non-linearities are present in the secant conditions: they are
ignored by Broyden, but can destabilize Anderson. On the other hand, the analy-
sis shows that Broyden tends to neglect small linear information, possibly reducing
convergence speed. To mitigate stability problems with Anderson acceleration, a
practical method to detect and remove non-linear secant information is introduced
next.
Finally, we solve a steady free-surface-flow problem using several generalized Broy-
den variants, testing the influence of the surrogate, the non-linearities and the
combination thereof. The results agree with the theoretical predictions, showing large
differences in convergence behavior. Furthermore, the proposed method effectively
negates the problems related to non-linearities in this case.
KEYWORDS:
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1 INTRODUCTION

In many fields of science and engineering, non-linear systems of equations of the form  (𝑥) = 0 must be solved. This usually
means that iterations need to be performed to find an input 𝑥 for which the residual ‖ (𝑥)‖ is smaller than a specified tolerance.
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In this paper we focus specifically on systems that are expensive to evaluate, so that consequently the function evaluations of
 (𝑥) dominate the total cost of the iterative solution process.

To solve such systems two methods were developed in the sixties, which have since pervaded many application fields:
Anderson acceleration1 and Broyden’s methods.2 The former was developed to accelerate fixed-point iterations, the latter as a
quasi-Newton method for solving non-linear systems. Although these methods seem distinctly different at first sight, both can
actually be recognized as special cases of the generalized Broyden quasi-Newton method.3 In this paper we investigate two
aspects of this method that have a significant influence on its convergence behavior: the choice of initial Jacobian approximation
and the presence of non-linearities in the secant information.

Section 2 discusses the generalized Broyden method in some detail and shows how Anderson and Broyden can be found as its
limiting cases. It is then explained how the initial approximate Jacobian can be replaced by an application-specific physics-based
surrogate model to boost convergence of the quasi-Newton iterations.

In the generalized Broyden method, inputs and outputs of  (𝑥) from previous iterations are used to approximate the inverse
Jacobian. If  (𝑥) is non-linear however, some of the earlier collected data may not be relevant anymore for the local behavior
of  (𝑥) and can lead to an inaccurate approximation of the inverse Jacobian. To comprehend why and how this can impact
convergence, Section 3 analyses how generalized Broyden behaves when non-linearities are encountered. Interestingly, we find a
clear distinction between Anderson and Broyden; our new insights can be summarized as follows. Broyden tends to neglect small
linear information, which may lead to slower convergence. More importantly, Anderson acceleration amplifies non-linearities
present in the secant information, which can lead to convergence issues.

To mitigate these issues with Anderson acceleration, Section 4 proposes a new method to detect and systematically remove
obstructive non-linear data on the fly.

In Section 5, the methods discussed in the earlier sections are applied to a steady free-surface-flow problem, where  (𝑥)
is a Reynolds-averaged Navier-Stokes solver. Attention is focused on the influence of the surrogate model, the impact of non-
linearities and the combination thereof. The results support our conclusions about the impact of non-linearities on generalized
Broyden, and demonstrate that the proposed method works.

2 THE GENERALIZED BROYDEN METHOD WITH PHYSICS-BASED SURROGATE

Let us first introduce the notation conventions used in this paper. Curly letters such as  are used for non-linear functions.
Matrices are denoted by upper case, vectors by lower case, e.g. 𝐹 and 𝑓 .

In this paper, systems of equations of the form
 (𝑥) = 0 (1)

are considered, where  ∶ ℝ𝑛 → ℝ𝑛 is a continuously differentiable operation. The standard approach for solving non-linear
systems of the form (1), is by means of Newton-Raphson iterations, where given an approximation 𝑥𝑘 the next iterate 𝑥𝑘+1 is
calculated as

𝑥𝑘+1 = 𝑥𝑘 −  ′(𝑥𝑘)
−1𝑓𝑘 (2)

with 𝑘 the iteration number and  ′(𝑥𝑘) the Jacobian of  at 𝑥𝑘. The notation
𝑓𝑖 ≡  (𝑥𝑖) (3)

is introduced here to compactly denote function values. New iterates, 𝑥𝑘, are calculated and evaluated until the residual ‖
‖

𝑓𝑘‖‖drops below a prescribed tolerance 𝜀, where generally ‖⋅‖ corresponds to the Euclidean norm.
In many applications of practical importance, the Jacobian  ′(𝑥𝑘) is not explicitly available or its assembly may carry a

prohibitive computational cost. Its inverse can then be replaced by an approximation, 𝐺𝑘, resulting in the quasi-Newton iteration
𝑥𝑘+1 = 𝑥𝑘 − 𝐺𝑘𝑓𝑘. (4)

Only quasi-Newton methods that approximate the inverse of the Jacobian, equation (4), are discussed in this paper. For every
such method, an analogous method exists that approximates the Jacobian itself. Approximating the inverse avoids having to
solve a linear system with a (possibly dense) ℝ𝑛×𝑛 matrix in the quasi-Newton iteration, so that these methods can be executed
in a matrix-free way. With this term, we refer to the fact that the new iterate can be constructed based on a low-cost procedure
for the matrix-vector product 𝐺𝑘𝑓𝑘, avoiding the expensive construction and storage of the matrix 𝐺𝑘 itself. However, for some
quasi-Newton methods the inverse of the approximate Jacobian can be formed cheaply using the Sherman–Morrison–Woodbury
formula as long as 𝑘 ≪ 𝑛, which also results in a matrix-free quasi-Newton iteration.4
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An important class of quasi-Newton methods is formed by the generalized Broyden methods as discussed by Eyert3 and Fang
and Saad,4 where 𝐺𝑘 is constructed using input-output information of  from previous iterations. This input-output information
is stored and used in the form

Δ𝑥𝑖 ≡ 𝑥𝑖+1 − 𝑥𝑖 (5)
Δ𝑓𝑖 ≡ 𝑓𝑖+1 − 𝑓𝑖 (6)

for 𝑖 = 0, 1,… , 𝑘 − 1, where Δ𝑥𝑖 and Δ𝑓𝑖 are respectively iterate differences and corresponding function-value differences
between consecutive iterations. If 𝐺𝑘, the approximate inverse Jacobian in iteration 𝑘, relates these differences to each other, it
is said that 𝐺𝑘 fulfills the secant condition

Δ𝑥𝑖 = 𝐺𝑘Δ𝑓𝑖. (7)
The pair (Δ𝑥𝑖,Δ𝑓𝑖) will henceforth be called the secant information at iteration 𝑖. Symbolically, the ratio of the vector Δ𝑓𝑖 to
the vector Δ𝑥𝑖 can be interpreted as a central difference approximation of  ′ in direction Δ𝑥𝑖 at the midpoint

𝑥̄𝑖 =
𝑥𝑖 + 𝑥𝑖+1

2
. (8)

The secant information (Δ𝑥𝑖,Δ𝑓𝑖) can also be conceived of as a one-sided finite difference in either 𝑥𝑖 or 𝑥𝑖+1. The error with
respect to those points is first order, while for the central difference it is second order, hence the choice in this paper to relate
(Δ𝑥𝑖,Δ𝑓𝑖) to the midpoint 𝑥̄𝑖.The secant information from the 𝑚 latest iterations is collected in the matrices

𝑋𝑘 =
[

Δ𝑥𝑘−1 Δ𝑥𝑘−2 ⋯ Δ𝑥𝑘−𝑚
]

∈ ℝ𝑛×𝑚, (9)
𝐹𝑘 =

[

Δ𝑓𝑘−1 Δ𝑓𝑘−2 ⋯ Δ𝑓𝑘−𝑚
]

∈ ℝ𝑛×𝑚. (10)
If 𝑘 < 𝑚, secant information for only 𝑘 iterations is available, so the subscript 𝑘−𝑚 should in fact be replaced with max(𝑘−𝑚, 0)
in equations (9) and (10). For the sake of readability, the subscript 𝑘 − 𝑚 will be used in the remainder of the paper instead of
max(𝑘 − 𝑚, 0).

The secant conditions on 𝐺𝑘 for the 𝑚 latest iterations can be grouped together in a system
𝑋𝑘 = 𝐺𝑘𝐹𝑘. (11)

With these definitions, the generalized Broyden method defines 𝐺𝑘 recursively as
𝐺𝑘 = 𝐺𝑘−𝑚 +

(

𝑋𝑘 − 𝐺𝑘−𝑚𝐹𝑘
) (

𝐹 𝑇
𝑘 𝐹𝑘

)−1
𝐹 𝑇
𝑘 (12)

with 𝐺0 an initial estimate of the inverse Jacobian provided by the user.3,4 How expression (12) can be derived and interpreted
is explained in detail in the next section. The complete quasi-Newton procedure with a generalized Broyden approximation 𝐺𝑘is given in Algorithm 1.

Algorithm 1 Quasi-Newton with generalized Broyden.
1: choose 𝑥0, 𝐺0, 𝜀, m
2: 𝑥1 = 𝑥0 − 𝐺0 (𝑥0)
3: 𝑓1 =  (𝑥1)
4: 𝑘 = 1
5: while ‖

‖

𝑓𝑘‖‖ > 𝜀 do
6: for 𝑗 ∈

[

0, 1,⋯ , f loor
(

𝑘−1
𝑚

)]

do
7: 𝑙 = 𝑘 − 𝑗𝑚
8: 𝑋𝑙 =

[

Δ𝑥𝑙−1 Δ𝑥𝑙−2 ⋯ Δ𝑥𝑙−𝑚
]

9: 𝐹𝑙 =
[

Δ𝑓𝑙−1 Δ𝑓𝑙−2 ⋯ Δ𝑓𝑙−𝑚
]

10: end for
11: 𝑥𝑘+1 = 𝑥𝑘 − 𝐺𝑘𝑓𝑘 ⊳ evaluate recursively (matrix-free) using expression (16)
12: 𝑓𝑘+1 =  (𝑥𝑘+1)
13: 𝑘 = 𝑘 + 1
14: end while
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Interpreting generalized Broyden
Before we give an interpretation of the generalized Broyden quasi-Newton method, we convert expression (12) for 𝐺𝑘 to a more
amenable form in two steps.

First, the rightmost three terms of expression (12) can be recognized as the pseudo-inverse 𝐹 +
𝑘 of the rectangular matrix 𝐹𝑘,

defined as
𝐹 +
𝑘 =

(

𝐹 𝑇
𝑘 𝐹𝑘

)−1
𝐹 𝑇
𝑘 . (13)

The standard method for evaluating the pseudo-inverse5 uses the economy-size QR decomposition
𝐹𝑘 = 𝑄𝑘𝑅𝑘 with 𝑄𝑘 ∈ ℝ𝑛×𝑚, 𝑅𝑘 ∈ ℝ𝑚×𝑚 (14)

to simplify 𝐹 +
𝑘 , reducing expression (12) to

𝐺𝑘 = 𝐺𝑘−𝑚 +
(

𝑋𝑘 − 𝐺𝑘−𝑚𝐹𝑘
)

𝑅−1
𝑘 𝑄𝑇

𝑘 . (15)
Note that the identity 𝑄𝑇

𝑘𝑄𝑘 = 𝐼 can be used to obtain expression (15), as the columns of 𝑄𝑘 are orthonormal by definition;
on the other hand 𝑄𝑘𝑄

𝑇
𝑘 ≠ 𝐼 , because 𝑄𝑘 is rectangular. The second step is to isolate the old Jacobian 𝐺𝑘−𝑚, yielding the final

form of generalized Broyden we will use in this paper:
𝐺𝑘 = 𝑋𝑘𝑅

−1
𝑘 𝑄𝑇

𝑘 + 𝐺𝑘−𝑚

(

𝐼 − 𝐹𝑘𝑅
−1
𝑘 𝑄𝑇

𝑘

)

= 𝑋𝑘𝑅
−1
𝑘 𝑄𝑇

𝑘
(

𝑄𝑘𝑄
𝑇
𝑘
)

+ 𝐺𝑘−𝑚
(

𝐼 −𝑄𝑘𝑄
𝑇
𝑘
)

.
(16)

To evaluate the product 𝐺𝑘𝑓𝑘 that appears in the quasi-Newton expression (4), the approximate inverse Jacobian 𝐺𝑘 from
expression (16) does not need to be evaluated explicitly. It is cheaper, both in terms of storage and computational complexity, to
directly calculate the matrix-vector product in a matrix-free way. For this purpose, each term of the product 𝐺𝑘𝑓𝑘 is evaluated
from right to left (e.g. starting with 𝑄𝑇

𝑘 𝑓𝑘), avoiding the formation of large 𝑛× 𝑛 matrices. As the previous approximation 𝐺𝑘−𝑚is also not stored, this results in a recursive evaluation of expression (16).
Expression (16) admits a simpler interpretation than we could give based on expression (12). When the product 𝐺𝑘𝑓𝑘 is

taken in the quasi-Newton iteration (4), the vector 𝑓𝑘 is first split in two orthogonal parts by the complementary orthogonal
projectors 𝑄𝑘𝑄

𝑇
𝑘 and (𝐼 −𝑄𝑘𝑄

𝑇
𝑘 ). This yields a part that lies in range

(

𝑄𝑘
) and one that is orthogonal to range

(

𝑄𝑘
). We know

that range (𝑄𝑘
) is equal to range

(

𝐹𝑘
), which means that the part of 𝑓𝑘 ∈ range

(

𝑄𝑘
) is a linear combination of function-value

differences Δ𝑓𝑘−𝑖 (1 ≤ 𝑖 ≤ 𝑚). After 𝑓𝑘 has been split in two parts, a different approximate inverse Jacobian is used for each
part. The part (𝐼 − 𝑄𝑘𝑄

𝑇
𝑘 )𝑓𝑘 cannot be linked to any of the secant information included in 𝐹𝑘. Therefore the Jacobian 𝐺𝑘−𝑚from 𝑚 iterations ago is used. This can be expressed by the no-change conditions according to:

𝐺𝑘𝑣 = 𝐺𝑘−𝑚𝑣, ∀𝑣 ∉ range
(

𝐹𝑘
)

. (17)
The part𝑄𝑘𝑄

𝑇
𝑘 𝑓𝑘 is a linear combination of differencesΔ𝑓𝑖 encountered in the𝑚 previous iterations, so we can look at the secant

information stored in 𝑋𝑘 and 𝐹𝑘 to see how the function  (𝑥) behaved in previous iterations and assume the same behavior in
the current iteration. For this purpose the approximate inverse Jacobian 𝑋𝑘𝑅

−1
𝑘 𝑄𝑇

𝑘 is used, which is the solution to the secant
conditions (11) with minimum Frobenius norm, and is therefore uniquely determined.

An important condition for generalized Broyden to work, is that 𝑅𝑘 is non-singular. This requires that all Δ𝑓𝑖 in 𝐹𝑘 are linearly
independent, which we assume to hold in the rest of this paper. In practice, if two linearly dependent columns are encountered
in 𝐹𝑘, the oldest of the two columns is removed. More information about filtering out linearly dependent information can be
found in the paper by Haelterman et al.6

To conclude, the expression (16) for 𝐺𝑘 can be found as the only† matrix that satisfies both the 𝑚 secant conditions (11) and
the (𝑛 − 𝑚) no-change conditions (17). This is not only the core idea behind generalized Broyden, but also behind Broyden’s
original methods for which 𝑚 = 1.

Adding a physics-based surrogate
Efficiency of the iterative procedure demands that the number of iterations 𝑘 is much smaller than the size 𝑛 of the problem.
Hence, only a low-rank approximate inverse can be built using the available secant information. The initial estimate 𝐺0 is used

†Note that a total of 𝑛 independent vector conditions is indeed required to uniquely determine the 𝑛2 unknowns of the approximate inverse Jacobian 𝐺𝑘 ∈ ℝ𝑛×𝑛.
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to predict how the function behaves in all other directions. This makes the choice of 𝐺0 crucial: a bad one can lead to excessively
slow convergence.

Often 𝐺0 is chosen as 𝐺0 = −𝛽𝐼 , where 𝛽 is called the mixing or relaxation factor, which is between zero and one. When
solving fixed-point problems with a quasi-Newton method, this choice is rational. The fixed-point problem (𝑥) = 𝑥 can be
reformulated to a non-linear root-finding problem by setting  (𝑥) = (𝑥) − 𝑥. The quasi-Newton iteration with 𝐺0 = −𝛽𝐼 can
then be written as

𝑥𝑘+1 = 𝑥𝑘 + 𝛽𝑓𝑘
= (1 − 𝛽)𝑥𝑘 + 𝛽(𝑥𝑘).

(18)
This clearly shows how the new vector 𝑥𝑘+1 is obtained as a convex combination of the vectors 𝑥𝑘 and (𝑥𝑘) in a ratio dictated
by 𝛽, the simplest approach for solving fixed-point problems. If  is a linear operator with spectrum Σ, then the spectrum of the
operator 𝑥𝑘 → 𝑥𝑘+1 in equation (18) is (1−𝛽)+𝛽Σ. The coefficient 𝛽 should in principle be selected such that the spectral radius
of this operator is minimal. A good value 𝛽 for a given application is typically chosen based on experience, in some cases taking
system parameters into account.7 For more general functions  , whose input and output represent different physical quantities
(e.g. position and pressure for the application in Section 5), this fixed-point interpretation is not applicable.

For specific applications, a physics-based surrogate model for the inverse Jacobian
𝐺sur(Δ𝑓 ) = Δ𝑥 (19)

may be available. This 𝐺sur can for example originate from a reduced-physics or coarse-mesh approximation of  . Such a model
can replace the product of 𝐺0 with a vector as encountered in the recursive definition of 𝐺𝑘 for generalized Broyden (16), such
that 𝐺0𝑣 becomes 𝐺sur(𝑣). This surrogate can come in a number of forms—a matrix, a linear operator or even a non-linear
function—but should meet a few criteria in order to be useful:

• 𝐺sur(Δ𝑓 ) must evaluate significantly faster than  (𝑥);
• To make sure that the vector 𝑓0 ∈ ℝ𝑛 can converge completely to the zero-vector during the iterations, 𝐺sur(Δ𝑓 ) must be

surjective, i.e. map to all of ℝ𝑛. As 𝐺sur ∶ ℝ𝑛 → ℝ𝑛, it must therefore be a bijection;
• 𝐺sur(Δ𝑓 ) must provide a better approximation to the inverse Jacobian than −𝛽𝐼 for most vectors in ℝ𝑛. In other words, if

quasi-Newton iterations were done purely with 𝐺0, then 𝐺sur should provide faster convergence than −𝛽𝐼 for most inputs.
If it provides a worse approximation for a suitably small number of inputs Δ𝑓 , this need not be an issue as is demonstrated
in Section 5.

In Section 5 a steady free-surface-flow problem is solved. If 𝐺0 = −𝛽𝐼 is used as initial approximation, convergence of the
quasi-Newton iterations becomes grid-dependent. This means that a more accurate discretization of the problem not only makes
 (𝑥) more expensive to evaluate, but also slows down convergence of the quasi-Newton iterations. Using a suitable surrogate
can remove this grid-dependence.

The importance of the initialization of the approximate Jacobian in quasi-Newton methods is well-known in the field; it
was investigated e.g. by Gilbert and Lemaréchal8 and more recently by Brust et al.9 These investigations have however been
conducted without considering a physics-based surrogate.

One method, two faces: Anderson and Broyden
Since their development in the sixties, Anderson acceleration1 and Broyden’s methods2 have been two of the most popular
techniques for solving (nonsymmetric) non-linear systems.

Broyden’s original methods were extended in the eighties to the rather complex modified Broyden method.10,11 In the nineties
Eyert3 simplified this method by removing some nonessential parameters, resulting in the previously discussed generalized
Broyden method. It was only around this time—three decades after they were both introduced—that the connection between
Anderson acceleration and Broyden’s methods became apparent. Based on work by van Leuken,12 Eyert showed that Anderson
acceleration is mathematically equivalent to generalized Broyden with 𝑚 = 𝑘. This is not immediately apparent due to the
very different ideas on which Anderson and Broyden originally based their methods. While on the topic of equivalent methods,
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we mention that Anderson acceleration also corresponds to the recent quasi-Newton inverse least squares (QN-ILS) method,13

which was developed independently in the fluid-structure interaction community.‡
Further on we will investigate the two limiting cases of generalized Broyden in terms of the parameter 𝑚. If 𝑚 = 𝑘, secant

information from all previous iterations is included in𝑋𝑘 and𝐹𝑘 and generalized Broyden (16) reduces to Anderson acceleration,
denoted with a subscript A:

𝐺𝑘,A = 𝑋𝑘𝑅
−1
𝑘 𝑄𝑇

𝑘 + 𝐺0
(

𝐼 −𝑄𝑘𝑄
𝑇
𝑘
)

. (20)
As all secant conditions are met here, the no-change conditions (17) directly apply to 𝐺0 and the formula for Anderson
acceleration is not recursive anymore.

If 𝑚 = 1, only secant information from the previous iteration is included in 𝑋𝑘 and 𝐹𝑘, so that generalized Broyden (16)
reduces to Broyden’s second (nicknamed “bad”) method, denoted with a subscript B:

𝐺𝑘,B =
Δ𝑥𝑘−1Δ𝑓

𝑇
𝑘−1

Δ𝑓 𝑇
𝑘−1Δ𝑓𝑘−1

+ 𝐺𝑘−1,𝐵

(

𝐼 −
Δ𝑓𝑘−1Δ𝑓

𝑇
𝑘−1

Δ𝑓 𝑇
𝑘−1Δ𝑓𝑘−1

)

. (21)

In the remainder of this paper Anderson acceleration (20) and Broyden’s second method (21) will be referred to simply as
Anderson and Broyden.

In literature where Anderson acceleration is used as a general non-linear solver, the amount of secant information that is
retained is often quite small: 𝑋𝑘 and 𝐹𝑘 are then limited to only a few columns (2−5) to avoid (near) linear dependence issues.3

Such a conservative choice is safer, but limits the power of the method in terms of efficiency. In literature related to (steady)
partitioned fluid-structure interaction simulations, typically all secant information is retained in Anderson (e.g. IQN-ILS). In
this paper we do not focus on the optimal number of columns—which is problem dependent—but compare different generalized
Broyden variants that each use the same amount of secant information to approximate the inverse Jacobian. The following section
shows that the way in which the retained secant information is used, i.e. Anderson or Broyden, has important consequences for
the influence of non-linearities.

3 THE INFLUENCE OF NON-LINEARITIES

Although generalized Broyden has not been studied extensively as such, its limiting cases, Anderson and Broyden, have received
ample consideration in the literature. Their properties when applied to linear systems are well understood17,23,24,25 and relevant
for non-linear systems too, as local convergence behavior is usually dominated by the tangent operator at the solution.26

Non-linearities can play an important role in the convergence process. During the first few iterations, the iterate can be quite
far from the solution and the steps can be large. Non-linearities in  may then be picked up and appear in the secant information,
which means they are interpreted incorrectly as linear information when forming 𝐺𝑘, which in turn impacts the convergence.
The mechanisms behind this are investigated here for the generalized Broyden method. More specifically, we are interested in
the impact of the parameter 𝑚, which corresponds to the number of secant equations that are satisfied by 𝐺𝑘. As Anderson and
Broyden correspond to the maximum and minimum values of 𝑚, it is natural to compare these two methods.

In the following analysis, we will artificially create two pairs of secant information, by choosing three iterates 𝑥0, 𝑥1 and 𝑥2.These will then yield corresponding function values 𝑓0, 𝑓1 and 𝑓2, following definition (3). To be clear: the values 𝑥1 and 𝑥2are not obtained through quasi-Newton iterations here, but are selected in advance to insert a well-defined non-linearity in the
secant information. The differences between consecutive iterates and consecutive function values then yield the secant pairs
(Δ𝑥0,Δ𝑓0) and (Δ𝑥1,Δ𝑓1), following definitions (5) and (6). For both Anderson and Broyden, we will use this secant information
to construct the approximate inverse Jacobian 𝐺2, and calculate a new iterate using the quasi-Newton equation 𝑥3 = 𝑥2 −𝐺2𝑓2.If 𝑥0, 𝑥1 and 𝑥2 are chosen carefully, this result can yield valuable insights into the effects of non-linearities on the convergence
of Anderson and Broyden.

If  is non-linear, its Jacobian  ′ is not constant. This means that for a non-linear  , if the values of 𝑥0, 𝑥1 and 𝑥2 are chosen
in such a way that Δ𝑓0 is equal to Δ𝑓1, then Δ𝑥0 is not necessarily equal to Δ𝑥1, as would be the case for a linear  .Hence,

‡In partitioned fluid-structure interaction simulations, black-box flow and structure solvers are evaluated in an iterative scheme until their respective solution fields
meet certain interface conditions. After the development of I-GMRES 14 to accelerate this fixed-point problem, several quasi-Newton schemes were introduced for the
same purpose: IBQN-LS 15 and IQN-ILS 16,17 correspond to Anderson acceleration, MVQN 18 and IQN-MVJ 19 to generalized Broyden where the (inverse) Jacobian of the
previous timestep is used as old Jacobian. Only recently the correspondence between these methods was discovered. 20,21,22 IQN-ILS has emerged as a universal acceleration
method in many iterative approaches, and has for instance been adopted in the open-source preCICE coupling tool and the commercial tool ANSYS System Coupling.
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FIGURE 1 Illustration of secant information for the test problem with 𝑛 = 2: domain (left), co-domain (right).

by choosing 𝑥0, 𝑥1 and 𝑥2 such that Δ𝑓0 = Δ𝑓1, we could introduce a well-defined non-linearity in the secant information.
However, we stated earlier that the columns of 𝐹𝑘 defined in (10) must be linearly independent if generalized Broyden is used,
so we may not choose the iterates such that Δ𝑓0 = Δ𝑓1. Instead we choose 𝑥0, 𝑥1 and 𝑥2 such that Δ𝑓0 and Δ𝑓1 are slightly
different, namely

𝑓1 − 𝑓0 ≡ Δ𝑓0 = 𝑦 + 𝛿𝑦
𝑓2 − 𝑓1 ≡ Δ𝑓1 = 𝑦

(22)

where we assume that 𝜀 ≡ ‖𝛿𝑦‖ ∕ ‖𝑦‖ ≪ 1 and 𝑦𝑇 𝛿𝑦 = 0, i.e. the difference 𝛿𝑦 is much smaller than Δ𝑓1 and orthogonal
to Δ𝑓1. It may seem unconventional to put the 𝛿𝑦 term in Δ𝑓0 instead of Δ𝑓1; the reason is that this simplifies forthcoming
calculations. The iterate differences are defined as

𝑥1 − 𝑥0 ≡ Δ𝑥0 = 𝑠 + 𝛿𝑠 + Δ𝑠
𝑥2 − 𝑥1 ≡ Δ𝑥1 = 𝑠.

(23)
The difference between Δ𝑥1 and Δ𝑥0 is split into two parts, namely 𝛿𝑠 and Δ𝑠. We choose the part 𝛿𝑠 to be caused purely by
the difference between Δ𝑓1 and Δ𝑓0, i.e. it is a purely linear effect. Hence we define 𝛿𝑠 such that it corresponds to 𝛿𝑦 via the
(unknown) Jacobian  ′ at 𝑥2:

𝛿𝑦 =  ′(𝑥2) 𝛿𝑠. (24)
The term Δ𝑠 is then the non-linear effect related to the changing Jacobian and would be zero if  were linear. Figure 1 illustrates
the relations between the iterates and the function values graphically for 𝑛 = 2.

Based on the secant information (Δ𝑥0,Δ𝑓0) and (Δ𝑥1,Δ𝑓1), the approximate inverse Jacobian at 𝑘 = 2 is calculated for both
Anderson (20) and Broyden (21):

𝐺2,A =
𝑠𝑦𝑇

‖𝑦‖2
+

(𝛿𝑠 + Δ𝑠) 𝛿𝑦𝑇

‖𝛿𝑦‖2
(25)

𝐺2,B =
𝑠𝑦𝑇

‖𝑦‖2
+

(

(𝑠 + 𝛿𝑠 + Δ𝑠)(𝑦 + 𝛿𝑦)𝑇

‖𝑦‖2

)(

𝐼 −
𝑦𝑦𝑇

‖𝑦‖2

)

+ (𝜀2). (26)

As we are not interested in the role of 𝐺0, it was set to zero. The derivation of expressions (25) and (26) is given in Appendix A.
In the upcoming analysis, we will neglect the (𝜀2) term in equation (26), as 𝜀 ≪ 1.

To understand the difference between the Jacobian based on Anderson (25) and the one based on Broyden (26), we will
analyze what values they predict when used in a quasi-Newton iteration. For this purpose, we will calculate the iterate change
Δ𝑥2 = 𝑥3−𝑥2 that is obtained from a quasi-Newton step Δ𝑥2 = −𝐺2𝑓2 as defined in (4), for both approximate inverse Jacobians.
This is done for three different values of −𝑓2: the most recent function-value difference 𝑦, the previous one 𝑦 + 𝛿𝑦 and their
difference 𝛿𝑦. Table 1 summarizes the results. The values in the table are straightforward to derive, using the definition of 𝜀 and
taking into account that 𝑦 ⟂ 𝛿𝑦.

The first row shows that the latest secant condition 𝐺2Δ𝑓1 = Δ𝑥1 is fulfilled for both methods, as required. On the second
row it can be seen that for Anderson the previous secant condition 𝐺2Δ𝑓0 = Δ𝑥0 is fulfilled as well, as it should. For Broyden
this is not the case: it uses a no-change condition for this 𝑓2 instead of the previous secant condition. Because Δ𝑓0 and Δ𝑓1 are
very close, the effect of the difference 𝛿𝑦 is effectively ignored (the 𝜀2 term is negligible) so that a vector along Δ𝑓0 is treated
the same as one along Δ𝑓1 by 𝐺2,B.
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−𝑓2 Δ𝑥2 = −𝐺2,A𝑓2 Δ𝑥2 = −𝐺2,B𝑓2
𝑦 𝑠 𝑠

𝑦 + 𝛿𝑦 𝑠 + 𝛿𝑠 + Δ𝑠 𝑠 + 𝜀2(𝑠 + 𝛿𝑠 + Δ𝑠)
𝛿𝑦 𝛿𝑠 + Δ𝑠 𝜀2(𝑠 + 𝛿𝑠 + Δ𝑠)

TABLE 1 Approximate effect of non-linearities present in secant information. The values represent the quasi-Newton step Δ𝑥2for different function values 𝑓2, for both Anderson and Broyden.

For the third row 𝑓2 lies along the direction of the difference 𝛿𝑦. This yields the most interesting results, as Anderson and
Broyden behave in a very different way here: both methods clearly have advantages and disadvantages. For Broyden, the update
Δ𝑥2 is negligible due to the presence of the 𝜀2 factor. The advantage is that a large non-linearity Δ𝑠 has no effect on the
convergence process. On the other hand, no use is made of the linear information 𝛿𝑠. With Anderson, the linear information
𝛿𝑠 is correctly taken into account because all secant conditions are fulfilled, potentially speeding up convergence compared to
Broyden. However, for non-linear functions Δ𝑠 can be much larger than 𝛿𝑠, so that Δ𝑥2 potentially yields a large step in the
wrong direction for Anderson. This may well introduce more non-linearities in the secant information, leading to instabilities in
the quasi-Newton process.

We think it is reasonable to extend the observations from this model problem to the general use of the Anderson and Broyden
schemes. Both are linear methods and can therefore not take non-linear behavior correctly into account, namely that the Jacobian
 ′ depends on the vector 𝑥. However, Broyden seems to be better fit for dealing with non-linearities than Anderson: it will
effectively ignore the non-linear information, while Anderson uses it actively due to its requirement to fulfill all secant conditions.
On the other hand, Broyden ignores “small” linear information, which is correctly taken into account by Anderson and may
therefore speed up convergence.

4 A METHOD TO DEAL WITH NON-LINEARITIES

The previous section argues that both Anderson and Broyden have distinct advantages and disadvantages: Anderson uses the
secant information more efficiently, but non-linearities can have an adverse effect; the opposite is true for Broyden. Therefore,
we cannot conclude for which value of 𝑚 generalized Broyden performs best: this will depend on the function  (𝑥) and the
initial guess 𝑥0. In this section a strategy is outlined that seeks to prevent non-linearities from entering the secant information
used to construct 𝐺𝑘 for generalized Broyden. The goal is to improve convergence when 𝑚 is large, but the method is equally
applicable to smaller 𝑚.

Non-linearities influence 𝐺𝑘 when they appear in the secant information (Δ𝑥𝑖,Δ𝑓𝑖), as caused by the following two mech-
anisms. Firstly, the pair (Δ𝑥𝑖,Δ𝑓𝑖) is representative for the Jacobian at point 𝑥̄𝑖 as defined in equation (8), but may not be
representative for the Jacobian at the current point 𝑥𝑘 if the distance ‖

‖

𝑥𝑘 − 𝑥̄𝑖‖‖ is too large. Secondly, the points 𝑥𝑖 and 𝑥𝑖+1 may
be so far apart that (Δ𝑥𝑖,Δ𝑓𝑖) does not provide an accurate finite difference approximation to the Jacobian at point 𝑥̄𝑖. In this
case the distance ‖

‖

Δ𝑥𝑖‖‖ is too large.
During the quasi-Newton iterations, both mechanisms can be checked: only secant information that corresponds to a close-

enough point 𝑥̄𝑖 and which is made up of points 𝑥𝑖 and 𝑥𝑖+1 that are near enough should be included in 𝑋𝑘 and 𝐹𝑘. To check
these criteria, a reference distance is required to compare ‖

‖

𝑥𝑘 − 𝑥̄𝑖‖‖ and ‖

‖

Δ𝑥𝑖‖‖ with. This reference distance 𝑑 must be obtained
in advance, i.e. before the actual quasi-Newton iterations are started. An iterative procedure to calculate a suitable value for 𝑑 is
outlined next. Please note that these iterations should not be confused with the actual quasi-Newton iterations; to make a clear
distinction, iterates and function values are therefore denoted with a hat.

We start by introducing the differences between iteration 𝑖 and iteration 0 of this procedure as
Δ𝑥̂𝑖 ≡ 𝑥̂𝑖 − 𝑥0 (27)

where the inputs 𝑥̂𝑖 are chosen—independently of the quasi-Newton iterations—such that consecutive iterate differences satisfy
Δ𝑥̂𝑘 = 𝜎Δ𝑥̂𝑘−1 = 𝜎𝑘−1Δ𝑥̂1 with 𝜎 > 1. (28)
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Subsequently, the output 𝑓𝑘 =  (𝑥̂𝑘) is calculated for each 𝑥̂𝑘, upon which the difference with 𝑓0 is calculated according to
Δ𝑓𝑖 ≡ 𝑓𝑖 − 𝑓0. (29)

For a linear function  , the Δ𝑓𝑘 corresponding with Δ𝑥̂𝑘 would change with the same factor, hence one would obtain Δ𝑓𝑘 =
𝜎𝑘−1Δ𝑓1. For a non-linear function  , we expect this to be approximately true as long as Δ𝑥̂𝑘 is small enough, as linear behavior
is locally dominant. For larger Δ𝑥̂𝑘, Δ𝑓𝑘 will deviate from this linear behavior. A quantitative way to measure this deviation is
provided by the coefficient

𝑐𝑘 =
‖

‖

‖

𝜎1−𝑘 Δ𝑓𝑘 − Δ𝑓1
‖

‖

‖

‖

‖

‖

Δ𝑓1
‖

‖

‖

(30)

which gives the relative size of the deviation in Δ𝑓𝑘. When 𝑐𝑘 exceeds a prescribed maximum value 𝑐𝑑 , we can conclude that
we have found the threshold for 𝑑. The distance 𝑑 that corresponds to 𝑐𝑑 can then be interpolated from the stored values of 𝑐𝑖and ‖

‖

Δ𝑥̂𝑖‖‖, e.g. with the linear interpolation rule
𝑑 =

𝑐𝑑 − 𝑐𝑘
𝑐𝑘−1 − 𝑐𝑘

‖

‖

Δ𝑥̂𝑘−1‖‖ +
𝑐𝑑 − 𝑐𝑘−1
𝑐𝑘 − 𝑐𝑘−1

‖

‖

Δ𝑥̂𝑘‖‖

=
( 𝑐𝑑 − 𝑐𝑘
𝑐𝑘−1 − 𝑐𝑘

𝜎𝑘−2 +
𝑐𝑑 − 𝑐𝑘−1
𝑐𝑘 − 𝑐𝑘−1

𝜎𝑘−1
)

‖

‖

Δ𝑥̂1‖‖ .
(31)

For our algorithm to work properly, the value Δ𝑥̂1 must be small enough that the response Δ𝑓1 is representative for the Jacobian
at point 𝑥0. We propose to choose Δ𝑥̂1 in the direction 𝐺0𝑓0, scaled with a factor 𝑎 to make it appropriately small. This procedure
is detailed in Algorithm 2 and needs to be executed only once, in advance of the quasi-Newton iterations. The user can limit
the number of iterations in Algorithm 2 to 𝑘max, ensuring that at most 𝑘max additional function evaluations of  must be made
to determine 𝑑. If the Jacobian changes more quickly in certain regions of the function  (i.e. large second-order derivatives),
the distance 𝑑 will not be representative further away from 𝑥0 and the method will not correctly cope with non-linear secant
information, limiting its applicability.

Algorithm 2 Determining the distance 𝑑, with parameter 𝑎 chosen small enough such that the response to Δ𝑥̂1 is close to linear.
1: choose suitable values for 𝑎, 𝜎 and 𝑐𝑑
2: 𝑓0 =  (𝑥0)
3: Δ𝑥̂1 = −𝑎𝐺0𝑓0 ⊳ use the same 𝐺0 as chosen for the quasi-Newton iterations
4: 𝑘 = 1
5: while 𝑘 ≤ 𝑘max do
6: Δ𝑥̂𝑘 = 𝜎𝑘−1Δ𝑥̂1
7: 𝑥̂𝑘 = 𝑥0 + Δ𝑥̂𝑘
8: 𝑓𝑘 =  (𝑥̂𝑘)
9: 𝑐𝑘 from definition (30)

10: if 𝑐𝑘 ≥ 𝑐𝑑 then
11: break
12: end if
13: 𝑘 = 𝑘 + 1
14: end while
15: 𝑑 from definition (31)

Even though this procedure requires several expensive evaluations of  (𝑥), improved convergence of the quasi-Newton iter-
ations may justify its use for certain applications. Specifically, if many quasi-Newton iterations are performed, e.g. in nested
iterations in time-integration processes, the computational overhead associated with Algorithm 2 may be negligible. This
procedure will be demonstrated in Section 5 with recommended values for the parameters 𝜎 and 𝑐𝑑 .

Using the distance 𝑑 as determined by Algorithm 2, the generalized Broyden scheme from Algorithm 1 can be adapted to
exclude secant information which has a too large value for ‖

‖

Δ𝑥𝑖‖‖ or ‖
‖

𝑥𝑘 − 𝑥̄𝑖‖‖, resulting in Algorithm 3. Note that for the latter
criterion a distance 𝑑∕2 is used, which is in line with how 𝑑 is determined and 𝑥̄𝑖 is defined. The latest secant pair is always
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FIGURE 2 Pressure contours [Pa] for initial guess (top) and final solution (bottom). Flow from left to right.

added to the matrices 𝑋𝑙 and 𝐹𝑙, because only non-linearities in the other secant pairs are amplified by Anderson according to
the analysis in Section 3. As a consequence Algorithm 3 reduces to Algorithm 1 for 𝑚 = 1.

Algorithm 3 Quasi-Newton with generalized Broyden, adapted to deal with non-linearities.
1: choose 𝑥0, 𝐺0, 𝜀, m
2: get 𝑑 using Algorithm 2
3: 𝑥1 = 𝑥0 − 𝐺0 (𝑥0)
4: 𝑓1 =  (𝑥1)
5: 𝑘 = 1
6: while ‖

‖

𝑓𝑘‖‖ > 𝜀 do
7: for 𝑗 ∈

[

0, 1,⋯ , f loor
(

𝑘−1
𝑚

)]

do
8: 𝑙 = 𝑘 − 𝑗𝑚
9: 𝑋𝑙 =

[

Δ𝑥𝑙−1
]

10: 𝐹𝑙 =
[

Δ𝑓𝑙−1
]

11: for 𝑖 ∈ [2, 3,⋯ ,min(𝑚, 𝑙)] do
12: if ‖

‖

𝑥𝑘 − 𝑥̄𝑙−𝑖‖‖ < 𝑑∕2 and ‖

‖

Δ𝑥𝑙−𝑖‖‖ < 𝑑 then
13: 𝑋𝑙 =

[

𝑋𝑙 Δ𝑥𝑙−𝑖
]

14: 𝐹𝑙 =
[

𝐹𝑙 Δ𝑓𝑙−𝑖
]

15: end if
16: end for
17: end for
18: 𝑥𝑘+1 = 𝑥𝑘 − 𝐺𝑘𝑓𝑘 ⊳ evaluate recursively (matrix-free) using expression (16)
19: 𝑓𝑘+1 =  (𝑥𝑘+1)
20: 𝑘 = 𝑘 + 1
21: end while

5 APPLICATION: SOLVING STEADY FREE-SURFACE FLOW

Introducing the test case
Steady free-surface flows are encountered in the fields of marine and hydraulic engineering. An important example is the calcu-
lation of the wave pattern around a ship that sails at constant speed. We can usually neglect the influence of the air for these cases,
so that the steady free-surface problem reduces to a free boundary problem, viz. solving simultaneously for a single-phase flow
with appropriate boundary conditions at the free surface, and the domain on which this flow is defined. The challenge is then to
determine the free-surface position for which the corresponding flow field satisfies the governing partial differential equations
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and all free-surface conditions. One way to do this is to solve a non-linear system  (𝑥) = 0, where 𝑥 contains the (discretized)
vertical position of the free-surface and  is a flow solver which returns the free-surface pressure  (𝑥).27 This corresponds to
finding the free-surface shape that yields zero (atmospheric) pressure at the free-surface.§

Especially at higher flow velocities, it is important to take viscous and turbulent effects into account to obtain the correct
shape. Hence the flow solver must solve the Reynolds-averaged Navier-Stokes (RANS) equations. In this paper we use ANSYS
Fluent for this purpose.

The test case we will consider is the 2D steady free-surface flow of water over an obstacle as introduced by Cahouet,28 more
specifically the flow with depth-based Froude number equal to 2.05 and Reynolds number 1.9 × 10−5. The initial configuration
and the converged solution are both shown in Figure 2, where the pressure fields as calculated in the flow solver are plotted. In
the notation used throughout this paper, the position of the free-surface (the top boundary) corresponds to the iterate 𝑥, while
the pressure at the free-surface corresponds to the function value  (𝑥). The obstacle’s height is given by

27
4
𝐻b

𝐿3
b

𝑥(𝑥 − 𝐿b)
2 for 0 ≤ 𝑥 ≤ 𝐿b (32)

with 𝐿𝑏 = 0.42m and 𝐻𝑏 = 0.042m. The domain stretches from −𝐿b to 2.75𝐿b, the inlet height is 0.0955m. At the inlet (left)
a velocity profile is imposed,28 at the outlet (right) a hydrostatic pressure, at the bottom a no-slip condition and at the free-
surface a free-slip condition. The flow field is discretized with 57 600 cells, with 𝑛 = 481 nodes at the free-surface. Turbulence
modeling is done with the k𝜔-SST model.29 To avoid noise in the secant information, a convergence criterion of 10−12 was used
in ANSYS Fluent for all conservation equations.

Adding a physics-based surrogate model
Section 2 conveyed that a surrogate model 𝐺sur can replace 𝐺0 = −𝛽𝐼 to improve the convergence of generalized Broyden. For
steady free-surface flow, we base 𝐺sur on an analytical investigation of the inviscid free-surface flow over a horizontal surface.30

From this analysis follows a frequency domain relation between height differencesΔ𝑥 and pressure differencesΔ𝑓 . The discrete-
time Fourier transform (DTFT) is used to transform an approximation of this frequency domain relation to the spatial domain.
The convolution theorem is then employed to create a surrogate model.31 The Python-code to create and use this surrogate is
provided as supplementary material, as a detailed explanation goes beyond the scope of this paper.

Two variants of this surrogate model will be used: a good one denoted 𝐺g, which accurately represents the analytical relation,
and a bad one 𝐺b, which uses a coarser approximation of the analytical relation.¶ As a consequence, the latter model gives a
bad prediction for some vectors in ℝ𝑛.

Apart from these two surrogate models, the free-surface problem will also be solved with the standard 𝐺0 = −𝛽𝐼 . The
relaxation factor 𝛽 is chosen based on the analytical investigation mentioned earlier, in such a way that iterations with simple
relaxation (𝐺𝑘 = −𝛽𝐼) are stable while converging as fast as possible (details can be found in this paper30). For finer free-surface
discretizations, 𝛽 must decrease to retain stability, resulting in slower convergence of the quasi-Newton iterations.

Dealing with non-linear information
To remove secant information that might be contaminated by non-linearitites, the distance 𝑑 as introduced in Section 4 is
calculated using Algorithm 2. This must be done once, as a pre-computation before the start of the quasi-Newton iterations in
Algorithm 3.

In Figure 3, the criterion 𝑐𝑘 is plotted against the factor 𝜎𝑘−1 for 𝜎 = 2 and 𝜎 = 10. The value of 𝑐1 is not shown as 𝑐1 = 0 by
definition (30) and therefore cannot be plotted on a logarithmic scale. The distance 𝑑 can be interpolated from these data points
using equation (31) based on either 𝜎 = 2 or 𝜎 = 10, giving practically the same result because 𝑐𝑘 changes slowly. This shows
that a large value can be used for 𝜎 to reduce the required number of function evaluations in Algorithm 2.

§The problem is actually a little more complicated, but this does not impact any of our results or conclusions. We need in fact only a constant free-surface pressure,
not a zero one. Furthermore, a fixed inlet height is usually given as boundary condition to the problem. As the value of the constant pressure depends on the inlet height
condition, this results in one less degree of freedom in both input and output of  . In practice, this is dealt with by adapting  slightly: in each iteration a constant value
is added to the input height to satisfy the inlet condition, and the average is subtracted from the output pressure. See this paper 27 for a more detailed explanation.

¶Note that the terms “good” and “bad” are no reference whatsoever to Broyden’s first and second method; we use these adjectives in the literal sense, to distinguish
between a very accurate and a rather poor surrogate model.
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FIGURE 3 Determining the distance criterion 𝑑 based on different values of 𝜎.

The effect of the choice of 𝑐𝑑 (and correspondingly 𝑑) on the convergence of Anderson acceleration is analyzed in Figures 4
and 5 for the steady free-surface problem. Figure 4 shows the residual ‖

‖

𝑓𝑘‖‖ normalized with respect to its initial value ‖
‖

𝑓0‖‖. Note
that the curve 𝑐𝑑 → ∞ corresponds to the original generalized Broyden scheme from Algorithm 1, where all secant information
is used to construct 𝐺𝑘. Figure 5 summarizes the results of Figure 4 by plotting the average convergence speed as a function of
𝑐𝑑 . The average convergence rate is based on the residual in iteration 𝑘 and is defined as

𝜉𝑘 = −
log10

‖
𝑓𝑘‖2

‖
𝑓0‖2

𝑘
. (33)

It expresses (on a logarithmic scale) how much the residual decreases on average in each quasi-Newton iteration. If a large
distance 𝑑 is used (𝑐𝑑 ≥ 0.5), convergence is poor. It is noteworthy that the convergence behavior is non-uniform in 𝑐𝑑 : if all
secant information is used (𝑐𝑑 → ∞), the convergence behavior is better than for 𝑐𝑑 = 0.5 and 𝑐𝑑 = 0.6. We do not expect this to
be a general trend, but rather a coincidence due to the unpredictable behavior of non-linearities in the secant information. For all
𝑐𝑑 ≤ 0.4, the convergence behavior is however significantly better and a clear trend does appear. For decreasing 𝑐𝑑 , an optimal
value 𝑐𝑑 = 0.4 emerges for this application. When 𝑐𝑑 decreases further, the initial convergence slows down, but the slope of
the residuals curve in later iterations does not change. Furthermore, for lower 𝑐𝑑 the residuals curve becomes smoother, which
indicates that oscillations in the residual during the calculation are caused by the non-linear information picked up in the first
few iterations.

The optimal choice for 𝑐𝑑 will certainly be application dependent. As Figure 5 clearly demonstrates, a too high value is bad
for convergence while a too low value has a very limited negative impact. Therefore we recommend a conservative choice
𝑐𝑑 ∈ [0.1, 0.2]. In the remainder of this section, the distance 𝑑 corresponding to 𝑐𝑑 = 0.2 will be used for all results.

In the simulations reported in this paper, no filtering6 was applied to remove linearly-dependent columns. This avoids inter-
action with the new method to remove non-linearities. In practice, these two techniques are expected to be complementary, as
they have a different purpose and working principle.

Comparing all methods
The convergence of several methods is compared in Figure 6 for the test problem. The goal is to demonstrate the influence
of the physics-based surrogate and the non-linearities on convergence behavior. The legend has several entries per method to
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FIGURE 4 Convergence of Anderson (Algorithm 3 with 𝑚 = 𝑘) for different values of 𝑐𝑑 used in Algorithm 2.
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FIGURE 5 Comparison of the average convergence speed 𝜉170 for the calculations in Figure 4. Higher values correspond to
faster convergence.

distinguish them. The first entry specifies which initial inverse Jacobian 𝐺0 is used: a simple relaxation denoted by 𝐺𝛽 , the good
surrogate 𝐺g or the bad surrogate 𝐺b. The second entry specifies the method that is used to build 𝐺𝑘, which is either Anderson
(20), Broyden (21) or 𝐺𝑘 = 𝐺0, denoted respectively as A, B and 0. In addition to these two entries, for the calculations with
Anderson, the value of 𝑐𝑑 is given to distinguish between the generalized Broyden method from Algorithm 1 and the adapted
method from Algorithm 3.

Comparing the calculations with initial approximation 𝐺0 = 𝐺𝛽 , it can be seen that simple relaxation converges very slowly
for this problem. Using Broyden accelerates convergence greatly. Anderson is significantly slower than Broyden as it has con-
vergence problems initially and keeps oscillating later on. When we use the distance 𝑑 that corresponds to 𝑐𝑘 = 0.2, to keep
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FIGURE 6 Convergence comparison for a range of quasi-Newton methods. The number of iterations equals the number of
function calls  (𝑥), except for the dotted lines where the execution of Algorithm 2 requires 5 additional function calls. The three
plots focus on respectively the simulations with the simple relaxation 𝐺𝛽 , the bad surrogate 𝐺b and the good surrogate 𝐺g.
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non-linear information from appearing in 𝑋𝑘 and 𝐹𝑘, this behavior changes completely: Anderson then converges with the same
speed as Broyden, although initial convergence is a bit slower. These results confirm the conclusions from Section 3 and the
effectivity of the solution proposed in Section 4.

With the bad surrogate 𝐺b as initial approximation, there are significant differences in the results. With simple relaxation, the
iterations in fact diverge because 𝐺b is inherently unstable. It is noteworthy that both Anderson and Broyden restore stability of
the iteration. Comparing Anderson and Broyden, the former is faster in this case, perhaps because Anderson makes better use
of small linear information. Removing non-linear information makes less of a difference here than with 𝐺0 = 𝐺𝛽 . The reason
is most likely that the number of non-linear secant pairs is smaller to begin with, as convergence is very fast from the start. For
Anderson enhanced with a distance criterion, the convergence becomes smoother though, as was observed with 𝐺0 = 𝐺𝛽 , too.

All methods that use the good surrogate𝐺g converge very fast in approximately the same number of iterations. The surrogate is
such a good approximation of the actual Jacobian that the use of secant information yields very little improvement in convergence.
The wiggles in Anderson again disappear with 𝑐𝑑 = 0.2.

In the calculations with the adapted Anderson method from Algorithm 3, not all the secant information is used to construct
𝐺𝑘. Figure 7 plots the number of used secant pairs as a function of the iteration counter, for the three calculations with 𝑐𝑑 = 0.2
in Figure 6. The available number of pairs is equal to the iteration count, shown as a gray line on the figure. Note that for the
calculations with 𝑐𝑑 → ∞, this maximum number of pairs is used. The figure shows that for 𝑐𝑑 = 0.2, only a single secant pair
(which is the minimum) is used in the first few iterations, because the steps are large. For the calculations with the good and the
bad surrogate, the behavior of the algorithm abruptly changes after respectively 5 and 7 iterations: as the method is converging
well, the steps Δ𝑥𝑖 become small and the iterate 𝑥𝑖 sees only small variations, hence from this point on, all new secant pairs are
kept. For 𝐺0 = −𝛽𝐼 , the change is more gradual, as the calculation is not converging as quickly. It can thus be observed that the
behavior of the non-linearity criterion is different from a fixed window.

Figure 7 also helps to understand the effect on convergence of adding the distance criterion: the residuals converge slowly at
first, but faster and smoother in a later stage. The slow initial convergence is caused by the fact that only a single secant pair is
used in the first iterations. The smoother convergence later is caused by the absence of the first few secant pairs, which contain
significant non-linearities. This last observation corroborates the conclusion drawn about Anderson in Section 3, namely that it
suffers much more from non-linearities than Broyden.
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Comparing all the results, it is clear that the choice of the initial inverse Jacobian approximation has the largest impact on
convergence: the more of the physics is captured by the surrogate, the better. The performance comparison between Anderson
and Broyden is inconclusive. Figure 6 demonstrates that the best choice does not only depend on the test-case, but also on the
surrogate and whether non-linear secant information is retained or removed.

6 CONCLUSIONS

This paper addresses two important aspects of the generalized Broyden method: the initial Jacobian approximation and the pres-
ence of non-linearities in the secant information. A steady free-surface-flow problem was used to compare several generalized
Broyden variants and to support the analyses made in the paper.

It was shown how the generalized Broyden method can be extended naturally by using a physics-based surrogate model
as initial approximate Jacobian. Depending on the application, this has the potential to greatly reduce the required number of
quasi-Newton iterations. This statement was confirmed by the free-surface test case, even for a surrogate model that gave a bad
prediction for some inputs.

To investigate the effect of non-linearities in the secant information, the two limiting cases of generalized Broyden were
compared: Anderson acceleration and Broyden’s second method, which satisfy respectively all secant equations and only a
single one. It was shown that Broyden neglects small linear information which may lead to slower convergence, but more
importantly that Anderson acceleration amplifies non-linearities present in the secant information. A method was therefore
proposed to prevent non-linear information from being used in the construction of the inverse Jacobian in generalized Broyden.
Note that the new technique is equally applicable to more specific methods, like Anderson acceleration or IQN-ILS. The test
case showed that non-linearities indeed give convergence issues for Anderson, which can be effectively dealt with using the
proposed method. Even though this method may not be optimal yet—it requires some extra function calls—applying it to the
test case clearly demonstrated the predicted behavior, which substantiates our conclusions about non-linearities in generalized
Broyden. As the new method was developed to work for generalized Broyden, it is equally applicable to submethods such as
Anderson acceleration and IQN-ILS.
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APPENDIX

A DERIVATION OF EXPRESSIONS (25) AND (26)
This appendix gives the step-by-step derivation of expressions (25) and (26), based on the secant information defined in (22)
and (23) that is collected in the matrices

𝑋2 =
[

𝑠 𝑠 + 𝛿𝑠 + Δ𝑠
] (A1)

𝐹2 =
[

𝑦 𝑦 + 𝛿𝑦
]

. (A2)
For 𝐺2,𝐴 we need the economy-size QR decomposition of 𝐹2. This is made easy by the choice of secant pairs:

𝐹2 =
[

𝑦 𝑦 + 𝛿𝑦
]

=
[

𝑦
‖𝑦‖

𝛿𝑦
‖𝛿𝑦‖

]

[

‖𝑦‖ ‖𝑦‖
0 ‖𝛿𝑦‖

]

= 𝑄2𝑅2. (A3)
We can now invert 𝑅2:

𝑅−1
2 = 1

‖𝑦‖ ‖𝛿𝑦‖

[

‖𝛿𝑦‖ − ‖𝑦‖
0 ‖𝑦‖

]

=

[ 1
‖𝑦‖

− 1
‖𝛿𝑦‖

0 1
‖𝛿𝑦‖

.

]

(A4)
Expression (25) then follows from expression (20) with 𝐺0 = 0:

𝐺2,𝐴 = 𝑋2𝑅
−1
2 𝑄𝑇

2 (A5)

=
[

𝑠 𝑠 + 𝛿𝑠 + Δ𝑠
]

[ 1
‖𝑦‖

− 1
‖𝛿𝑦‖

0 1
‖𝛿𝑦‖

]

⎡

⎢

⎢

⎣

𝑦𝑇

‖𝑦‖
𝛿𝑦𝑇

‖𝛿𝑦‖

⎤

⎥

⎥

⎦

(A6)

=
𝑠𝑦𝑇

‖𝑦‖2
+

(𝛿𝑠 + Δ𝑠)𝛿𝑦𝑇

‖𝛿𝑦‖2
. (A7)

For 𝐺2,𝐵 we use the recursive formula (21), hence we first calculate 𝐺1,𝐵:

𝐺1,𝐵 =
Δ𝑥0Δ𝑓

𝑇
0

‖

‖

Δ𝑓0‖‖
2

=
(𝑠 + 𝛿𝑠 + Δ𝑠)(𝑦𝑇 + 𝛿𝑦𝑇 )

‖𝑦 + 𝛿𝑦‖2
=

(𝑠 + 𝛿𝑠 + Δ𝑠)(𝑦𝑇 + 𝛿𝑦𝑇 )
(1 + 𝜀2) ‖𝑦‖2

. (A8)

In the last step the expression
‖𝑦 + 𝛿𝑦‖2 = ‖𝑦‖2 + ‖𝛿𝑦‖2 =

(

1 + 𝜀2
)

‖𝑦‖2 (A9)
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can be used, because 𝑦 ⟂ 𝛿𝑦. Expression (26) is then given by:

𝐺2,𝐵 =
Δ𝑥1Δ𝑓

𝑇
1

‖

‖

Δ𝑓1‖‖
2
+ 𝐺1,𝐵

(

𝐼 −
Δ𝑓1Δ𝑓

𝑇
1

‖

‖

Δ𝑓1‖‖
2

)

(A10)

=
𝑠𝑦𝑇

‖𝑦‖2
+

(𝑠 + 𝛿𝑠 + Δ𝑠)(𝑦𝑇 + 𝛿𝑦𝑇 )
(1 + 𝜀2) ‖𝑦‖2

(

𝐼 −
𝑦𝑦𝑇

‖𝑦‖2

)

(A11)

=
𝑠𝑦𝑇

‖𝑦‖2
+

(𝑠 + 𝛿𝑠 + Δ𝑠)(𝑦𝑇 + 𝛿𝑦𝑇 )
‖𝑦‖2

(

𝐼 −
𝑦𝑦𝑇

‖𝑦‖2

)

+ (𝜀2). (A12)
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